1
|
Li S, Yin Y, Zhang R, Wang C. The Impacts of Cellulose on Volatile Fatty Acid Production and the Microbial Community in Anaerobic Fermentation of Sludge at High and Medium Temperatures. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05052-9. [PMID: 39212899 DOI: 10.1007/s12010-024-05052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
During large-scale sewage treatment, a large amount of excessive sludge is produced, which will cause serious pollution in the environment. In recent years, anaerobic digestion technology has been widely promoted because it can achieve better sludge reduction, and the products and byproducts after anaerobic digestion can be fully utilized as resources. In this study, cellulose was added as the co-fermentation substrate during the fermentation process at 30 ℃ and 50 ℃ to enhance the production of VFAs. The result indicated that cellulose could significantly increase the yield of VFAs in both 30 ℃ and 50 ℃. Meanwhile, COD and reducing sugar generation in the fermentation process were also measure. Analysis of the microbial community structure at the class and genus levels revealed that the proportion of several genus closely related with cellulose degradation such as Cellvibrio, Fibrobacter, and Sporocytophaga were significantly increased with the addition of cellulose. Co-fermentation was recognized as an economic and environmental friendly strategy for sludge and other solid waste treatment. The analysis of the effect of cellulose as a substrate on the production of VFAs at high and medium temperatures is highly important for exploring ways to increase the production of VFAs in anaerobic fermentation.
Collapse
Affiliation(s)
- Suyu Li
- Miami College, Henan University, Henan Province, Kaifeng, 475000, China
| | - Yilong Yin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Ruyan Zhang
- Miami College, Henan University, Henan Province, Kaifeng, 475000, China
| | - Chongyang Wang
- Miami College, Henan University, Henan Province, Kaifeng, 475000, China.
| |
Collapse
|
2
|
Lin Q, Xi S, Cheng B, Jiang J, Zan F, Tang Y, Li Y, Khanal SK, Wang Z, Chen G, Guo G. Electrogenerated singlet oxygen and reactive chlorine species enhancing volatile fatty acids production from co-fermentation of waste activated sludge and food waste: The key role of metal oxide coated electrodes. WATER RESEARCH 2024; 260:121953. [PMID: 38901317 DOI: 10.1016/j.watres.2024.121953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Electrochemical pretreatment (EPT) has shown to be superior in improving acidogenic co-fermentation (Co-AF) of waste activated sludge (WAS) and food waste (FW) for volatile fatty acids (VFAs). However, the influence of EPT electrode materials on the production of electrogenerated oxidants (such as singlet oxygen (1O2) and reactive chlorine species (RCS)), as well as their effects on properties of electrodes, the microbial community structure and functional enzymes remain unclear. Therefore, this study investigated the effects of various metal oxide coated electrodes (i.e., Ti/PbO2, Ti/Ta2O5-IrO2, Ti/SnO2-RuO2, and Ti/IrO2-RuO2) on EPT and subsequent Co-AF of WAS-FW. The results showed that EPT with Ti/PbO2, Ti/Ta2O5-IrO2, Ti/SnO2-RuO2 and Ti/IrO2-RuO2 electrodes generated 165.3-848.2 mg Cl2/L of RCS and 5.643 × 1011-3.311 × 1012 spins/mm3 of 1O2, which significantly enhanced the solubilization and biodegradability of WAS-FW by 106.4 %-233.6 % and 177.3 %-481.8 %, respectively. Especially with Ti/Ta2O5-IrO2 as the electrode material, an appropriate residual RCS (2.0-10.4 mg Cl2/L) remained in Co-AF step, resulted in hydrolytic and acidogenic bacteria (e.g., Prevotella_7, accounting for 78.9 %) gradually become dominant rather than methanogens (e.g., Methanolinea and Methanothrix) due to their different tolerance to residual RCS. Meanwhile, the functional gene abundances of hydrolytic and acidogenic enzymes increased, while the methanogenic enzymes deceased. Consequently, this reactor produced the highest VFAs up to 545.5 ± 36.0 mg COD/g VS, which was 101.8 % higher than that of the Control (without EPT). Finally, the economic analysis and confirmatory experiments further proved the benefits of WAS-FW Co-AF with EPT.
