1
|
Kong Z, Zhao X, Li WC, Wang JY, Li S, Liu Z, Dong XY, Wang R, Huang RW, Zang SQ. Cluster Engineering in Water Catalytic Reactions: Synthesis, Structure-Activity Relationship and Mechanism. ACS APPLIED MATERIALS & INTERFACES 2025; 17:67-90. [PMID: 39718441 DOI: 10.1021/acsami.4c16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Four fundamental reactions are essential to harnessing energy from water sustainably: oxidation reduction reaction (ORR), oxygen reduction reaction (OER), hydrogen oxidation reaction (HOR), and hydrogen evolution reaction (HER). This review summarizes the research advancements in the electrocatalytic reaction of metal nanoclusters for water splitting. It covers various types of nanoclusters, particularly those at the size level, that enhance these catalytic reactions. The synthesis of cluster-based catalysts and the elucidation of the structure-activity relationships and reaction mechanisms are discussed. Emphasis is placed on utilizing atomically precise cluster materials and the interplay between the carrier and cluster in water catalysis, especially for applying catalytic engineering principles (such as synergy, coordination, heterointerface, and lattice strain engineering) to understand structure-activity relationships and catalytic mechanisms for cluster-based catalysts. Finally, the field of cluster water catalysis is summarized and prospected. We believe that developing cluster-based catalysts with high activity, excellent stability, and high selectivity will significantly promote the development of renewable energy conversion reactions.
Collapse
Affiliation(s)
- Zhijie Kong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xue Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wu-Chu Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jia-Yun Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Si Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhijuan Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ren-Wu Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Wang J, Branco B, Remmerswaal WHM, Hu S, Schipper NRM, Zardetto V, Bellini L, Daub N, Wienk MM, Wakamiya A, Snaith HJ, Janssen RAJ. Performance and stability analysis of all-perovskite tandem photovoltaics in light-driven electrochemical water splitting. Nat Commun 2025; 16:174. [PMID: 39747181 PMCID: PMC11695925 DOI: 10.1038/s41467-024-55654-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
All-perovskite tandem photovoltaics are a potentially cost-effective technology to power chemical fuel production, such as green hydrogen. However, their application is limited by deficits in open-circuit voltage and, more challengingly, poor operational stability of the photovoltaic cell. Here we report a laboratory-scale solar-assisted water-splitting system using an electrochemical flow cell and an all-perovskite tandem solar cell. We begin by treating the perovskite surface with a propane-1,3-diammonium iodide solution that reduces interface non-radiative recombination losses and achieves an open-circuit voltage above 90% of the detailed-balance limit for single-junction solar cells between the bandgap of 1.6-1.8 eV. Specifically, a high open-circuit voltage of 1.35 V and maximum power conversion efficiency of 19.9% are achieved at a 1.77 eV bandgap. This enables monolithic all-perovskite tandem solar cells with a 26.0% power conversion efficiency at 1 cm2 area and a pioneering photovoltaic-electrochemical system with a maximum solar-to-hydrogen efficiency of 17.8%. The system retains over 60% of its peak performance after operating for more than 180 h. We find that the performance loss is mainly due to the degradation of the photovoltaic component. We observe severe charge collection losses in the narrow-bandgap sub-cell that can be attributed to the interface degradation between the narrow-bandgap perovskite and the hole-transporting layer. Our study suggests that developing chemically stable absorbers and contact layers is critical for the applications of all-perovskite tandem photovoltaics.
Collapse
Affiliation(s)
- Junke Wang
- Molecular Materials and Nanosystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, partner of Solliance, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Clarendon Laboratory, Department of Physics, Parks Road, Oxford, OX1 3PU, UK
| | - Bruno Branco
- Molecular Materials and Nanosystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, partner of Solliance, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Willemijn H M Remmerswaal
- Molecular Materials and Nanosystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, partner of Solliance, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Shuaifeng Hu
- Clarendon Laboratory, Department of Physics, Parks Road, Oxford, OX1 3PU, UK
| | - Nick R M Schipper
- Molecular Materials and Nanosystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, partner of Solliance, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Valerio Zardetto
- TNO, partner in Solliance, High Tech Campus 21, 5656 AE, Eindhoven, The Netherlands
| | - Laura Bellini
- Molecular Materials and Nanosystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, partner of Solliance, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Nicolas Daub
- Molecular Materials and Nanosystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, partner of Solliance, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Martijn M Wienk
- Molecular Materials and Nanosystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, partner of Solliance, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Atsushi Wakamiya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Henry J Snaith
- Clarendon Laboratory, Department of Physics, Parks Road, Oxford, OX1 3PU, UK
| | - René A J Janssen
- Molecular Materials and Nanosystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, partner of Solliance, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ, Eindhoven, The Netherlands.
| |
Collapse
|
3
|
Liu X, Hu Z, Xing P, Guo J, Xing Y, Liu S, Wang C. Construction of iron-doped nickel cobalt phosphide nanoparticles via solvothermal phosphidization and their application in alkaline oxygen evolution. J Colloid Interface Sci 2025; 677:441-451. [PMID: 39153247 DOI: 10.1016/j.jcis.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Multi-metallic phosphides offer the possibility to combine the strategies of surface reconstruction, electronic interaction and mechanistic pathway tuning to achieve high electrocatalytic oxygen evolution activity. Here, iron-doped nickel cobalt phosphide nanoparticles (FexCoyNi2-x-yP) with the crystalline NiCoP phase are for the first time synthesized by the solvothermal phosphidization method via the reaction between metal-organic frameworks and white phosphorus. When used to electrochemically catalyze oxygen evolution reaction (OER), the Fe0.4Co0.8Ni0.8P supported by nickel foam requires only 248 mV overpotential to achieve 10 mA cm-2 current densities, and is robust towards the long-term OER in 1 M KOH. The higher number of electrochemically active sites can account for the good OER activity, along with the improved intrinsic activity which is caused by the electron interaction that optimizes the adsorption energy of hydroxyl intermediates, and that increases the acidity of high-valent metal centers. The OER mechanistic pathway involves both adsorbate and lattice oxygen. Surface conversion is observed after OER in alkaline solution, and metal phosphide layer transforms to metal oxides and (oxy)hydroxides.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Zhikai Hu
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Peize Xing
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Jiale Guo
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yichuang Xing
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Shuling Liu
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Chao Wang
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
4
|
Edgington J, Vispute S, Li R, Deberghes A, Seitz LC. Quantification of electrochemically accessible iridium oxide surface area with mercury underpotential deposition. SCIENCE ADVANCES 2024; 10:eadp8911. [PMID: 39504370 PMCID: PMC11540024 DOI: 10.1126/sciadv.adp8911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
Research drives development of sustainable electrocatalytic technologies, but efforts are hindered by inconsistent reporting of advances in catalytic performance. Iridium-based oxide catalysts are widely studied for electrocatalytic technologies, particularly for the oxygen evolution reaction (OER) for proton exchange membrane water electrolysis, but insufficient techniques for quantifying electrochemically accessible iridium active sites impede accurate assessment of intrinsic activity improvements. We develop mercury underpotential deposition and stripping as a reversible electrochemical adsorption process to robustly quantify iridium sites and consistently normalize OER performance of benchmark IrOx electrodes to a single intrinsic activity curve, where other commonly used normalization methods cannot. Through rigorous deconvolution of mercury redox and reproportionation reactions, we extract net monolayer deposition and stripping of mercury on iridium sites throughout testing using a rotating ring disk electrode. This technique is a transformative method to standardize OER performance across a wide range of iridium-based materials and quantify electrochemical iridium active sites.
Collapse
Affiliation(s)
- Jane Edgington
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3113, USA
| | - Sejal Vispute
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3113, USA
| | - Ruihan Li
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3113, USA
| | - Adrien Deberghes
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3113, USA
| | - Linsey C. Seitz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3113, USA
| |
Collapse
|
5
|
Yan X, Liu N, Liu W, Zeng J, Liu C, Chen S, Yang Y, Gui X, Yu D, Yang G, Zeng Z. Recent advances on COF-based single-atom and dual-atom sites for oxygen catalysis. Chem Commun (Camb) 2024; 60:12787-12802. [PMID: 39391942 DOI: 10.1039/d4cc03535f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Covalent organic frameworks (COFs) have emerged as promising platforms for the construction of single-atom and dual-atom catalysts (SACs and DACs), owing to their well-defined structures, tunable pore sizes, and abundant active sites. In recent years, the development of COF-based SACs and DACs as highly efficient catalysts has witnessed a remarkable surge. The synergistic interplay between the metal active sites and the COF has established the design and fabrication of COF-based SACs and DACs as a prominent research area in electrocatalysis. These catalytic materials exhibit promising prospects for applications in energy storage and conversion devices. This review summarizes recent advances in the design, synthesis, and applications of COF-based SACs and DACs for oxygen catalysis. The catalytic mechanisms of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are comprehensively explored, providing a comparative analysis to elucidate the correlation between the structure and performance, as well as their functional attributes in battery devices. This review highlights a promising approach for future research, emphasizing the necessity of rational design, breakthroughs, and in-situ characterization to further advance the development of high-performance COF-based SACs and DACs for sustainable energy applications.
