1
|
Li X, Wang H, Sun Z, Cao X, Zhang J, Chen Q, Ma R. Effect of ph on migration patterns and degradation pathways of sulfamethazine in soil systems. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:425-436. [PMID: 38847499 DOI: 10.1080/03601234.2024.2363580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/25/2024] [Indexed: 06/19/2024]
Abstract
Sulfonamide antibiotics (SAs) are widely used antimicrobial agents in livestock and aquaculture, and most of them entering the animal's body will be released into the environment as prodrugs or metabolites, which ultimately affect human health through the food chain. Both acid deposition and salinization of soil may have an impact on the migration and degradation of antibiotics. Sulfamethazine (SM2), a frequently detected compound in agricultural soils, has a migration and transformation process in the environment that is closely dependent on environmental pH. Nevertheless, scarcely any studies have been conducted on the effect of soil pH changes on the environmental behavior of sulfamethazine. We analyzed the migration and degradation mechanisms of SM2 using simulation experiments and ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) techniques. The results showed that acidic conditions limited the vertical migration of sulfadimidine, and SM2 underwent different reaction processes under different pH conditions, including S-C bond breaking, S-N bond hydrolysis, demethylation, six-membered heterocyclic addition, methyl hydroxylation and ring opening. The study of the migration pattern and degradation mechanism of SM2 under different pH conditions can provide a solid theoretical basis for assessing the pollution risk of sulfamethazine degradation products under acid rain and saline conditions, and provide a guideline for remediation of antibiotic contamination, so as to better prevent, control and protect groundwater resources.
Collapse
Affiliation(s)
- Xin Li
- School of Environmental and Safety Engineering, North University of China, Taiyuan, China
| | - Haifang Wang
- School of Environmental and Safety Engineering, North University of China, Taiyuan, China
| | - Zhumei Sun
- School of Environmental and Safety Engineering, North University of China, Taiyuan, China
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Xia Cao
- Taiyuan Ecological Environment Monitoring and Scientific Research Center, Taiyuan, China
| | - Junli Zhang
- School of Environmental and Safety Engineering, North University of China, Taiyuan, China
| | - Qihua Chen
- School of Environmental and Safety Engineering, North University of China, Taiyuan, China
| | - Rui Ma
- School of Environmental and Safety Engineering, North University of China, Taiyuan, China
| |
Collapse
|
2
|
Wang X, Zhi M, Li J, Lin K, Lin X, Hu Y. Ascorbic acid promoted sulfadimidine degradation in the magnetite-activated persulfate system by facilitating the Fe(III)/Fe(II) cycle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6481-6491. [PMID: 38148457 DOI: 10.1007/s11356-023-31566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
Persulfate (PS) activation technologies were of significant importance to the organic contaminant treatment. In this study, ascorbic acid (AA) was introduced to the traditional PS-activated process by using magnetite (Fe3O4) as the activator; herein, the degradation efficiency of sulfadimidine (SM2) was improved from 30 to 93% within 3 h, and the observed removal rate was about 8.0 times higher than that of the Fe3O4/PS system. These improvements were found to be induced by the added AA because it could reduce the surface Fe(III) to Fe(II) on Fe3O4 and thus facilitate the Fe(III)/Fe(II) cycle, which was conducive to producing reactive oxygen species (ROSs) in the oxidation process during PS activation. Meanwhile, AA could also promote the Fe(III)/Fe(II) cycle in the homogeneous solution, further advancing the PS decomposition for SM2 degradation. The ROS trapping experiments indicated that SM2 removal in the Fe3O4/PS/AA system was attributed to •OH and •SO4-, and •SO4- was the dominant ROS. Moreover, the reusability test experiment revealed that magnetite retained good activity after five cycles in the Fe3O4/AA/PS system. This study provides a promising PS activation technology for efficient organics contaminant treatment.
Collapse
Affiliation(s)
- Xiaobing Wang
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, 512023, People's Republic of China
| | - Meiting Zhi
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, 512023, People's Republic of China
| | - Jingyi Li
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, 512023, People's Republic of China
| | - Kunchuang Lin
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, 512023, People's Republic of China
| | - Xueqin Lin
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, 512023, People's Republic of China
| | - Yue Hu
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, 512023, People's Republic of China.
| |
Collapse
|
3
|
Zheng J, Zhang P, Li X, Ge L, Niu J. Insight into typical photo-assisted AOPs for the degradation of antibiotic micropollutants: Mechanisms and research gaps. CHEMOSPHERE 2023; 343:140211. [PMID: 37739134 DOI: 10.1016/j.chemosphere.2023.140211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Due to the incomplete elimination by traditional wastewater treatment, antibiotics are becoming emerging contaminants, which are proved to be ubiquitous and promote bacterial resistance in the aquatic systems. Antibiotic pollution has raised particular concerns, calling for improved methods to clean wastewater and water. Photo-assisted advanced oxidation processes (AOPs) have attracted increasing attention because of the fast reaction rate, high oxidation capacity and low selectivity to remove antibiotics from wastewater. On the basis of latest literature, we found some new breakthroughs in the degradation mechanisms of antibiotic micropollutants with respect to the AOPs. Therefore, this paper summarizes and highlights the degradation kinetics, pathways and mechanisms of antibiotics degraded by the photo-assisted AOPs, including the UV/O3 process, photo-Fenton technology, and photocatalysis. In the processes, functional groups are attacked by hydroxyl radicals, and major structures are destroyed subsequently, which depends on the classes of antibiotics. Meanwhile, their basic principles, current applications and influencing factors are briefly discussed. The main challenges, prospects, and recommendations for the improvement of photo-assisted AOPs are proposed to better remove antibiotics from wastewater.
Collapse
Affiliation(s)
- Jinshuai Zheng
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Peng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xuanyan Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Linke Ge
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
4
|
Khan ZUH, Gul NS, Sabahat S, Sun J, Tahir K, Shah NS, Muhammad N, Rahim A, Imran M, Iqbal J, Khan TM, Khasim S, Farooq U, Wu J. Removal of organic pollutants through hydroxyl radical-based advanced oxidation processes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115564. [PMID: 37890248 DOI: 10.1016/j.ecoenv.2023.115564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
The use of Advance Oxidation Process (AOPs) has been extensively examined in order to eradicate organic pollutants. This review assesses the efficacy of photolysis, O3 based (O3/UV, O3/H2O2, O3/H2O2/UV, H2O2/UV, Fenton, Fenton-like, hetero-system) and sonochemical and electro-oxidative AOPs in this regard. The main purpose of this review and some suggestions for the advancement of AOPs is to facilitate the elimination of toxic organic pollutants. Initially proposed for the purification of drinking water in 1980, AOPs have since been employed for various wastewater treatments. AOPs technologies are essentially a process intensification through the use of hybrid methods for wastewater treatment, which generate large amounts of hydroxyl (•OH) and sulfate (SO4·-) radicals, the ultimate oxidants for the remediation of organic pollutants. This review covers the use of AOPs and ozone or UV treatment in combination to create a powerful method of wastewater treatment. This novel approach has been demonstrated to be highly effective, with the acceleration of the oxidation process through Fenton reaction and photocatalytic oxidation technologies. It is clear that Advance Oxidation Process are a helpful for the degradation of organic toxic compounds. Additionally, other processes such as •OH and SO4·- radical-based oxidation may also arise during AOPs treatment and contribute to the reduction of target organic pollutants. This review summarizes the current development of AOPs treatment of wastewater organic pollutants.
