1
|
Lu MJ, Zhao KH, Zhang SQ, Cai XB, Kandegama W, Chen MX, Sun Y, Li XY. Research Progress of Biosensor Based on Organic Photoelectrochemical Transistor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17746-17761. [PMID: 39079007 DOI: 10.1021/acs.jafc.4c04191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In order to solve the food safety problem better, it is very important to develop a rapid and sensitive technology for detecting food contamination residues. Organic photoelectrochemical transistor (OPECT) biosensor rely on the photovoltage generated by a semiconductor upon excitation by light to regulate the conductivity of the polymer channels and realize biosensor analysis under zero gate bias. This technology integrates the excellent characteristics of photoelectrochemical (PEC) bioanalysis and the high sensitivity and inherent amplification ability of organic electrochemical transistor (OECT). Based on this, OPECT biosensor detection has been proven to be superior to traditional biosensor detection methods. In this review, we summarize the research status of OPECT biosensor in disease markers and food residue analysis, the basic principle, classification, and biosensing mechanism of OPECT biosensor analysis are briefly introduced, and the recent applications of biosensor analysis are discussed according to the signal strategy. We mainly introduced the OPECT biosensor analysis methods applied in different fields, including the detection of disease markers and food hazard residues such as prostate-specific antigen, heart-type fatty acid binding protein, T-2 toxin detection in milk samples, fat mass and objectivity related protein, ciprofloxacin in milk. The OPECT biosensor provides considerable development potential for the construction of safety analysis and detection platforms in many fields, such as agriculture and food, and hopes to provide some reference for the future development of biosensing analysis methods with higher selectivity, faster analysis speed and higher sensitivity.
Collapse
Affiliation(s)
- Meng-Jiao Lu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Kun-Hong Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Shan-Qi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiao-Bo Cai
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Wishwajith Kandegama
- Department of Horticulture and Landscape Gardening, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila 60170 Sri Lanka
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology Ministry of Education, College of Chemistry Central China Normal University, Wuhan 430079, China
| | - Xiang-Yang Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Elancheziyan M, Lee S, Yoon TH, Singh M, Lee D, Won K. Disposable electrochemical sensors based on reduced graphene oxide/polyaniline/poly(alizarin red S)-modified integrated carbon electrodes for the detection of ciprofloxacin in milk. Mikrochim Acta 2024; 191:507. [PMID: 39098931 DOI: 10.1007/s00604-024-06578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
An electrochemical sensor based on an electroactive nanocomposite was designed for the first time consisting of electrochemically reduced graphene oxide (ERGO), polyaniline (PANI), and poly(alizarin red S) (PARS) for ciprofloxacin (CIPF) detection. The ERGO/PANI/PARS-modified screen-printed carbon electrode (SPCE) was constructed through a three-step electrochemical protocol and characterized using FTIR, UV-visible spectroscopy, FESEM, CV, LSV, and EIS. The new electrochemical CIPF sensor demonstrated a low detection limit of 0.0021 μM, a broad linear range of 0.01 to 69.8 μM, a high sensitivity of 5.09 μA/μM/cm2, and reasonable selectivity and reproducibility. Moreover, the ERGO/PANI/PARS/SPCE was successfully utilized to determine CIPF in milk with good recoveries and relative standard deviation (< 5%), which were close to those with HPLC analysis.
Collapse
Affiliation(s)
- Mari Elancheziyan
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Sooyeon Lee
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Tae Hyun Yoon
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Manisha Singh
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Dogyeong Lee
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Keehoon Won
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
3
|
Lu Z, Gong Y, Shen C, Chen H, Zhu W, Liu T, Wu C, Sun M, Su G, Wang X, Wang Y, Ye J, Liu X, Rao H. Portable, intelligent MIECL sensing platform for ciprofloxacin detection using a fast convolutional neural networks-assisted Tb@Lu 2O 3 nanoemitter. Food Chem 2024; 444:138656. [PMID: 38325090 DOI: 10.1016/j.foodchem.2024.138656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Environmental pollution caused by ciprofloxacin is a major problem of global public health. A machine learning-assisted portable smartphone-based visualized molecularly imprinted electrochemiluminescence (MIECL) sensor was developed for the highly selective and sensitive detection of ciprofloxacin (CFX) in food. To boost the efficiency of electrochemiluminescence (ECL), oxygen vacancies (OVs) enrichment was introduced into the flower-like Tb@Lu2O3 nanoemitter. With the specific recognition reaction between MIP as capture probes and CFX as detection target, the ECL signal significantly decreased. According to, CFX analysis was determined by traditional ECL analyzer detector in the concentration range from 5 × 10-4 to 5 × 102 μmol L-1 with the detection limit (LOD) of 0.095 nmol L-1 (S/N = 3). Analysis of luminescence images using fast electrochemiluminescence judgment network (FEJ-Net) models, achieving portable and intelligent quick analysis of CFX. The proposed MIECL sensor was used for CFX analysis in real meat samples and satisfactory results, as well as efficient selectivity and good stability.
Collapse
Affiliation(s)
- Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yonghui Gong
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Chengao Shen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Haoran Chen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Weiling Zhu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Xianxing Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Jianshan Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Xin Liu
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
4
|
Mǎgeruşan L, Pogǎcean F, Cozar BI, Tripon SC, Pruneanu S. Harnessing Graphene-Modified Electrode Sensitivity for Enhanced Ciprofloxacin Detection. Int J Mol Sci 2024; 25:3691. [PMID: 38612501 PMCID: PMC11012167 DOI: 10.3390/ijms25073691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Increased evidence has documented a direct association between Ciprofloxacin (CFX) intake and significant disruption to the normal functions of connective tissues, leading to severe health conditions (such as tendonitis, tendon rupture and retinal detachment). Additionally, CFX is recognized as a potential emerging pollutant, as it seems to impact both animal and human food chains, resulting in severe health implications. Consequently, there is a compelling need for the precise, swift and selective detection of this fluoroquinolone-class antibiotic. Herein, we present a novel graphene-based electrochemical sensor designed for Ciprofloxacin (CFX) detection and discuss its practical utility. The graphene material was synthesized using a relatively straightforward and cost-effective approach involving the electrochemical exfoliation of graphite, through a pulsing current, in 0.05 M sodium sulphate (Na2SO4), 0.05 M boric acid (H3BO3) and 0.05 M sodium chloride (NaCl) solution. The resulting material underwent systematic characterization using scanning electron microscopy/energy dispersive X-ray analysis, X-ray powder diffraction and Raman spectroscopy. Subsequently, it was employed in the fabrication of modified glassy carbon surfaces (EGr/GC). Linear Sweep Voltammetry studies revealed that CFX experiences an irreversible oxidation process on the sensor surface at approximately 1.05 V. Under optimal conditions, the limit of quantification was found to be 0.33 × 10-8 M, with a corresponding limit of detection of 0.1 × 10-8 M. Additionally, the developed sensor's practical suitability was assessed using commercially available pharmaceutical products.
