1
|
Li Y, Liu J, Wei B, Zhang X, Liu X, Han L. A comprehensive review of bone char: Fabrication procedures, physicochemical properties, and environmental application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176375. [PMID: 39306141 DOI: 10.1016/j.scitotenv.2024.176375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Bone waste from slaughtering is an abundant but underutilized resource. Promoting its exploitation can reduce the environmental burden and achieve energy recovery. Bone char, a solid material prepared by the thermochemical conversion of animal bone, has a unique and rich mesoporous structure and ionic polarity sites. It has shown great potential for application. This review aims to provide information about the thermochemical conversion method of recycling waste bone to fabricate bone char and, on its basis, to summarize comprehensive data on the physicochemical properties to provide direction and theoretical support for the tailored environmental remediation applications. Therefore, the authors first elucidated the various influencing effects (e.g., bone type, pyrolysis atmosphere and temperature, etc.) and modification treatments (physical and chemical methods) during the fabrication of bone char. Secondly, the physicochemical properties (including but not limited to pore structure, elemental composition, surface functional groups, pH and ash content, etc.) of bone char are comprehensively discussed for the first time. Further, the development process of bone char applied as adsorbents and catalytic supports for environmental remediation (decolorization of sugar liquor, drinking water defluoridation, removal of heavy metals and organic pollutants) is presented, revealing the behaviors and mechanisms of pollutant removal by bone char. Finally, the authors present the prospects and challenges of developing bone char into a green and sustainable environmentally friendly material.
Collapse
Affiliation(s)
- Yuyu Li
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiale Liu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Baoping Wei
- China IPPR International Engineering Co., Ltd., Beijing 100089, PR China
| | - Xuesong Zhang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xian Liu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, PR China
| |
Collapse
|
2
|
Gebrewold BD, Werkneh AA, Kijjanapanich P, Rene ER, Lens PNL, Annachhatre AP. Low cost materials for fluoride removal from groundwater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122937. [PMID: 39490019 DOI: 10.1016/j.jenvman.2024.122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
In several parts of the world, high fluoride concentrations in groundwater have been reported.Fluoride concentrations above the World Health Organization's (WHO) threshold level of 1.5 mg/L in drinkable water pose a health concern for communities and the environment. The distribution of fluoride is mainly related to the geological environment: rocks that contain fluorine, for example basalt, shale, and granite, release their respective minerals containing fluoride to the groundwater by dissolution. Excessive fluoride intake leads to dental and skeletal fluorosis, fragile bones, cancer, infertility, damage to the brain function, Alzheimer syndrome, and thyroid disorder. Cheap, abundant, and locally available fluoride removal techniques are needed to meet the requirement for fluoride-free drinking water in developing countries, especially in rural communities. Different conventional methods, such as membrane technologies, ion exchange, coagulation and precipitation techniques, are employed to remove fluoride from drinking water. However, only a few of these techniques can be applied at large-scale in developing countries due to their high investment costs, high maintenance and operating costs, and the possibility of producing toxic intermediates during the treatment process. Unlike conventional methods, adsorption is a promising technology due to its simple operation in a batch or continuous systems, simple design, low-cost of operation and wide range of locally available adsorbents. Adsorption is widely applied for removing fluoride from groundwater and wastewater, effectively maintaining water quality and taste. Based on the review, adsorption stands out as the best method for fluoride removal, considering surface modification and regeneration to increase the efficiency of adsorbent materials. This makes it an ideal solution for ensuring safe drinking water in resource-limited settings.
Collapse
Affiliation(s)
| | - Adhena Ayaliew Werkneh
- Department of Environmental Health Science, School of Public Health, College of Health Sciences, Mekelle University, P.O. Box 1871, Mekelle, Ethiopia; Faculty of Engineering and Environment, Northumbria University, NE1 8ST, Newcastle Upon Tyne, United Kingdom
| | - Pimluck Kijjanapanich
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Eldon R Rene
- IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, the Netherlands
| | - Piet N L Lens
- IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, the Netherlands
| | - Ajit P Annachhatre
- Environmental Engineering and Management, Asian Institute of Technology, P. O. Box 4, Klongluang, Pathumthani 12120, Thailand
| |
Collapse
|
3
|
Khan BA, Iqbal S, Khattak JA, Bolan N, Ahmad M. Enhancing the stability of soil contaminated with fluoride through the utilization of pristine and aluminium-impregnated biochar: a comprehensive mechanistic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58445-58455. [PMID: 39317897 DOI: 10.1007/s11356-024-34951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
The effect of trivalent metal-modified biochar on the stability and mitigation of fluoride ions (F-) in contaminated soils remains largely unexplored, despite biochar's extensive application in F--contaminated soil. The mineral metal-modified biochar has the potential to serve as an efficient solution for soil contaminated with F-. In this study, pristine-pinecone biochar (P-BC) and AlCl3-modified pinecone biochar (A-BC) were synthesized and then utilized to remediate the soil that had been contaminated with F-. Both P-BC and A-BC efficiently immobilized F- within the contaminated soil. Further examinations through sequential extraction procedure and subsequent analysis using scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and elemental dot mapping demonstrated a transformation of F- into a more stable state by A-BC treatment of the contaminated soil. This implies that A-BC may possess the capacity to function as an efficient ameliorant for immobilizing F- within the soil.
Collapse
Affiliation(s)
- Basit Ahmed Khan
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- UWA School of Agriculture and Environment, and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Sajid Iqbal
- Department of Nuclear & Quantum Engineering, Korea Advance Institute of Science and Technology (KAIST), 291-Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Junaid Ali Khattak
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Department of Earth and Environmental Sciences, Hazara University, Mansehra, Pakistan
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Mahtab Ahmad
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
4
|
Mahanta N, Goswami S. Groundwater vulnerability to fluoride pollution and health risk assessment in the western part of Odisha, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35878-35896. [PMID: 38743337 DOI: 10.1007/s11356-024-33620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
The fluoride dynamics of the Dharmagarh Block of Kalahandi District, Odisha, India, and associated health risk assessment have been studied. Complex data matrices were evaluated using groundwater quality index, fluoride pollution index, and principal component analysis to understand the geological evolution and identify potential sources for fluoride pollution. The study region comprises granite, granitic gneiss, and khondalite of hard and compact rock of Precambrian Eon, which supplies mostly the fluoride-bearing minerals. Altogether thirty-four (34) groundwater samples across the entire study area were collected and subjected to various physico-chemical analyses. The majority of the groundwater in the proposed region is hard to very hard type with Mg-HCO3 and Na-HCO3 being the two dominant facies. Groundwater contains fluoride in concentrations ranging from 0.21 to 2.26 mg/L. The statistical analysis of the quality parameters reveals the moderate positive correlation of fluoride with sodium (0.392) and pH (0.313) and week positive correlation with EC, TDS, TH, TA, Mg2+, and HCO3-, which directly depicts the initiation of fluoride problem within the study area. Based on the water quality index, 23.53% samples are good, 73.53% are poor, and 2.94% are very poor in nature. With respect to fluoride pollution index, 5.88% samples show high pollution, 55.88% samples show medium pollution, and 38.24% of samples show low pollution index. Human health risk assessment has also been carried out using the hazard quotient of fluoride. Altogether 70.59% of samples show Total Hazard Index (THI) values < 1 suggesting low risk of cancer and within the permissible range, whereas 29.41% of samples show THI > 1 suggesting the non-carcinogenic risk of pollutants, which exceeds the allowable limit for all the classes of male, female and children.
Collapse
Affiliation(s)
- Nandita Mahanta
- Department of Geology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| | - Shreerup Goswami
- Department of Geology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India.
| |
Collapse
|
5
|
Das K, Sukul U, Chen JS, Sharma RK, Banerjee P, Dey G, Taharia M, Wijaya CJ, Lee CI, Wang SL, Nuong NHK, Chen CY. Transformative and sustainable insights of agricultural waste-based adsorbents for water defluoridation: Biosorption dynamics, economic viability, and spent adsorbent management. Heliyon 2024; 10:e29747. [PMID: 38681598 PMCID: PMC11046213 DOI: 10.1016/j.heliyon.2024.e29747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
With the progression of civilization, the harmony within nature has been disrupted, giving rise to various ecocidal activities that are evident in every spheres of the earth. These activities have had a profound and far-reaching impact on global health. One significant example of this is the presence of fluoride in groundwater exceeding acceptable limits, resulting in the widespread occurrence of "Fluorosis" worldwide. It is imperative to mitigate the concentration of fluoride in drinking water to meet safety standards. While various defluoridation techniques exist, they often have drawbacks. Biosorption, being a simple, affordable and eco-friendly method, has gained preference for defluoridation. However, its limited commercialization underscores the pressing need for further research in this domain. This comprehensive review article offers a thorough examination of the defluoridation potential of agro-based adsorbents, encompassing their specific chemical compositions and preparation methods. The review presents an in-depth discussion of the factors influencing fluoride biosorption and conducts a detailed exploration of adsorption isotherm and adsorption kinetic models to gain a comprehensive understanding of the nature of the adsorption process. Furthermore, it evaluates the commercial viability through an assessment of regeneration potential and a cost analysis of these agro-adsorbents, with the aim of facilitating the scalability of the defluoridation process. The elucidation of the adsorption mechanism and recommendations for overcoming challenges in large-scale implementation offer a comprehensive outlook on this eco-friendly and sustainable approach to fluoride removal. In summary, this review article equips readers with a lucid understanding of agro-adsorbents, elucidates their ideal conditions for improved performance, offers a more profound insight into the fluoride biosorption mechanism, and introduces the concept of effective spent adsorbent management.
Collapse
Affiliation(s)
- Koyeli Das
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Uttara Sukul
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, 82445, Taiwan
| | - Raju Kumar Sharma
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Gobinda Dey
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Md. Taharia
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Christian J. Wijaya
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surbaya, 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Kalijudan 37, Surabaya, 60114, Indonesia
| | - Cheng-I Lee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168, University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 106319, Taiwan
| | - Nguyen Hoang Kim Nuong
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Chien-Yen Chen
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168, University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| |
Collapse
|
6
|
Meng X, Li J, Qu W, Wang W, Feng X, Wang J. Degradation of fluoride in groundwater by electrochemical fixed bed system with bauxite: performance and synergistic catalytic mechanism. RSC Adv 2024; 14:13711-13718. [PMID: 38681833 PMCID: PMC11044906 DOI: 10.1039/d4ra01359j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Fluoride pollution in water has garnered significant attention worldwide. The issue of fluoride removal remains challenging in areas not covered by municipal water systems. The industrial aluminum electrode and natural bauxite coordinated defluorination system (IE-BA) have been employed for fluoride removal. The experiment investigated the effects of pH, current density, and inter-electrode mineral layer thickness on the defluorination process of IE-BA. Additionally, the study examined the treatment efficiency of IE-BA for simulated water with varying F- concentrations and assessed its long-term performance. The results demonstrate that the defluorination efficiency can reach 98.4% after optimization. Moreover, irrespective of different fluoride concentrations, the defluorination rate exceeds 95.2%. After 72 hours of continuous operation, the defluorination rate reached 91.9%. The effluent exhibited weak alkalinity with a pH of around 8.0, and the voltage increased by 2.0 V compared to the initial moment. By analyzing the characterization properties of minerals and flocs, this study puts forward the possible defluorination mechanism of the IE-BA system. The efficacy of the IE-BA system in fluoride removal from water was ultimately confirmed, demonstrating its advantages in terms of defluorination ability under different initial conditions and resistance to complex interference. This study demonstrates that the IE-BA technology is a promising approach for defluorination.
