1
|
Jain S, Tembhurkar AR. Response surface method for optimization of process variables for bioaccumulation of metals with Jatropha curcas on fly ash-amended soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:580. [PMID: 37069471 DOI: 10.1007/s10661-023-11239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Heavy metal contamination is a serious rising issue with the dumping of fly ash (FA). A recent focus of researches and practices tends towards reutilization of FA with bioremediation technique using various plants. The present research aimed to investigate optimum metal extraction in fly ash-amended soil using microbes and treated wastewater with Jatropha curcas plant using response surface methodology (RSM). The Box-Behnken design was used to determine the optimum condition for maximum metal remediation with three levels and three variables, viz., fly ash percentage (5, 12.5, 20%), microbial dose (0.5, 5.25, 10 ml), and contaminant level of water to irrigate the plant (freshwater, treated wastewater, untreated wastewater). The approach adopted was to set fly ash percentage as "maximum," microbial dose as "minimum," and contaminant level of water to irrigate the plant as "in range." The outcome of the present research provided the best prediction models, integrated the process variables, and developed rotational curves for analyzing metal remediation in 360° rotation for Fe, Mn, Zn, Cu, and Al as responses of interest. The optimum conditions for maximum bioremediation from fly ash-amended soils by bioaccumulation on Jatropha curcas plant worked out as 13.866% fly ash, 4.088 ml microbial dose, and treated wastewater as type of water to irrigate the plant that bioaccumulated Fe, Mn, Zn, Cu, and Al as to 26.904, 0.760, 0.160, 0.162, and 12.895 mg/l.
Collapse
Affiliation(s)
- Sandeep Jain
- Civil Engineering Department, Visvesvaraya National Institute of Technology, Nagpur, 440010, India.
| | - Ajay R Tembhurkar
- Civil Engineering Department, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| |
Collapse
|
2
|
Lun YE, Abdullah SRS, Hasan HA, Othman AR, Kurniawan SB, Imron MF, Al Falahi OA, Said NSM, Sharuddin SSN, Ismail N'I. Integrated emergent-floating planted reactor for textile effluent: Removal potential, optimization of operational conditions and potential forthcoming waste management strategy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114832. [PMID: 35303596 DOI: 10.1016/j.jenvman.2022.114832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/06/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Native emergent and floating plants; local reed grass (Phragmites karka) and water hyacinth (Eichhornia crassipes), respectively, were used to treat textile wastewater using an integrated emergent-floating planted reactor (IEFPR) system at hydraulic retention times (HRTs) of 8, 14, and 19 days. Real textile effluent having characteristics of 1686.3 ADMI for colour, 535 mg/L for total suspended solid (TSS), 647.7 mg/L for chemical oxygen demand (COD) and 124 mg/L for biochemical oxygen demand (BOD) was used throughout this study. The IEFPR system experienced maximum removal of colour (94.8%, HRT 14 days, day 3), TSS (92.7%, HRT 19 days, day 7), and COD (96.6%, HRT 8 days, day 5) at different HRT and exposure time. The process conditions (HRT and exposure time) were optimized for maximum colour, TSS and COD removal from textile effluent by employing response surface methodology (RSM). The optimization has resulted 100% removal of colour, 87% removal of TSS and 100% removal of COD at HRT of 8 days and exposure time of 5 days, with 0.984 desirability. The integrated plant-assisted treatment system showed reliable performance in treating textile wastewater at optimum operational conditions to improve effluent quality before disposal into water bodies or being recycled into the process. The potential of phytoremediator (produced plant biomass) to be utilized as resources for bioenergy or to be converted into value added products (adsorbent or biochar) provides an alternative to management strategy for better environmental sustainability.