Collapse
Affiliation(s)
- Lidia Mǎgeruşan
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, 67-103 Cluj-Napoca, Romania; (F.P.); (B.-I.C.); (S.-C.T.)
| | | | | | | | - Stela Pruneanu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, 67-103 Cluj-Napoca, Romania; (F.P.); (B.-I.C.); (S.-C.T.)
| |
Collapse
|
5
|
Nepfumbada C, Mthombeni NH, Sigwadi R, Ajayi RF, Feleni U, Mamba BB. Functionalities of electrochemical fluoroquinolone sensors and biosensors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3394-3412. [PMID: 38110684 PMCID: PMC10794289 DOI: 10.1007/s11356-023-30223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/27/2023] [Indexed: 12/20/2023]
Abstract
Fluoroquinolones (FQs) are a class of broad-spectrum antimicrobial agents that are used to treat variety of infectious diseases. This class of antibiotics was being used for patients exhibiting early symptoms of a human respiratory disease known as the COVID-19 virus. As a result, this outbreak causes an increase in drug-resistant strains and environmental pollution, both of which pose serious threats to biota and human health. Thus, to ensure public health and prevent antimicrobial resistance, it is crucial to develop effective detection methods for FQs determination in water bodies even at trace levels. Due to their characteristics like specificity, selectivity, sensitivity, and low detection limits, electrochemical biosensors are promising future platforms for quick and on-site monitoring of FQs residues in a variety of samples when compared to conventional detection techniques. Despite their excellent properties, biosensor stability continues to be a problem even today. However, the integration of nanomaterials (NMs) could improve biocompatibility, stability, sensitivity, and speed of response in biosensors. This review concentrated on recent developments and contemporary methods in FQs biosensors. Furthermore, a variety of modification materials on the electrode surface are discussed. We also pay more attention to the practical applications of electrochemical biosensors for FQs detection. In addition, the existing challenges, outlook, and promising future perspectives in this field have been proposed. We hope that this review can serve as a bedrock for future researchers and provide new ideas for the development of electrochemical biosensors for antibiotics detection in the future.
Collapse
Affiliation(s)
- Collen Nepfumbada
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa (UNISA), Florida Campus, Johannesburg, 1709, South Africa
| | - Nomcebo H Mthombeni
- Department of Chemical Engineering, Faculty of the Built Environment, Durban University of Technology, Steve Biko Campus, Durban, 4001, South Africa
| | - Rudzani Sigwadi
- Department of Chemical Engineering, University of South Africa (UNISA), Florida Campus, Johannesburg, 1709, South Africa
| | - Rachel F Ajayi
- SensorLab (University of the Western Cape Sensor Laboratories), 4th Floor Chemical Sciences Building, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town, 7535, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa (UNISA), Florida Campus, Johannesburg, 1709, South Africa.
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa (UNISA), Florida Campus, Johannesburg, 1709, South Africa
| |
Collapse
|
6
|
Smajdor J, Paczosa-Bator B, Piech R. Electrochemical Sensor Based on the Hierarchical Carbon Nanocomposite for Highly Sensitive Ciprofloxacin Determination. MEMBRANES 2023; 13:682. [PMID: 37505048 PMCID: PMC10385619 DOI: 10.3390/membranes13070682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
A new voltammetry method for the highly sensitive antibacterial drug ciprofloxacin (CIP) is presented using glassy carbon electrodes modified with hierarchical electrospun carbon nanofibers with NiCo nanoparticles (eCNF/CNT/NiCo-GCE). The use of a modified glassy carbon electrode in the form of hierarchical electrospun carbon nanofibers with NiCo nanoparticles (eCNF/CNT/NiCo) led to an LOD value as low as 6.0 µmol L-1 with a measurement sensitivity of 3.33 µA µmol L-1. The described procedure was successfully applied for CIP determination in samples with complex matrices, such as urine or plasma, and also in pharmaceutical products and antibiotic discs with satisfactory recovery values ranging between 94-104%. The proposed electrode was characterised by great stability, with the possibility of use for about 4 weeks without any significant change in the CIP peak current. The repeatability of the CIP response on the eCNF/CNT/NiCo/GC is also very good; its value measured and expressed as RSD is equal to 2.4% for a CIP concentration of 0.025 µmol L-1 (for 7 consecutive CIP voltammogram registrations). The procedure for electrode preparation is quick and simple and does not involve the use of expensive apparatus.
Collapse
Affiliation(s)
- Joanna Smajdor
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza, 30-059 Krakow, Poland
| | | | | |
Collapse
|
7
|
Gu Q, Chen X, Lu C, Wang Z, Xu B. A highly sensitive electrochemical sensor for detecting the content of capsaicinoids based on the synergistic catalysis of rGO/PEI-CNTs/β-CD. Food Chem 2023; 426:136650. [PMID: 37354575 DOI: 10.1016/j.foodchem.2023.136650] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Rapid quantification of the content of capsaicinoids helps in classifying the degree of spiciness, standardized production, and quality control of leisure meat products. To rapidly quantify the content of capsaicinoids in soy sauce and pot-roast meat products, we developed an electrochemical sensor based on reduced graphene oxide (rGO)/polyethylene imine (PEI) - carbon nanotubes (CNTs)/β-cyclodextrin (β-CD) to detect the content of capsaicinoids in leisure meat products. Our findings showed that the electrochemical sensor presented highly sensitive performance toward capsaicinoids with a relatively wide linear range (0.01-100 µmol/L), a lower limit of detection (0.01 µmol/L), and an acceptable recovery rate (94.80-112.20%). The sensor performed well and was effective mainly because of the three-dimensional stacking structure and synergistic catalysis of rGO with cCNTs and also due to the improved dispersion of the composite material by β-CD. The sensor detected trace contents of capsaicinoids in leisure meat products, and thus, it might be considered for practical applications.
