1
|
Phuc-Hanh Tran D, You SJ, Bui XT, Wang YF, Ramos A. Anaerobic membrane bioreactors for municipal wastewater: Progress in resource and energy recovery improvement approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121855. [PMID: 39025005 DOI: 10.1016/j.jenvman.2024.121855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Anaerobic membrane bioreactor (AnMBR) offer promise in municipal wastewater treatment, with potential benefits including high-quality effluent, energy recovery, sludge reduction, and mitigating greenhouse gas emissions. However, AnMBR face hurdles like membrane fouling, low energy recovery, etc. In light of net-zero carbon target and circular economy strategy, this work sought to evaluate novel AnMBR configurations, focusing on performance, fouling mitigation, net-energy generation, and nutrients-enhancing integrated configurations, such as forward osmosis (FO), membrane distillation (MD), bioelectrochemical systems (BES), membrane photobioreactor (MPBR), and partial nitrification-anammox (PN/A). In addition, we highlight the essential role of AnMBR in advancing the circular economy and propose ideas for the water-energy-climate nexus. While AnMBR has made significant progress, challenges, such as fouling and cost-effectiveness persist. Overall, the use of novel configurations and energy recovery strategies can further improve the sustainability and efficiency of AnMBR systems, making them a promising technology for future sustainable municipal wastewater treatment.
Collapse
Affiliation(s)
- Duyen Phuc-Hanh Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, 700000, Viet Nam
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Sustainable Environmental Education Center, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Aubrey Ramos
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| |
Collapse
|
2
|
Ibrahim M, Haider A, Lim JW, Mainali B, Aslam M, Kumar M, Shahid MK. Artificial neural network modeling for the prediction, estimation, and treatment of diverse wastewaters: A comprehensive review and future perspective. CHEMOSPHERE 2024; 362:142860. [PMID: 39019174 DOI: 10.1016/j.chemosphere.2024.142860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
The application of artificial neural networks (ANNs) in the treatment of wastewater has achieved increasing attention, as it enhances the efficiency and sustainability of wastewater treatment plants (WWTPs). This paper explores the application of ANN-based models in WWTPs, focusing on the latest published research work, by presenting the effectiveness of ANNs in predicting, estimating, and treatment of diverse types of wastewater. Furthermore, this review comprehensively examines the applicability of the ANNs in various processes and methods used for wastewater treatment, including membrane and membrane bioreactors, coagulation/flocculation, UV-disinfection processes, and biological treatment systems. Additionally, it provides a detailed analysis of pollutants viz organic and inorganic substances, nutrients, pharmaceuticals, drugs, pesticides, dyes, etc., from wastewater, utilizing both ANN and ANN-based models. Moreover, it assesses the techno-economic value of ANNs, provides cost estimation and energy analysis, and outlines promising future research directions of ANNs in wastewater treatment. AI-based techniques are used to predict parameters such as chemical oxygen demand (COD) and biological oxygen demand (BOD) in WWTP influent. ANNs have been formed for the estimation of the removal efficiency of pollutants such as total nitrogen (TN), total phosphorus (TP), BOD, and total suspended solids (TSS) in the effluent of WWTPs. The literature also discloses the use of AI techniques in WWT is an economical and energy-effective method. AI enhances the efficiency of the pumping system, leading to energy conservation with an impressive average savings of approximately 10%. The system can achieve a maximum energy savings state of 25%, accompanied by a notable reduction in costs of up to 30%.
Collapse
Affiliation(s)
- Muhammad Ibrahim
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Adnan Haider
- Department of Environmental and IT Convergence Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy and Resources, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, 602105, Chennai, India
| | - Bandita Mainali
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
| | - Muhammad Aslam
- Membrane Systems Research Group, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan; Faculty of Engineering & Quantity Surveying, INTI International University (INTI-IU), Persiaran Perdana BBN, Putra Nilai, Nilai, 71800, Negeri Sembilan, Malaysia
| | - Mathava Kumar
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Muhammad Kashif Shahid
- Department of Environmental and IT Convergence Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia; Faculty of Civil Engineering and Architecture, National Polytechnic Institute of Cambodia (NPIC), Phnom Penh 12409, Cambodia.
