1
|
Krivačić S, Boček Ž, Zubak M, Kojić V, Kassal P. Flexible ammonium ion-selective electrode based on inkjet-printed graphene solid contact. Talanta 2024; 279:126614. [PMID: 39094532 DOI: 10.1016/j.talanta.2024.126614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Miniaturization and mass-production of potentiometric sensor systems is paving the way towards distributed environmental sensing, on-body measurements and industrial process monitoring. Inkjet printing is gaining popularity as a highly adaptable and scalable production technique. Presented here is a scalable and low-cost route for flexible solid-contact ammonium ion-selective electrode fabrication by inkjet printing. Utilization of inkjet-printed melamine-intercalated graphene nanosheets as the solid-contact material significantly improved charge transport, while evading the detrimental water-layer formation. External polarization was investigated as a means of improving the inter-electrode reproducibility: the standard deviations of E0 values were reduced after electrode polarization, the linear region of the response was extended to the range 10-1-10-6 M of NH4Cl and LODs reduced to 0.88 ± 0.17 μM. Finally, we have shown that the electrodes are adequate for measurements in a complex real sample: ammonium concentration was determined in landfill leachate water, with less than 4 % deviation from the reference method.
Collapse
Affiliation(s)
- Sara Krivačić
- University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia
| | - Željka Boček
- University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia
| | - Marko Zubak
- University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia
| | - Vedran Kojić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia; HIS d.o.o., Donja Višnjica 61D, 42255, Donja Višnjica, Croatia
| | - Petar Kassal
- University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000, Zagreb, Croatia.
| |
Collapse
|
2
|
Nur-E-Alam M, Maurya DK, Yap BK, Rajabi A, Doroody C, Bin Mohamed H, Khandaker MU, Islam MA, Kiong Tiong S. Physical-Vapor-Deposited Metal Oxide Thin Films for pH Sensing Applications: Last Decade of Research Progress. SENSORS (BASEL, SWITZERLAND) 2023; 23:8194. [PMID: 37837022 PMCID: PMC10575361 DOI: 10.3390/s23198194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
In the last several decades, metal oxide thin films have attracted significant attention for the development of various existing and emerging technological applications, including pH sensors. The mandate for consistent and precise pH sensing techniques has been increasing across various fields, including environmental monitoring, biotechnology, food and agricultural industries, and medical diagnostics. Metal oxide thin films grown using physical vapor deposition (PVD) with precise control over film thickness, composition, and morphology are beneficial for pH sensing applications such as enhancing pH sensitivity and stability, quicker response, repeatability, and compatibility with miniaturization. Various PVD techniques, including sputtering, evaporation, and ion beam deposition, used to fabricate thin films for tailoring materials' properties for the advanced design and development of high-performing pH sensors, have been explored worldwide by many research groups. In addition, various thin film materials have also been investigated, including metal oxides, nitrides, and nanostructured films, to make very robust pH sensing electrodes with higher pH sensing performance. The development of novel materials and structures has enabled higher sensitivity, improved selectivity, and enhanced durability in harsh pH environments. The last decade has witnessed significant advancements in PVD thin films for pH sensing applications. The combination of precise film deposition techniques, novel materials, and surface functionalization strategies has led to improved pH sensing performance, making PVD thin films a promising choice for future pH sensing technologies.
Collapse
Affiliation(s)
- Mohammad Nur-E-Alam
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (B.K.Y.); (A.R.); (C.D.); (H.B.M.); (S.K.T.)
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
- School of Engineering and Technology, Central Queensland University Australia, Melbourne, VIC 3000, Australia
| | - Devendra Kumar Maurya
- National Centre for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur 208016, India;
| | - Boon Kar Yap
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (B.K.Y.); (A.R.); (C.D.); (H.B.M.); (S.K.T.)
- College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| | - Armin Rajabi
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (B.K.Y.); (A.R.); (C.D.); (H.B.M.); (S.K.T.)
| | - Camellia Doroody
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (B.K.Y.); (A.R.); (C.D.); (H.B.M.); (S.K.T.)