Collapse
Affiliation(s)
- Qianhui Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; Three Squirrels Inc, Wuhu 241000, China
| | - Xingguang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
8
|
Soltani-Shahrivar M, Afkhami A, Madrakian T, Jalal NR. Sensitive and selective impedimetric determination of TNT using RSM-CCD optimization. Talanta 2023; 257:124381. [PMID: 36801757 DOI: 10.1016/j.talanta.2023.124381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Detection of trace amounts of 2,4,6-Trinitrotoluene as a widely used explosive in the military and industrial sectors is of vital importance due to security and environmental concerns. The sensitive and selective measurement characteristics of the compound still is considered a challenge for analytical chemists. Unlike conventional optical and electrochemical methods, the electrochemical impedance spectroscopy technique (EIS), has a very high sensitivity, but it faces a significant challenge in that it requires complex and expensive steps to modify the electrode surface with selective agents. We reported the design and construction of an inexpensive, simple, sensitive, and selective impedimetric electrochemical TNT sensor based on the formation of a Meisenheimer complex between magnetic multiwalled carbon nanotubes modified with aminopropyl triethoxysilane (MMWCNTs @ APTES) and TNT. The formation of the mentioned charge transfer complex at the electrode-solution interface blocks the electrode surface and disrupts the charge transfer in [(Fe (CN) 6)] 3-/4- redox probe system. Charge transfer resistance changes (ΔRCT) were used as an analytical response that corresponded to TNT concentration. To investigate the influence of effective parameters on the electrode response, such as pH, contact time, and modifier percentage, the response surface methodology based on central composite design (RSM-CCD) was used. The calibration curve was achieved in the range of 1-500 nM with a detection limit of 0.15 nM under optimal conditions, which included pH of 8.29, contact time of 479 s, and modifier percentage of 12.38% (w/w). The selectivity of the constructed electrode towards several nitroaromatic species was investigated, and no significant interference was found. Finally, the proposed sensor was able to successfully measure TNT in various water samples with satisfactory recovery percentages.
Collapse
Affiliation(s)
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; D-8 International University, Hamedan, Iran.
| | | | | |
Collapse
|
9
|
Deng Z, Luo Y, Bian M, Guo X, Zhang N. Synthesis of easily renewable and recoverable magnetic PEI-modified Fe 3O 4 nanoparticles and its application for adsorption and enrichment of tungsten from aqueous solutions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121703. [PMID: 37094732 DOI: 10.1016/j.envpol.2023.121703] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Tungsten is a hazardous metal to human health and the environment, but it is also valuable. Previous studies have been limited to the adsorption and removal of tungsten, without considering its recovery and utilization. In this article, a renewable magnetic material, Fe3O4 nanoparticles coated by polyethyleneimine (Fe3O4@PEI NPs), is synthesized and used for the adsorption of tungsten in water. Tungsten adsorption experiments were conducted under different initial tungsten concentrations, contact times, solution pH values, and co-existing anions. The results show that Fe3O4@PEI NPs efficiently and rapidly adsorb tungsten from water, with a maximum adsorption capacity of 43.24 mg/g. Under acidic conditions (pH ∼2), the adsorption performance of the NPs maximized. This is because tungstate ions polymerize under such conditions to form polytungstic anions. These are attracted to the positively charged surface of Fe3O4@PEI NPs by electrostatic attraction, followed by complexation reactions with the surface hydroxyl and amino groups of NPs, as evidenced by multiple spectroscopic methods. The NPs can be recovered and renewed and provide a potential application for the enrichment and recycling of high-value tungsten (W(VI)).
Collapse
Affiliation(s)
- Zien Deng
- College of Science and College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, PR China
| | - Yong Luo
- College of Science and College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, PR China
| | - Miao Bian
- College of Science and College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, PR China
| | - Xin Guo
- College of Science and College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, PR China
| | - Ning Zhang
- College of Science and College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, PR China.
| |
Collapse
|
10
|
Yan Y, Zhou F, Wang Q, Huang Y. A sensitive electrochemical biosensor for quinolones detection based on Cu2+-modulated signal amplification. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
11
|
Chuiprasert J, Srinives S, Boontanon N, Polprasert C, Ramungul N, Lertthanaphol N, Karawek A, Boontanon SK. Electrochemical Sensor Based on a Composite of Reduced Graphene Oxide and Molecularly Imprinted Copolymer of Polyaniline-Poly( o-phenylenediamine) for Ciprofloxacin Determination: Fabrication, Characterization, and Performance Evaluation. ACS OMEGA 2023; 8:2564-2574. [PMID: 36687093 PMCID: PMC9850462 DOI: 10.1021/acsomega.2c07095] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Contamination of antibiotics in water is a major cause of antibiotic resistance (ABR) in pathogens that endangers human health and food security worldwide. Ciprofloxacin (CIP) is a synthetic fluoroquinolone (FQ) antibiotic and is reportedly present in surface water at a concentration exceeding the ecotoxicological predicted no-effect concentration in some areas. This study fabricated a CIP sensor using an electropolymerized molecularly imprinted polymer (MIP) of polyaniline (PANI) and poly(o-phenylenediamine) (o-PDA) with CIP recognition sites. The MIP was coated on a reduced graphene oxide (rGO)-modified glassy carbon electrode (rGO/GCE) and operated under a differential pulse voltammetry (DPV) mode for CIP detection. The sensor exhibited an excellent response from 1.0 × 10-9 to 5.0 × 10-7 mol L-1 CIP, showing a sensor detection limit and sensitivity of 5.28 × 10-11 mol L-1 and 5.78 μA mol-1 L, respectively. The sensor's sensitivity for CIP was 1.5 times higher than that of the other tested antibiotics, including enrofloxacin (ENR), ofloxacin (OFX), sulfamethoxazole (SMZ), and piperacillin sodium salt (PIP). The reproducibility and reusability of the sensor devices were also studied.
Collapse
Affiliation(s)
- Jedsada Chuiprasert
- Graduate
Program in Environmental and Water Resources Engineering, Department
of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Salaya, Phuttamonthon, Nakhon
Pathom 73170, Thailand
| | - Sira Srinives
- Nanocomposite
Engineering Laboratory (NanoCEN), Department of Chemical Engineering,
Faculty of Engineering, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Narin Boontanon
- Faculty
of Environment and Resource Studies, Mahidol
University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Chongrak Polprasert
- Department
of Civil Engineering, Faculty of Engineering, Thammasat University, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Nudjarin Ramungul
- National
Metal and Materials Technology Center, National Science and Technology
Development Agency, Khlong
Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Napat Lertthanaphol
- Nanocomposite
Engineering Laboratory (NanoCEN), Department of Chemical Engineering,
Faculty of Engineering, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Apisit Karawek
- Nanocomposite
Engineering Laboratory (NanoCEN), Department of Chemical Engineering,
Faculty of Engineering, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Suwanna Kitpati Boontanon
- Graduate
Program in Environmental and Water Resources Engineering, Department
of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Salaya, Phuttamonthon, Nakhon
Pathom 73170, Thailand
- Graduate
School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi,
Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
12
|
Mariappan K, Alagarsamy S, Chen SM, Sakthinathan S. Fabrication of ZnWO 4/Carbon Black Nanocomposites Modified Glassy Carbon Electrode for Enhanced Electrochemical Determination of Ciprofloxacin in Environmental Water Samples. MATERIALS (BASEL, SWITZERLAND) 2023; 16:741. [PMID: 36676478 PMCID: PMC9861401 DOI: 10.3390/ma16020741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The major problem facing humanity in the world right now is the sustainable provision of water and electricity. Therefore, it is essential to advance methods for the long-term elimination or removal of organic contaminants in the biosphere. Ciprofloxacin (CIP) is one of the most harmful pollutants affecting human health through improper industrial usage. In this study, a zinc tungsten oxide (ZnWO4) nanomaterial was prepared with a simple hydrothermal synthesis. The ZnWO4/Carbon black nanocomposites were fabricated for the determination of CIP. The nanocomposites were characterized by field emission scanning electron microscopy, energy dispersion X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. Electrochemical studies were done using cyclic voltammetry and differential pulse voltammetry methods. Based on the electrode preparation, the electrochemical detection of CIP was carried out, producing exceptional electrocatalytic performance with a limit of detection of 0.02 μM and an excellent sensitivity of (1.71 μA μM-1 cm-2). In addition, the modified electrode displayed great selectivity and acceptable recoveries in an environmental water sample analysis for CIP detection of 97.6% to 99.2%. The technique demonstrated high sensitivity, selectivity, outstanding consistency, and promise for use in ciprofloxacin detection. Ciprofloxacin was discovered using this brand-new voltammetry technique in a water sample analysis.