Collapse
Affiliation(s)
- Xiangxu Meng
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
| | - Junfeng Li
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
- Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps Shihezi 832000 Xinjiang PR China
| | - Wenying Qu
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
- Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps Shihezi 832000 Xinjiang PR China
| | - Wenhuai Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
- Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps Shihezi 832000 Xinjiang PR China
| | - Xueting Feng
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
| | - Jiankang Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
- Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps Shihezi 832000 Xinjiang PR China
| |
Collapse
|
7
|
Wang T, Zhang Y, Qi J, Hu C, Qu J. Sulfate Doping Promotes Agglomeration of Calcium Fluoride Crystals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4450-4458. [PMID: 38386650 DOI: 10.1021/acs.est.3c10298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Calcium salt precipitation is an effective solution to wastewater fluoride pollution. The purity and precipitation efficiency of calcium fluoride is critical for its removal and recovery. This study aimed to reveal the role of coexisting sulfates in the precipitation of calcium fluoride. A low sulfate concentration promoted calcium fluoride precipitation. The size of calcium fluoride-aggregated particle clusters increased from 750 to 2000 nm when the molar ratio of sulfate to fluoride was increased from 0 to 3:100. Sulfate doped in the calcium fluoride crystals neutralized the positive charge of the calcium fluoride. Online atomic force microscopy measurements showed that sulfate reduced the repulsive force between calcium fluoride crystals and increased the adhesion force from 1.62 to 2.46 nN, promoting the agglomeration of calcium fluoride crystals. Sulfate improved the precipitation efficiency of calcium fluoride by promoting agglomeration; however, the purity of calcium fluoride was reduced by doping. Sulfate reduced the induction time of calcium fluoride crystallization and improved the nucleation rate of calcium fluoride. Sulfate should be retained to improve the precipitation of calcium fluoride and to avoid its loss from the effluents. However, it is necessary to separate sulfate from fluoride to obtain high-purity calcium fluoride. Therefore, sulfate concentration regulation in high-fluoride wastewater is key to achieving the efficient removal and recovery of fluoride ions.
Collapse
Affiliation(s)
- Tianyu Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Sharma M, Karthik K, Keerthi P, Chatterjee S. Polyacrylonitrile and polyethersulfone based co-axial electrospun nanofibers for fluoride removal from contaminated stream. CHEMOSPHERE 2024; 349:140837. [PMID: 38065266 DOI: 10.1016/j.chemosphere.2023.140837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 01/10/2024]
Abstract
Coaxial electrospun polyacrylonitrile (PAN) and polyethersulfone (PES) based nanofibers were prepared and was used for filtration of fluoride from drinking water for the first time. Well defined fiber geometry was obtained at 1 ml/h of core polymer, i.e., PES flow rate, 1.4 ml/h of shell polymer, i.e., PAN flow rate, voltage of 22 kV, while the distance between the needle tip and the collector was 15-17 cm. Increase in bead like structure in fiber strands was observed with higher PAN concentration, while it decreased for lower PES concentration, thereby giving an optimum composition (6 wt% PAN and 10 wt% PES) for uniform fiber morphology. This nanofiber, abbreviated as N2 acted as an ultrafiltration membrane having permeability in the lower range, i.e., 0.5 × 10-11 m/s Pa and its fluoride removal efficacy was 46%. Fibers were also hydrophilic with considerable porous nature. Uptake of fluoride by this N2 nanofibers were evident from binding energy of 685.2 eV during XPS analysis. It is probable that nitrile and sulfone groups present in the core and shell of the nanofibers played an active in fluoride uptake, which was estimated as 110 mg/g at 298 K. Isoelectric point was in alkaline range which promoted negative fluoride ion uptake on positive nanofiber surface. Lead played higher masking effect in the uptake of fluoride in comparison to arsenic as coexisting ion. Dynamic cross flow filtration was also studied with this nanofiber in both synthetic and real life feed solution.
Collapse
Affiliation(s)
- Manu Sharma
- Department of Chemical Engineering, BITS-Pilani, Pilani, Rajasthan 333031, India
| | - K Karthik
- Department of Chemistry, Anna University, Chennai, Tamil Nadu 600025, India
| | - P Keerthi
- Department of Chemistry, Anna University, Chennai, Tamil Nadu 600025, India
| | - Somak Chatterjee
- Department of Chemical Engineering, BITS-Pilani, Pilani, Rajasthan 333031, India.
| |
Collapse
|
9
|
Subramanium R, Sathiyamoorthi E, Rajagopal S, Krishnamoorthy R, Lee J, A LK. Synthesis, characterization, and evaluation of fluoride removal capacity of calcium-impregnated Euphorbia neriifolia carbon (Ca-Enc). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-31943-9. [PMID: 38244161 DOI: 10.1007/s11356-024-31943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
Fluoride ions must be removed from drinking water in order to prevent fluorosis. Many conventional techniques have been examined for the defluoridation of water all over the world. As far as fluoride ions are concerned, adsorption is the most promising method for the removal of them from aqueous environments. In the present study, we aim to find out how well Euphorbia neriifolia plants can remove fluoride from water using activated and carbonized adsorbents. The Euphorbia neriifolia plant stem was pulverized, dried, and activated using calcium ions extracted from used eggshells collected nearby. The synthesized adsorbent material before and after adsorption of fluoride ions was systematically characterized using FTIR, XRD, SEM with EDAX, TGA, and zero-point charge. The defluoridation capacity of the as-prepared adsorbent material was investigated using batch adsorption studies. Various influencing factors such as contact time, solution pH, initial fluoride concentration, mass of the adsorbent, temperature, and co-existing ions were systematically investigated towards the removal of fluoride ion on prepared adsorbent material. This study was conducted to identify the optimal conditions of prepared adsorbent for the maximum removal of fluoride ions from aqueous solution. A groundwater sample with fluoride content of more than 1.5 ppm was taken and studied in this present work. A basic quality indicator of the synthesized material was examined, and its ability to remove fluoride was determined. The findings provide insight into the selective elimination of fluoride ions from aqueous environment.
Collapse
Affiliation(s)
- Rajkumar Subramanium
- Department of Chemistry, SRM Madurai College for Engineering and Technology, Pottapalayam, Sivagangai, 630612, Tamil Nadu, India.
| | | | - Saravanakumar Rajagopal
- Department of Chemistry, Sethu Institute Technology, Viruthunagar, 626115, Tamil Nadu, India
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Lakshman Kumar A
- Corrosion Analysis and Research Lab, NTPC Energy Technology Research Alliance (NTPC NETRA), Greater Noida, UP, India
| |
Collapse
|
10
|
Wang Z, Gu X, Zhang X, Wang X, Zhang J, Liu Y, Tan X, Zhao Y, Kang D, Guo W, Ngo HH. New easily recycled carrier based polyurethane foam by loading Al-MOF and biochar for selective removal of fluoride ion from aqueous solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166312. [PMID: 37586503 DOI: 10.1016/j.scitotenv.2023.166312] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
The production of Integrated circuits (ICs) generates wastewater with a high concentration of residual fluoride ions, necessitating highly efficient fluorine removal methods. In this study, a novel composite carrier was developed using a hydrothermal synthesis method to load Al-MOF and biochar (BC) onto polyurethane foam (PUF), resulting in the composite foam of Al-MOF-PUF@BC. The results showed that the composite carrier exhibited a stable fluoride removal effect, with a maximum adsorption capacity of 16.52 mg/g at room temperature. The adsorption isotherm curves were consistent with the Langmuir isotherm model, and the adsorption kinetics were well-described by the pseudo-first-order model. The mechanism of fluorine adsorption on Al-MOF-PUF@BC was ligand exchange with hydroxyl groups and the formation of FAl bonds. Density functional theory (DFT) calculations revealed that the adsorption energy reached -246.7 eV, indicating stable adsorption for fluoride ions. The composite foam demonstrated excellent regenerative properties and was effective for fluoride removal in actual IC wastewater.
Collapse
Affiliation(s)
- Zhe Wang
- Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xinyue Gu
- Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xinbo Zhang
- Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Xiao Wang
- TG Hilyte Environment Technology (Beijing) Co., LTD., Beijing 100000, China
| | - Jianqing Zhang
- TG Hilyte Environment Technology (Beijing) Co., LTD., Beijing 100000, China
| | - Ying Liu
- Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xinai Tan
- Dayu Environmental Protection Co., Ltd, Tianjin 301739, China
| | - Ying Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dejun Kang
- College of Civil Engineering of Fuzhou University, Fuzhou University, Fuzhou 350108, China
| | - Wenshan Guo
- Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
11
|
Zeng Z, Li Q, Yan J, Huang L, Arulmani SRB, Zhang H, Xie S, Sio W. The model and mechanism of adsorptive technologies for wastewater containing fluoride: A review. CHEMOSPHERE 2023; 340:139808. [PMID: 37591373 DOI: 10.1016/j.chemosphere.2023.139808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
With the continuous development of society, industrialization, and human activities have been producing more and more pollutants. Fluoride discharge is one of the main causes of water pollution. This review summarizes various commonly used and effective fluoride removal technologies, including ion exchange technology, electrochemical technology, coagulation technology, membrane treatment, and adsorption technology, and points out the outstanding advantages of adsorption technology. Various commonly used fluoride removal techniques as well as typical adsorbent materials have been discussed in published papers, however, the relationship between different adsorbent materials and adsorption models has rarely been explored, therefore, this paper categorizes and summarizes the various models involved in static adsorption, dynamic adsorption, and electrosorption fluoride removal processes, such as pseudo-first-order and pseudo-second-order kinetic models, Langmuir and Freundlich isotherm models, Thomas and Clark dynamic adsorption models, including the mathematical equations of the corresponding models and the significance of the models are also comprehensively summarized. Furthermore, this comprehensive discussion delves into the fundamental adsorption mechanisms, quantification of maximum adsorption capacity, evaluation of resistance to anion interference, and assessment of adsorption regeneration performance exhibited by diverse adsorption materials. The selection of the best adsorption model not only predicts the adsorption performance of the adsorbent but also provides a better description and understanding of the details of each part of the adsorption process, which facilitates the adjustment of experimental conditions to optimize the adsorption process. This review may provide some guidance for the development of more cost-effective adsorbent materials and adsorption processes in the future.