- College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| | - Hassan Bin Mohamed
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (B.K.Y.); (A.R.); (C.D.); (H.B.M.); (S.K.T.)
- College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia;
| | - Mohammad Aminul Islam
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Selangor, Malaysia;
| | - Sieh Kiong Tiong
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (B.K.Y.); (A.R.); (C.D.); (H.B.M.); (S.K.T.)
- College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| |
Collapse
|
3
|
Doddapaneni VVK, Lee K, Aysal HE, Paul BK, Pasebani S, Sierros KA, Okwudire CE, Chang CH. A Review on Progress, Challenges, and Prospects of Material Jetting of Copper and Tungsten. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2303. [PMID: 37630889 PMCID: PMC10459285 DOI: 10.3390/nano13162303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Copper (Cu) and tungsten (W) possess exceptional electrical and thermal conductivity properties, making them suitable candidates for applications such as interconnects and thermal conductivity enhancements. Solution-based additive manufacturing (SBAM) offers unique advantages, including patterning capabilities, cost-effectiveness, and scalability among the various methods for manufacturing Cu and W-based films and structures. In particular, SBAM material jetting techniques, such as inkjet printing (IJP), direct ink writing (DIW), and aerosol jet printing (AJP), present a promising approach for design freedom, low material wastes, and versatility as either stand-alone printers or integrated with powder bed-based metal additive manufacturing (MAM). Thus, this review summarizes recent advancements in solution-processed Cu and W, focusing on IJP, DIW, and AJP techniques. The discussion encompasses general aspects, current status, challenges, and recent research highlights. Furthermore, this paper addresses integrating material jetting techniques with powder bed-based MAM to fabricate functional alloys and multi-material structures. Finally, the factors influencing large-scale fabrication and potential prospects in this area are explored.
Collapse
Affiliation(s)
- V. Vinay K. Doddapaneni
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA;
| | - Kijoon Lee
- School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331, USA; (K.L.); (B.K.P.); (S.P.)
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Havva Eda Aysal
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA; (H.E.A.); (K.A.S.)
| | - Brian K. Paul
- School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331, USA; (K.L.); (B.K.P.); (S.P.)
- Advanced Technology and Manufacturing Institute (ATAMI), Corvallis, OR 97330, USA
| | - Somayeh Pasebani
- School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331, USA; (K.L.); (B.K.P.); (S.P.)
- Advanced Technology and Manufacturing Institute (ATAMI), Corvallis, OR 97330, USA
| | - Konstantinos A. Sierros
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA; (H.E.A.); (K.A.S.)
| | - Chinedum E. Okwudire
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Chih-hung Chang
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
4
|
Vallejos S, Trigo-López M, Arnaiz A, Miguel Á, Muñoz A, Mendía A, García JM. From Classical to Advanced Use of Polymers in Food and Beverage Applications. Polymers (Basel) 2022; 14:4954. [PMID: 36433081 PMCID: PMC9699061 DOI: 10.3390/polym14224954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Polymers are extensively used in food and beverage packaging to shield against contaminants and external damage due to their barrier properties, protecting the goods inside and reducing waste. However, current trends in polymers for food, water, and beverage applications are moving forward into the design and preparation of advanced polymers, which can act as active packaging, bearing active ingredients in their formulation, or controlling the head-space composition to extend the shelf-life of the goods inside. In addition, polymers can serve as sensory polymers to detect and indicate the presence of target species, including contaminants of food quality indicators, or even to remove or separate target species for later quantification. Polymers are nowadays essential materials for both food safety and the extension of food shelf-life, which are key goals of the food industry, and the irruption of smart materials is opening new opportunities for going even further in these goals. This review describes the state of the art following the last 10 years of research within the field of food and beverage polymer's applications, covering present applications, perspectives, and concerns related to waste generation and the circular economy.