Collapse
Affiliation(s)
- Kiruthika Mariappan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung−Hsiao East Road, Taipei 106, Taiwan
| | - Saranvignesh Alagarsamy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung−Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung−Hsiao East Road, Taipei 106, Taiwan
| | - Subramanian Sakthinathan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Zhong-Xiao East Road, Taipei 106, Taiwan
| |
Collapse
|
13
|
Jiwanti PK, Wardhana BY, Sutanto LG, Dewi DMM, Putri IZD, Savitri INI. Recent Development of Nano-Carbon Material in Pharmaceutical Application: A Review. Molecules 2022; 27:7578. [PMID: 36364403 PMCID: PMC9654677 DOI: 10.3390/molecules27217578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Carbon nanomaterials have attracted researchers in pharmaceutical applications due to their outstanding properties and flexible dimensional structures. Carbon nanomaterials (CNMs) have electrical properties, high thermal surface area, and high cellular internalization, making them suitable for drug and gene delivery, antioxidants, bioimaging, biosensing, and tissue engineering applications. There are various types of carbon nanomaterials including graphene, carbon nanotubes, fullerenes, nanodiamond, quantum dots and many more that have interesting applications in the future. The functionalization of the carbon nanomaterial surface could modify its chemical and physical properties, as well as improve drug loading capacity, biocompatibility, suppress immune response and have the ability to direct drug delivery to the targeted site. Carbon nanomaterials could also be fabricated into composites with proteins and drugs to reduce toxicity and increase effectiveness in the pharmaceutical field. Thus, carbon nanomaterials are very effective for applications in pharmaceutical or biomedical systems. This review will demonstrate the extraordinary properties of nanocarbon materials that can be used in pharmaceutical applications.
Collapse
Affiliation(s)
- Prastika K. Jiwanti
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Brasstira Y. Wardhana
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Laurencia G. Sutanto
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Diva Meisya Maulina Dewi
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Ilmi Nur Indira Savitri
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
14
|
Azriouil M, Matrouf M, Ettadili FE, Laghrib F, Farahi A, Saqrane S, Bakasse M, Lahrich S, El Mhammedi MA. Recent trends on electrochemical determination of antibiotic Ciprofloxacin in biological fluids, pharmaceutical formulations, environmental resources and foodstuffs: Direct and indirect approaches. Food Chem Toxicol 2022; 168:113378. [PMID: 35987282 DOI: 10.1016/j.fct.2022.113378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
In the last few decades, pharmaceuticals, credited with saving millions of lives, have emerged as a new class of environmental contaminants. These compounds can have both chronic and acute harmful effects on aquatic ecosystems and consequently on human health. Therefore, there is an urgent need for the development of extremely sensitive, portable, and low-cost devices to perform analysis. In the present review article, recent reports on the application of various voltammetric and photo-electrochemical techniques using different electrode materials for the determination of antibiotic Ciprofloxacin (CIPRO) are reported. This review provides an insight into direct and indirect electrochemical approaches as well as the photoelectrochemical methods used for the determination of CIPRO. Emphasis is put on the applications of unmodified and modified carbon-based electrodes considering the modifier, supporting electrolytes, analytical method, concentration range, limit of detection, and real matrices. Carbon-based electrodes are the most used materials attributed to their commercial availability, reduced cost, high chemical stability, and non-toxicity.
Collapse
Affiliation(s)
- M Azriouil
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - M Matrouf
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - F E Ettadili
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - F Laghrib
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco; Sidi Mohamed Ben Abdellah University, Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of Sciences, Fez, Morocco
| | - A Farahi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - S Saqrane
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - M Bakasse
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco; Chouaib Doukkali University, Organic Micropollutants Analysis Team, Faculty of Sciences, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco.
| |
Collapse
|
15
|
Bathinapatla A, Gorle G, Kanchi S, Puthalapattu RP, Ling YC. An ultra-sensitive laccase/polyaziridine-bismuth selenide nanoplates modified GCE for detection of atenolol in pharmaceuticals and urine samples. Bioelectrochemistry 2022; 147:108212. [PMID: 35870314 DOI: 10.1016/j.bioelechem.2022.108212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022]
Abstract
The analysis of β-blockers in pharmaceutical, biological and environmental samples has gained much interest due to their wide applications. The aim of this study was to develop an enzyme-based biosensor using hexagonal-shaped low-dimensional Bi2Se3 NPs decorated with laccase through polyaziridine (PAZ) modified glassy carbon electrode (Lac/PAZ-Bi2Se3 NPs/GCE). Surface properties were examined using SEM, TEM, EDX, XRD, XPS, FTIR, UV-Visible, and zeta potential. Electrochemical studies were performed with cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The enzymatic biosensor exhibited excellent catalytic activity towards the oxidation of ATN at +1.05 V (vs Ag/AgCl). Under the optimum experimental conditions, Ip (µA) was linearly related to the concentrations of ATN in the range of 3 to 130 µM (R2 = 0.9972) with an LOD of 0.15 µM and 0.21 µM with and without Lac enzyme. Additionally, the validation of the biosensor was tested to determine ATN on within a day and between-day basis. The biosensor was applied successfully to detect ATN in real samples. The obtained recoveries range from 98.5 % to 99.2 % with an RSD (n = 5) of 0.95 (±0.02). The findings of this study have potential biomedical applications in drug detection employing a promising nano electrode sensor of Lac/PAZ-Bi2Se3 NPs/GCE.