Collapse
Affiliation(s)
- Zia Ul Haq Khan
- Department of Chemistry, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan.
| | - Noor Shad Gul
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China; Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Sana Sabahat
- Department of Chemistry, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan.
| | - Jingyu Sun
- Hubei key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei 435002, PR China
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, D. I. Khan, KP, Pakistan
| | - Noor Samad Shah
- Department of Environmental Sciences, CMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Nawshad Muhammad
- Department of Dental Material Sciences, Institute of Basic Medical Sciences Khyber Medical University, Peshawar, KPK, Pakistan
| | - Abdur Rahim
- Department of Chemistry, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, CMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Jibran Iqbal
- College of Interdisciplinary Studies, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Taj Malook Khan
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China; Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Syed Khasim
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad-Campus, KPK 22060, Pakistan; Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianbo Wu
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China; Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Mohapatra L, Cheon D, Yoo SH. Carbon-Based Nanomaterials for Catalytic Wastewater Treatment: A Review. Molecules 2023; 28:molecules28041805. [PMID: 36838793 PMCID: PMC9959675 DOI: 10.3390/molecules28041805] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Carbon-based nanomaterials (CBM) have shown great potential for various environmental applications because of their physical and chemical properties. The unique hybridization properties of CBMs allow for the tailored manipulation of their structures and morphologies. However, owing to poor solar light absorption, and the rapid recombination of photogenerated electron-hole pairs, pristine carbon materials typically have unsatisfactory photocatalytic performances and practical applications. The main challenge in this field is the design of economical, environmentally friendly, and effective photocatalysts. Combining carbonaceous materials with carbonaceous semiconductors of different structures results in unique properties in carbon-based catalysts, which offers a promising approach to achieving efficient application. Here, we review the contribution of CBMs with different dimensions, to the catalytic removal of organic pollutants from wastewater by catalyzing the Fenton reaction and photocatalytic processes. This review, therefore, aims to provide an appropriate direction for empowering improvements in ongoing research work, which will boost future applications and contribute to overcoming the existing limitations in this field.
Collapse
Affiliation(s)
- Lagnamayee Mohapatra
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
| | - Dabin Cheon
- Department of Applied Plasma & Quantum Beam Engineering, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
| | - Seung Hwa Yoo
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
- Department of Applied Plasma & Quantum Beam Engineering, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
- Correspondence:
| |
Collapse
|
6
|
Fenton Reaction–Unique but Still Mysterious. Processes (Basel) 2023. [DOI: 10.3390/pr11020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study is devoted to the Fenton reaction, which, despite hundreds of reports in a number of scientific journals, provides opportunities for further investigation of its use as a method of advanced oxidation of organic macro- and micropollutants in its diverse variations and hybrid systems. It transpires that, for example, the choice of the concentrations and ratios of basic chemical substances, i.e., hydrogen peroxide and catalysts based on the Fe2+ ion or other transition metals in homogeneous and heterogeneous arrangements for reactions with various pollutants, is for now the result of the experimental determination of rather randomly selected quantities, requiring further optimizations. The research to date also shows the indispensability of the Fenton reaction related to environmental issues, as it represents the pillar of all advanced oxidation processes, regarding the idea of oxidative hydroxide radicals. This study tries to summarize not only the current knowledge of the Fenton process and identify its advantages, but also the problems that need to be solved. Based on these findings, we identified the necessary steps affecting its further development that need to be resolved and should be the focus of further research related to the Fenton process.
Collapse
|
7
|
Moghaddam AA, Mohammadi L, Bazrafshan E, Batool M, Behnampour M, Baniasadi M, Mohammadi L, Zafar MN. Antibiotics sequestration using metal nanoparticles: An updated systematic review and meta-analysis. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
8
|
Wang L, Liu G, Zhang M, Luo K, Pang Y. Reduced Graphene Oxide-Coated CuFeO 2 with Fenton-like Catalytic Degradation Performance for Terramycin. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4391. [PMID: 36558244 PMCID: PMC9781562 DOI: 10.3390/nano12244391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
A novel Fenton-like catalyst made of reduced graphene oxide-coated CuFeO2 (rGO-coated CuFeO2) was synthesized by the hydrothermal reaction method to remove terramycin from aqueous solutions. The catalytic degradation performance of rGO-coated CuFeO2 for terramycin was verified with H2O2 activation. The characterization reveals that rGO-coated CuFeO2 has a micro- and mesoporous structure, with groups such as C=C/C-C, CH2-CO, and HO-C=O found on the surface. The Fenton-like catalytic degradation of terramycin by rGO-coated CuFeO2 was in line with the pseudo-second-order kinetic model, and the elevated temperature accelerated the reaction. Terramycin was catalytically degraded by rGO-coated CuFeO2 in two steps: terramycin was first adsorbed by rGO, and then Fenton-like degradation took place on its surface. This research presents new insight into the design and fabrication of Fenton-like catalysts with enhanced performance.
Collapse
Affiliation(s)
- Liping Wang
- College of Materials and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Gonghao Liu
- College of Materials and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Mingyu Zhang
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China
| | - Kun Luo
- College of Materials and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Ya Pang
- College of Materials and Environmental Engineering, Changsha University, Changsha 410022, China
| |
Collapse
|
9
|
Shao X, Ma C, Zhu L, Zou C, Cao L, Yang J. Optimized Mo-doped IrO x anode for efficient degradation of refractory sulfadiazine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89156-89167. [PMID: 35849232 DOI: 10.1007/s11356-022-22033-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical advanced oxidation processes (EAOPs) is considered to be an efficacious method to degrade antibiotics. However, the performance of the anode has become the main limiting factor of this technology. In this study, due to the electron-deficient characteristics and the improvement of OER performance of Mo, we chose to use thermal decomposition to incorporate Mo into IrO2 to prepare anodes with industrial applicability. Under the optimal ratio of Ir to Mo is 7:3, (Ir0.7Mo0.3)Ox electrode's particular pore structure can expose more active sites and create a channel for the transportation of electrons, thereby promoting the formation of free radicals and degrading pollutants more efficiently. (Ir0.7Mo0.3)Ox electrode also has a higher mass activity (6.332 A g-1, three times that of the IrO2 electrode) and a larger electrochemical active area (ECSA, 375.43 cm2, seven times that of the IrO2 electrode). In addition, the optimal conditions of (Ir0.7Mo0.3)Ox electrode for degrading sulfadiazine(SDZ) were explored, which achieved a higher removal than traditional electrodes (90% removal within 4 h) when the Ti plate was the substrate. Through the intermediate products of SDZ degradation and related literatures, two possible degradation pathways of SDZ were speculated. This research provides a new type of anode catalyst for the degradation of sulfonamide antibiotics, which is possible for industrial application.
Collapse
Affiliation(s)
- Xiang Shao
- School of Resources and Environmental Engineering, Environmental Protection Key Laboratory of Environmental Risk, East China University of Science and Technology, 130 Mei long Road, Shanghai, 200237, People's Republic of China
| | - Chenglong Ma
- School of Resources and Environmental Engineering, Environmental Protection Key Laboratory of Environmental Risk, East China University of Science and Technology, 130 Mei long Road, Shanghai, 200237, People's Republic of China
| | - Lin Zhu
- School of Resources and Environmental Engineering, Environmental Protection Key Laboratory of Environmental Risk, East China University of Science and Technology, 130 Mei long Road, Shanghai, 200237, People's Republic of China
| | - Chongjie Zou
- School of Resources and Environmental Engineering, Environmental Protection Key Laboratory of Environmental Risk, East China University of Science and Technology, 130 Mei long Road, Shanghai, 200237, People's Republic of China
| | - Limei Cao
- School of Resources and Environmental Engineering, Environmental Protection Key Laboratory of Environmental Risk, East China University of Science and Technology, 130 Mei long Road, Shanghai, 200237, People's Republic of China
| | - Ji Yang
- School of Resources and Environmental Engineering, Environmental Protection Key Laboratory of Environmental Risk, East China University of Science and Technology, 130 Mei long Road, Shanghai, 200237, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
10
|
Tiwari D, Lee SM, Kim DJ. Photocatalytic degradation of amoxicillin and tetracycline by template synthesized nano-structured Ce 3+@TiO 2 thin film catalyst. ENVIRONMENTAL RESEARCH 2022; 210:112914. [PMID: 35182591 DOI: 10.1016/j.envres.2022.112914] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/13/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Contamination of the aquatic environment with pharmaceutical compounds is a serious environmental concern. The present investigation aims to utilize the Ce3+/TiO2 thin film catalyst to remove of potential antibiotics (amoxicillin and tetracycline) using the less harmful UV-A radiations. Reduced cerium ion-doped TiO2 is obtained by a simple one-step facile template method using polyethylene glycol as the templating agent. The synthesized catalysts Ce3+@TiO2 (non-template) and Ce3+@TiO2(T) (template) were characterized by spectroscopic methods. The XPS reaffirms the reduced Ce3+ dispersed within the titania network, and the AFM showed the surface roughness of the thin films. Detailed physicochemical analyses were conducted to deduce the degradation mechanism, and repeated use of the thin film photocatalyst showed enhanced stability. Significant mineralization of the antibiotics indicates the potential applicability of the photocatalytic catalyst. Furthermore, the presence of Ce3+ significantly restricted the recombination of electron/hole pairs in the photo-excited TiO2 semiconductor and showed enhanced photocatalytic degradation of the antibiotics proceeded predominantly through the •OH.