Collapse
Affiliation(s)
- Qingshan Lin
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Chongqing University of Arts and Sciences, Yongchuan 402160, PR China
| | - Shihao Xi
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Boyi Cheng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Jinqi Jiang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Feixiang Zan
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Yuanzhe Tang
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Chongqing University of Arts and Sciences, Yongchuan 402160, PR China
| | - Yeqing Li
- College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering (MBBE), University of Hawaii at Mānoa, Honolulu, USA
| | - Zongping Wang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gang Guo
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China.
| |
Collapse
|
3
|
Undiandeye J, Gallegos D, Bonatelli ML, Kleinsteuber S, Bin-Hudari MS, Abdulkadir N, Stinner W, Sträuber H. Medium-chain carboxylates production from plant waste: kinetic study and effect of an enriched microbiome. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:79. [PMID: 38867271 PMCID: PMC11167882 DOI: 10.1186/s13068-024-02528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND The need for addition of external electron donors such as ethanol or lactate impairs the economic viability of chain elongation (CE) processes for the production of medium-chain carboxylates (MCC). However, using feedstocks with inherent electron donors such as silages of waste biomass can improve the economics. Moreover, the use of an appropriate inoculum is critical to the overall efficiency of the CE process, as the production of a desired MCC can significantly be influenced by the presence or absence of specific microorganisms and their metabolic interactions. Beyond, it is necessary to generate data that can be used for reactor design, simulation and optimization of a given CE process. Such data can be obtained using appropriate mathematical models to predict the dynamics of the CE process. RESULTS In batch experiments using silages of sugar beet leaves, cassava leaves, and Elodea/wheat straw as substrates, caproate was the only MCC produced with maximum yields of 1.97, 3.48, and 0.88 g/kgVS, respectively. The MCC concentrations were accurately predicted with the modified Gompertz model. In a semi-continuous fermentation with ensiled sugar beet leaves as substrate and digestate from a biogas reactor as the sole inoculum, a prolonged lag phase of 7 days was observed for the production of MCC (C6-C8). The lag phase was significantly shortened by at least 4 days when an enriched inoculum was added to the system. With the enriched inoculum, an MCC yield of 93.67 g/kgVS and a productivity of 2.05 gMCC/L/d were achieved. Without the enriched inoculum, MCC yield and productivity were 43.30 g/kgVS and 0.95 gMCC/L/d, respectively. The higher MCC production was accompanied by higher relative abundances of Lachnospiraceae and Eubacteriaceae. CONCLUSIONS Ensiled waste biomass is a suitable substrate for MCC production using CE. For an enhanced production of MCC from ensiled sugar beet leaves, the use of an enriched inoculum is recommended for a fast process start and high production performance.
Collapse
Affiliation(s)
- Jerome Undiandeye
- Department of Biochemical Conversion, DBFZ Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, 04347, Leipzig, Germany.
- Department of Chemical Engineering, University of Port Harcourt, PMB 5323, Port Harcourt, Nigeria.
| | - Daniela Gallegos
- Department of Biochemical Conversion, DBFZ Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, 04347, Leipzig, Germany
| | - Maria L Bonatelli
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Mohammad Sufian Bin-Hudari
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Nafi'u Abdulkadir
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Department of Microbiology, Sokoto State University, Sokoto, 852101, Nigeria
| | - Walter Stinner
- Department of Biochemical Conversion, DBFZ Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, 04347, Leipzig, Germany
| | - Heike Sträuber
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| |
Collapse
|
4
|
Jiang T, Li X, Yang J, Wang L, Wang W, Zhang L, Wang B. Potential of free nitrous acid (FNA) for sludge treatment and resource recovery from waste activated sludge: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121170. [PMID: 38749134 DOI: 10.1016/j.jenvman.2024.121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024]
Abstract
The escalating production of waste activated sludge (WAS) presents significant challenges to wastewater treatment plants (WWTPs). Free nitrous acid (FNA), known for its biocidal effect, has gained a growing focus on sludge dewatering, sludge reduction, and resource recovery from WAS due to its eco-friendly and cost-effective properties. Nevertheless, there have been no attempts made to systematically summarize or critically analyze the application of FNA in enhancing treatment and resource utilization of sludge. In this paper, we provided an overview of the current understanding regarding the application potential and influencing factors of FNA in sludge treatment, with a specific focus on enhancing sludge dewatering efficiency and reducing volume. To foster resource development from sludge, various techniques based on FNA have recently been proposed, which were comprehensively reviewed with the corresponding mechanisms meticulously discussed. The results showed that the chemical oxidation and interaction with microorganisms of FNA played the core role in improving resource utilization. Furthermore, current challenges and future prospects of the FNA-based applications were outlined. It is expected that this review can refine the theoretical framework of FNA-based processes, providing a theoretical foundation and technical guidance for the large-scale demonstration of FNA.
Collapse
Affiliation(s)
- Tan Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiaodi Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiayi Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Lu Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Wen Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
5
|
Sun S, Wang X, Cheng S, Lei Y, Sun W, Wang K, Li Z. A review of volatile fatty acids production from organic wastes: Intensification techniques and separation methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121062. [PMID: 38735068 DOI: 10.1016/j.jenvman.2024.121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
High value-added products from organic waste fermentation have garnered increasing concern in modern society. VFAs are short-chain fatty acids, produced as intermediate products during the anaerobic fermentation of organic matter. VFAs can serve as an essential organic carbon source to produce substitutable fuels, microbial fats and oils, and synthetic biodegradable plastics et al. Extracting VFAs from the fermentation broths is a challenging task as the composition of suspensions is rather complex. In this paper, a comprehensive review of methods for VFAs production, extraction and separation are provided. Firstly, the methods to enhance VFAs production and significant operating parameters are briefly reviewed. Secondly, the evaluation and detailed discussion of various VFAs extraction and separation technologies, including membrane separation, complex extraction, and adsorption methods, are presented, highlighting their specific advantages and limitations. Finally, the challenges encountered by different separation technologies and novel approaches to enhance process performance are highlighted, providing theoretical guidance for recycling VFAs from organic wastes efficiently.