Collapse
Affiliation(s)
- Zhen Zeng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qian Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Samuel Raj Babu Arulmani
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, 35000, Rennes, France
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China.
| | - Shaojian Xie
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wenghong Sio
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China
| |
Collapse
|
12
|
Kim WT, Lee JW, An HE, Cho SH, Jeong S. Efficient Fluoride Wastewater Treatment Using Eco-Friendly Synthesized AlOOH. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2838. [PMID: 37947684 PMCID: PMC10648790 DOI: 10.3390/nano13212838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Fluoride ion is essential for health in small amounts, but excessive intake can be toxic. Meeting safety regulations for managing fluoride ion emissions from industrial facilities with both cost-effective and eco-friendly approaches is challenging. This study presents a solution through a chemical-free process, producing a boehmite (AlOOH) adsorbent on aluminum sheets. Utilizing cost-effective Al foil and DI water, rather than typical precursors, yields a substantial cost advantage. The optimized AlOOH adsorbent demonstrated a high fluoride ion removal rate of 91.0% in simulated wastewater with fluoride ion concentrations below 20 ppm and displayed a similar performance in industrial wastewater. Furthermore, the AlOOH adsorbent exhibited excellent reusability through a simple regeneration process and maintained stable performance across a wide pH range of 4 to 11, demonstrating its capability to adsorb fluoride ions under diverse conditions. The efficiency of the AlOOH adsorbent was validated by a high fluoride ion removal efficiency of 90.9% in a semi-batch mode flow cell, highlighting its potential applicability in engineered water treatment systems. Overall, the AlOOH adsorbent developed in this study offers a cost-effective, eco-friendly, and sustainable solution for effectively removing fluoride ion from surface waters and industrial wastewaters.
Collapse
Affiliation(s)
| | | | | | | | - Sohee Jeong
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (W.-T.K.); (J.-W.L.); (H.-E.A.); (S.-H.C.)
| |
Collapse
|
13
|
Albrektienė-Plačakė R, Bazienė K, Gargasas J. Investigation on Applying Biodegradable Material for Removal of Various Substances (Fluorides, Nitrates and Lead) from Water. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6519. [PMID: 37834656 PMCID: PMC10573546 DOI: 10.3390/ma16196519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Sapropel was used as a biodegradable material for water treatment. Sapropel is a sedimentary layer of a mix of organic and inorganic substances accumulated in the bottoms of lakes for thousands of years. It is a jelly-like homogeneous mass and has properties of sorption. Sapropel is used as a biosorbent and an environment-friendly fertiliser, and it is used in building materials and in the beauty industry as well. In water, there are abundant various solutes that may cause a risk to human health. Such substances include fluorides, nitrates and lead in different sources of water. The goal of this investigation is to explore and compare the efficiencies of removal of different pollutants (fluorides, nitrates and lead) from aqueous solutions upon using sapropel as a sorbent. In this research, various doses of sapropel (0.1, 0.5, 1, 5, 10, 20, 50, 100 and 200 g/L) and various mixing times (15, 30, 60, 90 and 120 min) were used for removal of fluorides, nitrates and lead from aqueous solutions. It was found that the maximum efficiency (up to 98.57%) of lead removal from aqueous solutions by sapropel was achieved when the minimum doses of it (0.1 and 0.5 g/L) were used. The most efficient removal of fluorides (64.67%) was achieved by using 200 g/L of sapropel and mixing for 120 min. However, sapropel does not adsorb nitrates from aqueous solutions.
Collapse
Affiliation(s)
- Ramunė Albrektienė-Plačakė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | - Kristina Bazienė
- Department of Mechanical and Material Engineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | - Justinas Gargasas
- Department of Mechanical and Material Engineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| |
Collapse
|
14
|
Afarinandeh A, Heidari K, Barczak M, Abdellattif MH, Izadi Yazdanaabadi Z, Mohammadi AA, Haghighat GA, Shams M. Controlled removal of fluoride by ZIF-8, ZIF-67, and Ni-MOF of different morphologies. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
15
|
Mei L, Wei J, Yang R, Ke F, Peng C, Hou R, Liu J, Wan X, Cai H. Zirconium/lanthanum-modified chitosan/polyvinyl alcohol composite adsorbent for rapid removal of fluoride. Int J Biol Macromol 2023:125155. [PMID: 37268075 DOI: 10.1016/j.ijbiomac.2023.125155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
A novel and easily separable adsorbent in the shape of a membrane for the rapid removal of fluoride from water was prepared after testing Zr, La and LaZr to modify a chitosan/polyvinyl alcohol composite adsorbent (CS/PVA-Zr, CS/PVA-La, CS/PVA-LA-Zr). The CS/PVA-La-Zr composite adsorbent can remove a large amount of fluoride within 1 min of contact time, and the adsorption equilibrium can be reached within 15 min. The fluoride adsorption behavior of the CS/PVA-La-Zr composite can be described by pseudo-second-order kinetics and Langmuir isotherms models. The morphology and structure of the adsorbents were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The adsorption mechanism was studied using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), and which showed that ion exchange occurred mainly with hydroxide and fluoride ions. This study showed that an easily operable, low-cost and environmentally friendly CS/PVA-La-Zr has the potential to remove fluoride effectively from drinking water in a short time.
Collapse
Affiliation(s)
- Liping Mei
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Jiao Wei
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Ruirui Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Fei Ke
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Chuanyi Peng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Junsheng Liu
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei 230601, PR China.
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| | - Huimei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
16
|
Budania R, Dangayach S. A comprehensive review on permeable reactive barrier for the remediation of groundwater contamination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117343. [PMID: 36758361 DOI: 10.1016/j.jenvman.2023.117343] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/31/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Groundwater quality is deteriorating due to contamination from both natural and anthropogenic sources. Traditional "Pump and Treat" techniques of treating the groundwater suffer from the disadvantages of a small-scale and energy-intensive approach. Permeable reactive barriers (PRBs), owing to their passive operation, offer a more sustainable strategy for remediation. This promising technique focuses on eliminating heavy metal pollutants and hazardous aromatic compounds by physisorption, chemisorption, precipitation, denitrification, and/or biodegradation. Researchers have utilized ZVI, activated carbon, natural and manufactured zeolites, and other by-products as reactive media barriers. Environmental parameters, i.e., pH, initial pollutant concentration, organic substance, dissolved oxygen, and reactive media by-products, all influence a PRB's performance. Although their long-term impact and performance are uncertain, PRBs are still evolving as viable alternatives to pump-and-treat techniques. The use of PRBs to remove anionic contaminants (e.g., Fluoride, Nitrate, etc.) has received less attention since precipitates can clog the reactive barrier and hinder groundwater flow. In this paper, we present an insight into this approach and the tremendous implications for future scientific study that integrates this strategy using sustainability and explores the viability of PRBs for anionic pollutants.
Collapse
Affiliation(s)
- Ravindra Budania
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, 302017, Rajasthan, India.
| | - Sanyam Dangayach
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, 302017, Rajasthan, India.
| |
Collapse
|
17
|
Thomas AM, Kuntaiah K, Korra MR, Nandakishore SS. Efficient removal of fluoride on aluminum modified activated carbon: an adsorption behavioral study and application to remediation of ground water. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:69-80. [PMID: 36840367 DOI: 10.1080/10934529.2023.2177059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
In recent times, ground water contamination by toxic elements is of great concern and it is to be addressed for consumption of human, animal, and plant growth. In this context, we have synthesized an adsorbent by modifying commercially available activated carbon with aluminum and tested for de-fluoridation studies. The activity results suggested that the optimized adsorbent is highly efficient in removing the fluoride from ground water. Adsorption maxima are obtained over a wide pH range from 4 to 9, with a contact time of 15 minutes at a dosage of 4 g/L. The results also revealed that the synthesized adsorbent is suitable for application in ground water without any pH adjustment and has exhibited 85%-95% tolerance for common anions in the range of 100-500 mg/L. Equilibrium adsorption isotherm models as well as kinetics of adsorption were applied for the system. An adsorption capacity of 20.4 mg/g and fast kinetics observed are most favorable for defluoridation. Reuse of adsorbent over repeated cycles was investigated. Residual amount of aluminum in treated water is found to be negligible. The removal of toxic elements like Pb, Cd, Cr, Cu, Ni, Zn, As, and Se under the optimized experimental conditions has also been investigated. Al-AC found to be a highly promising material for removal of fluoride and toxic metals from drinking water.
Collapse
Affiliation(s)
- Anitha Mary Thomas
- Atomic Minerals Directorate for Exploration and Research Nagarbhavi, Bangalore, India
| | - Kuncham Kuntaiah
- Atomic Minerals Directorate for Exploration and Research Nagarbhavi, Bangalore, India
| | - Mareswara Rao Korra
- Atomic Minerals Directorate for Exploration and Research Nagarbhavi, Bangalore, India
| | - S S Nandakishore
- Atomic Minerals Directorate for Exploration and Research Nagarbhavi, Bangalore, India
| |
Collapse
|
18
|
Giri AK, Mishra PC. Application of artificial neural network for prediction of fluoride removal efficiency using neutralized activated red mud from aqueous medium in a continuous fixed bed column. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23997-24012. [PMID: 36331741 DOI: 10.1007/s11356-022-23593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The present research work approaches the removal of fluoride from aqueous medium using neutralized activated red mud (NARM) in a continuous fixed bed column. Artificial neural network (ANN) technique was applied effectively for optimization of the model for the practicability of the removal process. The consequences of various experimental variables, like bed length, adsorbate concentration, experimental time, and adsorbate solution flow rate are studied to know the breakthrough point and saturation times. The highest removal potentiality of NARM was considered to be 3.815 mg g-1 of F- in the bed height of 15 cm, starting concentration 1 ppm, susceptible time 120 min, adsorbate solution flow rate 0.5 mL min-1, and constant room temperature, respectively. Bohart-Adams and Thomas models were considered to describe the fixed bed column effect to the bed height and adsorbate concentrations. The experimental data were applied to a back propagation (BP) learning algorithm programme with a four-seven-one architecture model. The artificial neural network model was considered to be functioning correctly as absolute relative percentage error throughout the learning period. Differentiation between the predicted outcomes from ANN model and actual results from experimental analysis affords a high degree of correlation (R2 = 0.998) stipulating that the model was able to predict the adsorption efficiency. Experimented adsorbent materials were characterized using different instrumental analysis that is scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD).