Collapse
Affiliation(s)
- Yeow Eu Lun
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Muhammad Fauzul Imron
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya, 60115, Indonesia.
| | - Osama Abrahiem Al Falahi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Fallujah Hospital, Anbar Health Directorate, Iraqi Ministry of Health, Iraq.
| | - Nor Sakinah Mohd Said
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Siti Shilatul Najwa Sharuddin
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Nur 'Izzati Ismail
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
3
|
Mohammed AA, Mutar ZH, Al-Baldawi IA. Alternanthera spp. based-phytoremediation for the removal of acetaminophen and methylparaben at mesocosm-scale constructed wetlands. Heliyon 2021; 7:e08403. [PMID: 34869927 PMCID: PMC8626703 DOI: 10.1016/j.heliyon.2021.e08403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/02/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Recently, the spread of pharmaceuticals and personal care products (PPCPs) in the aquatic environment has steadily increased. In this study, phytoremediation technology, using an ornamental plant (Alternanthera spp.), was investigated to improve the removal of acetaminophen (AC) and methylparaben (MP) from a synthetically prepared wastewater. Three exposure lines (AC-line, MP-line and control-line) were performed with a total of 26 subsurface-horizontal constructed wetlands (SSH-CWs) that operated in batch feeding mode. The influence of plants in addition to the initial spiking concentration (20, 60 and 100 mg/L) of AC and MP on the removal efficiency was evaluated throughout the 35-days experiments. The highest removal efficiencies for AC and MP were 88.6% and 66.4%, respectively, achieved in the planted CWs; whereas only 29.7% and 21.9% were achieved in the control CWs for AC and MP, respectively. The results confirmed the role of Alternanthera spp. for accelerating the removal of AC and MP from synthetically contaminated wastewater in CWs.
Collapse
Affiliation(s)
- Ahmed A. Mohammed
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Zahraa Hasan Mutar
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
- Department of Architecture Engineering, College of Engineering, Wasit University, Wasit, Iraq
| | - Israa Abdulwahab Al-Baldawi
- Department of Biochemical Engineering, Al-khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq
- Corresponding author.
| |
Collapse
|
4
|
Mozaffari MH, Shafiepour E, Mirbagheri SA, Rakhshandehroo G, Wallace S, Stefanakis AI. Hydraulic characterization and removal of metals and nutrients in an aerated horizontal subsurface flow "racetrack" wetland treating primary-treated oil industry effluent. WATER RESEARCH 2021; 200:117220. [PMID: 34038821 DOI: 10.1016/j.watres.2021.117220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetlands (CW) are an attractive technology due to their operational simplicity and low life-cycle cost. It has been applied for refinery effluent treatment but mostly single-stage designs (e.g., vertical or horizontal flow) have been tested. However, to achieve a good treatment efficiency for industrial effluents, different treatment conditions (both aerobic and anaerobic) are needed. This means that hybrid CW systems are typically required with a respectively increased area demand. In addition, a strong aerobic environment that facilitates the formation of iron, manganese, zinc and aluminum precipitates cannot be established with passive wetland systems, while the role of these oxyhydroxide compounds in the further co-precipitation and removal of heavy metals such as copper, nickel, lead, and chromium that can simplify the overall treatment of industrial wastewaters is poorly understood in CW. Therefore, this study tests for the first time an innovative CW design that combines an artificially aerated section with a non-aerated section in a single unit applied for oil refinery wastewater treatment. Four pilot units were tested with different design (i.e., planted/unplanted, aerated/non-aerated) and operational (two different hydraulic loading rates) characteristics to estimate the role of plants and artificial aeration and to identify the optimum design configuration. The pilot units received a primary refinery effluent, i.e., after passing through a dissolved air flotation unit. The first-order removal of heavy metals under aerobic conditions is evaluated, along with the removal of phenols and nutrients. High removal rates for Fe (96-98%), Mn (38-81%), Al (49-73%), and Zn (99-100%) generally as oxyhydroxide precipitates were found, while removal of Cu (61-80%), Ni (70-85%), Pb (96-99%) and Cr (60-92%) under aerobic conditions was also observed, likely through co-precipitation. Complete phenols and ammonia nitrogen removal was also found. The first-order rate coefficient (k) calculated from the collected data demonstrates that the tested CW represents an advanced wetland design reaching higher removal rates at a smaller area demand than the common CW systems.