Collapse
Affiliation(s)
- Saúl Vallejos
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Miriam Trigo-López
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Ana Arnaiz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain
| | - Álvaro Miguel
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
- Facultad de Ciencias, Campus de Cantoblanco, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain
| | - Asunción Muñoz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Aránzazu Mendía
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - José Miguel García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|
5
|
Chen H, Mei Z, Qi K, Wang Y, Chen R. A wearable enzyme-free glucose sensor based on nickel nanoparticles decorated laser-induced graphene. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Yoon Y, Truong PL, Lee D, Ko SH. Metal-Oxide Nanomaterials Synthesis and Applications in Flexible and Wearable Sensors. ACS NANOSCIENCE AU 2022; 2:64-92. [PMID: 37101661 PMCID: PMC10114907 DOI: 10.1021/acsnanoscienceau.1c00029] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Metal-oxide nanomaterials (MONs) have gained considerable interest in the construction of flexible/wearable sensors due to their tunable band gap, low cost, large specific area, and ease of manufacturing. Furthermore, MONs are in high demand for applications, such as gas leakage alarms, environmental protection, health tracking, and smart devices integrated with another system. In this Review, we introduce a comprehensive investigation of factors to boost the sensitivity of MON-based sensors in environmental indicators and health monitoring. Finally, the challenges and perspectives of MON-based flexible/wearable sensors are considered.
Collapse
Affiliation(s)
- Yeosang Yoon
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 08826, Korea
| | - Phuoc Loc Truong
- Laser
and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, Seongnam 13120, Korea
| | - Daeho Lee
- Laser
and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, Seongnam 13120, Korea
| | - Seung Hwan Ko
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 08826, Korea
- Institute
of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Institute
of Engineering Research, Seoul National
University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Siddiqui J, Taheri M, Alam AU, Deen MJ. Nanomaterials in Smart Packaging Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101171. [PMID: 34514693 DOI: 10.1002/smll.202101171] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/01/2021] [Indexed: 05/22/2023]
Abstract
Food wastage is a critical and world-wide issue resulting from an excess of food supply, poor food storage, poor marketing, and unstable markets. Since food quality depends on consumer standards, it becomes necessary to monitor the quality to ensure it meets those standards. Embedding sensors with active nanomaterials in food packaging enables customers to monitor the quality of their food in real-time. Though there are many different sensors that can monitor food quality and safety, pH sensors and time-temperature indicators (TTIs) are the most critical metrics in indicating quality. This review showcases some of the recent progress, their importance, preconditions, and the various future needs of pH sensors and TTIs in food packaging for smart sensors in food packaging applications. In discussing these topics, this review includes the materials used to make these sensors, which vary from polymers, metals, metal-oxides, carbon-based materials; and their modes of fabrication, ranging from thin or thick film deposition methods, solution-based chemistry, and electrodeposition. By discussing the use of these materials, novel fabrication process, and problems for the two sensors, this review offers solutions to a brighter future for the use of nanomaterials for pH indicator and TTIs in food packaging applications.
Collapse
Affiliation(s)
- Junaid Siddiqui
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario, L8S 4K1, Canada
| | - Mahtab Taheri
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario, L8S 4K1, Canada
| | - Arif Ul Alam
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario, L8S 4K1, Canada
| | - M Jamal Deen
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
8
|
Abstract
There have been numerous studies applying iridium oxides in different applications to explore their proton-change-based reactions since the 1980s. Iridium oxide can be fabricated directly by applying electrodeposition, sputter-coating method, or oxidation of iridium wire. Generally, there have been currently two approaches in applying iridium oxide to enable its sensing applications. One was to improve or create different electrolytes with (non-)electrodeposition method for better performance of Nernst Constant with the temperature-related system. The mechanism behind the scenes were summarized herein. The other was to change the structure of iridium oxide through different kinds of templates such as photolithography patterns, or template-assisted direct growth methods, etc. to improve the sensing performance. The detection targets varied widely from intracellular cell pH, glucose in an artificial sample or actual urine sample, and the hydrogen peroxide, glutamate or organophosphate pesticides, metal-ions, etc. This review paper has focused on the mechanism of electrodeposition of iridium oxide in aqueous conditions and the sensing applications towards different biomolecules compounds. Finally, we summarize future trends on Iridium oxide based sensing and predict future work that could be further explored.