Collapse
Affiliation(s)
- Anil Kumar Giri
- Centre of Excellence for Bioresource Management and Energy Conservation Material Development, Fakir Mohan University, Vyasa Vihar, Odisha, 756089, Balasore, India.
| | - Prakash Chandra Mishra
- Department of Environmental Science, Fakir Mohan University, Balasore, Odisha, 756089, India
| |
Collapse
|
19
|
Solomon A, Andoshe DM, Abebe AM, Terfasa TT, Ganesh T, Hone FG, Tegegne NA, Tesfamariam BB. Optimization of preparation parameters of ceramic pot water filters for potential application of microbial and fluoride removal from groundwater. Heliyon 2023; 9:e13261. [PMID: 36785835 PMCID: PMC9918763 DOI: 10.1016/j.heliyon.2023.e13261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
The need to make clean water accessible and affordable for low-income countries is crucial. This study examines the suitability of various clays for Ceramic Pot Water Filters production and groundwater treatment for effective microbe and fluoride removal. For this study, three clays were collected from different geographical locations in Ethiopia,i.e., Hosaenna Clay, Babawuha Clay, and Leku Clay. Organic additives such as sawdust and eragrostis tef husks were used to increase the porosity of the Ceramic Pot Water Filters. The Atterberg limit and particle size distribution tests revealed that BC and HC have moderate to high plasticity and mouldability, making them suitable for CPWF production. The clay chemical composition, phase analysis, and thermal properties were determined using XRF, XRD, and TGA/DTA. The turbidity, fluoride level, total dissolved solids, and pH of the groundwater decreases, from 13 to 0.45 NTU, from 3.4 to 0.053 mg/100 mL, from 1245 to 360 mg/l, and from 8.4 to 7.3, respectively; all of which are within the acceptable range of WHO drinking water standards. Microbial removal tests show that the CPWFs removed 99.3%-100% of total coliform bacteria and 98.48%-100% of fecal coliform bacteria from groundwater. Therefore, this work paves the way to fabricate a clay-based ceramic water filter for low-income countries to provide affordable household groundwater treatment technology for microbial and excess fluoride removal.
Collapse
Affiliation(s)
- Alemayehu Solomon
- Materials Science and Engineering Department, Adama Science and Technology University, Adama, 1886, Ethiopia
| | - Dinsefa Mensur Andoshe
- Materials Science and Engineering Department, Adama Science and Technology University, Adama, 1886, Ethiopia,Corresponding author.
| | - Adane Muche Abebe
- Materials Science and Engineering Department, Adama Science and Technology University, Adama, 1886, Ethiopia
| | - Tatek Temesgen Terfasa
- Chemical Engineering Department, Adama Science and Technology University, Adama, 1886, Ethiopia
| | - T. Ganesh
- Materials Science and Engineering Department, Adama Science and Technology University, Adama, 1886, Ethiopia
| | | | | | - Belay Brehane Tesfamariam
- Materials Science and Engineering Department, Adama Science and Technology University, Adama, 1886, Ethiopia
| |
Collapse
|
20
|
Hodjaoglu G, Hodzhaoglu F, Dobrev T, Mincheva I, Kyurkchiev A, Krastev I. Elimination of the contaminant fluoride ions from plant zinc sulfate electrolytes by aluminum sulfate. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-022-01830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Lin Y, Du K, Gau MR, Dmochowski IJ. Turn-on fluorescent capsule for selective fluoride detection and water purification. Chem Sci 2023; 14:291-297. [PMID: 36687344 PMCID: PMC9811533 DOI: 10.1039/d2sc05352g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
It has been a long-standing challenge to develop organic molecular capsules for selective anion binding in water. Here, selective recognition of aqueous fluoride was achieved through triple protonation of a hemicryptophane (L), which is composed of a fluorescent cyclotriveratrylene (CTV) cap and tris(2-aminoethyl)amine (tren) as the anion binding site. Fluoride encapsulation by [3H-L]3+ was evidenced by 1H NMR, 19F NMR, LC-MS, and X-ray crystallography. In addition, [3H-L]3+ exhibited a 'turn-on' fluorescence signal (λ em = 324 nm) upon fluoride addition. An apparent association constant K A = (7.5 ± 0.4) × 104 M-1 and a detection limit of 570 nM fluoride were extracted from the fluorescence titration experiments in citrate buffer at pH 4.1. To the best of our knowledge, [3H-L]3+ is the first example of a metal-free molecular capsule that reports on fluoride binding in purely aqueous solutions with a fluorescence response. Finally, the protonated capsule was supported on silica gel, which enabled adsorptive removal of stoichiometric fluoride from water and highlights real-world applications of this organic host-guest chemistry.
Collapse
Affiliation(s)
- Yannan Lin
- Department of Chemistry, University of Pennsylvania231 S. 34th St.PhiladelphiaPennsylvania 19104−6323USA
| | - Kang Du
- Department of Chemistry, University of Pennsylvania231 S. 34th St.PhiladelphiaPennsylvania 19104−6323USA
| | - Michael R. Gau
- Department of Chemistry, University of Pennsylvania231 S. 34th St.PhiladelphiaPennsylvania 19104−6323USA
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania231 S. 34th St.PhiladelphiaPennsylvania 19104−6323USA
| |
Collapse
|
22
|
Robledo-Peralta A, Torres-Castañón LA, Rodríguez-Beltrán RI, Reynoso-Cuevas L. Lignocellulosic Biomass as Sorbent for Fluoride Removal in Drinking Water. Polymers (Basel) 2022; 14:5219. [PMID: 36501612 PMCID: PMC9738509 DOI: 10.3390/polym14235219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 12/04/2022] Open
Abstract
Water supply to millions of people worldwide is of alarmingly poor quality. Supply sources are depleting, whereas demand is increasing. Health problems associated with water consumption exceeding 1.5 mg/L of fluoride are a severe concern for the World Health Organization (WHO). Therefore, it is urgent to research and develop new technologies and innovative materials to achieve partial fluoride reduction in water intended for human consumption. The new alternative technologies must be environmentally friendly and be able to remove fluoride at the lowest possible costs. So, the use of waste from lignocellulosic biomasses provides a promising alternative to commercially inorganic-based adsorbents-published studies present bioadsorbent materials competing with conventional inorganic-based adsorbents satisfactorily. However, it is still necessary to improve the modification methods to enhance the adsorption capacity and selectivity, as well as the reuse cycles of these bioadsorbents.
Collapse
Affiliation(s)
- Adriana Robledo-Peralta
- Department of Sustainable Engineering, Advanced Materials Research Center (CIMAV-Durango), CIMAV 110 Street, Ejido Arroyo Seco, Durango 34147, Mexico
| | - Luis A. Torres-Castañón
- Department of Sustainable Engineering, Advanced Materials Research Center (CIMAV-Durango), CIMAV 110 Street, Ejido Arroyo Seco, Durango 34147, Mexico
| | - René I. Rodríguez-Beltrán
- CONACYT-Centro de Investigación Científica y de Educación Superior de Ensenada, Unidad Foránea Monterrey, Alianza Centro 504, PIIT, Apodaca 66629, Mexico
| | - Liliana Reynoso-Cuevas
- CONACYT, Advanced Materials Research Center (CIMAV-Durango), CIMAV 110 Street, Ejido Arroyo Seco, Durango 34147, Mexico
| |
Collapse
|
23
|
Amorri J, Veit-Köhler G, Boufahja F, Abd-Elkader OH, Plavan G, Mahmoudi E, Aïssa P. Assessing Metallic Pollution Using Taxonomic Diversity of Offshore Meiobenthic Copepods. SUSTAINABILITY 2022; 14:15670. [DOI: 10.3390/su142315670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The Gulf of Gabès, located on the south-east Tunisian coast, is an important maritime area, with great influence on the local economy and human welfare. The aim of the current study was to assess the response of meiobenthic copepod populations from this gulf to anthropogenic disturbances. Nine sampling sites, situated along the shores of the gulf were surveyed seasonally from winter of 2004 to autumn of 2005. Interestingly, this biotope has one of the highest semi-diurnal tides in the Mediterranean Sea. Despite the fact that the data being presented here are not that new, such a high maximum amplitude of tides reaching 2 m makes any information available on animals with diurnal dispersal cycles such as copepods extremely precious. Furthermore, the lack of knowledge on these crustaceans is obvious and lags behind that of numerous other meiobenthic taxa and planktonic calanoids. Actually, most publications do not reach the species level and are limited to determining densities. This is mainly due to the modest size of harpacticoids, and the lack of qualified taxonomic experts and global taxonomic databases. Sediment samples were analyzed for fluorine, carbohydrates and trace metals (i.e., Fe, Zn and Cd) content. A pollution index, based on the eigenvalues of the main ordination axis of a Principal Component Analysis, was applied. The highest values of chemicals were detected at the sites situated near an industrial complex, along with significant variations among seasons. The copepod community comprised 38 species, including five species new to science. Species richness, density and biomass of copepod communities varied among sites and seasons. These community-based indices were also analyzed separately for each season with conditional autoregressive models, revealing a significant negative response with the level of pollution. However, the results of partial Mantel tests showed positive correlations between species richness and pollution level, after controlling for the effect of geographic proximity in-between pairs of sites (winter: r = 0.927, p < 0.0001; spring: r = 0.935, p < 0.0001; summer: r = 0.918, p < 0.0001; autumn: r = 0.937, p < 0.0001). The overall pattern was that nearby sites were characterized by similar pollution levels and inhabited by similar species of copepods. Moreover, the copepod communities were significantly influenced by pollutants, mainly by trace metals. The results of the current survey emphasize the usefulness of meiobenthic copepods in biomonitoring programs not only for the gulf of Gabès, but also for other coastal areas from the Mediterranean Sea region.
Collapse
|
24
|
Application of bottom ash from cattle manure combustion for removing fluoride and inactivating pathogenic bacteria in wastewater. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Mahajan T, Paikaray S. Fluoride retention kinetic and equilibrium studies on layered double hydroxides under ambient conditions: Implications on pond-stream-hot spring-well water remediation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10804. [PMID: 36346371 DOI: 10.1002/wer.10804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Fluoride deficiency and toxicity severely affect a large population globally. Hence, a low-cost geosorbent is in demand to overcome fluorosis hazards where in situ retardation is prioritized over pilot-scale waste water treatment. This study reports the fluoride removal potential of MgFe-type layered double hydroxide (HT-LDH) and its calcined form at 500 and 800°C for their usability for treatment of polluted streams, ponds, wells, and hot spring water. Rapid uptake with >33% removal in 24 h was found by the adsorptive method, whereas the co-precipitation process removed >16 mg/L (>83%) in 1 h. The efficiency was further enhanced upon calcination at 500°C with >95% removal up to five times regeneration, unlike that at 800°C. It was demonstrated that multilayer sorption onto heterogeneous surface sites is majorly controlled by surface adsorptive and ion exchange mechanisms. Acidic pH, low aqueous F - , and temperature >25°C favored greater uptake, whereas competitive anions slightly enhanced its potential in the order N O 3 - > S O 4 2 - > P O 4 3 - in adsorptive removal. In the co-precipitation process, competing anions slightly hindered F - retention, whereas high temperature and low aqueous F - led to greater F - retention. No F-bearing solid phases were evidenced upon its retention, except lowering the HT-LDH crystallinity and rearrangement of C O 3 2 - surface functional groups. The fluoride contents of natural water were lowered drastically up to 77% in 60 min upon precipitation of HT-LDH by maintaining alkalinity and a di-/trivalent cationic ratio of 2.0. PRACTITIONER POINTS: F^- uptake is rapid on heterogeneous surface sites with multilayer sorption mechanism Greater F^- removed by coprecipitation technique compared with adsorptive pathway Acidic medium and temperature >25°C favor greater F^- retention NO_3^-+PO_l4^(3-) slightly enhanced F^- uptake by adsorption but lowered in coprecipitation Formation of LDH from natural waters lowered F^- content up to <77.