Collapse
Affiliation(s)
| | | | | | | | - Scott Wallace
- Naturally Wallace Consulting LLC, Stillwater, MN 55082, USA
| | - Alexandros I Stefanakis
- Laboratory of Environmental Engineering and Management, School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece.
| |
Collapse
|
5
|
Dong Y, Chen Y, Guo J, Wang J, Yan P, Yin W. Treatment of mustard tuber wastewater (MTWW) using a pilot-scale packed cage rotating biological contactor system: process modeling and optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:32057-32065. [PMID: 33977432 DOI: 10.1007/s11356-021-14307-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The water quality range for wastewater treatment projects in the food processing industry changes constantly. To fully understand the threshold for pollutant removal with the lowest possible energy consumption, the relationship between pollutant removal and wastewater treatment conditions was established using response surface methodology (RSM). The optimum conditions for total COD, TN, and NH3-N removal from saline mustard tuber wastewater (MTWW) with a packed cage rotating biological contactor (RBC) system were investigated by experiments based on a Box-Behnken design (BBD). The independent variables were organic load (ORL), rotational disk velocity (RDV), and immersion rate (IR). Parameters of COD, TN, and NH3-N removal efficiency were selected as responses. The optimal conditions for the best COD, TN, and NH3-N removal efficiency with the lowest energy consumption were found to be at an ORL of 26.71 kg/day, a RDV of 1.62 rpm (7.62 m/s), and an IR of 46%. After the optimization, the energy cost was evaluated by coupling energy performance indicators with organic pollution efficiencies to be the highest class of performance. This research demonstrates that the suggested models have a good predicting and fitting ability in interrelations between the pollutant removal and process parameters of the packed cage RBC system treating saline MTWW.
Collapse
Affiliation(s)
- Yang Dong
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Youpeng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| | - Jianhui Wang
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Wenjie Yin
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| |
Collapse
|
6
|
Abrile MG, Ciucio MM, Demarchi LM, Bono VM, Fiasconaro ML, Lovato ME. Degradation and mineralization of the emerging pharmaceutical pollutant sildenafil by ozone and UV radiation using response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23868-23886. [PMID: 33219934 DOI: 10.1007/s11356-020-11717-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceuticals and their degradation products which are present in wastewater and superficial waters are becoming an ecological issue. This research investigated the degradation and mineralization of synthetic solutions of the pharmaceutical compound sildenafil citrate (SC) by single ozonation and ozonation jointed with UV radiation (O3/UV). The effects of initial drug concentration (50-125 mg L-1), inlet ozone concentration (35-125 g Nm-3), and UV radiation on SC degradation and decrease of total organic carbon (TOC) were investigated using response surface methodology based on a central composite experimental design. Through the RSM analysis, it was possible to confirm the removal of SC for the entire experimental range. Major intermediates of SC degradation were identified and a degradation pathway was proposed. The kinetics of SC degradation was modeled as a pseudo-first-order reaction with a rate constant ranging between 0.072 and 1.250 min-1. The SC degradation and TOC removal were strongly enhanced by increasing the concentration of gaseous ozone at the inlet and incorporating UV radiation. The highest TOC removal reached at 60 min was 75%, in the O3/UV system, with initial SC content of 50 mg L-1 and inlet ozone concentration of 125 g Nm-3. The degradation rate of SC was increased 3 to 9 times in the presence of UV radiation. Ozone-based advanced oxidation processes appear as a suitable alternative for treatment of the emerging pollutant SC.
Collapse
Affiliation(s)
- Mariana Guadalupe Abrile
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CCT CONICET Santa Fe, Ruta Nacional No. 168 Km 0. (3000), Santa Fe, Argentina
| | - María Michela Ciucio
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CCT CONICET Santa Fe, Ruta Nacional No. 168 Km 0. (3000), Santa Fe, Argentina
| | - Lourdes Marlén Demarchi
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CCT CONICET Santa Fe, Ruta Nacional No. 168 Km 0. (3000), Santa Fe, Argentina
| | - Virginia Mariel Bono
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CCT CONICET Santa Fe, Ruta Nacional No. 168 Km 0. (3000), Santa Fe, Argentina
| | - María Laura Fiasconaro
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CCT CONICET Santa Fe, Ruta Nacional No. 168 Km 0. (3000), Santa Fe, Argentina
| | - María Eugenia Lovato
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CCT CONICET Santa Fe, Ruta Nacional No. 168 Km 0. (3000), Santa Fe, Argentina.