Collapse
Affiliation(s)
- Shushuang Sun
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China.
| | - Xuemei Wang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China.
| | - Shikun Cheng
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Yuxin Lei
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Wenjin Sun
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Kexin Wang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Zifu Li
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China; International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
6
|
Lee ES, Park SY, Kim CG. Comparison of anaerobic digestion of starch- and petro-based bioplastic under hydrogen-rich conditions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:133-145. [PMID: 38194798 DOI: 10.1016/j.wasman.2023.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
To identify an economically viable waste management system for bioplastics, thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate) (PBAT) were anaerobically digested under hydrogen (H2)/carbon dioxide (CO2) and nitrogen (N2) gas-purged conditions to compare methane (CH4) production and biodegradation. Regardless of the type of bioplastics, CH4 production was consistently higher with H2/CO2 than with N2. The highest amount of CH4 was produced at 307.74 mL CH4/g volatile solids when TPS digested with H2/CO2. A stepwise increased in CH4 yield was observed, with a nominal initial increment followed by accelerated methanogenesis conversion as H2 was depleted. This may be attributed to a substantial shift in the microbial structure from hydrogenotrophic methanogen (Methanobacteriales and Methanomicrobiales) to heterotrophs (Spirochaetia). In contrast, no significant change was observed with PBAT, regardless of the type of purged gas. TPS was broken down into numerous derivatives, including volatile fatty acids. TPS produced more byproducts with H2/CO2 (i.e., 430) than with N2 (i.e., 320). In contrast, differential scanning calorimetry analysis on PBAT revealed an increase in crystallinity from 10.20 % to 12.31 % and 11.36 % in the H2/CO2- and N2-purged conditions, respectively, after 65 days of testing. PBAT surface modifications were characterized via Fourier transform infrared spectroscopy and scanning electron microscopy. The results suggest that the addition of H2/CO2 can enhance the CH4 yield and increase the breakdown rate of TPS more than that of PBAT. This study provides novel insights into the CH4 production potential of two bioplastics with different biodegradabilities in H2/CO2-mediated anaerobic digestion systems.
Collapse
Affiliation(s)
- Eun Seo Lee
- Program in Environmental and Polymer Engineering, INHA University, Incheon 22212, Republic of Korea
| | - Seon Yeong Park
- Institute of Environmental Research, INHA University, Incheon 22212, Republic of Korea
| | - Chang Gyun Kim
- Program in Environmental and Polymer Engineering, INHA University, Incheon 22212, Republic of Korea; Department of Environmental Engineering, INHA University, Incheon 22212, Republic of Korea.
| |
Collapse
|
7
|
Liu F, Cheng W, Xu J, Wan T, Wang M, Ren J, Ning M, Zhang H, Zhou X. Enhancing short-chain fatty acids production via acidogenic fermentation of municipal sewage sludge: Effect of sludge characteristics and peroxydisulfate pre-oxidation. Biotechnol J 2024; 19:e2300540. [PMID: 38472098 DOI: 10.1002/biot.202300540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024]
Abstract
This study first employed a combined pretreatment of low-dose peroxy-disulfate (PDS) and initial pH 10 to promote short-chain fatty acids (SCFAs) production via acidogenic fermentation using different types of sewage sludge as substrates. The experimental results showed that the yield of maximal SCFAs and acetate proportion after the combined pretreatment were 1513.82 ± 28.25 mg chemical oxygen demand (COD)/L and 53.64%, and promoted by 1.28 and 1.56 times higher, respectively, compared to the sole initial pH 10 pretreatment. Furthermore, in terms of the disintegration degree of sewage sludge, it increased by more than 18% with the combined pretreatment compared to the pretreatment of sole initial pH 10. Waste-activated sludge (WAS) from A2/O and Bardenpho processes were more biodegradable, explained by the 1.47- and 1.35-times higher disintegration rate than those from oxidation ditch and they favored acetate dominant fermentation. Correlation analysis revealed a strong correlation (p ≤ 0.01) between SCFAs production and soluble COD, total proteins, proteins in soluble-extracellular polymeric substances (SEPS), total polysaccharides, and polysaccharides in SEPS. Mechanism explorations showed that preoxidation with PDS enhanced the solubilization and biodegradability of complex substrates, and altered the microbial community structure during the fermentation process. Firmicutes and Tetrasphaera were proven to play a key role in improving SCFA production, especially in promoting acetate production by converting additional SCFAs into acetate. Additionally, the addition of PDS greatly promoted sulfur and iron-related metabolic activities. Finally, the combined pretreatment was estimated to be a cost-effective solution for reutilizing and treating Fe-sludge.