Collapse
Affiliation(s)
- Tanuj Mahajan
- Environmental Geochemistry Group, Department of Geology, Panjab University, Chandigarh, India
| | - Susanta Paikaray
- Environmental Geochemistry Group, Department of Geology, Panjab University, Chandigarh, India
| |
Collapse
|
26
|
Wei L, Li Z, Ye G, Rietveld LC, van Halem D. Comparative study of low-cost fluoride removal by layered double hydroxides, geopolymers, softening pellets and struvite. ENVIRONMENTAL TECHNOLOGY 2022; 43:4306-4314. [PMID: 34157955 DOI: 10.1080/09593330.2021.1946600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Excessive F- in drinking water due to natural and anthropogenic activities is a serious health hazard affecting humans worldwide. In this study, a comparative assessment was made of eight mineral-based materials with advantageous structural properties for F- uptake: layered-double-hydroxides (LDHs), geopolymers, softening pellets and struvite. These materials are considered low-cost, for being either a waste or by-product, or can be locally-sourced. It can be concluded that Ca-based materials showed the strongest affinity for F- (Ca-Al-CO3 LDHs, slag-based geopolymer, softening pellets). The Langmuir adsorption capacity of Ca-Al-CO3 LDHs, slag-based geopolymer and softening pellets was observed to be 20.83, 5.23 and 1.20 mg/g, respectively. The main mechanism of F- uptake on Ca-Al-CO3 LDHs, Mg-Al-Cl LDHs, slag-based geopolymers and softening pellets was found to be sorption at low initial F- concentrations (<10 mg/L) whereas precipitation as CaF2 is proposed to play a major role at higher initial F- concentrations (>20 mg/L). Although the softening pellets had the highest Ca-content (96-97%; XRF), their dense structure and consequent low BET surface area (2-3 m2/g), resulted in poorer performance than the Ca-based LDHs and slag-based geopolymers. Nevertheless, geopolymers, as well as struvite, were not considered to be of interest for application in water treatment, as they would need modification due to their poor stability and/or F- leaching.
Collapse
Affiliation(s)
- Liangfu Wei
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology Delft, The Netherlands
| | - Zhenming Li
- Faculty of Civil Engineering and Geosciences, Department of Materials and Environment (Microlab), Delft University of Technology Delft, The Netherlands
| | - Guang Ye
- Faculty of Civil Engineering and Geosciences, Department of Materials and Environment (Microlab), Delft University of Technology Delft, The Netherlands
| | - Luuk C Rietveld
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology Delft, The Netherlands
| | - Doris van Halem
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology Delft, The Netherlands
| |
Collapse
|
27
|
Choi MY, Kang JK, Lee CG, Park SJ. Feasibility of fluoride removal using calcined Mactra veneriformis shells: Adsorption mechanism and optimization study using RSM and ANN. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Dong Y, Kong X, Luo X, Wang H. Adsorptive removal of heavy metal anions from water by layered double hydroxide: A review. CHEMOSPHERE 2022; 303:134685. [PMID: 35472618 DOI: 10.1016/j.chemosphere.2022.134685] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 05/07/2023]
Abstract
High-valence heavy metals with high ecotoxicity are generally found in water in the form of anions, and this increases heavy metal pollution intensity and treatment difficulty. Recent studies have pointed to the potential efficiency of layered double hydroxides (LDHs) to meet this challenge. In this review, we retrospectively research the development of LDHs using a Java application called CiteSpace. We describe the unique layer structure, highly adjustable chemical properties, and diverse synthesis methods of LDHs, all of which decide the effective adsorption of heavy metal anions by LDHs. Subsequently, we focus on discussing the adsorption mechanism of LDHs on heavy metal anions, as well as the current state of research and future directions for microscopic interaction mechanisms. For practical applications, it is critical to improve the adsorption selectivity and stability. We then recommend solutions to improve the adsorption selectivity and stability after identifying the influencing mechanism. Finally, we provide our perspectives on the future development of LDHs adsorption of heavy metal anions.
Collapse
Affiliation(s)
- Yuecen Dong
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiangrui Kong
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xingshen Luo
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hongtao Wang
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
29
|
Ahmadi Goltapeh S, Abdolahi S, Jahren J, Miri R, Hellevang H. Drivers of Low Salinity Effect in Carbonate Reservoirs Using Molecular Dynamic Simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Removal of Fluoride from Phosphogypsum Leaching Solution with Phosphate Tailing Based Layered Double Hydroxides: Kinetics and Equilibrium Isotherms. MINERALS 2022. [DOI: 10.3390/min12070858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this work, ternary and quaternary layered double oxides (PTB-LDO3 and PTB-LDO4) based on phosphate tailings were synthesized by the coprecipitation method. The as-prepared samples were characterized and applied to remove fluorine ions from a phosphogypsum leaching solution. The results indicated that both the precursor of PTB-LDO3 and PTB-LDO4 showed a layered structure with characteristic diffraction peaks of hydrotalcite. Compared with PTB-LDO4, PTB-LDO3 exhibited better adsorption performance at pH 5–6 and a dosage of 0.04 mg L−1. The adsorption kinetics results revealed that the adsorption of fluorine by PTB-LDO3 and PTB-LDO4 reached the adsorption equilibrium in about 3 h, and followed the pseudo-second-order model. The adsorption data could be fitted better with the Langmuir isotherm with the maximum adsorption amounts of 26.03 mg g−1 and 15.66 mg g−1 for PTB-LDO3 and PTB-LDO4, respectively. The adsorption of fluorine by PTB-LDO3 and PTB-LDO4 were both spontaneous and exothermic, and exhibited excellent reusability and stability. This study provides a possibility for the combined treatment of phosphorus chemical solid waste (phosphorus tailings) and phosphorus chemical wastewater (phosphogypsum leaching liquid).
Collapse
|
31
|
Yan L, Gu W, Zhou N, Ye C, Yang Y. Preparation and characterization of wheat straw biochar loaded with aluminium/lanthanum hydroxides: a novel adsorbent for removing fluoride from drinking water. ENVIRONMENTAL TECHNOLOGY 2022; 43:2771-2784. [PMID: 33719868 DOI: 10.1080/09593330.2021.1903563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
In this work, a novel adsorbent of aluminium/lanthanum loaded wheat straw biochar (Al-La-WSB), was prepared by using a facile approach and used for fluoride removal. The Al-La-WSB and its pristine wheat straw biochar (WSB) were characterized by scanning electronic microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray powder diffraction (XRD) methods. Batch adsorption experiments were carried out to investigate adsorbent performance, the highest removal rate was observed at pH 9, contact time of 7 h and Al-La-WSB dose of 1 g L-1. Lagergren pseudo-second-order kinetics and Langmuir isotherm model fitted the experimental data well. The maximum fluoride adsorption capacity of Al-La-WSB at different experiment temperature of 298, 308 and 318 K, was 51.28 mg g-1, 46.73 mg g-1 and 50.25 mg g-1, respectively, which was better than most reported adsorbents. The Al-La-WSB performed well over a considerable wide pH range of 3-10 and carried positive charge at pH < 4.8. The presence co-existing ions of SO42-, HCO3-, Cl- and NO3- had a minor impact on fluoride adsorption besides PO43-. Regeneration experiment results showed that the Al-La-WSB had an excellent reusability. According to the adsorbent characterization and batch adsorption experiment, the adsorption of fluoride on the Al-La-WSB was primarily a chemisorption, involving electrostatic interactions and ion exchange, which nitrate ion and hydroxyl played a major role. The results suggested that the Al-La-WSB could be a great adsorbent for removing fluoride from drinking water.
Collapse
Affiliation(s)
- Ling Yan
- Department of Preventive Medicine, School of Public Health, Nangtong University, Jiangsu, People's Republic of China
| | - Weishi Gu
- Department of Preventive Medicine, School of Public Health, Nangtong University, Jiangsu, People's Republic of China
| | - Nan Zhou
- Department of Preventive Medicine, School of Public Health, Nangtong University, Jiangsu, People's Republic of China
| | - Changqing Ye
- Department of Preventive Medicine, School of Public Health, Nangtong University, Jiangsu, People's Republic of China
| | - Yuhuan Yang
- Department of Preventive Medicine, School of Public Health, Nangtong University, Jiangsu, People's Republic of China
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
32
|
Chemical Stabilization Used to Reduce Geogenic Selenium, Molybdenum, Sulfates and Fluorides Mobility in Rocks and Soils from the Parisian Basin. ENVIRONMENTS 2022. [DOI: 10.3390/environments9070078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Rocks and soils excavated from civil works frequently present high concentrations of naturally occurring leachable (oxy-)anions. This situation raises concerns regarding the potential transfer of contaminants to groundwater in a storage scenario. This study was carried out to give practical insights on the ability of various stabilizing agents to reduce molybdenum (Mo), selenium (Se), fluorides and sulfates mobility in four types of naturally contaminated excavated materials. Based on standardized leaching tests results, Mo and Se were effectively immobilized after zero valent iron or iron salts additions. Although alkaline materials were found to effectively reduce fluorides and sulfates mobility, their addition occasionally caused a subsequent increase in Mo and Se leaching due to pH increase. None of the reagents tested allowed a simultaneous immobilization of all (oxy-)anions sufficient to reach regulatory threshold values. The remaining difficulties were related to: (i) sulfates leaching from gypsum-rich samples, (ii) fluorides leaching from clayey samples and (iii) Mo and sulfates mobility from tunnel muck. Altogether, the study revealed that the choice of stabilizing agents should be made depending on the speciation of the contaminant or else an opposite impact (i.e., increase in contaminant mobility) might be triggered.