| |
Collapse
|
7
|
Cai Y, Wang R, Rao P, Wu B, Yan L, Hu L, Park S, Ryu M, Zhou X. Bioremediation of Petroleum Hydrocarbons Using Acinetobacter sp. SCYY-5 Isolated from Contaminated Oil Sludge: Strategy and Effectiveness Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020819. [PMID: 33477988 PMCID: PMC7835959 DOI: 10.3390/ijerph18020819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
Biodegradation has been considered as an ideal technique for total petroleum hydrocarbon (TPH) contamination, but its efficiency is limited by its application in the field. Herein, an original TPH-degrading strain, SCYY-5, was isolated from contaminated oil sludge and identified as Acinetobacter sp. by 16S rDNA sequence analysis. The biological function of the isolate was investigated by heavy metal tolerance, carbon, and nitrogen source and degradation tests. To enhance its biodegradation efficiency, the response surface methodology (RSM) based on a function model was adopted to investigate and optimize the strategy of microbial and environmental variables for TPH removal. Furthermore, the performance of the system increased to 79.94% with the further addition of extra nutrients, suggesting that the RSM and added nutrients increased the activity of bacteria to meet the needs of the co-metabolism matrix during growth or degradation. These results verified that it is feasible to adopt the optimal strategy of combining bioremediation with RSM to improve the biodegradation efficiency, for contaminated oil sludge.
Collapse
Affiliation(s)
- Yiyun Cai
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Y.C.); (P.R.); (L.Y.); (L.H.); (X.Z.)
- College of Civil Engineering, Kashgar University, Kashgar 844006, China
- State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
| | - Runkai Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Y.C.); (P.R.); (L.Y.); (L.H.); (X.Z.)
- College of Civil Engineering, Kashgar University, Kashgar 844006, China
- Correspondence: (R.W.); (B.W.); Tel.: +86-021-67791217 (R.W.); +86-010-80169539 (B.W.)
| | - Pinhua Rao
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Y.C.); (P.R.); (L.Y.); (L.H.); (X.Z.)
| | - Baichun Wu
- State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
- Correspondence: (R.W.); (B.W.); Tel.: +86-021-67791217 (R.W.); +86-010-80169539 (B.W.)
| | - Lili Yan
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Y.C.); (P.R.); (L.Y.); (L.H.); (X.Z.)
| | - Lijiang Hu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Y.C.); (P.R.); (L.Y.); (L.H.); (X.Z.)
- Anji Guoqian Environmental Technology Co., Ltd., Huzhou 313000, China
| | - Sangsook Park
- Department of Environmental Engineering, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea;
| | - Moonhee Ryu
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Korea;
| | - Xiaoya Zhou
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Y.C.); (P.R.); (L.Y.); (L.H.); (X.Z.)
| |
Collapse
|
8
|
Rahman ME, Bin Halmi MIE, Bin Abd Samad MY, Uddin MK, Mahmud K, Abd Shukor MY, Sheikh Abdullah SR, Shamsuzzaman SM. Design, Operation and Optimization of Constructed Wetland for Removal of Pollutant. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8339. [PMID: 33187288 PMCID: PMC7698012 DOI: 10.3390/ijerph17228339] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 01/30/2023]
Abstract
Constructed wetlands (CWs) are affordable and reliable green technologies for the treatment of various types of wastewater. Compared to conventional treatment systems, CWs offer an environmentally friendly approach, are low cost, have fewer operational and maintenance requirements, and have a high potential for being applied in developing countries, particularly in small rural communities. However, the sustainable management and successful application of these systems remain a challenge. Therefore, after briefly providing basic information on wetlands and summarizing the classification and use of current CWs, this study aims to provide and inspire sustainable solutions for the performance and application of CWs by giving a comprehensive review of CWs' application and the recent development of their sustainable design, operation, and optimization for wastewater treatment. To accomplish this objective, thee design and management parameters of CWs, including macrophyte species, media types, water level, hydraulic retention time (HRT), and hydraulic loading rate (HLR), are discussed. Besides these, future research on improving the stability and sustainability of CWs are highlighted. This article provides a tool for researchers and decision-makers for using CWs to treat wastewater in a particular area. This paper presents an aid for informed analysis, decision-making, and communication. The review indicates that major advances in the design, operation, and optimization of CWs have greatly increased contaminant removal efficiencies, and the sustainable application of this treatment system has also been improved.
Collapse
Affiliation(s)
- Md Ekhlasur Rahman
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.E.R.); (M.Y.B.A.S.); (M.K.U.)