Collapse
Affiliation(s)
- Faxin Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Wen Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Jianping Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Tian Wan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Min Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Jiehui Ren
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Maomao Ning
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Hui Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Xiaoping Zhou
- Power China Northeast Engineering Corporation Limited, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Chen W, Zeng Y, Liu H, Sun D, Liu X, Xu H, Wu H, Qiu B, Dang Y. Granular activated carbon enhances volatile fatty acid production in the anaerobic fermentation of garden wastes. Front Bioeng Biotechnol 2023; 11:1330293. [PMID: 38146344 PMCID: PMC10749581 DOI: 10.3389/fbioe.2023.1330293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Abstract
Garden waste, one type of lignocellulosic biomass, holds significant potential for the production of volatile fatty acids (VFAs) through anaerobic fermentation. However, the hydrolysis efficiency of garden waste is limited by the inherent recalcitrance, which further influences VFA production. Granular activated carbon (GAC) could promote hydrolysis and acidogenesis efficiency during anaerobic fermentation. This study developed a strategy to use GAC to enhance the anaerobic fermentation of garden waste without any complex pretreatments and extra enzymes. The results showed that GAC addition could improve VFA production, especially acetate, and reach the maximum total VFA yield of 191.55 mg/g VSadded, which increased by 27.35% compared to the control group. The highest VFA/sCOD value of 70.01% was attained in the GAC-amended group, whereas the control group only reached 49.35%, indicating a better hydrolysis and acidogenesis capacity attributed to the addition of GAC. Microbial community results revealed that GAC addition promoted the enrichment of Caproiciproducens and Clostridium, which are crucial for anaerobic VFA production. In addition, only the GAC-amended group showed the presence of Sphaerochaeta and Oscillibacter genera, which are associated with electron transfer processes. Metagenomics analysis indicated that GAC addition improved the abundance of glycoside hydrolases (GHs) and key functional enzymes related to hydrolysis and acidogenesis. Furthermore, the assessment of major genera influencing functional genes in both groups indicated that Sphaerochaeta, Clostridium, and Caproicibacter were the primary contributors to upregulated genes. These findings underscored the significance of employing GAC to enhance the anaerobic fermentation of garden waste, offering a promising approach for sustainable biomass conversion and VFA production.
Collapse
Affiliation(s)
- Wenwen Chen
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Yiwei Zeng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Huanying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Xinying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Haiyu Xu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd., Shanghai, China
| | - Hongbin Wu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd., Shanghai, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Liu F, Cheng W, Xu J, Wang M, Wan T, Ren J, Li D, Xie Q. Promoting short-chain fatty acids production from sewage sludge via acidogenic fermentation: Optimized operation factors and iron-based persulfate activation system. CHEMOSPHERE 2023; 342:140148. [PMID: 37714473 DOI: 10.1016/j.chemosphere.2023.140148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/10/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Promoting short-chain fatty acids (SCFAs) production and ensuring the stability of SCFAs-producing process are becoming the two major issues for popularizing the acidogenic fermentation (AF). The key controlling operating and influencing factors during anaerobic fermentation process were thoroughly reviewed to facilitate better process performance prediction and to optimize the process control of SCFAs promotion. The wide utilization of iron salt flocculants during wastewater treatment could result in iron accumulating in sewage sludge which influenced AF performance. Additionally, appropriate ferric chloride (FC) could promote the SCFAs accumulation, while poly ferric sulfate (PFS) inhibited the bioprocess. Iron/persulfate (PS) system was proved to effectively enhance the SCFAs production while mechanism analysis revealed that the strong oxidizing radicals remarkably enhanced the solubilization and hydrolysis. Moreover, the changes of oxidation-reduction potential (ORP) and pH caused by iron/PS system exhibited more negative effects on the methanogens, comparing to the acidogenic bacteria. Furthermore, performance and mechanisms of different iron species-activating PS, organic chelating agents and iron-rich biochar derived from sewage sludge were also elucidated to extend and strengthen understanding of the iron/PS system for enhancing SCFAs production. Considering the large amount of generated Fe-sludge and the multiple benefits of iron activating PS system, carbon neutral wastewater treatment plants (WWTPs) were proposed with Fe-sludge as a promising recycling composite to improve AF performance. It is expected that this review can deepen the knowledge of optimizing AF process and improving the iron/PS system for enhancing SCFAs production and provide useful insights to researchers in this field.