Collapse
Affiliation(s)
| | - Govinda Gorle
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Suvardhan Kanchi
- Department of Chemistry, Sambhram Institute of Technology, Jalahalli East, Bengaluru 560097, India; Department of Chemistry, Sambhram University, Khamraqul Street, Jizzakh City 130100, Uzbekistan.
| | - Reddy Prasad Puthalapattu
- Department of Chemistry, Institute of Aeronautical Engineering, Dundigal, Hyderabad-500043, Telangana, India
| | - Yong Chien Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
16
|
Jalali Sarvestani MR, Madrakian T, Afkhami A. Ultra-trace levels voltammetric determination of Pb 2+ in the presence of Bi 3+ at food samples by a Fe 3O 4@Schiff base Network 1 modified glassy carbon electrode. Talanta 2022; 250:123716. [PMID: 35792444 DOI: 10.1016/j.talanta.2022.123716] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/08/2023]
Abstract
In this research, a highly sensitive electrochemical sensor was developed for the square wave anodic stripping voltammetric determination of Pb2+ at ultra-trace levels. A Glassy carbon electrode was modified with an in-situ electroplated bismuth film and the nanocomposite of a recently synthesized melamine based covalent organic framework (schiff base network1 (SNW1)) and Fe3O4 nanoparticles (Fe3O4@SNW1). The obtained results exhibit clearly that combination of Fe3O4@SNW1 and in-situ electroplated bismuth film enhances the sensitivity of the modified electrode towards Pb2+ remarkably. A Plackett-Burman design was implemented for screening experimental factors to specify the significant variables influencing the sensitivity of the electroanalytical method. Afterward, the effective factors were optimized using Box-Behnken design (BBD). Under optimized conditions, the proposed electrode showed a linear response towards Pb2+ in the concentration range of 0.003-0.3 μmol L-1 with the detection limit of 0.95 nmol L-1. The selectivity of the fabricated electrode towards different ionic species were checked out and no serious interference was observed. At the end, the application of the designed sensor in the determination of Pb2+ at 10 different edible specimens were investigated and the obtained recovery values were in the range of (95.56-106.64%) indicating the successful performance of the designed sensor.
Collapse
Affiliation(s)
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838695, Iran.
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| |
Collapse
|
17
|
You F, Wen Z, Yuan R, Ding L, Wei J, Qian J, Long L, Wang K. Selective and ultrasensitive detection of ciprofloxacin in milk using a photoelectrochemical aptasensor based on Ti3C2/Bi4VO8Br/TiO2 nanocomposite. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Sensitive and selective voltammetric determination of ciprofloxacin using screen‐printed electrodes modified with carbon black and magnetic‐molecularly imprinted polymer. ELECTROANAL 2022. [DOI: 10.1002/elan.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Emerging optical and electrochemical biosensing approaches for detection of ciprofloxacin residues in food and environment samples: A comprehensive overview. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Jiwanti PK, Wardhana BY, Sutanto LG, Chanif MF. A Review on Carbon‐based Electrodes for Electrochemical Sensor of Quinolone Antibiotics. ChemistrySelect 2022. [DOI: 10.1002/slct.202103997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Prastika K. Jiwanti
- Nanotechnology Engineering Faculty of Advanced Technology and Multidiscipline Universitas Airlangga Surabaya 60115 Indonesia
| | - Brasstira Y. Wardhana
- Nanotechnology Engineering Faculty of Advanced Technology and Multidiscipline Universitas Airlangga Surabaya 60115 Indonesia
| | - Laurencia G. Sutanto
- Nanotechnology Engineering Faculty of Advanced Technology and Multidiscipline Universitas Airlangga Surabaya 60115 Indonesia
| | - Muchammad F. Chanif
- Nanotechnology Engineering Faculty of Advanced Technology and Multidiscipline Universitas Airlangga Surabaya 60115 Indonesia
| |
Collapse
|
21
|
Wang Y, Sun X, Cai L, Wang H, Zhang B, Fang G, Wang S. A “signal on/off” biomimetic electrochemiluminescence sensor using titanium carbide nanodots as co-reaction accelerator for ultra-sensitive detection of ciprofloxacin. Anal Chim Acta 2022; 1206:339690. [DOI: 10.1016/j.aca.2022.339690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/01/2022]
|
22
|
Lu Z, Li G, Hu Y. A Tb 3+ functionalized triazine-porous organic framework as a ratiometric fluorescent sensor for determination of ciprofloxacin in aquatic products. NEW J CHEM 2022. [DOI: 10.1039/d2nj03657f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A Tb3+ functionalized triazine-porous organic framework (Tb3+/TAPOF) was prepared by introducing Tb3+ into a triazine-porous organic framework through a coordination bond.
Collapse
Affiliation(s)
- Zhenyu Lu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
23
|
Ren Q, Yang P, Liu J, Chen Y, Ouyang S, Zeng Y, Zhao P, Tao J. An imine-linked covalent organic framework for renewable and sensitive determination of antibiotic. Anal Chim Acta 2021; 1188:339191. [PMID: 34794562 DOI: 10.1016/j.aca.2021.339191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
Lanthanide-functionalized porous organic materials have been the promising candidates in the chemical and biological sensing. Considering the superior thermal and solvent stability of covalent organic frameworks (COFs), the development of lanthanide ions-functionalized COFs based sensing platform is meaningful, while remains to be a challenge. In this work, a new imine-linked COF which provides suitable coordination sites for Tb3+ was constructed via the Schiff base reaction between P-phenylenediamine (Pda) and 2,6-Diformylpyridine (Dfp). Benefiting from its high signal-to-noise, the COF@Tb shows excellent ability to determinate ciprofloxacin (CIP) with a detection limit of 3.01 nM. The measurement can maintain good stability in the presence of potential interference or in actual sample. Being washed with ethanol after each measurement, COF@Tb can be recycled for five times. This work provides a novel alternative strategy for efficient construction of lanthanide-grafted COFs and may promote the development of porous organic materials based chemical sensing.