Collapse
Affiliation(s)
- Xinru Yan
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ning Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Wencai Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jiajun Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Cong Liu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shufen Chen
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yuhua Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhiping Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
6
|
Haridas A, Mondal R, Nayak B, Ottakam Thotiyl M. Reductive Inner-Sphere Electrosynthesis of Ammonia via a Nonelectrocatalytic Outer-Sphere Redox. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19458-19466. [PMID: 39225073 DOI: 10.1021/acs.langmuir.4c01836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Electrochemistry of outer-sphere redox molecules involves an essentially intact primary coordination sphere with minimal secondary sphere adjustments, resulting in very fast electron transfer events even without a noble metal-based electrocatalyst. Departing from conventional electrocatalytic paradigms, we incorporate these minimal reaction coordinate adjustments of outer-sphere species to stimulate the electrocatalysis of energetically challenging inner-sphere substrates. Through this approach, we are able to show an intricate 8e- and 9H+ transfer inner-sphere reductive electrocatalysis at almost half the energy input of a conventional inner-sphere electron donor. This methodology of employing outer-sphere redox species has the potential to notably improve the cost and energy benefits in electrochemical transformations involving fundamental substrates such as water, CO2, N2, and many more.
Collapse
Affiliation(s)
- Akshay Haridas
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Ritwik Mondal
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Bhojkumar Nayak
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Musthafa Ottakam Thotiyl
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
7
|
Lin Q, Xi S, Cheng B, Jiang J, Zan F, Tang Y, Li Y, Khanal SK, Wang Z, Chen G, Guo G. Electrogenerated singlet oxygen and reactive chlorine species enhancing volatile fatty acids production from co-fermentation of waste activated sludge and food waste: The key role of metal oxide coated electrodes. WATER RESEARCH 2024; 260:121953. [PMID: 38901317 DOI: 10.1016/j.watres.2024.121953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Electrochemical pretreatment (EPT) has shown to be superior in improving acidogenic co-fermentation (Co-AF) of waste activated sludge (WAS) and food waste (FW) for volatile fatty acids (VFAs). However, the influence of EPT electrode materials on the production of electrogenerated oxidants (such as singlet oxygen (1O2) and reactive chlorine species (RCS)), as well as their effects on properties of electrodes, the microbial community structure and functional enzymes remain unclear. Therefore, this study investigated the effects of various metal oxide coated electrodes (i.e., Ti/PbO2, Ti/Ta2O5-IrO2, Ti/SnO2-RuO2, and Ti/IrO2-RuO2) on EPT and subsequent Co-AF of WAS-FW. The results showed that EPT with Ti/PbO2, Ti/Ta2O5-IrO2, Ti/SnO2-RuO2 and Ti/IrO2-RuO2 electrodes generated 165.3-848.2 mg Cl2/L of RCS and 5.643 × 1011-3.311 × 1012 spins/mm3 of 1O2, which significantly enhanced the solubilization and biodegradability of WAS-FW by 106.4 %-233.6 % and 177.3 %-481.8 %, respectively. Especially with Ti/Ta2O5-IrO2 as the electrode material, an appropriate residual RCS (2.0-10.4 mg Cl2/L) remained in Co-AF step, resulted in hydrolytic and acidogenic bacteria (e.g., Prevotella_7, accounting for 78.9 %) gradually become dominant rather than methanogens (e.g., Methanolinea and Methanothrix) due to their different tolerance to residual RCS. Meanwhile, the functional gene abundances of hydrolytic and acidogenic enzymes increased, while the methanogenic enzymes deceased. Consequently, this reactor produced the highest VFAs up to 545.5 ± 36.0 mg COD/g VS, which was 101.8 % higher than that of the Control (without EPT). Finally, the economic analysis and confirmatory experiments further proved the benefits of WAS-FW Co-AF with EPT.
Collapse
Affiliation(s)
- Qingshan Lin
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Chongqing University of Arts and Sciences, Yongchuan 402160, PR China
| | - Shihao Xi
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Boyi Cheng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Jinqi Jiang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Feixiang Zan
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Yuanzhe Tang
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Chongqing University of Arts and Sciences, Yongchuan 402160, PR China
| | - Yeqing Li
- College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering (MBBE), University of Hawaii at Mānoa, Honolulu, USA
| | - Zongping Wang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gang Guo
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China.
| |
Collapse
|
8
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Han X, Mou T, Islam A, Kang S, Chang Q, Xie Z, Zhao X, Sasaki K, Rodriguez JA, Liu P, Chen JG. Theoretical Prediction and Experimental Verification of IrO x Supported on Titanium Nitride for Acidic Oxygen Evolution Reaction. J Am Chem Soc 2024. [PMID: 38859684 DOI: 10.1021/jacs.4c02936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Reducing iridium (Ir) catalyst loading for acidic oxygen evolution reaction (OER) is a critical strategy for large-scale hydrogen production via proton exchange membrane (PEM) water electrolysis. However, simultaneously achieving high activity, long-term stability, and reduced material cost remains challenging. To address this challenge, we develop a framework by combining density functional theory (DFT) prediction using model surfaces and proof-of-concept experimental verification using thin films and nanoparticles. DFT results predict that oxidized Ir monolayers over titanium nitride (IrOx/TiN) should display higher OER activity than IrOx while reducing Ir loading. This prediction is verified by depositing Ir monolayers over TiN thin films via physical vapor deposition. The promising thin film results are then extended to commercially viable powder IrOx/TiN catalysts, which demonstrate a lower overpotential and higher mass activity than commercial IrO2 and long-term stability of 250 h to maintain a current density of 10 mA cm-2. The superior OER performance of IrOx/TiN is further confirmed using a proton exchange membrane water electrolyzer (PEMWE), which shows a lower cell voltage than commercial IrO2 to achieve a current density of 1 A cm-2. Both DFT and in situ X-ray absorption spectroscopy reveal that the high OER performance of IrOx/TiN strongly depends on the IrOx-TiN interaction via direct Ir-Ti bonding. This study highlights the importance of close interaction between theoretical prediction based on mechanistic understanding and experimental verification based on thin film model catalysts to facilitate the development of more practical powder IrOx/TiN catalysts with high activity and stability for acidic OER.
Collapse
Affiliation(s)
- Xue Han
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Tianyou Mou
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Arephin Islam
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sinwoo Kang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Qiaowan Chang
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Zhenhua Xie
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Xueru Zhao
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kotaro Sasaki
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - José A Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ping Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jingguang G Chen
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
10
|
Bai J, Zhou W, Xu J, Zhou P, Deng Y, Xiang M, Xiang D, Su Y. RuO 2 Catalysts for Electrocatalytic Oxygen Evolution in Acidic Media: Mechanism, Activity Promotion Strategy and Research Progress. Molecules 2024; 29:537. [PMID: 38276614 PMCID: PMC10819928 DOI: 10.3390/molecules29020537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Proton Exchange Membrane Water Electrolysis (PEMWE) under acidic conditions outperforms alkaline water electrolysis in terms of less resistance loss, higher current density, and higher produced hydrogen purity, which make it more economical in long-term applications. However, the efficiency of PEMWE is severely limited by the slow kinetics of anodic oxygen evolution reaction (OER), poor catalyst stability, and high cost. Therefore, researchers in the past decade have made great efforts to explore cheap, efficient, and stable electrode materials. Among them, the RuO2 electrocatalyst has been proved to be a major promising alternative to Ir-based catalysts and the most promising OER catalyst owing to its excellent electrocatalytic activity and high pH adaptability. In this review, we elaborate two reaction mechanisms of OER (lattice oxygen mechanism and adsorbate evolution mechanism), comprehensively summarize and discuss the recently reported RuO2-based OER electrocatalysts under acidic conditions, and propose many advanced modification strategies to further improve the activity and stability of RuO2-based electrocatalytic OER. Finally, we provide suggestions for overcoming the challenges faced by RuO2 electrocatalysts in practical applications and make prospects for future research. This review provides perspectives and guidance for the rational design of highly active and stable acidic OER electrocatalysts based on PEMWE.