Collapse
|
9
|
Mariani F, Serafini M, Gualandi I, Arcangeli D, Decataldo F, Possanzini L, Tessarolo M, Tonelli D, Fraboni B, Scavetta E. Advanced Wound Dressing for Real-Time pH Monitoring. ACS Sens 2021; 6:2366-2377. [PMID: 34076430 PMCID: PMC8294608 DOI: 10.1021/acssensors.1c00552] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
The rapid evolution of wearable technologies is giving rise to a strong push for textile chemical sensors design targeting the real-time collection of vital parameters for improved healthcare. Among the most promising applications, monitoring of nonhealing wounds is a scarcely explored medical field that still lacks quantitative tools for the management of the healing process. In this work, a smart bandage is developed for the real-time monitoring of wound pH, which has been reported to correlate with the healing stages, thus potentially giving direct access to the wound status without disturbing the wound bed. The fully textile device is realized by integrating a sensing layer, including the two-terminal pH sensor made of a semiconducting polymer and iridium oxide particles, and an absorbent layer ensuring the delivery of a continuous wound exudate flow across the sensor area. The two-terminal sensor exhibits a reversible response with a sensitivity of (59 ± 4) μA pH-1 in the medically relevant pH range for wound monitoring (pH 6-9), and its performance is not substantially affected either by the presence of the most common chemical interferents or by temperature gradients from 22 to 40 °C. Thanks to the robust sensing mechanism based on potentiometric transduction and the simple device geometry, the fully assembled smart bandage was successfully validated in flow analysis using synthetic wound exudate.
Collapse
Affiliation(s)
- Federica Mariani
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Martina Serafini
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Isacco Gualandi
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Danilo Arcangeli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Francesco Decataldo
- Dipartimento
di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Luca Possanzini
- Dipartimento
di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Marta Tessarolo
- Dipartimento
di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Domenica Tonelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Beatrice Fraboni
- Dipartimento
di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Erika Scavetta
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
10
|
Wen D, Wang X, Liu L, Hu C, Sun C, Wu Y, Zhao Y, Zhang J, Liu X, Ying G. Inkjet Printing Transparent and Conductive MXene (Ti 3C 2Tx) Films: A Strategy for Flexible Energy Storage Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17766-17780. [PMID: 33843188 DOI: 10.1021/acsami.1c00724] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
MXene is a generic name for a large family of two-dimensional transition metal carbides or nitrides, which show great promise in the field of transparent supercapacitors. However, the manufacturing of supercapacitor electrodes with a high charge storage capacity and desirable transmittance is a challenging task. Herein, a low-cost, large-scale, and rapid preparation of flexible and transparent MXene films via inkjet printing is reported. The MXene films realized the sheet resistance (Rs) of 1.66 ± 0.16 MΩ sq-1 to 1.47 ± 0.1 kΩ sq-1 at the transmissivity of 87-24% (λ = 550 nm), respectively, corresponding to the figure of merit (the ratio of electronic to optical conductivity, σDC/σOP) of ∼0.0012 to 0.13. Furthermore, the potential of inkjet-printed transparent MXene films in transparent supercapacitors was assessed by electrochemical characterization. The MXene film, with a transmittance of 24%, exhibited a superior areal capacitance of 887.5 μF cm-2 and retained 85% of the initial capacitance after 10,000 charge/discharge cycles at the scan rate of 10 mV s-1. Interestingly, the areal capacitance (192 μF cm-2) of an assembled symmetric MXene transparent supercapacitor, with a high transmittance of 73%, still surpasses the performance of previously reported graphene and single-walled carbon nanotube (SWCNT)-based transparent electrodes. The convenient manufacturing and superior electrochemical performance of inkjet-printed flexible and transparent MXene films widen the application horizon of this strategy for flexible energy storage devices.