Collapse
Affiliation(s)
- Qingfan Ren
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Peipei Yang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Jiamin Liu
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Yuying Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Sixue Ouyang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Ying Zeng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Peng Zhao
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, PR China.
| |
Collapse
|
24
|
D Tecuapa-Flores E, Hernández JG, Roquero-Tejeda P, Arenas-Alatorre JA, Thangarasu P. Rapid electrochemical recognition of trimethoprim in human urine samples using new modified electrodes (CPE/Ag/Au NPs) analysing tunable electrode properties: experimental and theoretical studies. Analyst 2021; 146:7653-7669. [PMID: 34806723 DOI: 10.1039/d1an01408k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pharmaceutical effluents are a serious environmental issue, which require to be treated by a suitable technique; thus, the electrochemical process is actively considered as a viable method for the treatment. In this work, new carbon paste electrodes (CPEs) were fabricated by compressing gold and silver nanoparticles (NPs), namely, CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs and then completely characterized by different analytical methods. The performance of the electrodes was studied after determining their surface area (×10-6 cm2) as 4.17, 5.05, 5.27, and 5.12, producing high anodic currents for K4[Fe(CN)6] compared to the commercial electrode. This agrees with the results of impedance study, where the electron transfer rate constants (kapp, ×10-3 cm s-1) were determined to be 28.7, 42.6, 41.0, and 101.4 for CPE, CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs, respectively, through the Bode plot-phase shifts. This is consistent with the charge transfer resistance (RCT, Ω), resulting as 171 for CPE/Ag/Au NPs < 395 for CPE/Ag NPs < 427 for CPE/Au NPs and < 742 for CPE. Therefore, these electrodes were employed to detect trimethoprim (TMP) since metallic NPs contribute good crystallinity, stability, conduciveness, and surface plasmon resonance to the CPE, convalescing the sensitivity; comprehensively, they were applied for its detection in real water and human urine samples, and the limit of detection (LOD) was as low as 0.026, 0.032, and 0.026 μmol L-1 for CPE/Ag NPs, CPE/Au NPs, and CPE/Ag/Au NPs, respectively. In contrast, unmodified CPE was unable to detect TMP due to the lack of efficiency. The developed technique shows excellent electrochemical recovery of 92.3 and 97.1% in the urine sample. Density functional theory (DFT) was used to explain the impact of the metallic center in graphite through density of states (DOS).
Collapse
Affiliation(s)
- Eduardo D Tecuapa-Flores
- Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 México, D.F., Mexico.
| | - José Guadalupe Hernández
- Centro Tecnológico, Facultad de Estudios Superiores (FES-Aragón), Universidad Nacional Autónoma de México, Estado de México, CP 57130, Mexico
| | - Pedro Roquero-Tejeda
- Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 México, D.F., Mexico.
| | - Jesús A Arenas-Alatorre
- Instituto de Fisica, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 México, D.F., Mexico
| | - Pandiyan Thangarasu
- Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 México, D.F., Mexico.
| |
Collapse
|
25
|
Sarvestani MRJ, Madrakian T, Afkhami A. Developed electrochemical sensors for the determination of beta-blockers: A comprehensive review. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
|
27
|
Bakirhan NK, Kaya SI, Jabbarov R, Gahramanova G, Abdullayeva S, Dedeoglu A, Ozkan CK, Savaser A, Ozkan Y, Ozkan SA. The Power of Carbon Nanotubes on Sensitive Drug Determination Methods. Crit Rev Anal Chem 2021; 53:374-383. [PMID: 34334078 DOI: 10.1080/10408347.2021.1958296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nowadays, carbon nanotubes (CNTs) due to their inorganic conducting, semiconducting, and organic π-π stacking properties are becoming innovative materials. CNTs have an adjustable size, large surface area, and other significant chemical properties. Due to their excellent electrical, optical, and mechanical properties, CNTs play an important role in various application fields. In the past decade, many unique intrinsic physical and chemical properties have been intensively explored for pharmaceutical, biological, and biomedical applications. The functionalization of CNTs results in a remarkably reduced cytotoxicity and at the same time increased biocompatibility. The toxicity studies reveal that highly water-soluble and serum stable nanotubes are biocompatible, nontoxic, and potentially useful for biomedical applications. Ultrasensitive drug determination from its dosage form and/or biological samples with carbon nanotubes can be realized after surface modification. The main purpose of this review is to present recent achievements on CNTs which are investigated in electrochemical and chromatographically sensing technologies.
Collapse
Affiliation(s)
- Nurgul K Bakirhan
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey.,Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Rasim Jabbarov
- Institute of Physics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan.,Research and Development Center for High Technologies, Ministry of Transport, Communication and High Technologies of Azerbaijan Republic, Baku, Azerbaijan
| | - Gulnaz Gahramanova
- Institute of Physics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan.,Research and Development Center for High Technologies, Ministry of Transport, Communication and High Technologies of Azerbaijan Republic, Baku, Azerbaijan
| | - Sevda Abdullayeva
- Institute of Physics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan.,Research and Development Center for High Technologies, Ministry of Transport, Communication and High Technologies of Azerbaijan Republic, Baku, Azerbaijan
| | - Aylin Dedeoglu
- Knowledge, Innovation and Technology Transfer Office, Başkent University, Ankara, Turkey
| | - Cansel Kose Ozkan
- Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Ankara, Turkey
| | - Ayhan Savaser
- Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Ankara, Turkey
| | - Yalcin Ozkan
- Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Ankara, Turkey
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
28
|
Gissawong N, Srijaranai S, Boonchiangma S, Uppachai P, Seehamart K, Jantrasee S, Moore E, Mukdasai S. An electrochemical sensor for voltammetric detection of ciprofloxacin using a glassy carbon electrode modified with activated carbon, gold nanoparticles and supramolecular solvent. Mikrochim Acta 2021; 188:208. [PMID: 34047870 DOI: 10.1007/s00604-021-04869-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
A highly sensitive and novel electrochemical sensor for ciprofloxacin (CIP) has been developed using gold nanoparticles deposited with waste coffee ground activated carbon on glassy carbon electrode (AuNPs/AC/GCE) and combined with supramolecular solvent (SUPRAS). The fabricated AuNPs/AC/GCE displayed good electrocatalytic activity for AuNPs. The addition of SUPRAS, prepared from cationic surfactants namely didodecyldimethylammonium bromide (DDAB) and dodecyltrimethylammonium bromide (DTAB), increased the electrochemical response of AuNPs. The detection of CIP was based on the decrease of the cathodic current of AuNPs. The electrochemical behavior of the modified electrode was investigated using cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy. Under optimum conditions, the calibration plot of CIP exhibited a linear response in the range 0.5-25 nM with a detection limit of 0.20 nM. The fabricated electrochemical sensor was successfully applied to determine CIP in milk samples with achieved recoveries of 78.6-110.2% and relative standard deviations of <8.4%. The developed method was also applied to the analysis of pharmaceutical formulation and the results were compared with high-performance liquid chromatography.Graphical abstract.