Collapse
Affiliation(s)
- Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; (J.B.); (P.Z.); (Y.D.); (M.X.)
| | - Wangkai Zhou
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (W.Z.); (J.X.)
| | - Jinnan Xu
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (W.Z.); (J.X.)
| | - Pin Zhou
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; (J.B.); (P.Z.); (Y.D.); (M.X.)
| | - Yaoyao Deng
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; (J.B.); (P.Z.); (Y.D.); (M.X.)
| | - Mei Xiang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; (J.B.); (P.Z.); (Y.D.); (M.X.)
| | - Dongsheng Xiang
- School of Medicine and Health, Yancheng Polytechnic College, Yancheng 224005, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
11
|
Akram R, Arif M, Arshad A, Zhang S, Liu W, Wu Z, Zhang T. A 2D Nano-architecture (NPSMC@Ir-Ru@rGO) Derived from Graphene Enfolded Polyphosphazene Nanospheres Decorated Ir-Ru Metals (PZS@Ir-Ru@GO) towards Bifunctional Water Splitting. Chem Asian J 2023; 18:e202300718. [PMID: 37846640 DOI: 10.1002/asia.202300718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
A leap-forward approach has been successfully devised to synthesize a novel hierarchical binary metal modified heteroatom doped 2D micro-/mesporous carbon-graphene nanostructure (NPSMC@Ir-Ru@rGO) for overall water splitting application. To investigate the role of decorating metals, different electrolcatalysts like NPSMC, NPSMC@rGO, NPSMC@Ir@rGO, and NPSMC@Ru@rGO were also synthesized and structural changes were compared and investigated by physiochemical techniques. All of the samples have shown electrocatalytic activities attributed to the presence of heteroatom (N, P, S) doped micro-/mesoporous carbonaceous matrix, amorphous carbon in the coexistence of graphitic lattice carbons, presence of active metal NPs (Ir and/-or Ru), an even distribution of active sites, and graphene 2D interconnected channels to promote electron transfer ability, respectively. However, the Ir-Ru metal codeped nanocatalyst (NPCMS@Ir-Ru@rGO) is proved to be an excellent electrocatalyst based on the synergistic role of Ir-Ru metals that necessitates the low overpotentials of 181 mV and 318 mV to convey a current density of 10 mA cm-2 towards the electroctalytic application of HER and OER, respectively. Furthermore, exhibiting the corresponding Tafel slopes (132 and 70 mV dec-1 ) in an alkaline medium. This work is anticipated to open up new avenues for the development of promising electrocatalysts based on active metals modified heteroatom doped carbon nanomaterials for energy applications.
Collapse
Affiliation(s)
- Raheel Akram
- Key Laboratory of Carbon fiber and functional polymers, Beijing University of Chemical Technology, Ministry of education, Beijing, 100029, China
| | - Muhammad Arif
- Institute of Chemical and Environmental Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, 64200, Pakistan
| | - Anila Arshad
- Key Laboratory of Carbon fiber and functional polymers, Beijing University of Chemical Technology, Ministry of education, Beijing, 100029, China
| | - Shuangkun Zhang
- Key Laboratory of Carbon fiber and functional polymers, Beijing University of Chemical Technology, Ministry of education, Beijing, 100029, China
| | - Wei Liu
- Key Laboratory of Carbon fiber and functional polymers, Beijing University of Chemical Technology, Ministry of education, Beijing, 100029, China
| | - Zhanpeng Wu
- Key Laboratory of Carbon fiber and functional polymers, Beijing University of Chemical Technology, Ministry of education, Beijing, 100029, China
| | - Teng Zhang
- School of Electrical Engineering, Beijing Jiao Tong University, Beijing, 100044, China
| |
Collapse
|
12
|
Ai H, Fan L, Wang Y, Wang Z, Zhang H, Zhao J, Jiao M, Lv B, Han X. OER catalytic performance of a composite catalyst comprising multi-layer thin flake Co 3O 4 and PPy nanofibers. RSC Adv 2023; 13:32045-32053. [PMID: 37915449 PMCID: PMC10617464 DOI: 10.1039/d3ra05936g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
The oxygen evolution reaction (OER) plays a crucial role in energy conversion and storage processes, highlighting the significance of searching for efficient and stable OER catalysts. In this study, we have developed a composite catalyst, PPy@Co3O4, with outstanding catalytic performance for the OER. The catalyst was constructed by integrating multi-layer thin flake Co3O4 with attached PPy nanofibers, utilizing the rich active sites of Co3O4 and the flexibility and tunability of PPy nanofibers to optimize the catalyst structure. Through comprehensive characterization and performance evaluation, our results demonstrate that the PPy@Co3O4 (0.1 : 1) catalyst exhibits remarkable OER catalytic activity and stability. This research provides new strategies and insights for the development of efficient and stable OER catalysts, holding promising prospects for energy conversion and storage applications in relevant fields.
Collapse
Affiliation(s)
- Honglin Ai
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University No. 42, Wenhua Street Qiqihar 161006 PR China
| | - Liquan Fan
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University No. 42, Wenhua Street Qiqihar 161006 PR China
| | - Yuwei Wang
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University No. 42, Wenhua Street Qiqihar 161006 PR China
| | - Ziteng Wang
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University No. 42, Wenhua Street Qiqihar 161006 PR China
| | - Haiming Zhang
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University No. 42, Wenhua Street Qiqihar 161006 PR China
| | - Juan Zhao
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University No. 42, Wenhua Street Qiqihar 161006 PR China
| | - Meiye Jiao
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University No. 42, Wenhua Street Qiqihar 161006 PR China
| | - Boyu Lv
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University No. 42, Wenhua Street Qiqihar 161006 PR China
| | - Xianxin Han
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University No. 42, Wenhua Street Qiqihar 161006 PR China
| |
Collapse
|
13
|
Xie Y, Yang Z. Morphological and Coordination Modulations in Iridium Electrocatalyst for Robust and Stable Acidic OER Catalysis. CHEM REC 2023; 23:e202300129. [PMID: 37229769 DOI: 10.1002/tcr.202300129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Proton exchange membrane water splitting (PEMWS) technology has high-level current density, high operating pressure, small electrolyzer-size, integrity, flexibility, and has good adaptability to the volatility of wind power and photovoltaics, but the development of both active and high stability of the anode electrocatalyst in acidic environment is still a huge challenge, which seriously hinders the promotion and application of PEMWS. In recent years, researchers have made tremendous attempts in the development of high-quality active anode electrocatalyst, and we summarize some of the research progress made by our group in the design and synthesis of PEMWS anode electrocatalysts with different nanostructures, and makes full use of electrocatalytic activity points to increase the inherent activity of Iridium (Ir) sites, and provides optimization strategies for the long-term non-decay of catalysts under high anode potential in acidic environments. At this stage, these research advances are expected to facilitate the research and technological progress of PEMWS, and providing some research ideas and references for future research on efficient and inexpensive PEMWS anode electrocatalysts.
Collapse
Affiliation(s)
- Yuhua Xie
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China, University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China
| | - Zehui Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China, University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| |
Collapse
|
14
|
Choudhury D, Das R, Maurya R, Kumawat H, Neergat M. Kinetics of the Oxygen Evolution Reaction (OER) on Amorphous and Crystalline Iridium Oxide Surfaces in Acidic Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13748-13757. [PMID: 37695734 DOI: 10.1021/acs.langmuir.3c02293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Amorphous and crystalline IrO2 catalysts are synthesized by the Adams method and characterized with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The oxygen evolution reaction (OER) is investigated on both the catalyst surfaces in 0.5 M H2SO4 electrolyte. The Tafel slope estimated in the temperature range of 293-333 K on the two surfaces indicates a change in the rate-limiting steps. The data are also analyzed in terms of the Eyring equation to estimate the activation enthalpy (ΔH#) and pre-exponential factor (Af) as a function of overpotential and therefore the charge-transfer coefficient (α). The estimated α values suggest strong electrocatalysis on both the surfaces. While the ΔH# plays a decisive role in the electrocatalysis on the amorphous sample, the trend of Af indicates that an increase in the entropy on the crystalline surface is pivotal in reducing the reaction barrier.
Collapse
Affiliation(s)
- Debittree Choudhury
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rubul Das
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rajan Maurya
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Himanshu Kumawat
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Manoj Neergat
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
15
|
Pham HH, Linh DC, Ngo TTA, Oanh VTK, Khuyen BX, Patil SA, Tran NHT, Park S, Im H, Bui HT, Shrestha NK. 1-D arrays of porous Mn 0.21Co 2.79O 4 nanoneedles with an enhanced electrocatalytic activity toward the oxygen evolution reaction. Dalton Trans 2023; 52:12185-12193. [PMID: 37594409 DOI: 10.1039/d3dt02426a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Developing effective electrocatalysts for the oxygen evolution reaction (OER) that are highly efficient, abundantly available, inexpensive, and environmentally friendly is critical to improving the overall efficiency of water splitting and the large-scale development of water splitting technologies. We, herein, introduce a facile synthetic strategy for depositing the self-supported arrays of 1D-porous nanoneedles of a manganese cobalt oxide (Mn0.21Co2.79O4: MCO) thin film demonstrating an enhanced electrocatalytic activity for OER in an alkaline electrolyte. For this, an MCO film was synthesized via thermal treatment of a hydroxycarbonate film obtained from a hydrothermal route. The deposited films were characterized through scanning electron microscopy (SEM), X-ray diffractometry (XRD), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). In contrast to a similar 1D-array of a pristine Co3O4 (CO) nanoneedle film, the MCO film exhibits a remarkably enhanced electrocatalytic performance in the OER with an 85 mV lower overpotential for the benchmark current density of 10 mA cm-2. In addition, the MCO film also demonstrates long-term electrochemical stability for the OER in 1.0 M KOH aqueous electrolyte.