Collapse
Affiliation(s)
- Diwakar Tiwari
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl, 796004, India.
| | - Seung-Mok Lee
- Department of Health and Environment, Catholic Kwandong University, Gangneung, 25601, South Korea
| | - Dong-Jin Kim
- Department of Environmental Science & Biotechnology, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
11
|
Tahmouresinejad H, Darvishi P, Lashanizadegan A, Sharififard H. Treatment of Olefin plant spent caustic by combination of Fenton-like and foam fractionation methods in a bench scale. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52438-52456. [PMID: 35258736 DOI: 10.1007/s11356-022-19364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Spent Merox caustic (SMC) is a hazardous waste that is produced during the Merox desulfurization process in the petroleum refinery industry and should be treated before discharging to environment. In the present study, treatment of SMC was investigated by three methods including Fenton-like process, foam fractionation, and a combination of both processes. Immobilized TiO2/Fe0 on modified silica nanoparticles was used as a heterogeneous Fenton-like catalyst. The chemical and physical characteristics of the catalyst were determined using Fourier-transform infrared spectroscopy, X-ray diffraction, diffuse reflectance spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and transmission electron microscopy techniques. The treatment performance of the combined method was measured as a cost-effective method with chemical oxygen demand (COD) removal percentage. The effect of parameters including pH, gas flow rate, surfactant type and concentration of hydrogen peroxide, catalyst, and chelate were investigated. It is found that the prepared heterogeneous catalyst has high activity for the treatment of SMC. In addition, the results showed that the combined method achieved 97.6 ± 0.5% COD removal, while the measured values for Fenton or foam fractionation methods alone did not exceed 85.5 ± 1% and 47.2 ± 0.4%, respectively. The advantage of combination process over foam fractionation was the use of an advanced oxidation process in the separating column to eliminate or reduce the secondary phase contamination load. Besides, the role of the column in the effective contact of contaminants with the rising bubbles improved the degradation performance of the proposed process and reduced the consumption of hydrogen peroxide by 46% compared to the Fenton-like method.
Collapse
Affiliation(s)
- Hamed Tahmouresinejad
- Chemical Engineering Department, Yasouj University, Yasouj, Islamic Republic of Iran
| | - Parviz Darvishi
- Chemical Engineering Department, Yasouj University, Yasouj, Islamic Republic of Iran.
| | - Asghar Lashanizadegan
- Chemical Engineering Department, Yasouj University, Yasouj, Islamic Republic of Iran
| | - Hakimeh Sharififard
- Chemical Engineering Department, Yasouj University, Yasouj, Islamic Republic of Iran
| |
Collapse
|
12
|
Xuan F, Yan Z, Sun Z. Efficient degradation of diuron using Fe-Ce-LDH/13X as novel heterogeneous electro-Fenton catalyst. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Hu J, Li X, Liu F, Fu W, Lin L, Li B. Comparison of chemical and biological degradation of sulfonamides: Solving the mystery of sulfonamide transformation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127661. [PMID: 34763922 DOI: 10.1016/j.jhazmat.2021.127661] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/13/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Sulfonamides (SAs) are widespread in aquatic environments and pose serious environmental risks. The removal efficiencies and degradation mechanisms of SAs in both chemical and biological degradation systems were comprehensively reviewed. Density functional theory (DFT) was utilized to decipher the reaction types and reactive sites of both degradation mechanisms at the electron level. In chemical degradation, the rate of the reactive oxidants to degrade SAs follows the order SO4•- ≈ •OH > O3 > 1O2 > ClO2 ≈ Fe(VI) ≈ HOCl > peroxymonosulfate. pH affects the oxidation-reduction potentials of oxidants, the reactivity of SAs, and the intermolecular force between oxidants and SAs, thereby affecting the chemical degradation efficiencies and mechanisms. In biological degradation, oxidoreductase produced by bacteria, fungi, algae, and plants can degrade SAs. The catalytic activity of the enzyme is affected by the enzyme system, reaction conditions, and type of SAs. Despite the different reaction modes and removal efficiencies of SAs in chemical degradation and biological degradation, the transformation pathways and products show commonalities. Modification of the amino (N1H2-) moiety and destruction of sulfonamide bridge (-SO2-N11H-) moiety are the main pathways for both chemical and biological degradation of SAs. Most oxidants or enzymes can react with the N1H2- moiety. Reactions of the -SO2-N11H- moiety are mainly initiated by the cleavage of S-N bonds for five-membered heterocyclic ring-substituted SAs, and by SO2 extrusion for six-membered heterocyclic ring-substituted SAs. Chlorine substitution and coupling on the N1H2- moiety, hydroxylation of the benzene moiety, oxidation of methyl, and isomerization of the R substituents are the transformation pathways unique to chemical degradation. Formylation/acetylation, glycosylation, pterin conjugation, and deamination of the N1H2- moiety are the transformation pathways unique to biological degradation. DFT studies revealed the same reaction types and the same reactive sites of SAs in chemical and biological degradation. Electrophiles are mostly prone to attack the N1 atom on the amino moiety of neutral SAs and the N11 atom on the sulfonamide bridge moiety of anionic SAs, leading to nitration or electrophilic substitution of the amino moiety and the cleavage of S-N bonds or SO2 extrusion of the sulfonamide bridge moiety. Reactions on the -SO2-N11H- moiety eliminate antibacterial activity in the SA degradation process. This review elucidated SA transformation by comparing the chemical and biological degradation of SAs. This could provide theoretical guidance for the development of more efficient and economical treatment technologies for SAs.
Collapse
Affiliation(s)
- Jiahui Hu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Feifei Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjie Fu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lin Lin
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
14
|
Wang Y, Zhao S, Yang L, Liu C, Wang H, Li D, Zhang W, Li L, Song C, Li C. Determination of 12 quinolones in honey by vortex-assisted dispersive liquid liquid microextraction performed in syringe based on deep eutectic solvent combine with ultra performance liquid chromatography-mass spectrometry. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Lai C, Shi X, Li L, Cheng M, Liu X, Liu S, Li B, Yi H, Qin L, Zhang M, An N. Enhancing iron redox cycling for promoting heterogeneous Fenton performance: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145850. [PMID: 33631587 DOI: 10.1016/j.scitotenv.2021.145850] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Conventional water treatment methods are difficult to remove stubborn pollutants emerging from surface water. Advanced oxidation processes (AOPs) can achieve a higher level of mineralization of stubborn pollutants. In recent years, the Fenton process for the degradation of pollutants as one of the most efficient ways has received more and more attention. While homogeneous catalysis is easy to produce sludge and the catalyst cannot be cycled. In contrast, heterogeneous Fenton-like reaction can get over these drawbacks and be used in a wider range. However, the reduction of Fe (III) to Fe(II) by hydrogen peroxide (H2O2) is still the speed limit step when generating reactive oxygen species (ROS) in heterogeneous Fenton system, which restricts the efficiency of the catalyst to degrade pollutants. Based on previous research, this article reviews the strategies to improve the iron redox cycle in heterogeneous Fenton system catalyzed by iron materials. Including introducing semiconductor, the modification with other elements, the application of carbon materials as carriers, the introduction of metal sulfides as co-catalysts, and the direct reduction with reducing substances. In addition, we also pay special attention to the influence of the inherent properties of iron materials on accelerating the iron redox cycle. We look forward that the strategy outlined in this article can provide readers with inspiration for constructing an efficient heterogeneous Fenton system.