- Divisional Laboratory, Soil Resource Development Institute, Krishi Khamar Sarak, Farmgate, Dhaka-1215, Bangladesh;
| | - Mohd Izuan Effendi Bin Halmi
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.E.R.); (M.Y.B.A.S.); (M.K.U.)
| | - Mohd Yusoff Bin Abd Samad
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.E.R.); (M.Y.B.A.S.); (M.K.U.)
| | - Md Kamal Uddin
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.E.R.); (M.Y.B.A.S.); (M.K.U.)
| | - Khairil Mahmud
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohd Yunus Abd Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical & Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia;
| | - S M Shamsuzzaman
- Divisional Laboratory, Soil Resource Development Institute, Krishi Khamar Sarak, Farmgate, Dhaka-1215, Bangladesh;
| |
Collapse
|
9
|
Jain M, Majumder A, Ghosal PS, Gupta AK. A review on treatment of petroleum refinery and petrochemical plant wastewater: A special emphasis on constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 272:111057. [PMID: 32854876 DOI: 10.1016/j.jenvman.2020.111057] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 05/12/2023]
Abstract
Petroleum refinery and petrochemical plants (PRPP) are one of the major contributors to toxic and recalcitrant organic polluted water, which has become a significant concern in the field of environmental engineering. Several contaminants of PRPP wastewater are genotoxic, phytotoxic, and carcinogenic, thereby imposing detrimental effects on the environment. Many biological processes were able to achieve chemical oxygen demand (COD) removal ranging from 60% to 90%, and their retention time usually ranged from 10 to 100 days. These methods were not efficient in removing the petroleum hydrocarbons present in PRPP wastewater and produced a significant amount of oily sludge. Advanced oxidation processes achieved the same COD removal efficiency in a few hours and were able to break down recalcitrant organic compounds. However, the associated high cost is a significant drawback concerning PRPP wastewater treatment. In this context, constructed wetlands (CWs) could effectively remove the recalcitrant organic fraction of the wastewater because of the various inherent mechanisms involved, such as phytodegradation, rhizofiltration, microbial degradation, sorption, etc. In this review, we found that CWs were efficient in handling large quantities of high strength PRPP wastewater exhibiting average COD removal of around 80%. Horizontal subsurface flow CWs exhibited better performance than the free surface and floating CWs. These systems could also effectively remove heavy oil and recalcitrant organic compounds, with an average removal efficiency exceeding 80% and 90%, respectively. Furthermore, modifications by varying the aeration system, purposeful hybridization, and identifying the suitable substrate led to the enhanced performance of the systems.
Collapse
Affiliation(s)
- Mahak Jain
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
10
|
Optimization of Phytoremediation of Nickel by Alocasia puber Using Response Surface Methodology. WATER 2020. [DOI: 10.3390/w12102707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The contamination of water by heavy metals is a worldwide environmental problem. Phytoremediation and constructed wetlands have become increasingly popular as more sustainable and environmentally friendly techniques of removing heavy metals from the wastewater. This study, therefore, investigated the phytoremediation of nickel by Alocasia puber (A. puber) in a constructed wetlands (CW) microcosm. This study identified the optimum conditions for nickel (Ni) removal from wastewater using response surface methodology (RSM) with central composite design (CCD). Two operational variables were assessed: exposure time and initial Ni concentration. The optimum conditions for the maximum removal of Ni from water were an exposure time of 10 days and 99.76 mg/L initial Ni concentration. The results indicated that 95.6% removal was achieved under the optimized conditions, with a high correlation coefficient (R2 = 0.97) between the statistical model and the experimental data. Field emission scanning electron microscopy images showed anatomical changes in the A. puber samples due to Ni exposure, and transmission electron microscopy images revealed some internal damages in the A. puber, but visual Ni toxicity symptoms, such as necrosis and chlorosis, were not observed in the A. puber. This study demonstrated that A. puber planted in a constructed wetland microcosm was able to remediate wastewater contaminated with Ni.