Collapse
Affiliation(s)
- Hong Hanh Pham
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| | - Do Chi Linh
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| | - Tuyet Thi Anh Ngo
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| | - Vu Thi Kim Oanh
- Institute of Physic and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Bui Xuan Khuyen
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| | - Supriya A Patil
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Sungkyun Park
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| | - Hyunsik Im
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea.
| | - Hoa Thi Bui
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| | - Nabeen K Shrestha
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
16
|
Mukherjee P, Sathiyan K, Bar-Ziv R, Zidki T. Chemically Etched Prussian Blue Analog-WS 2 Composite as a Precatalyst for Enhanced Electrocatalytic Water Oxidation in Alkaline Media. Inorg Chem 2023; 62:14484-14493. [PMID: 37610830 PMCID: PMC10481376 DOI: 10.1021/acs.inorgchem.3c02537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 08/25/2023]
Abstract
The electrochemical water-splitting reaction is a promising source of ecofriendly hydrogen fuel. However, the oxygen evolution reaction (OER) at the anode impedes the overall process due to its four-electron oxidation steps. To address this issue, we developed a highly efficient and cost-effective electrocatalyst by transforming Co-Fe Prussian blue analog nanocubes into hollow nanocages using dimethylformamide as a mild etchant and then anchoring tungsten disulfide (WS2) nanoflowers onto the cages to boost OER efficiency. The resulting hybrid catalyst-derived oxide demonstrated a low overpotential of 290 mV at a current density of 10 mA cm-2 with a Tafel slope of 75 mV dec-1 in 1.0 M KOH and a high faradaic efficiency of 89.4%. These results were achieved through the abundant electrocatalytically active sites, enhanced surface permeability, and high electronic conductivity provided by WS2 nanoflowers and the porous three-dimensional (3D) architecture of the nanocages. Our research work uniquely combines surface etching of Co-Fe PBA with WS2 growth to create a promising OER electrocatalyst. This study provides a potential solution to the challenge of the OER in electrochemical water-splitting, contributing to UN SDG 7: Affordable and clean energy.
Collapse
Affiliation(s)
- Poulami Mukherjee
- Department
of Chemical Sciences and the Centers for Radical Reactions and Material
Research, Ariel University, Ariel 4077625, Israel
| | - Krishnamoorthy Sathiyan
- Department
of Chemical Sciences and the Centers for Radical Reactions and Material
Research, Ariel University, Ariel 4077625, Israel
| | - Ronen Bar-Ziv
- Department
of Chemistry, Nuclear Research Centre, Negev, Beer-Sheva 84190, Israel
| | - Tomer Zidki
- Department
of Chemical Sciences and the Centers for Radical Reactions and Material
Research, Ariel University, Ariel 4077625, Israel
| |
Collapse
|
17
|
Kim HM, Cha BC, Kim DW. Defect- and oxygen-rich nanocarbon derived from solution plasma for bifunctional catalytic activity of oxygen reduction and evolution reactions. RSC Adv 2023; 13:26918-26924. [PMID: 37692343 PMCID: PMC10483487 DOI: 10.1039/d3ra05164a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are key for renewable energy systems, including metal-air batteries, fuel cells, and water electrolysis. In particular, metal-air batteries require multiple catalysts for the ORR and OER. Thus, bifunctional catalysts are required to improve efficiency and simplify catalytic systems. Hence, we developed defect- and oxygen-rich nanocarbons as bifunctional catalysts through a one-pot formation by applying plasma discharge in mixed solvents of benzene with crown ether. Raman and X-ray photoelectron spectroscopy results confirmed that oxygen was embedded and functionalized into the carbon matrix and abundant defects were formed, which highly affected the catalytic activity of the ORR and OER. The obtained CNP-CEs revealed a tuned electron transfer trend to a rapid four-electron pathway (n = 3.5) for the ORR, as well as a decreased onset potential and Tafel slope for the OER. Consequently, CNP-CE-50 exhibited an improved bifunctional catalytic characteristic with the narrowest potential gap between the ORR and OER. We believe that our findings suggest new models for carbon-based bifunctional catalysts and provide a prospective approach for a synthetic procedure of carbon nanomaterials.
Collapse
Affiliation(s)
- Hye-Min Kim
- Department of Materials Chemistry, Shinshu University 4-17-1, Wakasato Nagano 3808553 Japan
| | - Byung-Chul Cha
- Advanced Manufacturing Process R&D Group, Ulsan Regional Division, Korea Institute of Industrial Technology (KITECH) 55, Jongga-ro, Jung-gu Ulsan 44313 Korea
| | - Dae-Wook Kim
- Advanced Manufacturing Process R&D Group, Ulsan Regional Division, Korea Institute of Industrial Technology (KITECH) 55, Jongga-ro, Jung-gu Ulsan 44313 Korea
| |
Collapse
|
18
|
Sun W, Fang Y, Sun G, Dai C, Liu Y, Zhang J, Zhu Y, Wang J. Ruthenium-Manganese Solid Solution Oxide with Enhanced Performance for Acidic and Alkaline Oxygen Evolution Reaction. Chem Asian J 2023; 18:e202300440. [PMID: 37378545 DOI: 10.1002/asia.202300440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
Proton exchange membrane water electrolysers and alkaline exchange membrane water electrolysers for hydrogen production suffer from sluggish kinetics and the limited durability of the electrocatalyst toward oxygen evolution reaction (OER). Herein, a rutile Ru0.75 Mn0.25 O2-δ solid solution oxide featured with a hierarchical porous structure has been developed as an efficient OER electrocatalyst in both acidic and alkaline electrolyte. Specifically, compared with commercial RuO2 , the catalyst displays a superior reaction kinetics with small Tafel slope of 54.6 mV dec-1 in 0.5 M H2 SO4 , thus allowing a low overpotential of 237 and 327 mV to achieve the current density of 10 and 100 mA cm-2 , respectively, which is attributed to the enhanced electrochemically active surface area from the porous structure and the increased intrinsic activity owing to the regulated Ru>4+ proportion with Mn incorporation. Additionally, the sacrificial dissolution of Mn relieves the leaching of active Ru species, leading to the extended OER durability. Besides, the Ru0.75 Mn0.25 O2-δ catalyst also shows a highly improved OER performance in alkaline electrolyte, rendering it a versatile catalyst for water splitting.
Collapse
Affiliation(s)
- Wen Sun
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Ying Fang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Gaoming Sun
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Congfu Dai
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yana Liu
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jiguang Zhang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yunfeng Zhu
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jun Wang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
19
|
Liu C, Chen X, Zhang X, Li J, Wang B, Luo Z, Li J, Qian D, Liu J, Waterhouse GIN. Sodium Tartrate-Assisted Synthesis of High-Purity NiFe 2O 4 Nano-Microrods Supported by Porous Ketjenblack Carbon for Efficient Alkaline Oxygen Evolution. J Phys Chem Lett 2023:6099-6109. [PMID: 37364134 DOI: 10.1021/acs.jpclett.3c01244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Herein, a simple two-step synthetic method was developed for the synthesis of NiFe2O4 nano-microrods supported on Ketjenblack carbon (NiFe2O4/KB). A sodium tartrate-assisted hydrothermal method was employed for the synthesis of a NiFe-MOF/KB precursor, which was then pyrolyzed under N2 at 500 °C to yield NiFe2O4/KB. Benefiting from the presence of high-valence Ni3+ and Fe3+, high conductivity, and a large electrochemically active surface area, NiFe2O4/KB delivered outstanding OER electrocatalytic performance under alkaline conditions, including a very low overpotential of 258 mV (vs RHE) at 10 mA cm-2, a small Tafel slope of 43.01 mV dec-1, and excellent durability in 1.0 M KOH. Density functional theory calculations verified the superior alkaline OER electrocatalytic activity of NiFe2O4 to IrO2. While both catalysts possessed a similar metallic ground state, NiFe2O4 offered a lower energy barrier in the rate-determining OER step (*OOH → O2) compared to IrO2, resulting in faster OER kinetics.
Collapse
Affiliation(s)
- Canhui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Xiangxiong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
- Yoening Tianci Mining Changsha Technology Center, Changsha 410083, P.R. China
| | - Xinxin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Jie Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Bowen Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Ziyu Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Junhua Li
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421008, P.R. China
| | - Dong Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Jinlong Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | | |
Collapse
|
20
|
Deka N, Jones TE, Falling LJ, Sandoval-Diaz LE, Lunkenbein T, Velasco-Velez JJ, Chan TS, Chuang CH, Knop-Gericke A, Mom RV. On the Operando Structure of Ruthenium Oxides during the Oxygen Evolution Reaction in Acidic Media. ACS Catal 2023; 13:7488-7498. [PMID: 37288096 PMCID: PMC10242682 DOI: 10.1021/acscatal.3c01607] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/04/2023] [Indexed: 06/09/2023]
Abstract
In the search for rational design strategies for oxygen evolution reaction (OER) catalysts, linking the catalyst structure to activity and stability is key. However, highly active catalysts such as IrOx and RuOx undergo structural changes under OER conditions, and hence, structure-activity-stability relationships need to take into account the operando structure of the catalyst. Under the highly anodic conditions of the oxygen evolution reaction (OER), electrocatalysts are often converted into an active form. Here, we studied this activation for amorphous and crystalline ruthenium oxide using X-ray absorption spectroscopy (XAS) and electrochemical scanning electron microscopy (EC-SEM). We tracked the evolution of surface oxygen species in ruthenium oxides while in parallel mapping the oxidation state of the Ru atoms to draw a complete picture of the oxidation events that lead to the OER active structure. Our data show that a large fraction of the OH groups in the oxide are deprotonated under OER conditions, leading to a highly oxidized active material. The oxidation is centered not only on the Ru atoms but also on the oxygen lattice. This oxygen lattice activation is particularly strong for amorphous RuOx. We propose that this property is key for the high activity and low stability observed for amorphous ruthenium oxide.