Collapse
Affiliation(s)
- Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Xiaoxun Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ning An
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
16
|
Fekr SS, Fazaeli R, Ardjmand M, Rafizadeh M. Degradation of Аntibiotic Chlortetracycline in Аqueous Solution by Ce/Bi2WO6 Photocatalysis under Solar Light. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421060121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Fekra SS, Fard NE, Fazaeli R. Photocatalytic Degradation of Antibiotic Norfloxacin Aqueous Solution by Ce/Bi2WO6: Optimization and Simulation of Process by RSM. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427221060161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115755] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Mulla SI, Bagewadi ZK, Faniband B, Bilal M, Chae JC, Bankole PO, Saratale GD, Bhargava RN, Gurumurthy DM. Various strategies applied for the removal of emerging micropollutant sulfamethazine: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 30:10.1007/s11356-021-14259-w. [PMID: 33948844 DOI: 10.1007/s11356-021-14259-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceutical active drug(s) especially sulfamethazine (SMZ) is considered as one of the major emerging microcontaminants due its long-term existence in the environmental system and that can influence on the developmental of antibacterial resistance genes. Because of this region it has a great concern in the aquatic system. Moreover, the vast utilization of SMZ, excretion of undigested portion by animals and also through dumping or mishandling, SMZ is frequently detected in various samples (including water) of different places and its surroundings. Additionally, reports shown it has toxic effect against microalgae and mice. Thus, that can lead to several investigators, focusing on removal of SMZ alone or in combination of other drugs in wastewater treatment plants (WWTPs) either by abiotic and/or biotic treatment methods. The present review provides an overview of the toxic effect of SMZ and SMZ degradation/removal in abiotic and biotic processes. Finally, reveals the need of further implication of integrated treatments (including engineered biological mediators) to understand ideal biological approaches for the mineralization of SMZ.
Collapse
Affiliation(s)
- Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, 560064, India.
- Division of Biotechnology, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| | - Zabin K Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka, 580031, India
| | - Basheerabegum Faniband
- Department of Physics, School of Applied Sciences, REVA University, Bangalore, 560064, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Jong-Chan Chae
- Division of Biotechnology, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Paul Olusegun Bankole
- Department of Pure and Applied Botany, College of Biosciences, Federal University of Agriculture Abeokuta, Ogun State, Abeokuta, 234039, Nigeria
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Ram Naresh Bhargava
- Department of Environmental Microbiology (DEM), School for Environmental Sciences (SES), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Uttar Pradesh, , Lucknow 226 025, India
| | | |
Collapse
|
20
|
Hernández L, Augusto PA, Castelo-Grande T, Barbosa D. Regeneration and reuse of magnetic particles for contaminant degradation in water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112155. [PMID: 33652186 DOI: 10.1016/j.jenvman.2021.112155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Fenton reaction is an oxidation process of interest in wastewater treatment because of its ability to degrade organic compounds. Iron-based magnetic particles can be a very useful catalyst when using heterogeneous Fenton process. The major problem of this heterogeneous process is the saturation of the Fe 3+ on the surface, which limits the process. In this study, the possibility of using magnetite particles as a substrate is presented, increasing its degradation efficiency by Fenton reaction through a regeneration process that achieves the electronic reduction of its surface using reducing agents. The results indicate that the regeneration process is quite effective, increasing the efficiency of the degradation of Methylene Blue up to 99%. The concentration of magnetite is the most influential factor in the efficiency of the reaction, while the regeneration time and the concentration of reducing agent do not significantly affect the results considering the range used. The presence of mechanical stirring may adversely affect the reaction in the long term. Increasing the oxidant agent concentration reduces the initial speed of the reaction but not the long-term efficiency. The use of hydrazine in this process allows the successive reuse of these particles maintaining a high percentage of elimination of methylene blue, above 70% even after 10 uses, compared to an elimination below 20% for particles not regenerated after the second use and for particles regenerated with ascorbic acid after the eighth use.
Collapse
Affiliation(s)
- Lorenzo Hernández
- Departamento de Ingeniería Química y Textil, Facultad de Ciencias Quimicas, Universidad de Salamanca, Plaza de los Caídos, 1-5, 37008, Salamanca, Spain
| | - Paulo A Augusto
- Departamento de Ingeniería Química y Textil, Facultad de Ciencias Quimicas, Universidad de Salamanca, Plaza de los Caídos, 1-5, 37008, Salamanca, Spain; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Teresa Castelo-Grande
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Domingos Barbosa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
21
|
Geng X, Lv S, Yang J, Cui S, Zhao Z. Carboxyl-functionalized biochar derived from walnut shells with enhanced aqueous adsorption of sulfonamide antibiotics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111749. [PMID: 33309112 DOI: 10.1016/j.jenvman.2020.111749] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/13/2020] [Accepted: 11/24/2020] [Indexed: 05/24/2023]
Abstract
The novel HNO3-modifitied biochar (NBC) was synthesized from walnut shell. The NBC was characterized from scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectrum. The NBC was then used in the adsorption of sulfadiazine, sulfamethazine and sulfachloropyridazine from aqueous solution. The material surface has carbon/oxygen-contained groups, which is benefit for the adsorption. The results showed the adsorption ability of NBC on three sulfonamides were 32, 46, and 40 mg g-1, respectively. The kinetic was found to follow the Elovich model and the isotherm conformed Freundlich. Adsorption was more favorable at weak acidic solution. The interactions mainly include π-π EDA, electrostatic interaction, Lewis acid-base interaction, hydrophobic interaction and H-bond.
Collapse
Affiliation(s)
- Xinxiang Geng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Siying Lv
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jing Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Shihai Cui
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Zehua Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
22
|
Tiwari D, Lee SM, Kim DJ. New insights in photocatalytic removal of Alizarin Yellow using reduced Ce 3+/TiO 2 catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8373-8383. [PMID: 33058080 DOI: 10.1007/s11356-020-11087-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/30/2020] [Indexed: 05/24/2023]
Abstract
The present communication aims to obtain a novel Ce3+/TiO2 thin film in a single step facile method using the in situ template process. The material was characterized by the XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy), TEM (transmission electron microscope), and AFM (atomic force microscope) analyses. The thin film catalyst was intended to introduce in the degradation of one of potential dye Alizarin Yellow from aqueous solutions using the UV-A radiations. The mechanisms of degradation along with the physicochemical parametric studies were conducted extensively. The mineralization of pollutant and the replicate use of catalysts further enhance the applicability of present communication. Additionally, the real matrix treatment was conducted to simulate the treatment process.