Collapse
Affiliation(s)
- Netsirin Gissawong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Supalax Srijaranai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Suthasinee Boonchiangma
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pikaned Uppachai
- Department of Applied Physics, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen, 40000, Thailand
| | - Kompichit Seehamart
- Department of Applied Physics, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen, 40000, Thailand
| | - Sakwiboon Jantrasee
- Department of Applied Physics, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen, 40000, Thailand
| | - Eric Moore
- School of Chemistry and Tyndall National Institute, University College Cork, Cork, Ireland
| | - Siriboon Mukdasai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
29
|
Yuan X, Lv W, Wang B, Yan C, Ma Q, Zheng B, Du J, Xiao D. Silicon nanoparticles-based ratiometric fluorescence platform: Real-time visual sensing to ciprofloxacin and Cu 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119599. [PMID: 33662697 DOI: 10.1016/j.saa.2021.119599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
In this work, a silicon nanoparticles (Si NPs)-based ratiometric fluorescence sensing platform was conveniently fabricated by simply mixing fluorescent Si NPs as co-ligands and reference signal with lanthanide metal ion Eu3+ as response signal. The introduction of ciprofloxacin (CIP) remarkably turned on the characteristic fluorescence of Eu3+ at 590 nm and 619 nm through the "antenna effect". At the same time, the blue emission of Si NPs at 445 nm kept comparatively stable. A good linear relationship between the ratio fluorescence intensity and CIP concentration in the range of 0.211-132.4 μM with a limit of detection (LOD) of 89 nM was obtained. In the presence of Cu2+, the fluorescence emission of Eu3+ was sharply turned off because of the stronger coordination ability of Cu2+ with CIP, which guaranteed the sequential detection of Cu2+. Meanwhile, the distinct fluorescent color change from bright blue to red, then back to blue, enabled naked-eye visual detection of CIP and Cu2+ in the solution phase and on paper-based test strip, and was successfully applied to determine the levels of CIP in complicated food samples with high sensitivity.
Collapse
Affiliation(s)
- Xiaoying Yuan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wendi Lv
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bing Wang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chenglu Yan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qiuting Ma
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Baozhan Zheng
- College of Chemistry, Sichuan University, Chengdu 610064, China; Key Laboratory of Green Chemistry and Technology, Ministry of Education, Sichuan University, Chengdu 610064, China.
| | - Juan Du
- College of Chemistry, Sichuan University, Chengdu 610064, China; Key Laboratory of Green Chemistry and Technology, Ministry of Education, Sichuan University, Chengdu 610064, China.
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu 610064, China; Key Laboratory of Green Chemistry and Technology, Ministry of Education, Sichuan University, Chengdu 610064, China
| |
Collapse
|
30
|
Batch injection analysis with amperometric detection for fluoroquinolone determination in urine, pharmaceutical formulations, and milk samples using a reduced graphene oxide-modified glassy carbon electrode. Anal Bioanal Chem 2021; 414:5309-5318. [PMID: 33890118 DOI: 10.1007/s00216-021-03342-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
In this work, the batch injection analysis system with amperometric detection using reduced graphene oxide as a modifier of glassy carbon electrode (GCE) was investigated for the simple, fast, and sensitive monitoring of levofloxacin (LEVO) and ciprofloxacin (CIPRO) in samples of pharmaceutical formulations, synthetic urine, and milk (low- and high-fat content). LEVO and CIPRO were quantified in seven samples using amperometric measurements at +1.10 V vs Ag/AgCl, KCl(sat). The developed methods showed excellent analytical performance with limits of detection of 0.30 and 0.16 μmol L-1, linear range from 3.0 to 50 μmol L-1 and 1.0 to 50 μmol L-1, relative standard deviation below 9.7 and 3.1%, and recovery ranges ranging from 80 to 107% and from 78 to 109% for LEVO and CIPRO, respectively. In addition, the minimum sample preparation (simple dilution) combined with a high analytical frequency (130 to 180 analyses per hour) can be highlighted. Thus, the methods are promising for implementation in routine analysis and quality control to different samples.
Collapse
|
31
|
Tripathy A, Nine MJ, Silva FS. Biosensing platform on ferrite magnetic nanoparticles: Synthesis, functionalization, mechanism and applications. Adv Colloid Interface Sci 2021; 290:102380. [PMID: 33819727 DOI: 10.1016/j.cis.2021.102380] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
Ferrite magnetic nanoparticles (FMNPs) are gaining popularity to design biosensors for high-performance clinical diagnosis. The fusion of information shows that FMNPs based biosensors require well-tuned FMNPs as detection probes to produce large and specific biological signals with minimal non-specific binding. Nevertheless, there is a noticeable lacuna of information to solve the issues related to suitable synthesis route, particle size reduction, functionalization, sensitivity towards targeted intercellular biological tiny particles, and lower signal-to-noise ratio. Therefore it allows exploring unique characteristics of FMNPs to design a suitable sensing device for intracellular measurements and diseases detection. This review focuses on the extensively used synthesis routes, their advantages and limitations, crystalline structure, functionalization, along with recent applications of FMNPs in biosensors, taking into consideration their analytical figures of merit and range of linearity. This work also addresses the current progress, key factors for sensitivity, selectivity and productivity improvement along with the challenges, future trends and perspectives of FMNPs based biosensors.
Collapse
|
32
|
Wang Q, Xue Q, Chen T, Li J, Liu Y, Shan X, Liu F, Jia J. Recent advances in electrochemical sensors for antibiotics and their applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Ahmadi M, Ghoorchian A, Dashtian K, Kamalabadi M, Madrakian T, Afkhami A. Application of magnetic nanomaterials in electroanalytical methods: A review. Talanta 2020; 225:121974. [PMID: 33592722 DOI: 10.1016/j.talanta.2020.121974] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/07/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Magnetic nanomaterials (MNMs) have gained high attention in different fields of studies due to their ferromagnetic/superparamagnetic properties and their low toxicity and high biocompatibility. MNMs contain magnetic elements such as iron and nickel in metallic, bimetallic, metal oxide, and mixed metal oxide. In electroanalytical methods, MNMs have been applied as sorbents for sample preparation before the electrochemical detection (sorbent role), as the electrode modifier (catalytic role), and the integration of the above two roles (as both sorbent and catalytic agent). In this paper, the application of MNMs in electroanalytical methods have been classified based on the main role of the nanomaterial and discussed separately. Furthermore, catalytic activities of MNMs in electroanalytical methods such as redox electrocatalytic, nanozymes catalytic (peroxidase, catalase activity, oxidase activity, superoxide dismutase activity), catalyst gate, and nanocontainer have been discussed.