Collapse
Affiliation(s)
- Nipon Deka
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Travis E. Jones
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Lorenz J. Falling
- Lawrence
Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, California 94720, United States
| | | | - Thomas Lunkenbein
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | | | - Ting-Shan Chan
- National
Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| | - Cheng-Hao Chuang
- Department
of Physics, Tamkang University, No. 151, Yingzhuan Rd, New Taipei City 25137, Taiwan
| | - Axel Knop-Gericke
- Fritz
Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Rik V. Mom
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
21
|
Lin Y, Dong Y, Wang X, Chen L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210565. [PMID: 36521026 DOI: 10.1002/adma.202210565] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Indexed: 06/02/2023]
Abstract
The well-established proton exchange membrane (PEM)-based water electrolysis, which operates under acidic conditions, possesses many advantages compared to alkaline water electrolysis, such as compact design, higher voltage efficiency, and higher gas purity. However, PEM-based water electrolysis is hampered by the low efficiency, instability, and high cost of anodic electrocatalysts for the oxygen evolution reaction (OER). In this review, the recently reported acidic OER electrocatalysts are comprehensively summarized, classified, and discussed. The related fundamental studies on OER mechanisms and the relationship between activity and stability are particularly highlighted in order to provide an atomistic-level understanding for OER catalysis. A stability test protocol is suggested to evaluate the intrinsic activity degradation. Some current challenges and unresolved questions, such as the usage of carbon-based materials and the differences between the electrocatalyst performances in acidic electrolytes and PEM-based electrolyzers are also discussed. Finally, suggestions for the most promising electrocatalysts and a perspective for future research are outlined. This review presents a fresh impetus and guideline to the rational design and synthesis of high-performance acidic OER electrocatalysts for PEM-based water electrolysis.
Collapse
Affiliation(s)
- Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Yan Dong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Xuezhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| |
Collapse
|
22
|
Ramírez AR, Heidari S, Vergara A, Aguilera MV, Preuss P, Camarada MB, Fischer A. Rhenium-Based Electrocatalysts for Water Splitting. ACS MATERIALS AU 2023; 3:177-200. [PMID: 38089137 PMCID: PMC10176616 DOI: 10.1021/acsmaterialsau.2c00077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 06/28/2024]
Abstract
Due to the contamination and global warming problems, it is necessary to search for alternative environmentally friendly energy sources. In this area, hydrogen is a promising alternative. Hydrogen is even more promising, when it is obtained through water electrolysis operated with renewable energy sources. Among the possible devices to perform electrolysis, proton exchange membrane (PEM) electrolyzers appear as the most promising commercial systems for hydrogen production in the coming years. However, their massification is affected by the noble metals used as electrocatalysts in their electrodes, with high commercial value: Pt at the cathode where the hydrogen evolution reaction occurs (HER) and Ru/Ir at the anode where the oxygen evolution reaction (OER) happens. Therefore, to take full advantage of the PEM technology for green H2 production and build up a mature PEM market, it is imperative to search for more abundant, cheaper, and stable catalysts, reaching the highest possible activities at the lowest overpotential with the longest stability under the harsh acidic conditions of a PEM. In the search for new electrocatalysts and considering the predictions of a Trasatti volcano plot, rhenium appears to be a promising candidate for HER in acidic media. At the same time, recent studies provide evidence of its potential as an OER catalyst. However, some of these reports have focused on chemical and photochemical water splitting and have not always considered acidic media. This review summarizes rhenium-based electrocatalysts for water splitting under acidic conditions: i.e., potential candidates as cathode materials. In the various sections, we review the mechanism concepts of electrocatalysis, evaluation methods, and the different rhenium-based materials applied for the HER in acidic media. As rhenium is less common for the OER, we included a section about its use in chemical and photochemical water oxidation and as an electrocatalyst under basic conditions. Finally, concluding remarks and perspectives are given about rhenium for water splitting.
Collapse
Affiliation(s)
- Andrés
M. R. Ramírez
- Centro
de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería
y Tecnología, Universidad Mayor, Camino La Pirámide 5750, 8580745 Huechuraba, Santiago RM Chile
- Universidad
Mayor, Núcleo Química y Bioquímica, Facultad
de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino
La Pirámide 5750, 8580745 Huechuraba, Santiago RM Chile
| | - Sima Heidari
- Inorganic
Functional Materials and Nanomaterials Group, Institute for Inorganic
and Analytical Chemistry, University of
Freiburg, Albertstraße 21, 79104 Freiburg, Germany
- FMF
− Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 19, 79104 Freiburg, Germany
- FIT
− Freiburg Center for Interactive Materials and Bioinspired
Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Ana Vergara
- Centro
de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería
y Tecnología, Universidad Mayor, Camino La Pirámide 5750, 8580745 Huechuraba, Santiago RM Chile
| | - Miguel Villicaña Aguilera
- Departamento
de Química Inorgánica, Facultad de Química y
de Farmacia, Pontificia Universidad Católica
de Chile, Santiago 7820436, Chile
| | - Paulo Preuss
- Departamento
de Química Inorgánica, Facultad de Química y
de Farmacia, Pontificia Universidad Católica
de Chile, Santiago 7820436, Chile
| | - María B. Camarada
- Inorganic
Functional Materials and Nanomaterials Group, Institute for Inorganic
and Analytical Chemistry, University of
Freiburg, Albertstraße 21, 79104 Freiburg, Germany
- FIT
− Freiburg Center for Interactive Materials and Bioinspired
Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Departamento
de Química Inorgánica, Facultad de Química y
de Farmacia, Pontificia Universidad Católica
de Chile, Santiago 7820436, Chile
- Centro Investigación
en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Anna Fischer
- Inorganic
Functional Materials and Nanomaterials Group, Institute for Inorganic
and Analytical Chemistry, University of
Freiburg, Albertstraße 21, 79104 Freiburg, Germany
- FMF
− Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 19, 79104 Freiburg, Germany
- FIT
− Freiburg Center for Interactive Materials and Bioinspired
Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Cluster
of Excellence livMatS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
23
|
Clapp M, Zalitis C, Ryan M. Perspectives on Current and Future Iridium Demand and Iridium Oxide Catalysts for PEM Water Electrolysis. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
24
|
Jia Z, Lyu X, Zhao M, Dang J, Zhu L, Guo X, Wang X, Bai Z, Yang L. In Situ Reconstructed Mo-doped Amorphous FeOOH Boosts the Oxygen Evolution Reaction. Chem Asian J 2023; 18:e202201305. [PMID: 36696069 DOI: 10.1002/asia.202201305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
Developing a fast and highly active oxygen evolution reaction (OER) catalyst to change energy kinetics technology is essential for making clean energy. Herein, we prepare three-dimensional (3D) hollow Mo-doped amorphous FeOOH (Mo-FeOOH) based on the precatalyst MoS2 /FeC2 O4 via in situ reconstruction strategy. Mo-FeOOH exhibits promising OER performance. Specifically, it has an overpotential of 285 mV and a durability of 15 h at 10 mA cm-2 . Characterizations indicate that Mo was included inside the FeOOH lattice, and it not only modifies the electronic energy levels of FeOOH but also effectively raises the inherent activity of FeOOH for OER. Additionally, in situ Raman analysis indicates that FeC2 O4 gradually transforms into the FeOOH active site throughout the OER process. This study provides ideas for designing in situ reconstruction strategies to prepare heteroatom doping catalysts for high electrochemical activity.
Collapse
Affiliation(s)
- Zhichao Jia
- Henan Normal University, School of Chemistry and Chemical Engineering, Xinxiang, Henan, 453007, P. R. China
| | - Xiang Lyu
- Oak Ridge National Laboratory, Electrification and Energy Infrastructures Division, Oak Ridge, TN 37831, USA
| | - Mingsheng Zhao
- Henan Normal University, School of Chemistry and Chemical Engineering, Xinxiang, Henan, 453007, P. R. China
| | - Jianan Dang
- Henan Normal University, School of Chemistry and Chemical Engineering, Xinxiang, Henan, 453007, P. R. China
| | - Linge Zhu
- Henan Normal University, School of Chemistry and Chemical Engineering, Xinxiang, Henan, 453007, P. R. China
| | - Xiaowei Guo
- Henan Normal University, School of Chemistry and Chemical Engineering, Xinxiang, Henan, 453007, P. R. China
| | - Xiaobing Wang
- Henan Normal University, School of Chemistry and Chemical Engineering, Xinxiang, Henan, 453007, P. R. China
| | - Zhengyu Bai
- Henan Normal University, School of Chemistry and Chemical Engineering, Xinxiang, Henan, 453007, P. R. China
| | - Lin Yang
- Henan Normal University, School of Chemistry and Chemical Engineering, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
25
|
Shin S, Wi TU, Kong TH, Park C, Lee H, Jeong J, Lee E, Yoon S, Kim TH, Lee HW, Kwon Y, Song HK. Selectively Enhanced Electrocatalytic Oxygen Evolution within Nanoscopic Channels Fitting a Specific Reaction Intermediate for Seawater Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206918. [PMID: 36567426 DOI: 10.1002/smll.202206918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Abundant availability of seawater grants economic and resource-rich benefits to water electrolysis technology requiring high-purity water if undesired reactions such as chlorine evolution reaction (CER) competitive to oxygen evolution reaction (OER) are suppressed. Inspired by a conceptual computational work suggesting that OER is kinetically improved via a double activation within 7 Å-gap nanochannels, RuO2 catalysts are realized to have nanoscopic channels at 7, 11, and 14 Å gap in average (dgap ), and preferential activity improvement of OER over CER in seawater by using nanochanneled RuO2 is demonstrated. When the channels are developed to have 7 Å gap, the OER current is maximized with the overpotential required for triggering OER minimized. The gap value guaranteeing the highest OER activity is identical to the value expected from the computational work. The improved OER activity significantly increases the selectivity of OER over CER in seawater since the double activation by the 7 Å-nanoconfined environments to allow an OER intermediate (*OOH) to be doubly anchored to Ru and O active sites does not work on the CER intermediate (*Cl). Successful operation of direct seawater electrolysis with improved hydrogen production is demonstrated by employing the 7 Å-nanochanneled RuO2 as the OER electrocatalyst.