Collapse
Affiliation(s)
- Dong Wen
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Xiang Wang
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Lu Liu
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Cong Hu
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Cheng Sun
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Yiran Wu
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Yinlong Zhao
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Jianxin Zhang
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Xudong Liu
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | - Guobing Ying
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| |
Collapse
|
11
|
Ambaye AD, Kefeni KK, Mishra SB, Nxumalo EN, Ntsendwana B. Recent developments in nanotechnology-based printing electrode systems for electrochemical sensors. Talanta 2021; 225:121951. [DOI: 10.1016/j.talanta.2020.121951] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023]
|
12
|
Jo J, Kang S, Heo JS, Kim Y, Park SK. Flexible Metal Oxide Semiconductor Devices Made by Solution Methods. Chemistry 2020; 26:9126-9156. [DOI: 10.1002/chem.202000090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Jeong‐Wan Jo
- School of Electrical and Electronics EngineeringChung-Ang University Seoul 06980 Republic of Korea
- School of Advanced Materials Science and EngineeringSungkyunkwan University Suwon 16419 Republic of Korea
| | - Seung‐Han Kang
- School of Electrical and Electronics EngineeringChung-Ang University Seoul 06980 Republic of Korea
| | - Jae Sang Heo
- Department of MedicineUniversity of Connecticut School of Medicine Farmington CT 06030 USA
| | - Yong‐Hoon Kim
- School of Advanced Materials Science and EngineeringSungkyunkwan University Suwon 16419 Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Sung Kyu Park
- School of Electrical and Electronics EngineeringChung-Ang University Seoul 06980 Republic of Korea
| |
Collapse
|
13
|
Škugor Rončević I, Krivić D, Buljac M, Vladislavić N, Buzuk M. Polyelectrolytes Assembly: A Powerful Tool for Electrochemical Sensing Application. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3211. [PMID: 32517055 PMCID: PMC7313698 DOI: 10.3390/s20113211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
The development of sensing coatings, as important sensor elements that integrate functionality, simplicity, chemical stability, and physical stability, has been shown to play a major role in electrochemical sensing system development trends. Simple and versatile assembling procedures and scalability make polyelectrolytes highly convenient for use in electrochemical sensing applications. Polyelectrolytes are mainly used in electrochemical sensor architectures for entrapping (incorporation, immobilization, etc.) various materials into sensing layers. These materials can often increase sensitivity, selectivity, and electronic communications with the electrode substrate, and they can mediate electron transfer between an analyte and transducer. Analytical performance can be significantly improved by the synergistic effect of materials (sensing material, transducer, and mediator) present in these composites. As most reported methods for the preparation of polyelectrolyte-based sensing layers are layer-by-layer and casting/coating methods, this review focuses on the use of the latter methods in the development of electrochemical sensors within the last decade. In contrast to many reviews related to electrochemical sensors that feature polyelectrolytes, this review is focused on architectures of sensing layers and the role of polyelectrolytes in the development of sensing systems. Additionally, the role of polyelectrolytes in the preparation and modification of various nanoparticles, nanoprobes, reporter probes, nanobeads, etc. that are used in electrochemical sensing systems is also reviewed.
Collapse
Affiliation(s)
- Ivana Škugor Rončević
- Department of General and Inorganic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia; (I.Š.R.); (N.V.)
| | - Denis Krivić
- Division of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria;
| | - Maša Buljac
- Department of Environmental Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia;
| | - Nives Vladislavić
- Department of General and Inorganic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia; (I.Š.R.); (N.V.)
| | - Marijo Buzuk
- Department of General and Inorganic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia; (I.Š.R.); (N.V.)