Collapse
Affiliation(s)
- Diwakar Tiwari
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl, 796004, India.
| | - Seung Mok Lee
- Department of Health and Environment, Catholic Kwandong University, 24, Beomil-ro 579beon-gil, Gangneung, 210-701, Republic of Korea
| | - Dong-Jin Kim
- Department of Environmental Science & Biotechnology, Hallym University, Chuncheon, 24252, Republic of Korea
| |
Collapse
|
23
|
Bashiri F, Khezri SM, Kalantary RR, Kakavandi B. Enhanced photocatalytic degradation of metronidazole by TiO2 decorated on magnetic reduced graphene oxide: Characterization, optimization and reaction mechanism studies. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113608] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Wang D, Gu Y, Yang Z, Zhou L. Synthesis and assessment of schwertmannite/few-layer graphene composite for the degradation of sulfamethazine in heterogeneous Fenton-like reaction. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191977. [PMID: 32874605 PMCID: PMC7428258 DOI: 10.1098/rsos.191977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Schwertmannite (sch), an iron oxyhydrosulfate mineral, can catalyse a Fenton-like reaction to degrade organic contaminants, but the reduction of Fe(III) to Fe(II) on the surface of schwertmannite is a limiting step for the Fenton-like process. In the present study, the sch/few-layer graphene (sch-FLG) composite was synthesized to promote the catalytic activity of sch in a Fenton-like reaction. It was found that sch can be successfully carried by FLG in sch-FLG composite, mainly via the chemical bond of Fe-O-C on the surface of sch-FLG. The sch-FLG exhibited a much higher catalytic activity than sch or FLG for the degradation of sulfamethazine (SMT) in the heterogeneous Fenton-like reaction, which resulted from the fact that the FLG can pass electrons efficiently. The degradation efficiency of SMT was around 100% under the reaction conditions of H2O2 200-500 mg l-1, sch-FLG dosage 1-2 g l-1, temperature 28-38°C, and initial solution pH 1-9. During the repeated uses of sch-FLG in the Fenton-like reaction, it maintained a certain catalytic activity for the degradation of SMT and the mineral structure was not changed. In addition, SMT may be finally mineralized in the Fenton-like reaction catalysed by sch-FLG, and the possible degradation pathways were proposed. Therefore, the sch-FLG is an excellent catalyst for SMT degradation in a heterogeneous Fenton-like reaction.
Collapse
Affiliation(s)
- Dianzhan Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | | | | | | |
Collapse
|
25
|
Effective photocatalytic degradation of sulfamethazine by CNTs/LaVO4 in suspension and dip coating modes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116138] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Dong CD, Huang CP, Nguyen TB, Hsiung CF, Wu CH, Lin YL, Chen CW, Hung CM. The degradation of phthalate esters in marine sediments by persulfate over iron-cerium oxide catalyst. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133973. [PMID: 31454601 DOI: 10.1016/j.scitotenv.2019.133973] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the degradation of phthalate esters (PAEs) in marine sediments by sodium persulfate (Na2S2O8, PS) activated by a series of iron-cerium (Fe-Ce) bimetallic catalysts (FCBCs). The surface structure and chemistry of the FCBCs were characterized by TEM, HRTEM, XRD, FTIR, BET and XPS. Results show successful synthesis of FCBC catalysts. Factors such as PS concentration, Fe to Ce molar ratio, catalyst dosage, and initial pH that might affect PAEs degradation were investigated. Results revealed that PAEs was degraded more effectively over FCBC with a Fe-Ce molar ratio of 1.5:1. Increase in Ce improved the catalytic activity of FCBC due to increase in oxygen storage capacity (OSC). Acidic conditions enhanced PAEs degradation with a maximum degradation of 86% at pH 2 and rate constant (kobs) of 1.5 × 10-1 h-1 when the PS and FCBC concentrations were to 1.0 × 10-5 M and 1.67 g/L, respectively. Di-(2-ethylhexyl) phthalate (DEHP) was a salient marker of PAE contamination in sediments. Dimethyl phthalate (DMP) and diethyl phthalate (DEP) were easier to degrade than DEHP, diisononyl phthalate (DINP), dioctyl phthalate (DnOP) and diisononyl phthalate (DIDP). The synergistic catalytic effect of Fe3+/Fe2+ and Ce4+/Ce3+ redox couples, in addition to electron transfer of oxygen vacancies, activated S2O82- to generate SO4- and HO radicals, which played the major role of PAEs degradation. 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin trapping EPR studies verified the crucial role of SO4- and HO in the oxidative degradation process. FCBC/PS oxidation exhibited high-performance for the remediation of PAEs-contaminated marine sediments.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - C P Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Thanh-Binh Nguyen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ching-Feng Hsiung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chung-Hsin Wu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
27
|
Wohlmuth da Silva S, Arenhart Heberle AN, Pereira Santos A, Siqueira Rodrigues MA, Pérez-Herranz V, Moura Bernardes A. Antibiotics mineralization by electrochemical and UV-based hybrid processes: evaluation of the synergistic effect. ENVIRONMENTAL TECHNOLOGY 2019; 40:3456-3466. [PMID: 29770731 DOI: 10.1080/09593330.2018.1478453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 05/11/2018] [Indexed: 05/25/2023]
Abstract
Antibiotics are not efficiently removed in conventional wastewater treatments. In fact, different advanced oxidation process (AOPs), including ozone, peroxide, UV radiation, among others, are being investigated in the elimination of microcontaminants. Most of AOPs proved to be efficient on the degradation of antibiotics, but the mineralization is on the one hand not evaluated or on the other hand not high. At this work, the UV-based hybrid process, namely Photo-assisted electrochemical oxidation (PEO), was applied, aiming the mineralization of microcontaminants such as the antibiotics Amoxicillin (AMX), Norfloxacin (NOR) and Azithromycin (AZI). The influence of the individual contributions of electrochemical oxidation (EO) and the UV-base processes on the hybrid process (PEO) was analysed. Results showed that AMX and NOR presented higher mineralization rate under direct photolysis than AZI due to the high absorption of UV radiation. For the EO processes, a low mineralization was found for all antibiotics, what was associated to a mass-transport limitation related to the low concentration of contaminants (200 µg/L). Besides that, an increase in mineralization was found, when heterogeneous photocatalysis and EO are compared, due to the influence of UV radiation, which overcomes the mass-transport limitations. Although the UV-based processes control the reaction pathway that leads to mineralization, the best results to mineralize the antibiotics were achieved by PEO hybrid process. This can be explained by the synergistic effect of the processes that constitute them. A higher mineralization was achieved, which is an important and useful finding to avoid the discharge of microcontaminants in the environment.
Collapse
Affiliation(s)
- Salatiel Wohlmuth da Silva
- Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brasil
- Grupo IEC. Departamento de Ingeniería Química y Nuclear, E.T.S.I. Industriales, Universitat Politècnica de València , Valencia , Spain
| | - Alan Nelson Arenhart Heberle
- Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brasil
| | - Alexia Pereira Santos
- Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brasil
| | | | - Valentín Pérez-Herranz
- Grupo IEC. Departamento de Ingeniería Química y Nuclear, E.T.S.I. Industriales, Universitat Politècnica de València , Valencia , Spain
| | - Andréa Moura Bernardes
- Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brasil
| |
Collapse
|
28
|
Mesoporous bimetallic Fe/Co as highly active heterogeneous Fenton catalyst for the degradation of tetracycline hydrochlorides. Sci Rep 2019; 9:15820. [PMID: 31676773 PMCID: PMC6825146 DOI: 10.1038/s41598-019-52013-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/10/2019] [Indexed: 11/29/2022] Open
Abstract
Mesoporous bimetallic Fe/Co was prepared as a Fenton-like catalyst to degrade the tetracycline hydrochlorides (TC). The nanocasting strategy with KIT-6 as a hard template was carried out to synthesize the mesoporous bimetallic catalyst. The mesoporous bimetallic Fe/Co catalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherms, and Brunauer-Emmett-Teller (BET) method. The results showed that the catalyst has significant nanofeatures; the surface area, pore size, and particle size were 113.8 m2g−1, 4 nm, and 10 nm, respectively. In addition, the effects of the operating parameters, such as the iron-to-cobalt ratio, pH, H2O2, and initial TC concentrations on its catalytic performance were investigated. The best operating parameters were as follows: iron-to-cobalt ratio = 2:1 to 1:1, pH = 5–9, H2O2: 30 mmol, initial TC less than 30 mg/L. Furthermore, the mesoporous bimetallic Fe/Co showed a good performance for degrading TC, achieving a removal rate of 86% of TC after 3 h under the reaction conditions of H2O2 = 30 mmol, mesoporous bimetallic Fe/Co = 0.6 g/L, TC = 30 mg/L, pH = 7.0, and temperature = 25.5 °C. The mesoporous bimetallic Fe/Co catalyst shows good stability and reusability. This work demonstrated that mesoporous bimetallic Fe/Co has excellent catalytic efficiency, smaller amounts of leached ions, and wider pH range, which enhance its potential applications.