| |
Collapse
|
3
|
Liu L, Guo Z, Wang Y, Yin L, Zuo W, Tian Y, Zhang J. Low energy-consumption oriented membrane fouling control strategy in anaerobic fluidized membrane bioreactor. CHEMOSPHERE 2024; 359:142254. [PMID: 38714253 DOI: 10.1016/j.chemosphere.2024.142254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Anaerobic fluidized membrane bioreactors (AFMBR) has attracted growing interest as an emerging wastewater treatment technology towards energy recovery from wastewater. AFMBR combines the advantages of anaerobic digestion and membrane bioreactors and shows great potential in overcoming limiting factors such as membrane fouling and low efficiency in treating low-strength wastewater such as domestic sewage. In AFMBR, the fluidized media performs significant role in reducing the membrane fouling, as well as improving the anaerobic microbial activity of AFMBRs. Despite extensive research aimed at mitigating membrane fouling in AFMBR, there has yet to emerge a comprehensive review focusing on strategies for controlling membrane fouling with an emphasis on low energy consumption. Thus, this work overviews the recent progress of AFMBR by summarizing the factors of membrane fouling and energy consumption in AFMBR, and provides targeted in-depth analysis of energy consumption related to membrane fouling control. Additionally, future development directions for AFMBR are also outlooked, and further promotion of AFMBR engineering application is expected. By shedding light on the relationship between energy consumption and membrane fouling control, this review offers a useful information for developing new AFMBR processes with an improved efficiency, low membrane fouling and low energy consumption, and encourages more research efforts and technological advancements in the domain of AFMBR.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ze Guo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yihe Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Linlin Yin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Song W, Kim C, Lee J, Han J, Jiang Z, Kim J, An S, Park Y, Kweon J. Low-biofouling membrane bioreactor: Effects of cis-2-Decenoic acid addition on EPS and biofouling mitigation. CHEMOSPHERE 2024; 358:142110. [PMID: 38657688 DOI: 10.1016/j.chemosphere.2024.142110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Biofouling is inevitable in the membrane process, particularly in membrane bioreactors (MBR) combined with activated sludge processes. Regulating microbial signaling systems with diffusible signal factors such as cis-2-Decenoic acid (CDA) can control biofilm formation without microbial death or growth inhibition. This study assessed the effectiveness of CDA in controlling biofouling in membrane bioreactors (MBRs), essential for wastewater treatment. By modulating microbial signaling, CDA mitigated biofilm formation without hindering microbial growth. Analysis using Confocal Laser Scanning Microscopy (CLSM) revealed structural alterations in the biofilm, reducing biomass and thickness upon CDA application. Moreover, examination of extracellular polymeric substances (EPS) highlighted a decrease in total EPS, particularly effective polysaccharides. In addition, the possibility of shifting from high molecular weight EPS to low molecular weight EPS was revealed through the change in dispersion activity. The 56% extension of MBR operational lifespan resulting from the reduction in EPS is anticipated to offer potential cost savings and improved performance. Despite these results, further investigation is crucial to validate any potential environmental risks associated with CDA and to comprehend its long-term effects at various conditions.
Collapse
Affiliation(s)
- Wonjung Song
- The Academy of Applied Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Chehyeun Kim
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea
| | - Jihoon Lee
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea
| | - Jiwon Han
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea
| | - Zikang Jiang
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea
| | - Jaehyeok Kim
- Environmetal & Bio Department, FITI Testing & Research Institute Cheongju-si, Chungcheongbuk-do, 28115, Republic of Korea
| | - Sunkyung An
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea
| | - Yongmin Park
- Operation Business Division, EPS Solution Co.,Ltd, Anyang-si, Gyeonggi-do, 14059, Republic of Korea
| | - Jihyang Kweon
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
5
|
Liu L, Wang Y, Liu Y, Wang J, Zheng C, Zuo W, Tian Y, Zhang J. Insight into key interactions between diverse factors and membrane fouling mitigation in anaerobic membrane bioreactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123750. [PMID: 38467364 DOI: 10.1016/j.envpol.2024.123750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Anaerobic membrane bioreactors (AnMBRs) have garnered considerable attention as a low-energy and low-carbon footprint treatment technology. With an increasing number of scholars focusing on AnMBR research, its outstanding performance in the field of water treatment has gradually become evident. However, the primary obstacle to the widespread application of AnMBR technology lies in membrane fouling, which leads to reduced membrane flux and increased energy