Collapse
|
11
|
Microbial Decolorization of Triazo Dye, Direct Blue 71: An Optimization Approach Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). BIOMED RESEARCH INTERNATIONAL 2020; 2020:2734135. [PMID: 32149095 PMCID: PMC7049410 DOI: 10.1155/2020/2734135] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/21/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
Abstract
The release of wastewater from textile dyeing industrial sectors is a huge concern with regard to pollution as the treatment of these waters is truly a challenging process. Hence, this study investigates the triazo bond Direct Blue 71 (DB71) dye decolorization and degradation dye by a mixed bacterial culture in the deficiency source of carbon and nitrogen. The metagenomics analysis found that the microbial community consists of a major bacterial group of Acinetobacter (30%), Comamonas (11%), Aeromonadaceae (10%), Pseudomonas (10%), Flavobacterium (8%), Porphyromonadaceae (6%), and Enterobacteriaceae (4%). The richest phylum includes Proteobacteria (78.61%), followed by Bacteroidetes (14.48%) and Firmicutes (3.08%). The decolorization process optimization was effectively done by using response surface methodology (RSM) and artificial neural network (ANN). The experimental variables of dye concentration, yeast extract, and pH show a significant effect on DB71 dye decolorization percentage. Over a comparative scale, the ANN model has higher prediction and accuracy in the fitness compared to the RSM model proven by approximated R 2 and AAD values. The results acquired signify an efficient decolorization of DB71 dye by a mixed bacterial culture.
Collapse
|
12
|
Kumar V, Kumar P, Singh J, Kumar P. Potential of water fern ( Azolla pinnata R.Br.) in phytoremediation of integrated industrial effluent of SIIDCUL, Haridwar, India: removal of physicochemical and heavy metal pollutants. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:392-403. [PMID: 31549516 DOI: 10.1080/15226514.2019.1667950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Integrated industrial effluent (IIE) released from SIIDCUL causes serious environmental problems in the vicinity of Haridwar, India. Therefore, this study investigated the potential of water fern (Azolla pinnata R.Br.) for phyto-treatment of IIE. Laboratory experiments with six IIE concentrations (0 as control with bore well water, 20, 40, 60, 80 and 100%) were performed for bio-removal of selected physicochemical, microbiological and heavy metal parameters of IIE in pot type experiments. The overall results described maximum removal of physico-chemical (pH, EC, TDS, BOD, COD, TKN, Ca, Mg, Na, K), microbiological (MPN and SPC) and heavy metals (Cd, Cu, Cr, Fe, Pb, Mn, and Zn) parameters in 60% concentration of IIE, respectively. The stimulus effect of IIE concentration on pollutant removal process was confirmed using Kruskal-Wallis post hoc test, one way ANOVA (p < 0.05), and linear regression (R2 < 0.85) tools. Besides this, A. pinnata relative plant growth rate was also maximum in 60% IIE treatment. This is the first report on phytoremediation of IIE while findings of this study showed that A. pinnata was useful for the eco-friendly treatment of SIIDCUL IIE and could minimize potential wastewater management issues.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Zoology and Environmental Science, Agro-ecology and Pollution Research Laboratory, Gurukula Kangri Vishwavidyalaya, Haridwar, India
| | - Piyush Kumar
- Department of Zoology and Environmental Science, Agro-ecology and Pollution Research Laboratory, Gurukula Kangri Vishwavidyalaya, Haridwar, India
| | - Jogendra Singh
- Department of Zoology and Environmental Science, Agro-ecology and Pollution Research Laboratory, Gurukula Kangri Vishwavidyalaya, Haridwar, India
| | - Pankaj Kumar
- Department of Zoology and Environmental Science, Agro-ecology and Pollution Research Laboratory, Gurukula Kangri Vishwavidyalaya, Haridwar, India
| |
Collapse
|
13
|
Almuktar SAAAN, Abed SN, Scholz M. Wetlands for wastewater treatment and subsequent recycling of treated effluent: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23595-23623. [PMID: 29959736 PMCID: PMC6096557 DOI: 10.1007/s11356-018-2629-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/20/2018] [Indexed: 05/23/2023]
Abstract
Due to water scarcity challenges around the world, it is essential to think about non-conventional water resources to address the increased demand in clean freshwater. Environmental and public health problems may result from insufficient provision of sanitation and wastewater disposal facilities. Because of this, wastewater treatment and recycling methods will be vital to provide sufficient freshwater in the coming decades, since water resources are limited and more than 70% of water are consumed for irrigation purposes. Therefore, the application of treated wastewater for agricultural irrigation has much potential, especially when incorporating the reuse of nutrients like nitrogen and phosphorous, which are essential for plant production. Among the current treatment technologies applied in urban wastewater reuse for irrigation, wetlands were concluded to be the one of the most suitable ones in terms of pollutant removal and have advantages due to both low maintenance costs and required energy. Wetland behavior and efficiency concerning wastewater treatment is mainly linked to macrophyte composition, substrate, hydrology, surface loading rate, influent feeding mode, microorganism availability, and temperature. Constructed wetlands are very effective in removing organics and suspended solids, whereas the removal of nitrogen is relatively low, but could be improved by using a combination of various types of constructed wetlands meeting the irrigation reuse standards. The removal of phosphorus is usually low, unless special media with high sorption capacity are used. Pathogen removal from wetland effluent to meet irrigation reuse standards is a challenge unless supplementary lagoons or hybrid wetland systems are used.