Collapse
Affiliation(s)
- Faxin Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Wen Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China.
| | - Jianping Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Min Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Tian Wan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Jiehui Ren
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Dong Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| | - Qiqi Xie
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO.5, South Jinhua Road, Xi'an, Shaanxi, 710048, China
| |
Collapse
|
10
|
Feng L, Lin X, Li X. Combined anaerobic digestion of chicken manure and corn straw: study on methanogenic potential and microbial diversity. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Abstract
Purpose
To explore the methane production potential and microbial community changes of combined anaerobic digestion of chicken manure and corn straw. Increase methane production, reduce the environmental pollution caused by the burning of livestock manure and straw, and provide some theoretical references for the construction and operation of actual biogas projects.
Methods
Different proportions (3%, 5%, 10%) of corn straw were added to the anaerobic digestion systems of chicken manure in order to improve the C/N ratio and to evaluate the feasibility and potential synergistic effect on the co-digestion. The key point was to use 16S rDNA sequencing to analyze the relationship between the microbial diversity and the hydrolase activity during the anaerobic digestion.
Result
The results showed that the volumetric gas production of methane in the 3% straw addition group was 227.66 ml/gVS, which was 18% higher than the cumulative methane production in the pure chicken manure experimental group. However, with the increase of straw concentration, methane production and the utilization rate of the raw materials continued to decrease. The change in activity of each hydrolase was in agreement with changes in hydrolytic acidifying bacteria, and the activity of the main hydrolase also increased with the addition of straw; the correlation coefficient was 0.9943. Sequencing results showed that the dominant strains of methanogenic archaea were Methanosarcina, Methanosaeta, Methanobacterium, and Methanospirillum. Mainly for hydrogen-eating, acetic acid-eating methanogens, its role is to use H2, methanol and acetic acid, and other substances to metabolize methane, and convert it into CH4 and CO2.
Conclusion
The addition of a small amount of straw enhanced the production capacity of hydrogen-nutritive methane to some extent, and the species richness and evenness were also improved, reducing the pollution caused by livestock manure to the environment while controlling the pollution caused by straw burning.
Graphical Abstract
Collapse
|
11
|
Wang L, Hao J, Wang C, Li Y, Yang Q. Carbohydrate-to-protein ratio regulates hydrolysis and acidogenesis processes during volatile fatty acids production. BIORESOURCE TECHNOLOGY 2022; 355:127266. [PMID: 35526712 DOI: 10.1016/j.biortech.2022.127266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
In this study, the typical model solubilized and hydrolyzed substrates of protein and carbohydrate were anaerobically fermented at different carbohydrate-to-protein (Car/Pro) ratios to examine volatile fatty acids (VFAs) production and substrate consumption. The highest VFAs yields of 0.71 and 0.72 mg COD/mg CODsubstrate both occurred at Car/Pro ratio of 1 by BSA-dextran and amino acids (AAs)-glucose fermentation, respectively. The limiting processes were hydrolysis and acidogenesis for the higher Car/Pro ratio of 3 and lower Car/Pro ratio of 0.25, respectively. An inhibitory effect of AAs accumulation was found, and VFAs production could be raised by 25.5% through quartic fed-batch strategy. There existed a significant relationship between activity of hydrolytic and acid-forming enzymes and acidogenic metabolism efficiency, which could be fitted by first-order kinetic and Logistic-based models. Understanding the effects of Car/Pro ratio on VFAs production is of guiding significance for regulating hydrolysis and acidogenesis processes during anaerobic fermentation of organic wastes.
Collapse
Affiliation(s)
- Leshi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiuxiao Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Chongyang Wang
- Miami College, Henan University, Kaifeng 475000, Henan, China
| | - Yingying Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
12
|
Wei Y, Zhou A, Duan Y, Liu Z, He Z, Zhang J, Liang B, Yue X. Unraveling the behaviors of sulfonamide antibiotics on the production of short-chain fatty acids by anaerobic fermentation from waste activated sludge and the microbial ecological mechanism. CHEMOSPHERE 2022; 296:133903. [PMID: 35149007 DOI: 10.1016/j.chemosphere.2022.133903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/27/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics in waste activated sludge (WAS) has drawn increasing attention because of their persistent and bioaccumulation characteristics. Most study illustrated the role of antibiotics in anaerobic fermentation from WAS, but lacking the analysis at microbial level as well as the possible interaction between them. This study investigated the effect of three sulfonamide antibiotics (sulfamethoxazole (SMX), sulfaquinoxaline (SQX), and sulfadiazine (SD)) on WAS fermentation and explored its microbiological mechanism. Results indicated that the production of short-chain fatty acids (SCFAs) was significantly improved by 1.9 folds with a peak value at 4626.1 mg COD L-1 in the existence of SD. This was attributed to the promoted release of soluble proteins and polysaccharides with the existence of sulfonamide antibiotics (SAs) as revealed by the excitation-emission matrix (EEM) spectrum. Analysis of microbial community structure showed that the total abundance of the fermenters in groups with SAs was1.2-1.6 times of that in Control. Specifically, the acid-forming genus Tissierella in SMX and SQX increased by 12.1%-15.0% compared with the Control, while the proteolytic genus Proteinivorax dominated in SD with 39.5%. Molecular ecological networks (MENs) analysis further revealed the potential cooperative relationships among different fermenters. This study was anticipated to provide some valuable information for the behavior of antibiotics in WAS fermentation.