demand. To ensure the efficient and long-term operation of AnMBRs, effective control of membrane fouling is imperative. Nevertheless, the interactions between various fouling factors are complex, making it challenging to predict the changes in membrane fouling. Therefore, a comprehensive analysis of the fouling factors in AnMBRs is necessary to establish a theoretical basis for subsequent membrane fouling control in AnMBR applications. This review aims to provide a thorough analysis of membrane fouling issues in AnMBR applications, particularly focusing on fouling factors and fouling control. By delving into the mechanisms behind membrane fouling in AnMBRs, this review offers valuable insights into mitigating membrane fouling, thus enhancing the lifespan of membrane components in AnMBRs and identifying potential directions for future AnMBR research.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yihe Wang
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yongxiao Liu
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinghui Wang
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, China
| | - Chengzhi Zheng
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
6
|
Kim Y, Anburajan P, Kim H, Oh HS. Inhibiting Biofilm Formation via Simultaneous Application of Nitric Oxide and Quorum Quenching Bacteria. MEMBRANES 2023; 13:836. [PMID: 37888008 PMCID: PMC10608578 DOI: 10.3390/membranes13100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Membrane biofouling is an inevitable challenge in membrane-based water treatment systems such as membrane bioreactors. Recent studies have shown that biological approaches based on bacterial signaling can effectively control biofilm formation. Quorum quenching (QQ) is known to inhibit biofilm growth by disrupting quorum sensing (QS) signaling, while nitric oxide (NO) signaling helps to disperse biofilms. In this study, batch biofilm experiments were conducted to investigate the impact of simultaneously applying NO signaling and QQ for biofilm control using Pseudomonas aeruginosa PAO1 as a model microorganism. The NO treatment involved the injection of NONOates (NO donor compounds) into mature biofilms, while QQ was implemented by immobilizing QQ bacteria (Escherichia coli TOP10-AiiO or Rhodococcus sp. BH4) in alginate or polyvinyl alcohol/alginate beads to preserve the QQ activity. When QQ beads were applied together with (Z)-1-[N-(3-aminopropyl)-N-(n-propyl) amino]diazen-1-ium-1,2-diolate (PAPA NONOate), they achieved a 39.0% to 71.3% reduction in biofilm formation, which was substantially higher compared to their individual applications (16.0% to 54.4%). These findings highlight the significant potential of combining QQ and NO technologies for effective biofilm control across a variety of processes that require enhanced biofilm inhibition.
Collapse
Affiliation(s)
- Youkyoung Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (Y.K.); (P.A.); (H.K.)
| | - Parthiban Anburajan
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (Y.K.); (P.A.); (H.K.)
- Institute of Environmental Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Hyeok Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (Y.K.); (P.A.); (H.K.)
| | - Hyun-Suk Oh
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (Y.K.); (P.A.); (H.K.)
- Institute of Environmental Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
7
|
Nouhou Moussa AW, Sawadogo B, Konate Y, Sidibe SDS, Heran M. Critical State of the Art of Sugarcane Industry Wastewater Treatment Technologies and Perspectives for Sustainability. MEMBRANES 2023; 13:709. [PMID: 37623770 PMCID: PMC10456721 DOI: 10.3390/membranes13080709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/26/2023]
Abstract
The worldwide pressure on water resources is aggravated by rapid industrialization, with the food industry, particularly sugar factories, being the foremost contributor. Sugarcane, a primary source of sugar production, requires vast amounts of water, over half of which is discharged as wastewater, often mixed with several byproducts. The discharge of untreated wastewater can have detrimental effects on the environment, making the treatment and reuse of effluents crucial. However, conventional treatment systems may not be adequate for sugarcane industry effluent treatment due to the high organic load and variable chemical and mineral pollution. It is essential to explore pollution-remediating technologies that can achieve a nexus (water, energy, and food) approach and contribute to sustainable development. Based on the extensive literature, membrane technologies such as the membrane bioreactor have shown promising results in treating sugarcane industry wastewater, producing treated water of higher quality, and the possibility of biogas recovery. The byproducts generated from this treatment can also be recovered and used in agriculture for food security. To date, membrane technologies have demonstrated successful results in treating industrial wastewater. This critical review aims to evaluate the performance of traditional and conventional processes in order to propose sustainable perspectives. It also serves to emphasize the need for further research on operating conditions related to membrane bioreactors for valuing sugarcane effluent, to establish it as a sustainable treatment system.