Collapse
|
33
|
Dzieniszewska A, Nowicki J, Rzepa G, Kyziol-Komosinska J, Semeniuk I, Kiełkiewicz D, Czupioł J. Adsorptive removal of fluoride using ionic liquid-functionalized chitosan - Equilibrium and mechanism studies. Int J Biol Macromol 2022; 210:483-493. [PMID: 35500782 DOI: 10.1016/j.ijbiomac.2022.04.179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/04/2022] [Accepted: 04/24/2022] [Indexed: 01/04/2023]
Abstract
In this study, novel biosorbents, based on chitosan and imidazolium ionic liquid, were prepared for the removal of fluoride from aqueous solutions. The adsorbents were characterized by FTIR, SEM-EDS and low-temperature nitrogen adsorption-desorption. To investigate the adsorption mechanism and behavior of chitosan adsorbents, batch experiments were conducted under different adsorbent dosages (2, 4, 10 g/L), pH (4, 7, 9) and initial concentration (0.5-25.0 mg/L). The influence of the method of synthesis of ionic liquid on the adsorption performance were also studied. Experimental data were evaluated by Freundlich, Langmuir and Sips models. The introduction of ionic liquid significantly improved the uptake of fluoride compared to pure chitosan. The adsorption was influenced by the experimental conditions, as well as the method of ionic liquid synthesis. The highest fluoride removal was observed at pH 4 and found to decrease with increasing pH. The removal efficiency and adsorption capacity values indicated that the dose of 4 g/L was the optimum adsorbent dosage. The equilibrium data fitted best with the Sips isotherm and the maximum adsorption capacity reached 8.068 mg/g for modified chitosan beads. The mechanism of fluoride adsorption onto ionic liquid-modified chitosan involves electrostatic attraction, ion exchange and ion pair interaction.
Collapse
Affiliation(s)
- A Dzieniszewska
- Institute of Environmental Engineering PAS, 34 M. Skłodowskiej-Curie St., 41-819 Zabrze, Poland.
| | - J Nowicki
- Łukasiewicz Research Network Institute of Heavy Organic Synthesis "Blachownia", 9 Energetykow Str., 47-225 Kedzierzyn-Kozle, Poland.
| | - G Rzepa
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection al. Mickiewicza 30, 30-059 Krakow, Poland.
| | - J Kyziol-Komosinska
- Institute of Environmental Engineering PAS, 34 M. Skłodowskiej-Curie St., 41-819 Zabrze, Poland.
| | - I Semeniuk
- Łukasiewicz Research Network Institute of Heavy Organic Synthesis "Blachownia", 9 Energetykow Str., 47-225 Kedzierzyn-Kozle, Poland.
| | - D Kiełkiewicz
- Łukasiewicz Research Network Institute of Heavy Organic Synthesis "Blachownia", 9 Energetykow Str., 47-225 Kedzierzyn-Kozle, Poland.
| | - J Czupioł
- Institute of Environmental Engineering PAS, 34 M. Skłodowskiej-Curie St., 41-819 Zabrze, Poland.
| |
Collapse
|
34
|
Medellin-Castillo NA, Isaacs-Páez ED, Giraldo-Gutierrez L, Moreno-Piraján JC, Rodríguez-Méndez I, Reyes-López SY, Reyes-Hernández J, Segovia-Sandoval SJ. Data for the synthesis, characterization, and use of xerogels as adsorbents for the removal of fluoride and bromide in aqueous phase. Data Brief 2022; 42:108138. [PMID: 35496485 PMCID: PMC9043675 DOI: 10.1016/j.dib.2022.108138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Groundwater with high fluoride concentrations has been recognized as one of the serious concerns worldwide. Besides, the fluoride released into the groundwater by slow dissolution of fluoride-containing rocks, various industries also contribute to fluoride pollution [1]. Excess intake of fluoride leads to various health problems such as dental and skeletal fluorosis, cancer, infertility, brain damage, thyroid diseases, etc. [2]. On the other hand, bromide is naturally present in surface and groundwater sources. However, during the chlorination process, bromide can be oxidized to HOBr, which can react with natural organic matter in water to form brominated organic disinfection byproducts, which are very harmful to human health [3]. Among various methods for water treatment, the adsorption process has been widely used and seems to be an efficient and attractive method for the removal of many contaminants in water, such as anions, in terms of cost, simplicity of design, and operation [4], [5]. In the past years, xerogels and carbon xerogels, a new type of adsorbents, which are synthesized by the sol-gel polycondensation of resorcinol and formaldehyde, have gained attention due to their moldable texture and chemical properties [6]. Moreover, melamine addition in resorcinol and formaldehyde xerogels adds basic groups on its surface, favouring Lewis acid-base interactions between xerogels and other components by adsorption [7]. In this data article, the synthesis of three resorcinol-formaldehyde (R/F) xerogels with an increasing amount of melamine (M) was carried out by colloidal polymerization (molar ratios of M/R = 0.5, M/R = 1.0, and M/R = 2.0). Additionally, samples of M/R = 0.5 xerogel were carbonized at 400, 450, and 550 °C under an inert atmosphere to increase their specific area. Organic and carbon xerogels obtained were characterized by FTIR, TGA, SEM, Physisorption of N2, and the pH at the point of zero charge (pHPZC). All organic xerogels were also tested as adsorbents on the removal of fluoride and bromide ions from aqueous phase. The Freundlich, Langmuir, and Radke-Prausnitz isotherm models were applied to interpret the experimental data from adsorption equilibrium. Additionally, the data of the mass of the xerogel needed to remove fluoride and bromide from groundwater and fulfill the maximum concentration levels are also included.
Collapse
Affiliation(s)
- Nahum Andres Medellin-Castillo
- Centro de Investigación y Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico
- Corresponding author.
| | - Elizabeth Diane Isaacs-Páez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C., San Luis Potosí 78216, Mexico
| | - Liliana Giraldo-Gutierrez
- Departamento de Química. Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá. Carrera 30 No. 45-03, Bogotá, Colombia
| | - Juan Carlos Moreno-Piraján
- Departamento de Química, Facultad de Ciencias, Universidad de los Andes, Carrera 1 este No 18A-10, Bogotá, Colombia
| | - Itzia Rodríguez-Méndez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C., San Luis Potosí 78216, Mexico
| | - Simón Yobanny Reyes-López
- Instituto de Ciencias Biomedicas, Universidad Autonoma de Ciudad Juarez, Cd. Juarez, Chihuahua 32300, México
| | - Jaime Reyes-Hernández
- Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78240, México
| | - Sonia Judith Segovia-Sandoval
- Centro de Investigación y Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico
| |
Collapse
|
35
|
Munzhelele E, Gitari M, Ayinde W, Mudzielwana R. Synthesis, characterization of Ce3+ doped poly (para-phenylenediamine) composite for fluoride, arsenite and pathogens removal in aqueous solutions. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Bej S, Ghosh M, Das R, Banerjee P. Evaluation of nanomaterials-grafted enzymes for application in contaminants degradation: Need of the hour with proposed IoT synchronized nanosensor fit sustainable clean water technology in en masse. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Wang J, Ren C, Wang H, Li W. Mechanisms of fluoride uptake by surface-modified calcite: A 19F solid-state NMR and TEM study. CHEMOSPHERE 2022; 294:133729. [PMID: 35090854 DOI: 10.1016/j.chemosphere.2022.133729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Fluoride pollution in groundwater is a serious problem threatening millions of people worldwide. Calcite is considered an ideal adsorbent for defluoridation owing to its widespread presence and low cost. To further enhance its performance, we synthesize a series of phosphate-modified calcites with varying phosphate concentrations. The surface modification led to the formation of a nanosized hydroxyapatite (HAP) coating on the calcite surface. With increasing concentrations of phosphate used for modification, the BET specific surface area of the adsorbents was dramatically enhanced, resulting in a great enhancement of F uptake. At low F concentrations (i.e., <1 mM), surface-modified calcite can achieve up to 25 times higher F removal efficiency than calcite. The 19F solid-state MAS NMR spectra yielded three distint peaks at δ(19F) = -86 ppm, -99 ppm, and -122 ppm, representing the formation of carbonate fluorapatite (CFA), fluorapatite (FAP), and coprecipitated F, respectively. This provides strong evidence for the contribution of newly formed HAP to F removal. In contrast, at high F concentrations (e.g., >2 mM), surface modification did not enhance F uptake by calcite. The 19F solid-state MAS NMR analysis revealed that the predominant deflurodation mechanism is the formation of CaF2 precipitates (δ(19F) = -108 ppm) for both pristine and modified calcite at high F concentrations. Under this condition, the contribution of the newly formed nanosized HAP to F uptake is insignificant. Taken together, our results demonstrated the potential of surface modification of calcite as a cost-effective technique for defluoridation for most F-rich groudwater.
Collapse
Affiliation(s)
- Jingzhao Wang
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Chao Ren
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Hongtao Wang
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China; Frontiers Science Center for Critical Earth Material Cycling(FSC-CEMaC), Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Wei Li
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China; Frontiers Science Center for Critical Earth Material Cycling(FSC-CEMaC), Nanjing University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
38
|
Robledo-Peralta A, García-Quiñonez LV, Rodríguez-Beltrán RI, Reynoso-Cuevas L. Zr-Based Biocomposite Materials as an Alternative for Fluoride Removal, Preparation and Characteristics. Polymers (Basel) 2022; 14:1575. [PMID: 35458325 PMCID: PMC9025067 DOI: 10.3390/polym14081575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
The development of biocomposite materials used as adsorbents to remove ions in aqueous media has become an attractive option. The biomasses (base materials) are chemically treated and impregnated with metal cations, becoming competitive for fluoride-capture capacity. In this research, Valence orange (Citrus sinensis) and Red Delicious apple (Malus Domestica) peels were modified by alkaline treatment, carboxylation, and impregnation with zirconium (Zr). These materials were characterized morphologically and structurally to understand the modifications in the treated biomasses and the mechanism of fluoride adsorption. The results show changes in surface area and composition, most notably, an increment in roughness and Zr impregnation of the bioadsorbents. After batch experimentation, the maximum capacity of the materials was determined to be 4.854 and 5.627 mg/g for the orange and apple peel bioadsorbent, respectively, at pH 3.5. The experimental data fitted the Langmuir model, suggesting that chemisorption occurs in monolayers. Finally, the characterization of the bioadsorbents in contact with fluoride allowed the replacement of OH species by fluoride or the formation of hydrogen bonds between them as an adsorption mechanism. Therefore, these bioadsorbents are considered viable and can be studied in a continuous system.