Collapse
Affiliation(s)
- Yaoli Wei
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China.
| | - Yanqing Duan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Zhangwei He
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jiaguang Zhang
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Bin Liang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 51805, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan, China.
| |
Collapse
|
13
|
Varghese VK, Poddar BJ, Shah MP, Purohit HJ, Khardenavis AA. A comprehensive review on current status and future perspectives of microbial volatile fatty acids production as platform chemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152500. [PMID: 34968606 DOI: 10.1016/j.scitotenv.2021.152500] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Volatile fatty acids (VFA), the secondary metabolite of microbial fermentation, are used in a wide range of industries for production of commercially valuable chemicals. In this review, the fermentative production of VFAs by both pure as well mixed microbial cultures is highlighted along with the strategies for enhancing the VFA production through innovations in existing approaches. Role of conventionally applied tools for the optimization of operational parameters such as pH, temperature, retention time, organic loading rate, and headspace pressure has been discussed. Furthermore, a comparative assessment of above strategies on VFA production has been done with alternate developments such as co-fermentation, substrate pre-treatment, and in situ removal from fermented broth. The review also highlights the applications of different bioreactor geometries in the optimum production of VFAs and how metagenomic tools could provide a detailed insight into the microbial communities and their functional attributes that could be subjected to metabolic engineering for the efficient production of VFAs.
Collapse
Affiliation(s)
- Vijay K Varghese
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India
| | - Bhagyashri J Poddar
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Maulin P Shah
- Industrial Waste Water Research Lab, Division of Applied and Environmental Microbiology Lab, Enviro Technology Ltd., Ankleshwar 393002, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India
| | - Anshuman A Khardenavis
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
14
|
Perez-Esteban N, Vinardell S, Vidal-Antich C, Peña-Picola S, Chimenos JM, Peces M, Dosta J, Astals S. Potential of anaerobic co-fermentation in wastewater treatments plants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152498. [PMID: 34968594 DOI: 10.1016/j.scitotenv.2021.152498] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 05/25/2023]
Abstract
Fermentation (not anaerobic digestion) is an emerging biotechnology to transform waste into easily assimilable organic compounds such as volatile fatty acids, lactic acid and alcohols. Co-fermentation, the simultaneous fermentation of two or more waste, is an opportunity for wastewater treatment plants (WWTPs) to increase the yields of sludge mono-fermentation. Most publications have studied waste activated sludge co-fermentation with food waste or agri-industrial waste. Mixing ratio, pH and temperature are the most studied variables. The highest fermentation yields have been generally achieved in mixtures dominated by the most biodegradable substrate at circumneutral pH and mesophilic conditions. Nonetheless, most experiments have been performed in batch assays which results are driven by the capabilities of the starting microbial community and do not allow evaluating the microbial acclimation that occurs under continuous conditions. Temperature, pH, hydraulic retention time and organic load are variables that can be controlled to optimise the performance of continuous co-fermenters (i.e., favour waste hydrolysis and fermentation and limit the proliferation of methanogens). This review also discusses the integration of co-fermentation with other biotechnologies in WWTPs. Overall, this review presents a comprehensive and critical review of the achievements on co-fermentation research and lays the foundation for future research.
Collapse
Affiliation(s)
- N Perez-Esteban
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Vinardell
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - C Vidal-Antich
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Water Research Institute, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Peña-Picola
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - J M Chimenos
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - M Peces
- Department of Chemistry and Bioscience, Centre for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - J Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Water Research Institute, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
15
|
Bai S, Xi B, Li X, Wang Y, Yang J, Li S, Zhao X. Anaerobic digestion of chicken manure: Sequences of chemical structures in dissolved organic matter and its effect on acetic acid production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113245. [PMID: 34265661 DOI: 10.1016/j.jenvman.2021.113245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
The use of chicken manure (CM) leads to serious environmental pollution due to the existence of bacteria and insect pests. Anaerobic digestion (AD) is one of the important technologies of CM treatment. However, methane production is limited by the accumulation of short-chain fatty acids (SCFAs) from AD. Therefore, the study explored the possible formation mechanism of acetic acid by understanding the effect of sequences of chemical structure variation in DOM on acetic acid production. The chemical structures of DOM were observed. The tyrosine-like substances (C1, 53.53-29.99%) and humic-like substances (C3, 18.38-5.96%) showed a tendency to decrease. Tryptophan-like substances (C2, 28.09-64.04%) showed the increasing trend. The results indicated that C2 was unwilling to biodegrade. In DOM, the order of biodegradability was C2< C1< C3. AD resulted in the enrichment of N-H in-plane (0-22.75%) and COO- stretch (7.53-18.57%) and the loss of O-H stretch (19.39-13.72%), C-H stretch (4.56%-0), CC stretch (12.04-9.61%) and C-O stretch (10.02-5.03%). Two-dimensional correlation spectroscopy is applied to investigate the sequences of chemical structures in DOM, the order is as follows: CC stretch > COO- stretch > N-H in-plane > C-O stretch. The result confirmed that protein was rapidly decomposed and utilized, which would result in the increase of microorganism metabolism and hydrolysis rate, polysaccharide was hydrolyzed to form phenol and carboxylic acid. Four possible pathways were identified in AD by the structural equation model. C1and hydroxyl can promote propionic and butyric acid formation by the pathway of valeric or iso-butyric acid production and further effected acetic acid production. This study proposed the possible formative mechanisms of acetic acid according to sequences of chemical structures variation in DOM during AD, which can provide the theoretical basis for directional regulating the conversion of different chemical structures of DOM into acetic acid in AD.