Collapse
Affiliation(s)
- Abdoul Wahab Nouhou Moussa
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, Ouagadougou 01 BP 594, Burkina Faso; (B.S.); (Y.K.)
| | - Boukary Sawadogo
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, Ouagadougou 01 BP 594, Burkina Faso; (B.S.); (Y.K.)
| | - Yacouba Konate
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, Ouagadougou 01 BP 594, Burkina Faso; (B.S.); (Y.K.)
| | - Sayon dit Sadio Sidibe
- Laboratoire Energies Renouvelables et Efficacité Energétique (LaBEREE), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, Ouagadougou 01 BP 594, Burkina Faso
| | - Marc Heran
- Institut Européen des Membranes, IEM, UMR-5635, Université de Montpellier, CNRS, Place Eugène Bataillon, CEDEX 5, 34095 Montpellier, France;
| |
Collapse
|
8
|
Song W, Ryu J, Jung J, Yu Y, Choi S, Kweon J. Dispersive biofilm from membrane bioreactor strains: effects of diffusible signal factor addition and characterization by dispersion index. Front Microbiol 2023; 14:1211761. [PMID: 37560518 PMCID: PMC10409479 DOI: 10.3389/fmicb.2023.1211761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION Biofilm occurs ubiquitously in water system. Excessive biofilm formation deteriorates severely system performance in several water and wastewater treatment processes. Quorum sensing systems were controlled in this study with a signal compound cis-2-Decenoic acid (CDA) to regulate various functions of microbial communities, including motility, enzyme production, and extracellular polymeric substance (EPS) production in biofilm. METHODS The addition of CDA to six strains extracted from membrane bioreactor sludge and the Pseudomonas aeruginosa PAO1 strain was examined for modulating biofilm development by regulating DSF expression. RESULTS AND DISCUSSION As the CDA doses increased, optical density of the biofilm dispersion assay increased, and the decrease in EPS of the biofilm was obvious on membrane surfaces. The three-dimensional visual images and quantitative analyses of biofilm formation with CDA proved thinner, less massive, and more dispersive than those without; to evaluate its dispersive intensity, a dispersion index was proposed. This could compare the dispersive effects of CDA dosing to other biofilms or efficiencies of biofouling control practices such as backwashing or new cleaning methods.
Collapse
Affiliation(s)
- Wonjung Song
- The Academy of Applied Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Junhee Ryu
- Department of Civil and Environmental Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jaehyun Jung
- HANSU Technical Service Ltd, Sungnam-si, Gyeonggi-do, Republic of Korea
| | - Youngjae Yu
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, United States
| | - Suyoung Choi
- The Academy of Applied Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Jihyang Kweon
- Department of Environmental Engineering Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Siagian UWR, Aryanti PTP, Widiasa IN, Khoiruddin K, Wardani AK, Ting YP, Wenten IG. Performance and economic evaluation of a pilot scale embedded ends-free membrane bioreactor (EEF-MBR). Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12551-y. [PMID: 37178308 DOI: 10.1007/s00253-023-12551-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
In this work, an embedded ends-free membrane bioreactor (EEF-MBR) has been developed to overcome the fouling problem. The EEF-MBR unit has a novel configuration where a bed of granular activated carbon is placed in the bioreactor tank and fluidized by the aeration system. The performance of pilot-scale EEF-MBR was assessed based on flux and selectivity over 140 h. The permeate flux fluctuated between 2 and 10 L.m-2.h-1 under operating pressure of 0.07-0.2 bar when EEF-MBR was used to treat wastewater containing high organic matter. The COD removal efficiency was more than 99% after 1 h of operating time. Results from the pilot-scale performance were then used to design a large-scale EEF-MBR with 1200 m3.day-1 capacity. Economic analysis showed that this new MBR configuration was cost-effective when the permeate flux was set at 10 L.m-2.h-1. The estimated additional cost for the large-scale wastewater treatment was about 0.25 US$.m-3 with a payback period of 3 years. KEY POINTS: • Performance of new MBR configuration, EEF-MBR, was assessed in long term operation. • EEF-MBR shows high COD removal and relatively stable flux. • Cost estimation of large scale shows the cost effective EEF-MBR application.