Collapse
Affiliation(s)
- Adriana Robledo-Peralta
- Department of Sustainable Engineering, Advanced Materials Research Center (CIMAV-Durango), CIMAV 110 Street, Ejido Arroyo Seco, Durango C.P. 34147, Durango, Mexico;
| | - Linda Viviana García-Quiñonez
- CONACYT-Centro de Investigación Científica y de Educación Superior de Ensenada, Unidad Foránea Monterrey, Alianza Centro 504, PIIT, Apodaca C.P. 66629, Nuevo León, Mexico;
| | - René I. Rodríguez-Beltrán
- CONACYT-Centro de Investigación Científica y de Educación Superior de Ensenada, Unidad Foránea Monterrey, Alianza Centro 504, PIIT, Apodaca C.P. 66629, Nuevo León, Mexico;
| | - Liliana Reynoso-Cuevas
- Catedras CONACYT, Advanced Materials Research Center (CIMAV-Durango), CIMAV 110 Street, Ejido Arroyo Seco, Durango C.P. 34147, Durango, Mexico
| |
Collapse
|
39
|
Islam MR, Gupta SS, Jana SK, Pradeep T. Industrial Utilization of Capacitive Deionization Technology for the Removal of Fluoride and Toxic Metal Ions (As 3+/5+ and Pb 2+). GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100129. [PMID: 35433026 PMCID: PMC8995710 DOI: 10.1002/gch2.202100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Capacitive deionization (CDI) is an emerging desalination technology, particularly useful for removing ionic and polarizable species from water. In this context, the desalination performance of fluoride and other toxic species (lead and arsenic) present in brackish water at an industrial scale of a few kilo liters using a CDI prototype built by InnoDI Private Limited is demonstrated. The prototype is highly efficient in removing ionic contaminants from water, including toxic and heavy metal ions. It can remove fluoride ions below the World Health Organization (WHO) limit (1.5 ppm) at an initial concentration of 7 ppm in the input feed water. The fluoride removal efficiency of the electrodes (at a feed concentration of 6 ppm) deteriorates by ≈4-6% in the presence of bicarbonate and phosphate ions at concentrations of 100 ppm each. The removal efficiency depends on flow rate, initial total dissolved solids, and other co-ions present in the feed water. Interestingly, toxic species (As3+/5+ and Pb2+) are also removed efficiently (removal efficiency > 90%) by this technology. The electrodes are characterized extensively before and after adsorption to understand the mechanism of adsorption at the electrode.
Collapse
Affiliation(s)
- Md Rabiul Islam
- DST Unit of Nanoscience (DST UNS)and Thematic Unit of Excellence (TUE)Department of ChemistryIndian Institute of Technology MadrasChennai600 036India
| | - Soujit Sen Gupta
- DST Unit of Nanoscience (DST UNS)and Thematic Unit of Excellence (TUE)Department of ChemistryIndian Institute of Technology MadrasChennai600 036India
| | - Sourav Kanti Jana
- DST Unit of Nanoscience (DST UNS)and Thematic Unit of Excellence (TUE)Department of ChemistryIndian Institute of Technology MadrasChennai600 036India
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS)and Thematic Unit of Excellence (TUE)Department of ChemistryIndian Institute of Technology MadrasChennai600 036India
| |
Collapse
|
40
|
Gebremariam AM, Asgedom AG, Mekonnen KN, Ashebir ME, Gebremikael ZH, Mesfin KA. Defluoridation of Water Using Aluminum Hydroxide Activated Carbon Biosorbents. ADVANCES IN MATERIALS SCIENCE AND ENGINEERING 2022; 2022:1-12. [DOI: 10.1155/2022/4038444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
This study was aimed to investigate the efficiency of locally available low-cost and eco-friendly activated agricultural biosorbents produced from corncob and sorghum husk for the removal of fluoride from aqueous solution using batch adsorption. The activated biosorbents were characterized using SEM, XRD and FTIR spectroscopy. Effects of particle size (0.063–1.0 mm), contact time (15–120 min), pH (2–12), dose (2–10 g), and initial concentration (0.5–5.0 mg/L) were investigated. The morphology analysis revealed that biosorbents showed the presence of a high binding capacity for fluoride adsorption. The maximum adsorption was attained; size of the adsorbent 0.063 mm, pH 7, contact time 60 min, and 6 g dose of the biosorbents. Moreover, the adsorption kinetics followed the pseudo-second-order model and the adsorption isotherms fitted well to the Langmuir model. Furthermore, a field study was conducted using real water sample collected from Semema, Tigray, Ethiopia, and maximum fluoride removal was observed to be 79.44% and 77.05% for the activated carbons of Corncob and Sorghum husk at optimum conditions. Therefore, this experimental finding indicated that activated carbon of Corncob and Sorghum husk can be used as efficient, cheap, and eco-friendly biosorbents for the removal of fluoride from drinking water at community level.
Collapse
Affiliation(s)
- Azmera Mezgebo Gebremariam
- Department of Material Science and Engineering, Mekelle Institute Technology, Mekelle University, P.O. Box: 231, Mekelle, Ethiopia
| | - Abraha Gebrekidan Asgedom
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box: 231, Mekelle, Ethiopia
| | - Kebede Nigussie Mekonnen
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box: 231, Mekelle, Ethiopia
| | - Mengstu Etay Ashebir
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box: 231, Mekelle, Ethiopia
| | - Zenebe Hailu Gebremikael
- Department of Land Resources Management and Environmental Protection, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Ethiopia
| | - Kassa Amare Mesfin
- School of Earth Science, College of Natural and Computational Sciences, Mekelle University, P.O. Box: 231, Mekelle, Ethiopia
| |
Collapse
|
41
|
Gebremariam AM, Asgedom AG, Mekonnen KN, Ashebir ME, Gebremikael ZH, Mesfin KA. Defluoridation of Water Using Aluminum Hydroxide Activated Carbon Biosorbents. ADVANCES IN MATERIALS SCIENCE AND ENGINEERING 2022; 2022:1-12. [DOI: https:/doi.org/10.1155/2022/4038444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
This study was aimed to investigate the efficiency of locally available low-cost and eco-friendly activated agricultural biosorbents produced from corncob and sorghum husk for the removal of fluoride from aqueous solution using batch adsorption. The activated biosorbents were characterized using SEM, XRD and FTIR spectroscopy. Effects of particle size (0.063–1.0 mm), contact time (15–120 min), pH (2–12), dose (2–10 g), and initial concentration (0.5–5.0 mg/L) were investigated. The morphology analysis revealed that biosorbents showed the presence of a high binding capacity for fluoride adsorption. The maximum adsorption was attained; size of the adsorbent 0.063 mm, pH 7, contact time 60 min, and 6 g dose of the biosorbents. Moreover, the adsorption kinetics followed the pseudo-second-order model and the adsorption isotherms fitted well to the Langmuir model. Furthermore, a field study was conducted using real water sample collected from Semema, Tigray, Ethiopia, and maximum fluoride removal was observed to be 79.44% and 77.05% for the activated carbons of Corncob and Sorghum husk at optimum conditions. Therefore, this experimental finding indicated that activated carbon of Corncob and Sorghum husk can be used as efficient, cheap, and eco-friendly biosorbents for the removal of fluoride from drinking water at community level.
Collapse
Affiliation(s)
- Azmera Mezgebo Gebremariam
- Department of Material Science and Engineering, Mekelle Institute Technology, Mekelle University, P.O. Box: 231, Mekelle, Ethiopia
| | - Abraha Gebrekidan Asgedom
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box: 231, Mekelle, Ethiopia
| | - Kebede Nigussie Mekonnen
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box: 231, Mekelle, Ethiopia
| | - Mengstu Etay Ashebir
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box: 231, Mekelle, Ethiopia
| | - Zenebe Hailu Gebremikael
- Department of Land Resources Management and Environmental Protection, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Ethiopia
| | - Kassa Amare Mesfin
- School of Earth Science, College of Natural and Computational Sciences, Mekelle University, P.O. Box: 231, Mekelle, Ethiopia
| |
Collapse
|
42
|
Rice Industry By-Products as Adsorbent Materials for Removing Fluoride and Arsenic from Drinking Water—A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In drinking water, high concentrations of fluoride and arsenic can have adverse effects on human health. Waste deriving from the rice industry (rice husk, rice straw, rice bran) can be promising adsorbent materials, because they are (i) produced in large quantities in many parts of the world, (ii) recoverable in a circular economy perspective, (iii) at low cost if compared to expensive conventional activated carbon, and (iv) easily manageable even in developing countries. For the removal of fluoride, rice husk and rice straw allowed to obtain adsorption capacities in the range of 7.9–15.2 mg/g. Using rice husk for arsenic adsorption, excellent results were achieved with adsorption capacities above 19 mg/g. The best results both for fluorides and arsenic (>50 mg/g) were found with metal- or chemical-modified rice straw and rice husk. Identifying the next steps of future research to ensure the upscaling of biochar from recovered by-products, it is fundamental to perform: (i) tests on real waters for multicomponent adsorption; (ii) experiments with pilot plants in continuous operation; (iii) cost analysis/real applicability of modification treatments such as metal coupling or chemical synthesis; (iv) more studies on the biochar stability and on its regeneration or recovery after use.
Collapse
|
43
|
Fan C, Yin N, Cai X, Du X, Wang P, Liu X, Li Y, Chang X, Du H, Ma J, Cui Y. Stabilization of fluorine-contaminated soil in aluminum smelting site with biochar loaded iron-lanthanide and aluminum-lanthanide bimetallic materials. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128072. [PMID: 34954432 DOI: 10.1016/j.jhazmat.2021.128072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Trivalent metals-modified-biochar (BC) has been widely used for the removal of fluorine (F) in water, but little is known about its effects on the stability and mobility of F-contaminated soil. Two types of modified-BC materials (BC-loaded iron-lanthanide (BC/Fe-La) and BC-loaded aluminum-lanthanide (BC/Al-La)) were synthesized and used for the remediation of F-contaminated soil. The forms of BC/LaxFe3x(OH)y in BC/Fe-La and BC/LaxAl3x(OH)y in BC/Al-La were identified by spectroscopy, X-ray dispersion, thermogravimetric, and pore diameter/volume analyses. Following application (4-12%, w/w) to F-contaminated soil for 30 d, water soluble fluoride (WSF) decreased significantly. The modified-BC with a 1:1:1 molar ratio (BC: Al3+ or Fe3+: La3+) were more effective than those at 1:0.5:0.5. The BC/Al-La were the most effective to stabilize F. In particular, the highest decrease in WSF (by 91.75%) was obtained with the application of 12% BC/Al-La-2, while 8% BC/Al-La-2% and 12% BC/Al-La-1 reduced the WSF by 87.58% and 90.17%, respectively; all values obtained were lower than the national standard of China (< 1.5 mg/L). In addition, the sequential extraction results showed that modified-BC promoted the transformation of the other chemical speciation to the Fe/Mn-F.
Collapse
Affiliation(s)
- Chuanfang Fan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xin Du
- CHINALCO Environmental protection and Energy Conservation Group Co. Ltd., Beijing 102209, PR China
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiaotong Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yunpeng Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xuhui Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Huili Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jingnan Ma
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
44
|
Angwa LM, Jiang Y, Pei J, Sun D. Antioxidant Phytochemicals for the Prevention of Fluoride-Induced Oxidative Stress and Apoptosis: a Review. Biol Trace Elem Res 2022; 200:1418-1441. [PMID: 34003450 DOI: 10.1007/s12011-021-02729-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Fluorosis is a major public health problem globally. The non-availability of specific treatment and the irreversible nature of dental and skeletal lesions poses a challenge in the management of fluorosis. Oxidative stress is known to be one of the most important mechanisms of fluoride toxicity. Fluoride promotes the accumulation of reactive oxygen species by inhibiting the activity of antioxidant enzymes, resulting in the excessive production of reactive oxygen species at the cellular level which further leads to activation of cell death processes such as apoptosis. Phytochemicals that act as antioxidants have the potential to protect cells from oxidative stress. Evidence confirms that clinical symptoms of fluorosis can be mitigated to some extent or prevented by long-term intake of antioxidants and plant products. The primary purpose of this review is to examine recent findings that focus on the amelioration of fluoride-induced oxidative stress and apoptosis by natural and synthetic phytochemicals and their molecular mechanisms of action.