Collapse
Affiliation(s)
- Suhad A A A N Almuktar
- Civil Engineering Research Group, School of Computing, Science and Engineering, The University of Salford, Newton Building, Salford, England, M5 4WT, UK
- Department of Architectural Engineering, Faculty of Engineering, The University of Basrah, Al Basrah, Iraq
| | - Suhail N Abed
- Civil Engineering Research Group, School of Computing, Science and Engineering, The University of Salford, Newton Building, Salford, England, M5 4WT, UK
| | - Miklas Scholz
- Civil Engineering Research Group, School of Computing, Science and Engineering, The University of Salford, Newton Building, Salford, England, M5 4WT, UK.
- Division of Water Resources Engineering, Department of Building and Environmental Technology, Faculty of Engineering, Lund University, P.O. Box 118, 221 00, Lund, Sweden.
- Department of Civil Engineering Science, School of Civil Engineering and the Built Environment, University of Johannesburg, Kingsway Campus, Auckland Park, PO Box 524, Johannesburg, 2006, South Africa.
| |
Collapse
|
14
|
Titah HS, Halmi MIEB, Abdullah SRS, Hasan HA, Idris M, Anuar N. Statistical optimization of the phytoremediation of arsenic by Ludwigia octovalvis- in a pilot reed bed using response surface methodology (RSM) versus an artificial neural network (ANN). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:721-729. [PMID: 29723047 DOI: 10.1080/15226514.2017.1413337] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, the removal of arsenic (As) by plant, Ludwigia octovalvis, in a pilot reed bed was optimized. A Box-Behnken design was employed including a comparative analysis of both Response Surface Methodology (RSM) and an Artificial Neural Network (ANN) for the prediction of maximum arsenic removal. The predicted optimum condition using the desirability function of both models was 39 mg kg-1 for the arsenic concentration in soil, an elapsed time of 42 days (the sampling day) and an aeration rate of 0.22 L/min, with the predicted values of arsenic removal by RSM and ANN being 72.6% and 71.4%, respectively. The validation of the predicted optimum point showed an actual arsenic removal of 70.6%. This was achieved with the deviation between the validation value and the predicted values being within 3.49% (RSM) and 1.87% (ANN). The performance evaluation of the RSM and ANN models showed that ANN performs better than RSM with a higher R2 (0.97) close to 1.0 and very small Average Absolute Deviation (AAD) (0.02) and Root Mean Square Error (RMSE) (0.004) values close to zero. Both models were appropriate for the optimization of arsenic removal with ANN demonstrating significantly higher predictive and fitting ability than RSM.