| |
Collapse
|
14
|
Zhou L, Cheng C, Li X, Ding J, Liu Q, Su B. Nanochannel Templated Iridium Oxide Nanostructures for Wide-Range pH Sensing from Solutions to Human Skin Surface. Anal Chem 2020; 92:3844-3851. [PMID: 32043863 DOI: 10.1021/acs.analchem.9b05289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Herein we report the fabrication of highly sensitive solid-state pH sensors based on iridium oxide nanowires (IONWs) for a wide-range of pH measurements. IONWs were confined electrodeposits on the indium tin oxide (ITO) electrode using a highly ordered silica nanochannel membrane as the template. Subsequently removing the template produced amorphous IONWs consisting of hydrated iridium oxyhydroxides. The IONW/ITO sensor can rapidly respond to the pH of the aqueous solutions in a wide range (from 0 to 13), avoiding the acid and alkaline errors encountered by conventional pH electrodes and exhibiting a super-Nernst analytical sensitivity as high as 235.5 mV/pH in the very acidic range of ∼0-2.5 and 90.1 mV/pH beyond (pH = ∼2.5-13). The sensitivity was associated with the interconversion of oxidation states of iridium oxyhydroxides. While in the very acidic range, intercalation of Cl- was proved to be responsible for the exceptionally high pH sensitivity. Moreover, the sensor was also demonstrated to work in organic solutions too. Finally, the flexible IONW/ITO electrode was prepared and interfaced to a wireless electrochemical device for real-time epidermal pH analysis with smartphones.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Chen Cheng
- Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinru Li
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jialian Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qingjun Liu
- Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bin Su
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Kamarudin SF, Mustapha M, Kim JK. Green Strategies to Printed Sensors for Healthcare Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1729180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Siti Fatimah Kamarudin
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Penang, Malaysia
| | - Mariatti Mustapha
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Penang, Malaysia
| | - Jang-Kyo Kim
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
16
|
Costa Bassetto V, Oliveira Silva W, Pereira CM, Girault HH. Flash light synthesis of noble metal nanoparticles for electrochemical applications: silver, gold, and their alloys. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04521-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Nagar B, Jović M, Bassetto VC, Zhu Y, Pick H, Gómez‐Romero P, Merkoçi A, Girault HH, Lesch A. Highly Loaded Mildly Edge‐Oxidized Graphene Nanosheet Dispersions for Large‐Scale Inkjet Printing of Electrochemical Sensors. ChemElectroChem 2020. [DOI: 10.1002/celc.201901697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bhawna Nagar
- Novel Energy Oriented Materials Group Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
- Nanobioelectronics and Biosensors Group Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra Barcelona 08193 Spain ICREA Pg. Lluís Companys, 23 Barcelona 08010 Spain
- Laboratory of Physical and Analytical Electrochemistry (LEPA)Ecole Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis Rue de l'Industrie 17 1950 Sion Switzerland
| | - Milica Jović
- Laboratory of Physical and Analytical Electrochemistry (LEPA)Ecole Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis Rue de l'Industrie 17 1950 Sion Switzerland
| | - Victor Costa Bassetto
- Laboratory of Physical and Analytical Electrochemistry (LEPA)Ecole Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis Rue de l'Industrie 17 1950 Sion Switzerland
| | - Yingdi Zhu
- Laboratory of Physical and Analytical Electrochemistry (LEPA)Ecole Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis Rue de l'Industrie 17 1950 Sion Switzerland
| | - Horst Pick
- Institute of Chemical Sciences and Engineering (ISIC)Ecole Polytechnique Fédérale de Lausanne (EPFL) EPFL Station 15 1015 Lausanne Switzerland
| | - Pedro Gómez‐Romero
- Novel Energy Oriented Materials Group Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
| | - Arben Merkoçi
- Nanobioelectronics and Biosensors Group Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra Barcelona 08193 Spain ICREA Pg. Lluís Companys, 23 Barcelona 08010 Spain
| | - Hubert H. Girault
- Laboratory of Physical and Analytical Electrochemistry (LEPA)Ecole Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis Rue de l'Industrie 17 1950 Sion Switzerland
| | - Andreas Lesch
- Department of Industrial Chemistry “Toso Montanari”University of Bologna Viale del Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
18
|
Monteiro MCO, Jacobse L, Touzalin T, Koper MTM. Mediator-Free SECM for Probing the Diffusion Layer pH with Functionalized Gold Ultramicroelectrodes. Anal Chem 2020; 92:2237-2243. [PMID: 31874560 PMCID: PMC6977089 DOI: 10.1021/acs.analchem.9b04952] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Probing
pH gradients during electrochemical reactions is important
to better understand reaction mechanisms and to separate the influence
of pH and pH gradients from intrinsic electrolyte effects. Here, we
develop a pH sensor to measure pH changes in the diffusion layer during
hydrogen evolution. The probe was synthesized by functionalizing a
gold ultramicroelectrode with a self-assembled monolayer of 4-nitrothiophenol
(4-NTP) and further converting it to form a hydroxylaminothiophenol
(4-HATP)/4-nitrosothiophenol (4-NSTP) redox couple. The pH sensing
is realized by recording the tip cyclic voltammetry and monitoring
the Nernstian shift of the midpeak potential. We employ a capacitive
approach technique in our home-built Scanning Electrochemical Microscope
(SECM) setup in which an AC potential is applied to the sample and
the capacitive current generated at the tip is recorded as a function
of distance. This method allows for an approach of the tip to the
electrode that is electrolyte-free and consequently also mediator-free.