Collapse
|
29
|
Zhuan R, Wang J. Enhanced mineralization of sulfamethoxazole by gamma radiation in the presence of Fe 3O 4 as Fenton-like catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27712-27725. [PMID: 31338762 DOI: 10.1007/s11356-019-05925-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Antibiotics are becoming ubiquitous emerging contaminants in the aquatic environments due to their large amount of production and extensive application, which have received increasing public concern. In this paper, the degradation and mineralization of sulfamethoxazole (SMX) by ionizing radiation in the presence of Fe3O4 as Fenton-like catalyst were evaluated, the influencing factors, such as the initial SMX concentration, initial pH, water matrix, and radical scavenger, etc. were examined. The results demonstrated that SMX could be efficiently degraded. The addition of Fe3O4 could improve the degradation efficiency of SMX and increased the dose constant at various SMX initial concentrations. More than 98% of SMX was degraded in Fe3O4/gamma radiation system at a wide range of pH (about 3.0-11.0). The mineralization of SMX in the presence of Fe3O4 was increased by 200%. Adding free radical scavenger (tert-butyl alcohol) inhibited the degradation of SMX. The addition of Fe3O4 enhanced the dose constant of ·OH, indicating that Fe3O4 promoted the formation of hydroxyl radicals (·OH) and then improved SMX degradation and mineralization. The degradation efficiency of SMX in secondary effluent of WWTP decreased from 100 to 84% in secondary effluent compared with that in deionized water. The intermediate products during the degradation of SMX by ionizing radiation were identified by high-performance liquid chromatography, and a possible pathway of SMX degradation in such a system was tentatively proposed. Graphical abstract Schema illustration of SMX degradation by irradiation in the presence of Fe3O4.
Collapse
Affiliation(s)
- Run Zhuan
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, People's Republic of China.
- Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, People's Republic of China.
- Energy Science Building, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
30
|
Pan L, Cao Y, Zang J, Huang Q, Wang L, Zhang Y, Fan S, Tang J, Xie Z. Preparation of Iron-Loaded Granular Activated Carbon Catalyst and Its Application in Tetracycline Antibiotic Removal from Aqueous Solution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2270. [PMID: 31252570 PMCID: PMC6651779 DOI: 10.3390/ijerph16132270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 11/16/2022]
Abstract
The removal of tetracycline antibiotics from water is currently an important environmental issue. Here we prepared an iron-loaded granular activated carbon catalyst (GAC-Fe) through a one-step calcination method to remove tetracycline antibiotics from aqueous solution. The GAC-Fe was characterized by Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction analysis. The effect of different influencing factors on the removal behavior of tetracycline antibiotics was studied, such as the solid-to-liquid ratio, H2O2 dosage, environmental temperature, initial pH, and contact time. The removal mechanism was explored through Fe ion dissolution and a free radical quenching experiment. The results show that the optimum solid-to-liquid ratio was 3.0 g∙L-1 and the suitable H2O2 dosage was 1.0 mL (3%). The applicable environmental temperature was 25 °C and the appropriate pH value was 2.0. The removal rate of tetracycline antibiotics tended to be stable in a contact time of 600 min. The main mechanism of tetracycline antibiotic removal by GAC-Fe was heterogeneous catalytic reaction through iron ion leaching and free radical inhibition experiment. The hydroxyl radical played a major role during the removal process. The partially dissolved iron ions initiated a homogeneous catalytic reaction. However, heterogeneous catalytic degradation was the main reaction. The GAC-Fe could still remove tetracycline antibiotics after five cycles, especially for methacycline and minocycline. Our work suggests that the GAC-Fe catalyst has potential as a remediation agent for tetracycline antibiotics in aqueous solution.
Collapse
Affiliation(s)
- Ling Pan
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yanzhi Cao
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Ji Zang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Qinqing Huang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Lin Wang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yingsheng Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Shisuo Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jun Tang
- Key Laboratory for Agri-Food Safety, Anhui Agricultural University, Hefei 230036, China
| | - Zhengxin Xie
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
31
|
Mi X, Han J, Sun Y, Li Y, Hu W, Zhan S. Enhanced catalytic degradation by using RGO-Ce/WO 3 nanosheets modified CF as electro-Fenton cathode: Influence factors, reaction mechanism and pathways. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:365-374. [PMID: 30609402 DOI: 10.1016/j.jhazmat.2018.12.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/06/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Development of an efficient cathode in advanced oxidation process is an important challenge. In this work, we synthesized a low-cost, high-catalytic-active and stable reduced graphene oxide (RGO)-Ce/WO3 nanosheets (RCW) to modify carbon felt (CF) as cathode to degrade ciprofloxacin (CIP) in electro-Fenton process. Compared to traditional heterogeneous electro-Fenton process, carbon black was substituted by RGO and poly tetra fluoroethylene was avoided to be used as binder. We found that RCW/CF cathode reached about 100% degradation efficiency of CIP after 1 h and 98.55% mineralization degree after 8 h. Meanwhile, it had a very high current density, about 2.5 times that of CF. RCW/CF cathode produced more O2-, H2O2 and OH via one-electron reduction process (O2→O2- →H2O2). The modified cathode kept a stable performance for high CIP degradation efficiency during 5 cycles. The introduction of RGO could promote electron transfer, and the adding of Ce into the WO3 lattice provided superior conditions for the adsorption and activation of oxygen molecules, thus promoting the formation of active oxygen species on the surface of RCW. This novel RCW/CF composite is an efficient and promising electrode for removal of CIP in the wastewater.
Collapse
Affiliation(s)
- Xueyue Mi
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jingjing Han
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yan Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Sihui Zhan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
32
|
Ouyang J, Zhao Z, Suib SL, Yang H. Degradation of Congo Red dye by a Fe2O3@CeO2-ZrO2/Palygorskite composite catalyst: Synergetic effects of Fe2O3. J Colloid Interface Sci 2019; 539:135-145. [DOI: 10.1016/j.jcis.2018.12.052] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 01/11/2023]
|
33
|
Malakootian M, Yaseri M, Faraji M. Removal of antibiotics from aqueous solutions by nanoparticles: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8444-8458. [PMID: 30706272 DOI: 10.1007/s11356-019-04227-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Antibiotics, as one of the emerging pollutants, are non-biodegradable compounds and long-term exposure to them may affect endocrine, hormonal, and genetic systems of human beings, representing a potential risk for both the environment and human health. The presence of antibiotics in surface waters and drinking water causes a global health concern. Many researches have stated that conventional methods used for wastewater treatment cannot fully remove antibiotic residues, and they may be detected in receiving waters. It is reported that nanoparticles could remove these compounds even at low concentration and under varied conditions of pH. The current study aimed to review the most relevant publications reporting the use of different nanoparticles to remove antibiotics from aqueous solutions. Moreover, meta-analysis was conducted on the results of some articles. Results of meta-analysis proved that different nanoparticles could remove antibiotics with an acceptable efficiency of 61%. Finally, this review revealed that nanoparticles are promising and efficient materials for degradation and removal of antibiotics from water and wastewater solutions. Furthermore, future perspectives of the new generation nanostructure adsorbents were discussed in this study.
Collapse
Affiliation(s)
- Mohammad Malakootian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Faraji
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
34
|
Enhanced photocatalytic degradation of sulfamethazine by Bi-doped TiO2 nano-composites supported by powdered activated carbon under visible light irradiation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.10.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Zhuang S, Zhu X, Wang J. Kinetic, equilibrium, and thermodynamic performance of sulfonamides adsorption onto graphene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36615-36623. [PMID: 30377960 DOI: 10.1007/s11356-018-3368-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
With the extensive production and consumption of sulfonamide antibiotics, their existence in aquatic environments has received increasing attention due to their acute and chronic toxic effects. In this study, graphene was characterized and applied for sulfamethazine (SMT) removal from aqueous solution. The effect of the contact time (0-1440 min), initial concentration (2-100 mg L-1), and temperature (298-318 K), as well as pH (2-9) and ionic strength (0-0.2 M NaNO3), have been examined. The maximum adsorption capacity was calculated to be 104.9 mg g-1 using the Langmuir model. The endothermic adsorption process (△H = 10.940 kJ mol-1) was pH- and temperature-dependent, and the adsorption data fitted well with the Langmuir isothermal and the pseudo second-order kinetic models. Additionally, ionic strength (0.01 to 0.2 M NaNO3) had no obvious influence on SMT adsorption by graphene. Ultimately, graphene proved to be an effective adsorbent for sulfonamide antibiotics removal from aqueous solutions.