Collapse
Affiliation(s)
- Seokmin Shin
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Tae-Ung Wi
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Tae-Hoon Kong
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Chanhyun Park
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Hojeong Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Jihong Jeong
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Eunryeol Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Subhin Yoon
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Tae-Hee Kim
- Ulsan Advanced Energy Technology R&D Center, KIER, Ulsan, 44776, Korea
| | - Hyun-Wook Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Youngkook Kwon
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Hyun-Kon Song
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| |
Collapse
|
26
|
Hu C, Xu J, Tan Y, Huang X. Recent advances of ruthenium-based electrocatalysts for hydrogen energy. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
Development of Unsupported Ru and Ni Based Oxides with Enhanced Performance for the Oxygen Evolution Reaction in Acidic Media. Electrocatalysis (N Y) 2023. [DOI: 10.1007/s12678-022-00798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Modeling and Analysis of Mass Transport Losses of Proton Exchange Membrane Water Electrolyzer. Processes (Basel) 2022. [DOI: 10.3390/pr10112417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proton exchange membrane water electrolyzers (PEMWEs) coupled with renewable energy resources are considered to be a key technology for producing green hydrogen. However, the high current density PEMWE operation features remarkable voltage losses. A significant part of these losses is due to the mass transport resistance in the PEMWE. Even though the importance of mass transport resistance is widely recognized, it is still poorly understood. Currently, the two-phase transport through the anode porous transport layer (PTL) and catalyst layer is considered to be the main cause of the mass transport losses. In this work, a dynamic macroscopic mathematical model, coupling electrochemical reaction with mass transport through the PTL and flow channels, has been developed to study the two-phase flow in the PTL and mass transport losses of a PEMWE. The influence of the current density, inlet water flow rate, PTL structural parameters, and capillary pressure curve was evaluated. The existence of the critical current density was observed, as well as its dependence on the operating parameters and PTL structure. Even though the results show that the PTL structure has a significant influence on the PEMWE performance, they indicate that a better mathematical description of the two-phase flow in the PTL is necessary.
Collapse
|
29
|
Song XZ, Zhao YH, Zhang F, Ni JC, Zhang Z, Tan Z, Wang XF, Li Y. Coupling Plant Polyphenol Coordination Assembly with Co(OH) 2 to Enhance Electrocatalytic Performance towards Oxygen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3972. [PMID: 36432258 PMCID: PMC9699349 DOI: 10.3390/nano12223972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The oxygen evolution reaction (OER) is kinetically sluggish due to the limitation of the four-electron transfer pathway, so it is imperative to explore advanced catalysts with a superior structure and catalytic output under facile synthetic conditions. In the present work, an easily accessible strategy was proposed to implement the plant-polyphenol-involved coordination assembly on Co(OH)2 nanosheets. A TA-Fe (TA = tannic acid) coordination assembly growing on Co(OH)2 resulted in the heterostructure of Co(OH)2@TA-Fe as an electrocatalyst for OER. It could significantly decrease the overpotential to 297 mV at a current density of 10 mA cm-2. The heterostructure Co(OH)2@TA-Fe also possessed favorable reaction kinetics with a low Tafel slope of 64.8 mV dec-1 and facilitated a charge-transfer ability. The enhanced electrocatalytic performance was further unraveled to be related to the confined growth of the coordination assembly on Co(OH)2 to expose more active sites, the modulated surface properties and their synergistic effect. This study demonstrated a simple and feasible strategy to utilize inexpensive biomass-derived substances as novel modifiers to enhance the performance of energy-conversion electrocatalysis.
Collapse
Affiliation(s)
- Xue-Zhi Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yu-Hang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Fan Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jing-Chang Ni
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhou Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhenquan Tan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiao-Feng Wang
- Key Laboratory of Materials Modification by Laser Ion and Electron Beams, Ministry of Education, School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Yanqiang Li
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| |
Collapse
|
30
|
Flores-Lasluisa JX, Huerta F, Cazorla-Amorós D, Morallón E. Transition metal oxides with perovskite and spinel structures for electrochemical energy production applications. ENVIRONMENTAL RESEARCH 2022; 214:113731. [PMID: 35753372 DOI: 10.1016/j.envres.2022.113731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Transition metal oxide-based materials are an interesting alternative to substitute noble-metal based catalyst in energy conversion devices designed for oxygen reduction (ORR), oxygen evolution (OER) and hydrogen evolution reactions (HER). Perovskite (ABO3) and spinel (AB2O4) oxides stand out against other structures due to the possibility of tailoring their chemical composition and, consequently, their properties. Particularly, the electrocatalytic performance of these materials depends on features such as chemical composition, crystal structure, nanostructure, cation substitution level, eg orbital filling or oxygen vacancies. However, they suffer from low electrical conductivity and surface area, which affects the catalytic response. To mitigate these drawbacks, they have been combined with carbon materials (e.g. carbon black, carbon nanotubes, activated carbon, and graphene) that positively influence the overall catalytic activity. This review provides an overview on tunable perovskites (mainly lanthanum-based) and spinels featuring 3d metal cations such as Mn, Fe, Co, Ni and Cu on octahedral sites, which are known to be active for the electrochemical energy conversion.
Collapse
Affiliation(s)
- J X Flores-Lasluisa
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - F Huerta
- Dept. Ingenieria Textil y Papelera, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1, E-03801, Alcoy, Spain
| | - D Cazorla-Amorós
- Dept. Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - E Morallón
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain.
| |
Collapse
|
31
|
Zhang J, Cao X, Jiang YF, Hung SF, Liu W, Yang HB, Xu CQ, Li DS, Zhang T, Li Y, Li J, Liu B. Surface enrichment of Ir on the IrRu alloy for efficient and stable water oxidation catalysis in acid. Chem Sci 2022; 13:12114-12121. [PMID: 36349089 PMCID: PMC9601389 DOI: 10.1039/d2sc03947h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/15/2022] [Indexed: 10/03/2024] Open
Abstract
Inducing the surface enrichment of active noble metal can not only help to stabilize the catalyst but also modify the catalytic performance of the catalyst through electronic and geometric effects. Herein, we report the in situ surface enrichment of Ir on IrRu alloy during the oxygen evolution reaction (OER). The surface enrichment of Ir was probed by ex situ high-resolution transmission electron microscopy (HRTEM), in situ X-ray absorption spectroscopy (XAS), and electrochemical Cu stripping, leading to complementary characterizations of the dynamic reconstruction of the IrRu alloy during OER. Guided by the density functional theory (DFT), an IrRu alloy with low Ir content (20 wt%) was constructed, which displayed a low overpotential of only 230 mV to deliver an OER current density of 10 mA cm-2 in 0.1 M HClO4 solution and maintained stable performance for over 20 h. To investigate the practical application potential, a proton exchange membrane (PEM) water electrolyzer using the IrRu alloy as the anode catalyst was assembled, which required a low cell voltage of only 1.48 V to generate a current density of 1 A cm-2.
Collapse
Affiliation(s)
- Junming Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Xueli Cao
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Ya-Fei Jiang
- Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University Hsinchu 300 Taiwan
| | - Wei Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Hong Bin Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University Yichang 443002 China
| | - Tianyu Zhang
- College of Environmental Science and Engineering, Beijing Forestry University Beijing 100083 China
| | - Yujing Li
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University Beijing 100084 China
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| |
Collapse
|
32
|
Fang F, Wang Y, Shen LW, Tian G, Cahen D, Xiao YX, Chen JB, Wu SM, He L, Ozoemena KI, Symes MD, Yang XY. Interfacial Carbon Makes Nano-Particulate RuO 2 an Efficient, Stable, pH-Universal Catalyst for Splitting of Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203778. [PMID: 36103609 DOI: 10.1002/smll.202203778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/21/2022] [Indexed: 06/15/2023]
Abstract
An electrocatalyst composed of RuO2 surrounded by interfacial carbon, is synthesized through controllable oxidization-calcination. This electrocatalyst provides efficient charge transfer, numerous active sites, and promising activity for pH-universal electrocatalytic overall seawater splitting. An electrolyzer with this catalyst gives current densities of 10 mA cm-2 at a record low cell voltage of 1.52 V, and shows excellent durability at current densities of 10 mA cm-2 for up to 100 h. Based on the results, a mechanism for the catalytic activity of the composite is proposed. Finally, a solar-driven system is assembled and used for overall seawater splitting, showing 95% Faraday efficiency.