Collapse
Affiliation(s)
- Sicong Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yihan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Department of Chemistry, Tianjin Normal University, 300387, China
| | - Jinjin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shaokang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
16
|
Zhou X, Lu Y, Huang L, Zhang Q, Wang X, Zhu J. Effect of pH on volatile fatty acid production and the microbial community during anaerobic digestion of Chinese cabbage waste. BIORESOURCE TECHNOLOGY 2021; 336:125338. [PMID: 34082333 DOI: 10.1016/j.biortech.2021.125338] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
The effects of pH on the production of volatile fatty acids (VFAs) and the evolution of microbial community structure were studied via anaerobic fermentation of Chinese cabbage waste. The results showed that the concentration of total VFAs was highest at 20,241.4 mg COD/L at pH 6.0, followed by pH 7.0. Ethanol, acetate and butyrate were dominant under the acidic condition. The main products at pH 7.0 were acetate, propionate, and butyrate. Ethanol, acetate and butyrate were rapidly produced during the initial stage. The hexanoate concentration increased quickly from day 6 due to the chain extension between ethanol and butyrate, and was 4,885.1 mg COD/L on day 8, accounting for 30.4% of the total VFAs. As fermentation was extended, Bacteroidia and Clostridia were dominant at pH 6.0 and the uncontrolled pH, respectively. Clostridium IV, Ruminococcus, and Candida, were suspected to be related to hexanoate production.
Collapse
Affiliation(s)
- Xiaonan Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yu Lu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Liu Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Qi Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Jiying Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
17
|
Chen Z, Li Y, Ye C, He X, Zhang S. Fate of antibiotics and antibiotic resistance genes during aerobic co-composting of food waste with sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:146950. [PMID: 34088024 DOI: 10.1016/j.scitotenv.2021.146950] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Aerobic composting is widely used on transforming organic solid waste into proliferating products. However, the removal of antibiotics and antibiotic resistance genes (ARGs) in the process of co-composting of food waste with sewage sludge has been rarely reported to date. Therefore, we investigated a laboratory-scale composting using food waste and sewage sludge as substrates to study changes in antibiotics and ARGs during composting. Varying dose of antibiotics were added to allow the evaluation of changes in antibiotics, the microbial community and ARGs. The results revealed that composting effectively removed fluoroquinolones and macrolides, while showed poor efficiency in removing sulfonamides. Results from the 16S rRNA sequencing revealed that Firmicutes dominated on D0, while Proteobacteria and Actinomycetes dominated on D28, and a high concentration of antibiotics affected the microbial succession. The quantitative PCR demonstrated that the abundance of sul3, sulA, qnrB, qnrS, and ermB was reduced after 28 days composting, while an increase in the abundance of sul1, sul2, qnrD, ermC, and ermF was induced by high concentrations of antibiotics. Redundancy analysis revealed that total organic matter was the most important factor for the variation in the ARGs abundance. Overall, our findings indicated that the aerobic co-composting of food waste with sewage sludge can effectively remove antibiotics and ARGs. Our study sheds a new idea light on the strategy for the removal of antibiotics and ARGs from organic solid waste.
Collapse
Affiliation(s)
- Zhou Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Yanzeng Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Chengsong Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Xin He
- Hefei Thomas School, Hefei 230000, People's Republic of China
| | - Shenghua Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China.
| |
Collapse
|
18
|
Chen Z, Li Y, Peng Y, Ye C, Zhang S. Effects of antibiotics on hydrolase activity and structure of microbial community during aerobic co-composting of food waste with sewage sludge. BIORESOURCE TECHNOLOGY 2021; 321:124506. [PMID: 33310386 DOI: 10.1016/j.biortech.2020.124506] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the effects of antibiotics on environmental factors, hydrolase activity, and microbial community during aerobic co-composting of food waste and sewage sludge. The results showed that 5 mg/kg of antibiotics decreased cellulase activity and increased lipase and proteinase activity, while 20 mg/kg of antibiotics also decreased cellulase activity and increased the contents of Zn, Cu, and Hg. The dominant bacterial genera of the four treatment groups were Enterococcus, Pseudomonas, Idiomarina, Lactobacillus, and Bacillus. The addition of antibiotics affected the succession of microbial community structure. Microbial communities treated with 5 mg/kg antibiotics had the highest in diversity, while those treated with 20 mg/kg antibiotics had the lowest in richness. Redundancy analysis (RDA) revealed that the pH and temperature were the most important environmental factors that affected microbial community succession, followed by total nitrogen and moisture content during co-composting of food waste and sewage sludge.