Collapse
Affiliation(s)
- Utjok Welo Risma Siagian
- Department of Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | | | - I Nyoman Widiasa
- Chemical Engineering Department, Universitas Diponegoro, Jl. Prof Sudarto-Tembalang, Semarang, 50239, Indonesia
| | - Khoiruddin Khoiruddin
- Chemical Engineering Department, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia
| | - Anita Kusuma Wardani
- Chemical Engineering Department, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia
| | - Yen Peng Ting
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore
| | - I Gede Wenten
- Chemical Engineering Department, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia.
- Research Center for Biosciences and Biotechnology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia.
| |
Collapse
|
10
|
Maaz M, Aslam M, Yasin M, Khan AL, Mushtaq A, Fazal T, Aljuwayid AM, Habila MA, Kim J. Macroalgal biochar synthesis and its implication on membrane fouling mitigation in fluidized bed membrane bioreactor for wastewater treatment. CHEMOSPHERE 2023; 324:138197. [PMID: 36841456 DOI: 10.1016/j.chemosphere.2023.138197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/08/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The intensification of biochar into fluidized bed membrane bioreactor was investigated to mitigate membrane fouling. Different biochars from algal biomass were produced and used as biomaterials for wastewater treatment. In this study, different macroalgal biochar was synthesized at different pyrolysis temperatures and characterized using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Brunauer Emmett-Teller (BET) and Fourier transform infrared spectroscopy (FTIR) techniques to implicate their effect on membrane fouling reduction in fluidized bed membrane bioreactor. The combined effect of macroalgal biochars and biocarriers with gas sparging was evaluated for fouling mitigation. Macroalgal biochar curtailed membrane fouling effectively at low gas sparging rate. Transmembrane pressure (TMP) was reduced to 0.053 bar; under the fluidization of biochar-650 and biocarriers with gas sparging; from 0.27 bar (gas sparging only). Combined effect of gas sparging, biocarriers and biochar-650 instigated 92.1% fouling reduction in comparative to gas sparging alone. Mechanical scouring driven by biocarriers could reduce fouling due to removing surface deposit of foulants from membrane surface effectively and biochar can efficiently adsorb foulants because of its active functional groups resulting in reduction of colloidal fouling. The addition of divalent ions (Ca2+) further enhanced the fouling reduction in fluidized bed membrane bioreactor.
Collapse
Affiliation(s)
- Muhammad Maaz
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan.
| | - Muhammad Yasin
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan.
| | - Azeem Mushtaq
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Tahir Fazal
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Ahmed Muteb Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Habila
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jeonghwan Kim
- Department of Environmental Engineering, Program of Environmental and Polymeric Engineering, Inha University, Inharo-100, Michuholgu, Incheon, Republic of Korea
| |
Collapse
|
11
|
Puri M, Gandhi K, Kumar MS. Emerging environmental contaminants: A global perspective on policies and regulations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117344. [PMID: 36736081 DOI: 10.1016/j.jenvman.2023.117344] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Emerging contaminants include many synthetic or natural substances, such as pharmaceuticals and personal care products, hormones, and flame retardants that are not often controlled or monitored in the environment. The consumption or use of these substances is on an ever-rising trend, which dangerously increases their prevalence in practically all environmental matrices. These contaminants are present in low environmental concentrations and cause severe effects on human health and the biota. The present review analyzed 2012-2022 years papers via PubChem, science direct, National Center for Biotechnology Information, web of science on the legislations and policies of emerging contaminants globally. A state-of-the-art review of several studies in the literature focus on examining and evaluating the emerging contaminants and the frameworks adopted by developed and developing countries to combat the release of emerging contaminants and form footprints towards water sustainability which includes water availability, usage patterns, generation and pollution management, the health of aquatic systems, and societal vulnerability. The paper aims to provide a comprehensive view of current global policies and framework regarding evaluating and assessing the chemicals, in light of being a threat to the environment and biota. The review also highlights the future global prospects, including current governmental activities and emerging contaminant policy measures. The review concludes with suggestions and way forward to control the inventory and disposal of emerging contaminants in the environment.