Collapse
Affiliation(s)
- Fang Fang
- State Key Laboratory of Advanced Technology for Materials Synthesis andProcessing & School of Materials Science and Engineering & International School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, China
| | - Yong Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis andProcessing & School of Materials Science and Engineering & International School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, China
| | - Le-Wei Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis andProcessing & School of Materials Science and Engineering & International School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis andProcessing & School of Materials Science and Engineering & International School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, China
| | - David Cahen
- Department of Chemistry, and Bar-Ilan Inst. for Nanotechnol. & Adv. Mater. (BINA), Bar-Ilan University, Ramat Gan, 5290002, Israel
- Weizmann Inst. of Science, Rehovot, 76100, Israel
| | - Yu-Xuan Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis andProcessing & School of Materials Science and Engineering & International School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, China
| | - Jiang-Bo Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis andProcessing & School of Materials Science and Engineering & International School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, China
| | - Si-Ming Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis andProcessing & School of Materials Science and Engineering & International School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, China
| | - Liang He
- State Key Laboratory of Advanced Technology for Materials Synthesis andProcessing & School of Materials Science and Engineering & International School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, China
| | - Kenneth I Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Johannesburg, 2050, South Africa
| | - Mark D Symes
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis andProcessing & School of Materials Science and Engineering & International School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
33
|
Gultom NS, Li CH, Kuo DH, Abdullah H. Single-Step Synthesis of Fe-Doped Ni 3S 2/FeS 2 Nanocomposites for Highly Efficient Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39917-39926. [PMID: 36000887 DOI: 10.1021/acsami.2c08246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to the sluggish kinetic reaction, the electrolytic oxygen evolution reaction (OER) is one of the obstacles in driving overall water splitting for green hydrogen production. In this study, we demonstrate a strategy to improve the OER performance of Ni3S2. The effect of addition of different FeCl2 contents during the hydrothermal process on the OER activity is systematically evaluated. We found that all samples upon the addition of FeCl2 produced Fe-doped Ni3S2 and FeS2 to form a nanocomposite. Their OER performances strongly depend on the amount of FeCl2, where the NSF-0.25 catalyst with 0.25 mmol FeCl2 added during the hydrothermal synthesis shows the best OER performance. Its overpotential was 230 mV versus RHE and it achieves a high current density of 100 mA·cm-2, which was much lower than that of pristine Ni3S2 (320 mV) or RuO2 (370 mV) as the benchmark OER catalyst. The postcharacterizations reveal that NSF-0.25 has gone through an in situ phase transformation into an Fe-NiOOH phase during the OER test. This study presents a simple method and a low-cost material to improve the OER performance with in situ formation of oxyhydroxide.
Collapse
Affiliation(s)
- Noto Susanto Gultom
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei 10607, Taiwan
| | - Chien-Hui Li
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei 10607, Taiwan
| | - Dong-Hau Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei 10607, Taiwan
| | - Hairus Abdullah
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei 10607, Taiwan
| |
Collapse
|
34
|
Geppert J, Röse P, Pauer S, Krewer U. Microkinetic Barriers of the Oxygen Evolution on the Oxides of Iridium, Ruthenium and their Binary Mixtures. ChemElectroChem 2022. [DOI: 10.1002/celc.202200481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Janis Geppert
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie Institute for Applied Matierals - Electrochemical Technologies Adenauerring 20b 76131 Karlsruhe GERMANY
| | - Philipp Röse
- Karlsruher Institut für Technologie: Karlsruher Institut fur Technologie Institute for Applied Materials - Electrochemical Technologies Adenauerring 20b 76131 Karlsruhe GERMANY
| | - Swantje Pauer
- Karlsruher Institut für Technologie: Karlsruher Institut fur Technologie Institute for Applied Materials - Electrochemical Technologies Adenauerring 20b 76131 Karlsruhe GERMANY
| | - Ulrike Krewer
- Institute for Applied Materials - Materials for Electrical and Electronic Engineering Electrical Engineering and Information Technology Adenauerring 20b 76131 Karlsruhe GERMANY
| |
Collapse
|
35
|
Deng R, Guo M, Wang C, Zhang Q. Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting: From catalytic mechanism and synthesis method to optimization design. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Karki SB, Hona RK, Ramezanipour F. Sr3Mn2O6 and Sr3FeMnO6 for oxygen and hydrogen evolution electrocatalysis. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05167-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Morphology engineering of iridium electrodes via modifying titanium substrates with controllable pillar structures for highly efficient oxygen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Joo J, Park Y, Kim J, Kwon T, Jun M, Ahn D, Baik H, Jang JH, Kim JY, Lee K. Mn-Dopant Differentiating the Ru and Ir Oxidation States in Catalytic Oxides Toward Durable Oxygen Evolution Reaction in Acidic Electrolyte. SMALL METHODS 2022; 6:e2101236. [PMID: 35041273 DOI: 10.1002/smtd.202101236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 06/14/2023]
Abstract
Designing an efficient and durable electrocatalyst for the sluggish oxygen evolution reaction (OER) at the anode remains the foremost challenge in developing proton exchange membrane (PEM) electrolyzers. Here, a highly active and durable cactus-like nanoparticle with an exposed heterointerface between the IrO2 and the low oxidation state Ru by introducing a trace amount of Mn dopant is reported. The heterostructure fabrication relies on initial mixing of the Ru and Ir phases before electrochemical oxidation to produce a conjoined Ru/IrO2 heterointerface. Benefitting from electron transfer at the heterointerface, the low oxidation state Ru species shows excellent initial activity, which is maintained even after 180 h of continuous OER test. In a half-cell test, the Mn-doped RuIr nanocactus (Mn-RuIr NCT) achieves a mass activity of 1.85 A mgIr+Ru -1 at 1.48 VRHE , which is 139-fold higher than that of commercial IrO2 . Moreover, the superior electrocatalytic performance of Mn-RuIr NCT in the PEM electrolysis system ensures its viability in practical uses. The results of the excellent catalytic performance for acidic OER indicate that the heterostructuring robust rutile IrO2 and the highly active Ru species with a low oxidation state on the catalyst surface drive a synergistic effect.
Collapse
Affiliation(s)
- Jinwhan Joo
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - YeJi Park
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jun Kim
- Center for Hydrogen & Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Taehyun Kwon
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Minki Jun
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Docheon Ahn
- Beamline Department, Pohang Accelerator Laboratory, Pohang, 37673, Republic of Korea
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI), Seoul, 02841, Republic of Korea
| | - Jong Hyun Jang
- Center for Hydrogen & Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jin Young Kim
- Center for Hydrogen & Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
39
|
Yang Y, Guo F, Zhang L, Guo X, Wang D, Niu R, Yang H, Li J, Ma G, Lei Z. Iron-modulated Ni 3S 2 derived from a Ni-MOF-based Prussian blue analogue for a highly efficient oxygen evolution reaction. Dalton Trans 2022; 51:17283-17291. [DOI: 10.1039/d2dt02729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing efficient, environmentally friendly and cost-effective non-precious metal electrocatalysts for the oxygen evolution reaction (OER) is essential to alleviate the energy crisis and environmental pollution.