Collapse
Affiliation(s)
- Shuting Zhuang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xin Zhu
- China Three Gorges Projects Development Co., Ltd, Chengdu, 610041, People's Republic of China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, People's Republic of China.
- Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
36
|
Wan Z, Wang J. Fenton oxidation of municipal secondary effluent: comparison of Fe/Ce-RGO (reduced graphene oxide) and Fe 2+ as catalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31358-31367. [PMID: 30196458 DOI: 10.1007/s11356-018-3150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
The advanced treatment of municipal secondary effluent by heterogeneous and homogeneous Fenton processes using Fe/Ce-RGO (reduced graphene oxide) and Fe2+ as catalysts was studied and compared. Sulfamethazine (SMT) was spiked in the effluent to examine the effectiveness of the emerging contaminant removal. The Fe/Ce-RGO catalyst was characterized using a scanning electron microscope (SEM) and cycle voltammetry curves. The removal of dissolved organic carbon (DOC), soluble chemical oxygen demand (SCOD), SMT, and ultraviolet-visible spectroscopy in 254 nm (UV254) of municipal secondary effluents was examined. The DOC removal efficiency of secondary effluent (without addition of SMT) was 36.30% and 11.74% using Fe/Ce-RGO and Fe2+ as catalysts, respectively. The removal efficiency of DOC, SCOD, and SMT in heterogeneous Fenton process was higher than that in homogeneous Fenton process. The changes of three-dimensional excitation-emission matrix (3DEEM) fluorescence, soluble microbial products (SMPs), humic acids, and UV254 were determined, and the results indicated that UV254, aromatic proteins, and humic acids decreased rapidly in both processes; however, polysaccharides and protein-like substances were difficult to degrade. Although some toxic substances produced after Fenton-like treatment, the biodegradability of the treated effluent was enhanced.
Collapse
Affiliation(s)
- Zhong Wan
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Energy Science Building, Beijing, 100084, People's Republic of China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Energy Science Building, Beijing, 100084, People's Republic of China.
- Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
37
|
Tiwari A, Shukla A, Tiwari D, Lee SM. Nanocomposite thin films Ag 0(NP)/TiO 2 in the efficient removal of micro-pollutants from aqueous solutions: A case study of tetracycline and sulfamethoxazole removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 220:96-108. [PMID: 29775822 DOI: 10.1016/j.jenvman.2018.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/17/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
The aim of this communication is to synthesize novel Nanocomposite thin film materials (Ag0(NP)/TiO2) using the template process. Surface morphology of materials was obtained by the Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analyses. The presence of doped Ag-nanoparticles was confirmed by the TEM images along with the SEM-EDX analyses. The Atomic Force Microscopic images were demonstrated the surface roughness and thickness of Nanocomposite thin films. X-ray diffraction analysis confirmed that TiO2 was predominantly present to its anatase mineral phase. The Fourier Transform Infra-red analysis conducted to obtain the functional groups present with the solid. The specific surface area and pore sizes of Nanocomposites were obtained by the BET (Brunauer, Emmett, and Teller) analysis. Further, the Nanocomposite thin film photocatalysts were successfully employed in the degradation of emerging micro-pollutants viz., the antibiotics tetracycline and sulfamethoxazole from aqueous solutions using less harmful UV-A light (λmax 330 nm). The effect of solution pH (pH 4.0-8.0) and pollutant concentrations (1.0 mg/L-20.0 mg/L (for tetracycline) and (0.5 mg/L-15.0 mg/L (for sulfamethoxazole)) was extensively studied in the photocatalytic removal of these antibiotics. A significant decrease in percentage of non-purgeable organic carbon removal indicated that the micro-pollutants was substantially mineralized by the photocatalytic treatment. The stability of thin film was assessed by the repeated use of Nanocomposite thin films and results were indicated that the degradation of tetracycline or sulfamethoxazole was almost unaffected at least for six cycles of photocatalytic operations. The presence of several cations and anions in the degradation of these antibiotics was studied. Additionally, the presence of 2-propanol and EDTA inhibited significantly the degradation of these micro-pollutants i.e., the percentage of degradation was decreased by 31.8 and 24.2% (for tetracycline) and 42.8 and 39.9% (for sulfamethoxazole), respectively. This indicated that the degradation of tetracycline or sulfamethoxazole was predominantly proceeded by the OH radicals; generated at the valance and conduction band of semiconductor. Similarly, the presence of sodium azide inhibited the percentage removal of these antibiotics.
Collapse
Affiliation(s)
- Alka Tiwari
- Department of Physics, National Institute of Technology, Aizawl, 796001, India
| | - Alok Shukla
- Department of Physics, National Institute of Technology, Aizawl, 796001, India
| | - Diwakar Tiwari
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl, 796004, India.
| | - Seung Mok Lee
- Department of Health and Environment, Catholic Kwandong University, 24, Beomil-ro 579beon-gil, Gangneung 210-701, South Korea
| |
Collapse
|
38
|
Liu N, Huang WY, Li ZM, Shao HY, Wu MH, Lei JQ, Tang L. Radiolytic decomposition of sulfonamide antibiotics: Implications to the kinetics, mechanisms and toxicity. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.03.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Cheng M, Zeng G, Huang D, Lai C, Liu Y, Zhang C, Wan J, Hu L, Zhou C, Xiong W. Efficient degradation of sulfamethazine in simulated and real wastewater at slightly basic pH values using Co-SAM-SCS /H 2O 2 Fenton-like system. WATER RESEARCH 2018; 138:7-18. [PMID: 29558693 DOI: 10.1016/j.watres.2018.03.022] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/23/2018] [Accepted: 03/09/2018] [Indexed: 05/22/2023]
Abstract
The presence of antibiotics in aquatic environments has attracted global concern. Fenton process is an attractive yet challenging method for antibiotics degradation, especially when such a reaction can be conducted at neutral pH values. In this study, a novel composite Fe/Co catalyst was synthesized via the modification of steel converter slag (SCS) by salicylic acid-methanol (SAM) and cobalt nitrate (Co(NO3)2). The catalysts were characterized by N2-Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results indicated that the Co-SAM-SCS/H2O2 Fenton-like system was very effective for sulfamethazine (SMZ) degradation at a wide pH range. At initial pH of 7.0, the degradation rate of SMZ in Co-SAM-SCS/H2O2 system was 2.48, 3.20, 6.18, and 16.21 times of that in Fe-SAM-SCS/H2O2, SAM-SCS/H2O2, Co(NO3)2/H2O2 and SCS/H2O2 system, respectively. The preliminary analysis suggested that high surface area of Co-SAM-SCS sample and synergistic effect between introduced Co and SAM-SCS are responsible for the efficient catalytic activity. During the degradation, three main intermediates were identified by high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. Based on this, a possible degradation pathway was proposed. The SEM images, XRD patterns and XPS spectra before and after the reactions demonstrate that the crystal and chemical structure of Co-SAM-SCS after five cycles are almost unchanged. Besides, the Co-SAM-SCS presented low iron and cobalt leaching (0.17 mg/L and 2.36 mg/L, respectively). The studied Fenton-like process also showed high degradation of SMZ in river water and municipal wastewater. The progress will bring valuable insights to develop high-performance heterogeneous Fenton-like catalysts for environmental remediation.