Collapse
Affiliation(s)
- Mehak Puri
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Kavita Gandhi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Sophisticated Environmental Analytical Facility, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
| | - M Suresh Kumar
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Olatunji KO, Madyira DM. Effect of acidic pretreatment on the microstructural arrangement and anaerobic digestion of Arachis hypogea shells; and process parameters optimization using response surface methodology. Heliyon 2023; 9:e15145. [PMID: 37095976 PMCID: PMC10121849 DOI: 10.1016/j.heliyon.2023.e15145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
Enzymatic hydrolysis of lignocellulose feedstocks has been observed as the rate-limiting stage during anaerobic digestion. This necessitated the need for pretreatment before anaerobic digestion for an effective and efficient process. Therefore, this study investigated the impact of acidic pretreatment on Arachis hypogea shells, and different conditions of H2SO4 concentration, exposure time, and autoclave temperature were considered. The substrates were digested for 35 days at a mesophilic temperature to assess the impact of pretreatment on the microstructural organization of the substrate. For the purpose of examining the interactive correlations between the input parameters, response surface methodology (RSM) was used. The result reveals that acidic pretreatment has the strength to disrupt the recalcitrance features of Arachis hypogea shells and make them accessible for microorganisms' activities during anaerobic digestion. In this context, H2SO4 with 0.5% v. v-1 for 15 min at an autoclave temperature of 90 °C increases the cumulative biogas and methane released by 13 and 178%, respectively. The model's coefficient of determination (R2) demonstrated that RSM could model the process. Therefore, acidic pretreatment poses a novel means of total energy recovery from lignocellulose feedstock and can be investigated at the industrial scale.
Collapse
|
13
|
Nabi M, Liang H, Zhou Q, Cao J, Gao D. In-situ membrane fouling control and performance improvement by adding materials in anaerobic membrane bioreactor: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161262. [PMID: 36586290 DOI: 10.1016/j.scitotenv.2022.161262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) is a promising treatment technique for various types of wastewaters, and is preferred over other conventional aerobic and anaerobic methods. However, membrane fouling is considered a bottleneck in AnMBR system, which technically blocks membrane pores by numerous inorganics, organics, and other microbial substances. Various materials can be added in AnMBR to control membrane fouling and improve anaerobic digestion, and studies reporting the materials addition for this purpose are hereby systematically reviewed. The mechanism of membrane fouling control including compositional changes in extracellular polymeric substances (EPSs) and soluble microbial products (SMPs), materials properties, stimulation of antifouling microbes and alteration in substrate properties by material addition are thoroughly discussed. Nonetheless, this study opens up new research prospects to control membrane fouling of AnMBR, engineered by material, including compositional changes of microbial products (EPS and SMP), replacement of quorum quenching (QQ) by materials, and overall improvement of reactor performance. Regardless of the great research progress achieved previously in membrane fouling control, there is still a long way to go for material-mediated AnMBR applications to be undertaken, particularly for materials coupling, real scale application and molecular based studies on EPSs and SMPs, which were proposed for future researches.
Collapse
Affiliation(s)
- Mohammad Nabi
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Qixiang Zhou
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jiashuo Cao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
14
|
Anaerobic Membrane Bioreactor (AnMBR) for the Removal of Dyes from Water and Wastewater: Progress, Challenges, and Future Perspectives. Processes (Basel) 2023. [DOI: 10.3390/pr11030855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The presence of dyes in aquatic environments can have harmful effects on aquatic life, including inhibiting photosynthesis, decreasing dissolved oxygen levels, and altering the behavior and reproductive patterns of aquatic organisms. In the initial phase of this review study, our aim was to examine the categories and properties of dyes as well as the impact of their toxicity on aquatic environments. Azo, phthalocyanine, and xanthene are among the most frequently utilized dyes, almost 70–80% of used dyes, in industrial processes and have been identified as some of the most commonly occurring dyes in water bodies. Apart from that, the toxicity effects of dyes on aquatic ecosystems were discussed. Toxicity testing relies heavily on two key measures: the LC50 (half-lethal concentration) and EC50 (half-maximal effective concentration). In a recent study, microalgae exposed to Congo Red displayed a minimum EC50 of 4.8 mg/L, while fish exposed to Disperse Yellow 7 exhibited a minimum LC50 of 0.01 mg/L. Anaerobic membrane bioreactors (AnMBRs) are a promising method for removing dyes from water bodies. In the second stage of the study, the effectiveness of different AnMBRs in removing dyes was evaluated. Hybrid AnMBRs and AnMBRs with innovative designs have shown the capacity to eliminate dyes completely, reaching up to 100%. Proteobacteria, Firmicutes, and Bacteroidetes were found to be the dominant bacterial phyla in AnMBRs applied for dye treatment. However, fouling has been identified as a significant drawback of AnMBRs, and innovative designs and techniques are required to address this issue in the future.