Collapse
Affiliation(s)
- Yaoxia Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Fengyao Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Lan Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xingwei Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Dangxia Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ruiqing Niu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Haidong Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Guofu Ma
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
40
|
Wang C, Zhai P, Xia M, Wu Y, Zhang B, Li Z, Ran L, Gao J, Zhang X, Fan Z, Sun L, Hou J. Engineering Lattice Oxygen Activation of Iridium Clusters Stabilized on Amorphous Bimetal Borides Array for Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chen Wang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| | - Panlong Zhai
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| | - Mingyue Xia
- Laboratory of Materials Modification by Laser, Ion and Electron Beams Ministry of Education Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| | - Yunzhen Wu
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| | - Bo Zhang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| | - Zhuwei Li
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| | - Lei Ran
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| | - Junfeng Gao
- Laboratory of Materials Modification by Laser, Ion and Electron Beams Ministry of Education Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| | - Xiaomeng Zhang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| | - Zhaozhong Fan
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
- Center of Artificial Photosynthesis for Solar Fuels School of Science Westlake University Hangzhou 310024 P. R. China
- School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology 10044 Stockholm Sweden
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2, Linggong Road Dalian 116024 P. R. China
| |
Collapse
|
41
|
Wang C, Zhai P, Xia M, Wu Y, Zhang B, Li Z, Ran L, Gao J, Zhang X, Fan Z, Sun L, Hou J. Engineering Lattice Oxygen Activation of Iridium Clusters Stabilized on Amorphous Bimetal Borides Array for Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2021; 60:27126-27134. [PMID: 34626056 DOI: 10.1002/anie.202112870] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/08/2022]
Abstract
Developing robust oxygen evolution reaction (OER) catalysts requires significant advances in material design and in-depth understanding for water electrolysis. Herein, we report iridium clusters stabilized surface reconstructed oxyhydroxides on amorphous metal borides array, achieving an ultralow overpotential of 178 mV at 10 mA cm-2 for OER in alkaline medium. The coupling of iridium clusters induced the formation of high valence cobalt species and Ir-O-Co bridge between iridium and oxyhydroxides at the atomic scale, engineering lattice oxygen activation and non-concerted proton-electron transfer to trigger multiple active sites for intrinsic pH-dependent OER activity. The lattice oxygen oxidation mechanism (LOM) was confirmed by in situ 18 O isotope labeling mass spectrometry and chemical recognition of negative peroxo-like species. Theoretical simulations reveal that the OER performance on this catalyst is intrinsically dominated by LOM pathway, facilitating the reaction kinetics. This work not only paves an avenue for the rational design of electrocatalysts, but also serves the fundamental insights into the lattice oxygen participation for promising OER application.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| | - Panlong Zhai
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| | - Mingyue Xia
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| | - Yunzhen Wu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| | - Bo Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| | - Zhuwei Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| | - Lei Ran
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| | - Junfeng Gao
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| | - Xiaomeng Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| | - Zhaozhong Fan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China.,Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, P. R. China.,School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian, 116024, P. R. China
| |
Collapse
|
42
|
Pu Z, Liu T, Zhang G, Ranganathan H, Chen Z, Sun S. Electrocatalytic Oxygen Evolution Reaction in Acidic Conditions: Recent Progress and Perspectives. CHEMSUSCHEM 2021; 14:4636-4657. [PMID: 34411443 DOI: 10.1002/cssc.202101461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The electrochemical oxygen evolution reaction (OER) is an important half-cell reaction in many renewable energy conversion and storage technologies, including electrolyzers, nitrogen fixation, CO2 reduction, metal-air batteries, and regenerative fuel cells. Among them, proton exchange membrane (PEM)-based devices exhibit a series of advantages, such as excellent proton conductivity, high durability, and good mechanical strength, and have attracted global interest as a green energy device for transport and stationary sectors. Nevertheless, with a view to rapid commercialization, it is urgent to develop highly active and acid-stable OER catalysts for PEM-based devices. In this Review, based on the recent advances in theoretical calculation and in situ/operando characterization, the OER mechanism in acidic conditions is first discussed in detail. Subsequently, recent advances in the development of several types of acid-stable OER catalysts, including noble metals, non-noble metals, and even metal-free OER materials, are systematically summarized. Finally, the current key issues and future challenges for materials used as acidic OER catalysis are identified and potential future directions are proposed.
Collapse
Affiliation(s)
- Zonghua Pu
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| | - Tingting Liu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| | - Hariprasad Ranganathan
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| | - Zhangxing Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| |
Collapse
|
43
|
Tian W, Zheng D, Sun X, Guan X, Feng H, Li C, Yan M, Yao Y. Structural and Interfacial Engineering of Ni 2P/Fe 3O 4 Porous Nanosheet Arrays for Efficient Oxygen Evolution Reaction. Inorg Chem 2021; 60:14786-14792. [PMID: 34543021 DOI: 10.1021/acs.inorgchem.1c02028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rational design of transition-metal phosphide (TMPs)-based electrocatalysts can effectively promote oxygen evolution reaction (OER). Herein, the novel efficient Ni2P/Fe3O4 porous nanosheets arrays supported on Ni foam (Ni2P/Fe3O4/NF) as alkaline OER catalysts were synthesized using structural and interfacial engineering. The three-dimensional (3D) porous hierarchical structure of Ni2P/Fe3O4/NF provides abundant active sites for OER and facilitates the electrolyte diffusion of ions and O2 liberation. Furthermore, the strong interfacial coupling and synergistic effect between Ni2P and Fe3O4 modify the electronic structure, resulting in the enhanced intrinsic activity. Consequently, the optimized Ni2P/Fe3O4/NF exhibits excellent OER performance with low overpotentials of 213 and 240 mV at 60 and 100 mA cm-2 in 1.0 M KOH, respectively, better than the RuO2/NF and most Ni/Fe-based OER catalysts. Impressively, it can maintain its catalytic activity for at least 20 h at 60 mA cm-2. In addition, the relationship between the structure and performance is fully elucidated by the experimental characterizations, indicating that the metal oxyhydroxides in situ generated on the surface of catalysts are responsible for the high OER activity.
Collapse
Affiliation(s)
- Wenli Tian
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dengchao Zheng
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xun Sun
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xin Guan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hao Feng
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Chengyi Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Minglei Yan
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yadong Yao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
44
|
Touni A, Grammenos OA, Banti A, Karfaridis D, Prochaska C, Lambropoulou D, Pavlidou E, Sotiropoulos S. Iridium oxide-nickel-coated titanium anodes for the oxygen evolution reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Morais E, O'Modhrain C, Thampi KR, Sullivan JA. RuO2/TiO2 photocatalysts prepared via a hydrothermal route: Influence of the presence of TiO2 on the reactivity of RuO2 in the artificial photosynthesis reaction. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Tang L, Rao Y, Wei L, Zheng H, Liu H, Zhang W, Tang K. A‐site Cation Defects (Ba
0.
5
Sr
0
.5
)
1–
x
Co
0
.
8
Fe
0
.
2
O
3
–
δ
Perovskites as Active Oxygen Evolution Reaction Catalyst in Alkaline Electrolyte
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lulu Tang
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Yifei Rao
- CAS Key Laboratory of Materials for Energy Conversion, Department of Material Science and Technology University of Science and Technology of China Hefei Anhui 230026 China
| | - Lianwei Wei
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Hui Zheng
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Huimin Liu
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Wenhua Zhang
- CAS Key Laboratory of Materials for Energy Conversion, Department of Material Science and Technology University of Science and Technology of China Hefei Anhui 230026 China
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Kaibin Tang
- CAS Key Laboratory of Materials for Energy Conversion, Department of Material Science and Technology University of Science and Technology of China Hefei Anhui 230026 China
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
47
|
Obradović MD, Balanč BD, Lačnjevac UČ, Gojković SL. Electrochemically deposited iridium-oxide: Estimation of intrinsic activity and stability in oxygen evolution in acid solution. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Lee S, Baik C, Pak C. Ordered mesoporous ruthenium oxide with balanced catalytic activity and stability toward oxygen evolution reaction. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Ma Z, Gao X, She Z, Pope MA, Li Y. Ultrasmall TiO
x
Nanoparticles Rich in Oxygen Vacancies Synthesized through a Simple Strategy for Ultrahigh‐Rate Lithium‐Ion Batteries. ChemElectroChem 2020. [DOI: 10.1002/celc.202001050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Zhong Ma
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN) University of Waterloo 200 University Avenue west Waterloo Ontario N2L 3G1 Canada
| | - Xiguang Gao
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN) University of Waterloo 200 University Avenue west Waterloo Ontario N2L 3G1 Canada
| | - Zimin She
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN) University of Waterloo 200 University Avenue west Waterloo Ontario N2L 3G1 Canada
| | - Michael A. Pope
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN) University of Waterloo 200 University Avenue west Waterloo Ontario N2L 3G1 Canada
| | - Yuning Li
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN) University of Waterloo 200 University Avenue west Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
50
|
Dam AP, Papakonstantinou G, Sundmacher K. On the role of microkinetic network structure in the interplay between oxygen evolution reaction and catalyst dissolution. Sci Rep 2020; 10:14140. [PMID: 32839461 PMCID: PMC7445268 DOI: 10.1038/s41598-020-69723-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/02/2020] [Indexed: 11/23/2022] Open
Abstract
Understanding the pathways of oxygen evolution reaction (OER) and the mechanisms of catalyst degradation is of essential importance for developing efficient and stable OER catalysts. Experimentally, a close coupling between OER and catalyst dissolution on metal oxides is reported. In this work, it is analysed how the microkinetic network structure of a generic electrocatalytic cycle, in which a common intermediate causes catalyst dissolution, governs the interplay between electrocatalytic activity and stability. Model discrimination is possible based on the analysis of incorporated microkinetic network structures and the comparison to experimental data. The derived concept is used to analyse the coupling of OER and catalyst dissolution on rutile and reactively sputtered Iridium oxides. For rutile Iridium oxide, the characteristic activity and stability behaviour can be well described by a mono-nuclear, adsorbate evolution mechanism and the chemical type of both competing dissolution and rate-determining OER-step. For the reactively sputtered Iridium oxide surface, experimentally observed characteristics can be captured by the assumption of an additional path via a low oxidation state intermediate, which explains the observed characteristic increase in OER over dissolution selectivity with potential by the competition between electrochemical re-oxidation and chemical dissolution.
Collapse
Affiliation(s)
- An Phuc Dam
- Department Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr.1, 39106, Magdeburg, Germany
| | - Georgios Papakonstantinou
- Department Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr.1, 39106, Magdeburg, Germany
| | - Kai Sundmacher
- Department Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr.1, 39106, Magdeburg, Germany. .,Department of Process Systems Engineering, Otto-Von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
| |
Collapse
|