Collapse
Affiliation(s)
- Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| | | | | | | | | | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
34
|
Kuralay F, Bayramlı Y. Electrochemical Determination of Mitomycin C and Its Interaction with Double-Stranded DNA Using a Poly(o-phenylenediamine)-Multi-Walled Carbon Nanotube Modified Pencil Graphite Electrode. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1801710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Filiz Kuralay
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Yaşar Bayramlı
- Espiye Vocational School, Giresun University, Giresun, Turkey
| |
Collapse
|
35
|
Faria LV, Lisboa TP, Alves GF, Farias DM, Matos MAC, Muñoz RAA, Matos RC. Electrochemical Study of Different Sensors for Simple and fast Quantification of Ciprofloxacin in Pharmaceutical Formulations and Bovine Milk. ELECTROANAL 2020. [DOI: 10.1002/elan.202060211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lucas Vinícius Faria
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas) Departamento de Química Instituto de Ciências Exatas Universidade Federal de Juiz de Fora 36036-900 Juiz de Fora-MG Brazil
| | - Thalles Pedrosa Lisboa
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas) Departamento de Química Instituto de Ciências Exatas Universidade Federal de Juiz de Fora 36036-900 Juiz de Fora-MG Brazil
| | - Guilherme Figueira Alves
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas) Departamento de Química Instituto de Ciências Exatas Universidade Federal de Juiz de Fora 36036-900 Juiz de Fora-MG Brazil
| | - Davi Marques Farias
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas) Departamento de Química Instituto de Ciências Exatas Universidade Federal de Juiz de Fora 36036-900 Juiz de Fora-MG Brazil
| | - Maria Auxiliadora Costa Matos
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas) Departamento de Química Instituto de Ciências Exatas Universidade Federal de Juiz de Fora 36036-900 Juiz de Fora-MG Brazil
| | | | - Renato Camargo Matos
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas) Departamento de Química Instituto de Ciências Exatas Universidade Federal de Juiz de Fora 36036-900 Juiz de Fora-MG Brazil
| |
Collapse
|
36
|
Kumar S, Karfa P, Majhi KC, Madhuri R. Photocatalytic, fluorescent BiPO4@Graphene oxide based magnetic molecularly imprinted polymer for detection, removal and degradation of ciprofloxacin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110777. [DOI: 10.1016/j.msec.2020.110777] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/28/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022]
|
37
|
Hatamluyi B, Modarres Zahed F, Es'haghi Z, Darroudi M. Carbon Quantum Dots Co‐catalyzed with ZnO Nanoflowers and Poly (CTAB) Nanosensor for Simultaneous Sensitive Detection of Paracetamol and Ciprofloxacin in Biological Samples. ELECTROANAL 2020. [DOI: 10.1002/elan.201900412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Behnaz Hatamluyi
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical Sciences Mashhad Iran
- Student Research CommitteeMashhad University of Medical Sciences Mashhad Iran
| | | | - Zarrin Es'haghi
- Department of ChemistryPayame Noor University 19395-4697 Tehran I.R. of IRAN
| | - Majid Darroudi
- Nuclear Medicine Research CenterMashhad University of Medical Sciences Mashhad Iran
- Department of Medical Biotechnology and Nanotechnology, School of MedicineMashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
38
|
Xia H, Peng M, Li N, Liu L. CdSe quantum dots-sensitized FRET system for ciprofloxacin detection. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Avval ZM, Malekpour L, Raeisi F, Babapoor A, Mousavi SM, Hashemi SA, Salari M. Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application. Drug Metab Rev 2019; 52:157-184. [PMID: 31834823 DOI: 10.1080/03602532.2019.1697282] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this article, the recent applications of different types of magnetic nanoparticles such as α-Fe2O3 (hematite), γ-Fe2O3 (maghemite), Fe3O4 (magnetite), hexagonal (MFe12O19), garnet (M3Fe5O12) and spinel (MFe2O4), where M represents one or more bivalent transition metals (Mn, Fe, Co, Ni, Ba, Sr, Cu, and Zn), and different materials for coating the surface of magnetic nanoparticles like poly lactic acid (PLA), doxorubicin hydrophobic (DOX-HCL), paclitaxel (PTX), EPPT-FITC, oleic acid, tannin, 3-Aminopropyltriethoxysilane (APTES), multi-wall carbon nanotubes (CNTs), polyethylenimine (PEI) and polyarabic acid in drug delivery, biomedicine and treatment of cancer, specially chemotherapy, are reviewed. MNPs possess large surface area to volume ratios because of their nano-size, low surface charge at physiological pH and they aggregate easily in solution due to their essential magnetic nature. These materials are widely used in biology and medicine in many cases. One targeted delivery technique that has gained prominence in recent years is the use of magnetic nanoparticles. In these systems, therapeutic compounds are attached to biocompatible magnetic nanoparticles and magnetic fields generated outside the body are focused on specific targets in vivo. The fields capture the particle complex, resulting in enhanced delivery to the target site. Also, the application of brand new supermagnetic nanoparticles, like Ba,SrFe12O19, is considered and studied in this paper.
Collapse
Affiliation(s)
| | - Leila Malekpour
- Department of Chemistry, Payame Noor University, Ardabil, Iran
| | - Farzad Raeisi
- Department of Chemistry, Payame Noor University, Ardabil, Iran
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabili (UMA), Ardabil, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Alireza Hashemi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Salari
- Department of Civil and Environmental Engineering, Sirjan University of Technology, Kerman, Iran
| |
Collapse
|
40
|
A turn-on fluorescence probe Eu 3+ functionalized Ga-MOF integrated with logic gate operation for detecting ppm-level ciprofloxacin (CIP) in urine. Talanta 2019; 208:120438. [PMID: 31816755 DOI: 10.1016/j.talanta.2019.120438] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/21/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022]
Abstract
The threatening of antibiotic drugs for human and environment is being paid more and more attention. Ciprofloxacin (CIP), a strong quinolone antibiotic drug widely used in therapeutic treatments, is the most frequently detected in surface waters among the fluoroquinolones, which represents animal and human health risks. A novel highly fluorescent Ga-based hybrid (Eu3+@1) has been synthesized based on metal-organic framework (MOF) by encapsulating lanthanide cations Eu3+ in its channels. The as-synthesized compound possesses excellent water and pH-independent stability. It displays week red luminescence of Eu3+ in itself and can sense the CIP concentration as turn-on fluorescent probe in the human urine. With addition of CIP, the evident luminescence enhancement is clearly observed from the Eu3+@1. Linear correlation between the fluorescence intensity and the concentration of CIP is investigated, proving the excellent performance of Eu3+@1 in the detection of CIP with linear range (0.01-0.2 mg/mL) and low detection limit (2.4 ppm or 2.4 μg/mL). The response time is also very quick, less than 3 min. Based on these findings, we introduce AND logic gate strategy to the probe. The input of the logic gates (0, 1), (0, 1, 1), (1, 1, 1) cause the different outputs of CIP determination "LOW" (<25 ppm),"NORMAL" (25-76 ppm), "HIGH" (>76 ppm), respectively. The novel strategy can be applied for a real-time CIP concentration evaluation by intelligent discrimination.
Collapse
|