Collapse
Affiliation(s)
- Linet M Angwa
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
- Department of Clinical Medicine, Kabarak University, Nakuru, 20157, Kenya
| | - Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
| | - Junrui Pei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
45
|
Classical and Recent Developments of Membrane Processes for Desalination and Natural Water Treatment. MEMBRANES 2022; 12:membranes12030267. [PMID: 35323741 PMCID: PMC8948695 DOI: 10.3390/membranes12030267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 01/02/2023]
Abstract
Water supply and water treatment are of major concern all around the world. In this respect, membrane processes are increasingly used and reported for a large range of applications. Desalination processes by membranes are well-established technologies with many desalination plants implemented in coastal areas. Natural water treatment is also well implemented to provide purified water for growing population. This review covers various aspects of desalination: membranes and modules, plants, fouling (scaling, biofouling, algal blooms), cleaning, pretreatment (conventional and membrane treatments), energy and environmental issues, renewable energies, boron removal and brine disposal. Treatment of natural water focuses on removal of natural organic matter, arsenic, iron, nitrate, fluoride, pesticides and herbicides, pharmaceutical and personal care products. This review underlines that desalination and natural water treatment require identical knowledge of membrane fouling, construction of large plants, cleaning procedures, energy and environmental issues, and that these two different fields can learn from each other.
Collapse
|
46
|
Fluoride Adsorption Comparison from Aqueous Solutions Using Al- and La-Modified Adsorbent Prepared from Polygonum orientale Linn. WATER 2022. [DOI: 10.3390/w14040592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Al- and La-modified adsorbent materials (PO–Al, PO–La) were prepared by impregnating Polygonum orientale Linn. straw with Al2(SO4)3 and La(NO3)3·6H2O solutions. The potential of removing fluoride using these modified adsorbents was examined. In the PO, PO–Al and PO–La adsorption systems, the fluoride adsorption process followed pseudo-second-order kinetics, and the kinetic constants for k2 and R2 were 0.0276 and 0.9609; 0.2070 and 0.9994; 0.1266 and 0.9933, respectively. The adsorption equilibrium results showed the best match with Langmuir isotherms. Moreover, the maximum monolayer adsorption capacity of PO, PO–Al and PO–La are 0.0923, 3.3190 and 1.2514 mg/g, respectively, in 30 °C. The regeneration results show that the effectively regenerating ability of modified adsorbents. Al-modified adsorbent showed the best results in terms of cost-effectiveness and adsorption efficiency for fluoride adsorption.
Collapse
|
47
|
Solanki YS, Agarwal M, Gupta AB, Gupta S, Shukla P. Fluoride occurrences, health problems, detection, and remediation methods for drinking water: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150601. [PMID: 34597567 DOI: 10.1016/j.scitotenv.2021.150601] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 05/21/2023]
Abstract
Fluoride contamination has become a considerable threat to our society worldwide. Fluoride in drinking water is primarily due to rich fluoride soil, volcanic activity, forage, grasses and grains, and anthropogenic reasons. World Health Organization has regulated the upper limit for fluoride in drinking water to be 1.5 mg/L while different countries have set their standards according to their circumstances. Excess amounts of fluoride ions in drinking water can cause dental fluorosis, skeletal fluorosis, arthritis, bone damage, osteoporosis, muscular damage, fatigue, joint-related problems, and chronicle issues. In extreme conditions, it could adversely damage the heart, arteries, kidney, liver, endocrine glands, neuron system, and several other delicate parts of a living organism, briefed in the present article. Moreover, a comprehensive scenario for the situations in countries like, China, Canada, Mexico, United States, Yemen, Pakistan, Saudi Arabia, South Korea, Sri Lanka, Indonesia, Iran, Turkey, Australia, and India affected with high fluoride levels in ground water has been described. To analyze the presence of fluoride molecule, out of different detections methods, ion selective and colorimetric method has been adopted for real situation in the field of water application. Also, different methods to remove fluoride from water like reverse osmosis, nano filtration, adsorption, ion-exchange, and precipitation/coagulation with their removal mechanism were highlighted in the review. Moreover, the applicability of the approach with the prospect of country's economic status has been discussed, due to high cost and maintenance the membrane technology is not popular in developing countries like India, Senegal, Tanzania, and Kenya which employ adsorption and coagulation-precipitation for fluoride removal. It is noticeable from literature study that different approaches show unique potential for defluoridation. Some key parameters and mechanistic adaptations which could pave the defluoridation methods to newer horizons have been put forward.
Collapse
Affiliation(s)
- Yogendra Singh Solanki
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Madhu Agarwal
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur 302017, India.
| | - A B Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Sanjeev Gupta
- Grasim Industries Limited (Aditya Birla Group), Bharuch, Gujrat 392012, India
| | - Pushkar Shukla
- Grasim Industries Limited (Aditya Birla Group), Bharuch, Gujrat 392012, India
| |
Collapse
|
48
|
Rodríguez-Iglesias J, Alcalá L, Megido L, Castrillón L. Removal of fluoride from coke wastewater by aluminum doped chelating ion-exchange resins: a tertiary treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8705-8715. [PMID: 34491503 PMCID: PMC8776662 DOI: 10.1007/s11356-021-16299-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Coke wastewater is one of the most problematic industrial wastewaters, due to its large volume and complex pollutant load. In this study, ion exchange technology was investigated with the objective of reducing the fluoride content of the effluent from a coke wastewater treatment plant (26.7 mg F-/L). Two Al-doped exchange resins with chelating aminomethyl-phosphonic acid and iminodiacetic groups were assessed: Al-doped TP260 and TP207 resins, respectively. The effect of resin dosage, varying from 5 to 25 g/L, was evaluated. F- removal was within the range 57.8-89.3% and 72.0-92.1% for Al-doped TP260 and TP207, respectively. A kinetic study based on a generalized integrated Langmuir kinetic equation fitted the experimental data (R2 > 0.98). The parameters of the said kinetics met the optimal conditions for the ion exchange process, which seemed to be more favorable with Al-doped TP260 resin than with Al-doped TP207 resin, using the same resin dosage. Furthermore, the experimental data were well described (R2 > 0.98) by Langmuir and Freundlich isotherm models, in agreement with the findings of the kinetic study: the maximum sorption capacity was obtained for the Al-doped TP260 resin.
Collapse
Affiliation(s)
- Jesús Rodríguez-Iglesias
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain
| | - Lara Alcalá
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain
| | - Laura Megido
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain.
| | - Leonor Castrillón
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain
| |
Collapse
|
49
|
Aigbe UO, Osibote OA. Fluoride ions sorption using functionalized magnetic metal oxides nanocomposites: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9640-9684. [PMID: 34997491 DOI: 10.1007/s11356-021-17571-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Fluoride is an anionic pollutant found superfluous in surface or groundwater as a result of anthropogenic actions from improper disposal of industrial effluents. In drinking water, superfluous fluoride has been revealed to trigger severe health problems in humans. Hence, developing a comprehensive wastewater decontamination process for the effective management and preservation of water contaminated with fluoride is desirable, as clean water demand is anticipated to intensify considerably over the upcoming years. In this regard, there have been increased efforts by researchers to create novel magnetic metal oxide nanocomposites which are functionalized for the remediation of wastewater owing to their biocompatibility, cost-effectiveness, relative ease to recover and reuse, non-noxiousness, and ease to separate from solutions using a magnetic field. This review makes an all-inclusive effort to assess the effects of experimental factors on the sorption of fluoride employing magnetic metal oxide nanosorbents. The removal efficiency of fluoride ions onto magnetic metal oxides nanocomposites were largely influenced by the solution pH and ions co-existing with fluoride. Overall, it was noticed from the reviewed researches that the maximum sorption capacity using various metal oxides for fluoride sorption was in the order of aluminium oxides >cerium oxides > iron oxides > magnesium oxides> titanium oxides, and most sorption of fluoride ions was inhibited by the existence of phosphate trailed by sulphate. The mechanism of fluoride sorption onto various sorbents was due to ion exchange, electrostatic attraction, and complexation mechanism.
Collapse
Affiliation(s)
- Uyiosa Osagie Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa.
| | - Otolorin Adelaja Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
50
|
Wang X, Wang Q, Zhao M, Zhang L, Ji X, Sun H, Sun Y, Ma Z, Xue J, Gao X. Fabrication of a Cation-Exchange Membrane via the Blending of SPES/N-Phthaloyl Chitosan/MIL-101(Fe) Using Response Surface Methodology for Desalination. MEMBRANES 2022; 12:144. [PMID: 35207066 PMCID: PMC8880603 DOI: 10.3390/membranes12020144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023]
Abstract
In the present work, a novel mixed matrix cation exchange membrane composed of sulfonated polyether sulfone (SPES), N-phthaloyl chitosan (NPHCs) and MIL-101(Fe) was synthesized using response surface methodology (RSM). The electrochemical and physical properties of the membrane, such as ion exchange capacity, water content, morphology, contact angle, fixed ion concentration and thermal stability were investigated. The RSM based on the Box-Behnken design (BBD) model was employed to simulate and evaluate the influence of preparation conditions on the properties of CEMs. The regression model was validated via the analysis of variance (ANOVA) which exhibited a high reliability and accuracy of the results. Moreover, the experimental data have a good fit and high reproducibility with the predicted results according to the regression analysis. The embedding of MIL-101(Fe) nanoparticles contributed to the improvement of ion selective separation by forming hydrogen bonds with the polymer network in the membrane. The optimum synthesis parameters such as degree of sulfonation (DS), the content of SPES and NPHCs and the content of MIL-101(Fe) were acquired to be 30%, 85:15 and 2%, respectively, and the corresponding desalination rate of the CEMs improved to 136% while the energy consumption reduced to 90%. These results revealed that the RSM was a promising strategy for optimizing the preparation factors of CEMs and other similar multi-response optimization studies.
Collapse
Affiliation(s)
- Xiaomeng Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (Q.W.); (M.Z.); (L.Z.)
| | - Qun Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (Q.W.); (M.Z.); (L.Z.)
| | - Mengjuan Zhao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (Q.W.); (M.Z.); (L.Z.)
| | - Lu Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (Q.W.); (M.Z.); (L.Z.)
| | - Xiaosheng Ji
- Sanya Institute of Oceanology, Chinese Academy of Sciences, Sanya 572000, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China;
| | - Yongchao Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; (Y.S.); (X.G.)
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhun Ma
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (X.W.); (Q.W.); (M.Z.); (L.Z.)
| | - Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
| | - Xueli Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; (Y.S.); (X.G.)
| |
Collapse
|