Collapse
Affiliation(s)
- Harmin Sulistiyaning Titah
- a Department of Chemical and Process Engineering , Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia , UKM Bangi , Selangor , Malaysia
- b Department of Environmental Engineering , Faculty of Civil Engineering and Planning, Institut Teknologi Sepuluh Nopember (ITS), Keputih, Sukolilo , Surabaya , Indonesia
- d Department of Civil and Structural , Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia , UKM Bangi , Selangor , Malaysia
| | - Mohd Izuan Effendi Bin Halmi
- e Department of Land Management , Faculty of Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Siti Rozaimah Sheikh Abdullah
- a Department of Chemical and Process Engineering , Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia , UKM Bangi , Selangor , Malaysia
| | - Hassimi Abu Hasan
- a Department of Chemical and Process Engineering , Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia , UKM Bangi , Selangor , Malaysia
| | - Mushrifah Idris
- c Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia , UKM Bangi , Selangor , Malaysia
| | - Nurina Anuar
- a Department of Chemical and Process Engineering , Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia , UKM Bangi , Selangor , Malaysia
| |
Collapse
|
15
|
Optimization of lead (Pb) bioaccumulation in Melastoma malabathricum L. by response surface methodology (RSM). RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2017. [DOI: 10.1007/s12210-017-0656-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Al-Isawi R, Scholz M, Wang Y, Sani A. Clogging of vertical-flow constructed wetlands treating urban wastewater contaminated with a diesel spill. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:12779-12803. [PMID: 25339533 DOI: 10.1007/s11356-014-3732-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
Clogging often leads to a decrease of the treatment performance of wetlands. The aims of this study were to compare the impact of different design and operational variables on the treatment efficiency and clogging processes and to model suspended solid (SS) accumulation within the saturated wetland zone using the Wang-Scholz model. Different vertical-flow constructed wetlands were operated from June 2011 until April 2014. Four treatment periods were assessed: set-up, first year after set-up period, second year after set-up period and diesel spill (for selected filters only). The filter with the highest chemical oxygen demand (COD) loading but no diesel contamination performed the best in terms of COD and biochemical oxygen demand (BOD) removal for the fourth and final treatment period. Filters contaminated by diesel performed worse in terms of COD and BOD but considerably better regarding nitrate-nitrogen removal. Serious clogging phenomena impacting negatively on the treatment performance and the hydraulic conductivity were not observed. Modelling results were generally poor for the set-up period, adequate for the first 2 years after the set-up period and variable after the diesel spill. The Wang-Scholz model performed well for less complex operations.
Collapse
Affiliation(s)
- Rawaa Al-Isawi
- Civil Engineering Research Group, School of Computing, Science and Engineering, The University of Salford, Newton Building, Salford, M5 4WT, England, UK
| | | | | | | |
Collapse
|
17
|
Al-Isawi RHK, Sani A, Almuktar SAAAN, Scholz M. Vertical-flow constructed wetlands treating domestic wastewater contaminated by hydrocarbons. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 71:938-46. [PMID: 25812105 DOI: 10.2166/wst.2015.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The aim was to compare the impact of different design (aggregate size) and operational (contact time, empty time and chemical oxygen demand (COD) loading) variables on the long-term and seasonal performance of vertical-flow constructed wetland filters operated in tidal flow mode before and after a one-off spill of diesel. Ten different vertical-flow wetland systems were planted with Phragmites australis (Cav.) Trin. ex Steud. (common reed). Approximately 130 g of diesel fuel was poured into four wetland filters. Before the spill, compliance with secondary wastewater treatment standards was achieved by all wetlands regarding ammonia-nitrogen (NH4-N), nitrate-nitrogen (NO₃-N) and suspended solids (SS), and non-compliance was recorded for biochemical oxygen demand and ortho-phosphate-phosphorus (PO₄-P). Higher COD inflow concentrations had a significantly positive impact on the treatment performance for COD, PO₄-P and SS. The wetland with the largest aggregate size had the lowest mean NO₃-N outflow concentration. However, the results were similar regardless of aggregate size and resting time for most variables. Clear seasonal outflow concentration trends were recorded for COD, NH4-N and NO₃-N. No filter clogging was observed. The removal efficiencies dropped for those filters impacted by the diesel spill. The wetlands system shows a good performance regarding total petroleum hydrocarbon (TPH) removal.
Collapse
Affiliation(s)
- R H K Al-Isawi
- Civil Engineering Research Group, The University of Salford, School of Computing, Science and Engineering, Newton Building, Salford, Greater Manchester M5 4WT, UK E-mail:
| | - A Sani
- Civil Engineering Research Group, The University of Salford, School of Computing, Science and Engineering, Newton Building, Salford, Greater Manchester M5 4WT, UK E-mail:
| | - S A A A N Almuktar
- Civil Engineering Research Group, The University of Salford, School of Computing, Science and Engineering, Newton Building, Salford, Greater Manchester M5 4WT, UK E-mail:
| | - M Scholz
- Civil Engineering Research Group, The University of Salford, School of Computing, Science and Engineering, Newton Building, Salford, Greater Manchester M5 4WT, UK E-mail:
| |
Collapse
|