Collapse
Affiliation(s)
- Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jia Wan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Liang Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
40
|
Nil L, Tiwari A, Shukla A, Tiwari D, Lee SM. Nanocomposite Au NP/TiO 2 thin film in the efficient remediation of aqueous solutions contaminated with emerging micro-pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:20125-20140. [PMID: 29748801 DOI: 10.1007/s11356-018-2215-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
The present communication specifically aims to synthesize novel nanocomposite material Au NPs/TiO2 in a simple template process using the polyethylene glycol as filler media. The thin film of the nanocomposite material was characterized by the advanced analytical tools. The surface morphology was obtained by the scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images of solids. Similarly, the surface topography and roughness of solid were obtained by the atomic force microscopic (AFM) image of thin film. X-ray diffraction (XRD) data enabled to confirm that the TiO2 was predominantly present with its anatase phase. The specific surface area and pore size of the solid were obtained using the N2 adsorption/desorption data. Nanocomposite Au NP/TiO2 thin film was employed in the photocatalytic removal of sulfamethoxazole and triclosan from aqueous solutions using less harmful UV-A light (λmax = 330 nm). Various physicochemical parametric studies enabled to deduce the mechanism involved in the degradation process. The degradation kinetics as a function of pH (pH 4.0-10.0) and micro-pollutant concentrations (0.5-15.0 mg/L) was extensively studied. The mineralization of these pollutants was obtained using the non-purgeable organic carbon (NPOC) data. The stability of thin film was assessed by the repeated operations, and presence of several co-existing ions simulates the studies to real matrix treatment. Further, the presence of scavengers enabled to pin point the radical-induced degradation of sulfamethoxazole and triclosan from aqueous solutions.
Collapse
Affiliation(s)
- Lalliansanga Nil
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl, 796004, India
| | - Alka Tiwari
- Department of Physics, National Institute of Technology, Aizawl, 796001, India
| | - Alok Shukla
- Department of Physics, National Institute of Technology, Aizawl, 796001, India
| | - Diwakar Tiwari
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl, 796004, India.
| | - Seung Mok Lee
- Department of Health and Environment, Catholic Kwandong University, 24, Beomil-ro 579beon-gil, Gangneung, 210-701, South Korea
| |
Collapse
|
41
|
Khataee A, Hassandoost R, Rahim Pouran S. Cerium-substituted magnetite: Fabrication, characterization and sonocatalytic activity assessment. ULTRASONICS SONOCHEMISTRY 2018; 41:626-640. [PMID: 29137795 DOI: 10.1016/j.ultsonch.2017.10.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 05/24/2023]
Abstract
The present paper reports the sonocatalytic activity of cerium-substituted-magnetite for removal of oxytetracycline (OTC). The catalyst was prepared through a chemical route (co-precipitation, Fe3-xCexO4) and a mechanical procedure (CeO2/Fe3O4). Subsequently, the physico-chemical characteristics of both samples were determined using XRD, BET, SEM, EDX, TEM, Dot-mapping, FT-IR, DRS, and VSM analysis and compared to pristine magnetite and ceria. Afterwards, the effects of various operational conditions were assessed on sonocatalytic performance of Fe2.8Ce0.2O4 for OTC removal and the obtained optimal conditions were applied to compare the resulted DE with so-synthesized Fe3O4, CeO2, and CeO2/Fe3O4 samples. Fe2.8Ce0.2O4 (0.75 g/L) exhibited great catalytic performance for sono-degradation of OTC under its unchanged pH and US power of 300 W, wherein about 88% and 64% of OTC was removed at its initial concentrations of 20 and 50 mg/L. Moreover, the effects of the addition of a number of oxidants, organic and inorganic compounds and gases on the sonocatalytic degradation of OTC were evaluated under the identical condition. The obtained results presented an effective sonocatalytic system based on the synergistic action of Fe2.8Ce0.2O4 under ultrasonic irradiation.
Collapse
Affiliation(s)
- Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| | - Ramin Hassandoost
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Shima Rahim Pouran
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| |
Collapse
|
42
|
Liu Y, Fan Q, Wang J. Zn-Fe-CNTs catalytic in situ generation of H 2O 2 for Fenton-like degradation of sulfamethoxazole. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:166-176. [PMID: 28826059 DOI: 10.1016/j.jhazmat.2017.08.016] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
A novel Fenton-like catalyst (Zn-Fe-CNTs) capable of converting O2 to H2O2 and further to OH was prepared through infiltration fusion method followed by chemical replacement in argon atmosphere. The catalyst was characterized by SEM, EDS, TEM, XRD and XPS. The reaction between Zn-Fe-CNTs and O2 in aqueous solution could generate H2O2 in situ, which was further transferred to OH. The Fenton-like degradation of sulfamethoxazole (SMX) using Zn-Fe-CNTs as catalyst was evaluated. The results indicated that Zn-Fe-CNTs had a coral porous structure with a BET area of 51.67m2/g, exhibiting excellent adsorption capacity for SMX, which enhanced its degradation. The particles of Zn0 and Fe0/Fe2O3 were observed on the surface of Zn-Fe-CNTs. The mixture of Zn0 and CNTs could reduce O2 into H2O2 by micro-electrolysis and Fe0/Fe2O3 could catalyze in-situ generation of H2O2 to produce OH through Fenton-like process. When initial pH=1.5, T=25°C, O2 flow rate=400mL/min, Zn-Fe-CNTs=0.6g/L, SMX=25mg/L and reaction time=10min, the removal efficiency of SMX and TOC was 100% and 51.3%, respectively. The intermediates were detected and the possible pathway of SMX degradation and the mechanism of Zn-Fe-CNTs/O2 process were tentatively proposed.
Collapse
Affiliation(s)
- Yong Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Qin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
43
|
Tang J, Wang J. Fe3
O4
-MWCNT Magnetic Nanocomposites as Efficient Fenton-Like Catalysts for Degradation of Sulfamethazine in Aqueous Solution. ChemistrySelect 2017. [DOI: 10.1002/slct.201702249] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Juntao Tang
- Collaborative Innovation Center for Advanced Nuclear Energy Science Building, INEB; Tsinghua University; Beijing 100084 P.R. China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Science Building, INEB; Tsinghua University; Beijing 100084 P.R. China
- Beijing Key Laboratory of Radioactive Waste Treatment, INET; Tsinghua University; Beijing 100084 P.R. China
| |
Collapse
|
44
|
Wan Z, Wang J. Degradation of sulfamethazine using Fe 3O 4-Mn 3O 4/reduced graphene oxide hybrid as Fenton-like catalyst. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:653-664. [PMID: 27866761 DOI: 10.1016/j.jhazmat.2016.11.039] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 05/29/2023]
Abstract
In this paper, Fe3O4-Mn3O4/reduced graphene oxide (RGO) hybrid was synthesized through polyol process and impregnation method and used as heterogeneous Fenton-like catalyst for degradation of sulfamethazine (SMT) in aqueous solution. The hybrid catalyst had higher catalytic efficiency compared with Fe3O4-Mn3O4 and Mn3O4 as catalyst for degradation of SMT. The effects of pH value, H2O2 concentration, catalyst dosage, initial SMT concentration and temperature on SMT degradation were investigated. The removal efficiency of SMT was about 98% at following optimal conditions: pH=3, T=35°C, Fe3O4/Mn3O4-RGO composites=0.5g/L, H2O2=6mM. The inhibitor experiments indicated that the main active species was hydroxyl radicals (·OH) on catalyst surface. At last, the possible catalytic mechanism was proposed.
Collapse
Affiliation(s)
- Zhong Wan
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China.
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
45
|
Wan Z, Wang J. Ce-Doped zero-valent iron nanoparticles as a Fenton-like catalyst for degradation of sulfamethazine. RSC Adv 2016. [DOI: 10.1039/c6ra23709f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ce-Doped zero-valent iron (Ce/Fe) nanoparticles were prepared, characterized and used as a catalyst for degradation of sulfamethazine (SMT) antibiotics in a Fenton-like process.
Collapse
Affiliation(s)
- Zhong Wan
- Collaborative Innovation Center for Advanced Nuclear Energy Technology
- Institute of Nuclear Energy Technology (INET)
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology
- Institute of Nuclear Energy Technology (INET)
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|