Hydrogen evolution on gold in a neutral electrolyte was studied as
a model system. The pH was measured with the probe at a constant distance
from the electrode (ca. 75 μm), while the electrode potential
was varied in time. In the nonbuffered electrolyte used (0.1 M Li2SO4), even at relatively low current densities,
a pH difference of three units is measured between the location of
the probe and the bulk electrolyte. The time scale of the diffusion
layer transient is captured, due to the high time resolution that
can be achieved with this probe. The sensor has high sensitivity,
measuring differences of more than 8 pH units with a resolution better
than 0.1 pH unit.
Collapse
Affiliation(s)
- Mariana C O Monteiro
- Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA , Leiden , The Netherlands
| | - Leon Jacobse
- DESY NanoLab , Deutsches Elektronensynchrotron DESY , Notkestrasse 85 , D-22607 Hamburg , Germany
| | - Thomas Touzalin
- Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA , Leiden , The Netherlands
| | - Marc T M Koper
- Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA , Leiden , The Netherlands
| |
Collapse
|
19
|
Point-of-care amperometric determination of L-dopa using an inkjet-printed carbon nanotube electrode modified with dandelion-like MnO2 microspheres. Mikrochim Acta 2019; 186:532. [DOI: 10.1007/s00604-019-3644-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/27/2019] [Indexed: 11/28/2022]
|
20
|
Jarošová R, Mcclure SE, Gajda M, Jović M, Girault HH, Lesch A, Maiden M, Waters C, Swain GM. Inkjet-Printed Carbon Nanotube Electrodes for Measuring Pyocyanin and Uric Acid in a Wound Fluid Simulant and Culture Media. Anal Chem 2019; 91:8835-8844. [DOI: 10.1021/acs.analchem.8b05591] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Romana Jarošová
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Faculty of Science, University Research Centre UNCE “Supramolecular Electrochemistry”, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University in Prague, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Sandra E. Mcclure
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Margaret Gajda
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Milica Jović
- Laboratoire d’Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, EPFL Valais Wallis, Rue de l’Industrie 17, CP 400, CH-1951 Sion, Switzerland
| | - Hubert H. Girault
- Laboratoire d’Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, EPFL Valais Wallis, Rue de l’Industrie 17, CP 400, CH-1951 Sion, Switzerland
| | - Andreas Lesch
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Michael Maiden
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, East Lansing, Michigan 48824, United States
| | - Christopher Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, East Lansing, Michigan 48824, United States
| | - Greg M. Swain
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
21
|
Stanković DM, Ognjanović M, Jović M, Cuplić V, Lesch A, Girault HH, Gavrović Jankulović M, Antić B. Disposable Biosensor Based on Amidase/CeO2/GNR Modified Inkjet‐printed CNT Electrodes‐droplet Based Paracetamol Detection in Biological Fluids for “Point‐of‐care” Applications. ELECTROANAL 2019. [DOI: 10.1002/elan.201900129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dalibor M. Stanković
- The “Vinča” Institute of Nuclear SciencesUniversity of Belgrade, POB 522 11001 Belgrade Serbia
| | - Miloš Ognjanović
- The “Vinča” Institute of Nuclear SciencesUniversity of Belgrade, POB 522 11001 Belgrade Serbia
| | - Milica Jović
- Laboratory of Physical and Analytical Electrochemistry (LEPA)EPFL Valais Wallis Rue de l'Industrie 17 CH-1951 Sion Switzerland
| | - Valentina Cuplić
- Faculty of ChemistryUniversity of Belgrade Studentski trg 12–16 11000 Belgrade Serbia