Collapse
Affiliation(s)
- Zhou Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Yanzeng Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Yanyan Peng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Chengsong Ye
- Xiamen University, Xiamen 361102, People's Republic of China
| | - Shenghua Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China.
| |
Collapse
|
19
|
Modeling the Methane Production Kinetics of Anaerobic Co-Digestion of Agricultural Wastes Using Sigmoidal Functions. ENERGIES 2021. [DOI: 10.3390/en14020258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The modified sigmoidal bacteria growth functions (the modified Gompertz, logistic, and Richards) were used to evaluate the methane production process kinetics of agricultural wastes. The mesophilic anaerobic co-digestion experiments were conducted with various agricultural wastes as feedstocks, including cow manure, corn straw, grape leaves, vines, wine residue, strawberry leaves, and tomato leaves. The results showed that anaerobic co-digestion of cow manure and other agricultural wastes increased the methane yields while it prolonged the lag phase time. Compared with the modified Gompertz and logistic models, the modified Richards model obtained higher correlation coefficients and was able to fit experimental data better. The results of this study were expected to determine a suitable model to simulate and study the kinetic process of anaerobic co-digestion with mixed agricultural wastes as feedstocks.
Collapse
|
20
|
Zhang Q, Lu Y, Zhou X, Wang X, Zhu J. Effect of different vegetable wastes on the performance of volatile fatty acids production by anaerobic fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142390. [PMID: 33113691 DOI: 10.1016/j.scitotenv.2020.142390] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Volatile fatty acids (VFAs) are intermediates of anaerobic fermentation with high value and wide range of usage. VFA production from vegetable wastes (VW) is an effective way to dispose of wastes and recover resources. The organic matter composition of the substrate influences VFA yield and distribution, which is related to the separation and purification of the downstream steps and the application of the product. Hence, potato peels, carrots, celery, and Chinese cabbage were selected to investigate the effect of VW types on the performance of the VFA production in a batch anaerobic fermentation reactor with continuous stirring at 37 °C, total solid (TS) of 4.5%. A VFA yield of 452 mg COD/g VSfeed (chemical oxygen demand (COD); volatile solids (VS)) was achieved from potato peels, which was 40.1%, 21.5%, and 124.9% higher than that of carrots, celery, and Chinese cabbage, respectively. The rapid acidification of carrots caused a sharp decline in pH and led to inhibition of VFA production. The acidification of celery started slowly, and the yield of hexanoic acid increased rapidly in the later stage of fermentation. The VFA yield of Chinese cabbage was inhibited due to the low initial pH, but the ethanol concentration reached 7577.04 mg COD/L. According to the VFA profile, the fermentation of potato peels, carrots, celery, and Chinese cabbage can be classified as propionate-type, butyrate-type, mixed-acid type, and ethanol-acetate type metabolic pathway, respectively. The results of this study suggest that a suitable combination of vegetable waste types is important for selective VFA production.
Collapse
Affiliation(s)
- Qi Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yu Lu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiaonan Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Jiying Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
21
|
Wan J, Fang W, Zhang T, Wen G. Enhancement of fermentative volatile fatty acids production from waste activated sludge by combining sodium dodecylbenzene sulfonate and low-thermal pretreatment. BIORESOURCE TECHNOLOGY 2020; 308:123291. [PMID: 32276203 DOI: 10.1016/j.biortech.2020.123291] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the combination of low-thermal and sodium dodecylbenzene sulfonate (SDBS) as a pretreatment method to improve the volatile fatty acids (VFA) production from waste activated sludge (WAS). The results showed that the maximum VFA yield of 320 ± 7.7 mg COD/g VS was obtained in the combined pretreatment (0.01 g SDBS/g TS + 70 °C for 60 min), which was 1.8, 1.7 and 4.0 times of that from sole low-thermal, sole SDBS and the control test. The mechanism study revealed the combined pretreatment had synergetic effect on enhancement of disintegration of WAS. Moreover, low-thermal exhibited greater performance on releasing organic matters, and SDBS accelerated hydrolysis and acidogenesis, thus contributing to the enhancement of VFA production in the combined pretreatment. The microbial community analysis demonstrated that the combined pretreatment increased the abundance of phyla Firmicutes which might be responsible for the improvement of VFA production.
Collapse
Affiliation(s)
- Jijun Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Wei Fang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, PR China.
| | - Tao Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, PR China.
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|