| | - Andreas Lesch
- Department of Industrial Chemistry “Toso Montanari”University of Bologna Viale del Risorgimento 4 40136 Bologna Italy
| | - Hubert H. Girault
- Laboratory of Physical and Analytical Electrochemistry (LEPA)EPFL Valais Wallis Rue de l'Industrie 17 CH-1951 Sion Switzerland
| | | | - Bratislav Antić
- The “Vinča” Institute of Nuclear SciencesUniversity of Belgrade, POB 522 11001 Belgrade Serbia
| |
Collapse
|
22
|
Park HJ, Yoon JH, Lee KG, Choi BG. Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays. NANO CONVERGENCE 2019; 6:9. [PMID: 30880366 PMCID: PMC6421353 DOI: 10.1186/s40580-019-0179-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/09/2019] [Indexed: 05/22/2023]
Abstract
We report potentiometric performance of a polyaniline nanofiber array-based pH sensor fabricated by combining a dilute chemical polymerization and low-cost and simple screen printing process. The pH sensor had a two-electrode configuration consisting of polyaniline nanofiber array sensing electrode and Ag/AgCl reference electrode. Measurement of electromotive force between sensing and reference electrodes provided various electrochemical properties of pH sensors. The pH sensor show excellent sensor performances of sensitivity of 62.4 mV/pH, repeatability of 97.9% retention, response time of 12.8 s, and durability of 3.0 mV/h. The pH sensor could also measure pH changes as the milk is spoiled, which is similar to those of a commercial pH meter. The pH sensors were highly flexible, and thus can measure the fruit decay on the curved surface of an apple. This flexible and miniature pH sensor opens new opportunities for monitoring of water, product process, human health, and chemical (or bio) reactions even using small volumes of samples.
Collapse
Affiliation(s)
- Hong Jun Park
- Department of Chemical Engineering, Kangwon National University, 346 Joongang-ro, Samcheok, Gangwon-do 25913 Republic of Korea
| | - Jo Hee Yoon
- Department of Chemical Engineering, Kangwon National University, 346 Joongang-ro, Samcheok, Gangwon-do 25913 Republic of Korea
| | - Kyoung G. Lee
- Nano-Bio Application Team, National NanoFab Center (NNFC), Daejeon, 34141 Republic of Korea
| | - Bong Gill Choi
- Department of Chemical Engineering, Kangwon National University, 346 Joongang-ro, Samcheok, Gangwon-do 25913 Republic of Korea
| |
Collapse
|
23
|
Affiliation(s)
- Elena Zdrachek
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
24
|
Abstract
With the increasing utilization of fossil fuels in today’s technological world, the atmosphere’s concentration of greenhouse gases is increasing and needs to be controlled. In order to achieve this goal, it is imperative to have sensors that can provide data on the greenhouse gases in the environment. The recent literature contains a few publications that detail the use of new methods and materials for sensing these gases. The first part of this review is focused on the possible effects of greenhouse gases in the atmosphere, and the second part surveys the developments of sensors for greenhouse gases with coverage on carbon nano-materials and composites directed towards sensing gases like CO2, CH4, and NOx. With carbon dioxide measurements, due consideration is given to the dissolved carbon dioxide gas in water (moisture). The density functional calculations project that Pd-doped single-walled carbon nanotubes are ideal for the development of NOx sensors. The current trend is to make sensors using 3D printing or inkjet printing in order to allow for the achievement of ppb levels of sensitivity that have not been realized before. This review is to elaborate on the need for the development of greenhouse gas sensors for climatic usage by using selected examples.
Collapse
|