Collapse
|
15
|
Zhang Y, Liu S, Zhang G, Peng Y, Wei Q, Jiang M, Zheng J. Evaluation of selenite reduction under salinity and sulfate stress in anaerobic membrane bioreactor. Front Bioeng Biotechnol 2023; 11:1133613. [PMID: 36970610 PMCID: PMC10036345 DOI: 10.3389/fbioe.2023.1133613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Current microbial reduction technologies have been proven to be suitable for decontaminating industrial wastewaters containing high concentrations of selenium (Se) oxyanions, however, their application is strictly limited by the elemental Se (Se0) accumulation in the system effluents. In this work, a continuous-flow anaerobic membrane bioreactor (AnMBR) was employed for the first time to treat synthetic wastewater containing 0.2 mM soluble selenite (SeO3 2-). The SeO3 2- removal efficiency by the AnMBR was approachable to 100% in most of the time, regardless of the fluctuation in influent salinity and sulfate (SO4 2-) stress. Se0 particles were always undetectable in the system effluents, owing to their interception by the surface micropores and adhering cake layer of membranes. High salt stress led to the aggravated membrane fouling and diminished content ratio of protein to polysaccharide in the cake layer-contained microbial products. The results of physicochemical characterization suggested that the sludge-attached Se0 particles presented either sphere- or rod-like morphology, hexagonal crystalline structure and were entrapped by the organic capping layer. According to the microbial community analysis, increasing influent salinity led to the diminished population of non-halotolerant Se-reducer (Acinetobacter) and increased abundance of halotolerant sulfate reducing bacteria (Desulfomicrobium). In the absence of Acinetobacter, the efficient SeO3 2- abatement performance of the system could still be maintained, as a result of the abiotic reaction between SeO3 2- and S2- generated by Desulfomicrobium, which then gave rise to the production of Se0 and S0.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, China
| | - Shuang Liu
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, China
| | - Gaorong Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, China
| | - Yixiang Peng
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, China
| | - Qiaoyan Wei
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, China
| | - Minmin Jiang
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, China
| | - Junjian Zheng
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, China
| |
Collapse
|
16
|
Moideen SNF, Krishnan S, Li YY, Hassim MH, Kamyab H, Nasrullah M, Din MFM, Halim KA, Chaiprapat S. Performance evaluation and energy potential analysis of anaerobic membrane bioreactor (AnMBR) in the treatment of simulated milk wastewater. CHEMOSPHERE 2023; 317:137923. [PMID: 36682635 DOI: 10.1016/j.chemosphere.2023.137923] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
An anaerobic membrane bioreactor (AnMBR) was employed as primary treatment unit for anaerobic treatment of simulated wastewater to produce high effluent quality. A lab scale hollow fiber membrane was used to scrutinize the performance of AnMBR as a potential treatment system for simulated milk wastewater and analyze its energy recovery potential. The 15 L bioreactor was operated continuously at mesophilic conditions (35 °C) with a pH constant of 7.0. The membrane flux was in the range of 9.6-12.6 L/m2. h. The different organic loading rates (OLRs) of 1.61, 3.28, 5.01, and 8.38 g-COD/L/d, of simulated milk wastewater, were fed to the reactor and the biogas production rate was analyzed, respectively. The results revealed that the COD removal efficiencies of 99.54 ± 0.001% were achieved at the OLR of 5.01 gCOD/L/d. The highest methane yield was found to be at OLR of 1.61 gCOD/L/d at HRT of 30 d with the value of 0.33 ± 0.01 L-CH4/gCOD. Moreover, based on the analysis of energy balance in the AnMBR system, it was found that energy is positive at all the given HRTs. The net energy production (NEP) ranged from 2.594 to 3.268 kJ/gCOD, with a maximum NEP value of 3.268 kJ/gCOD at HRT 10 d HRT. Bioenergy recovery with the maximum energy ratio, of 4.237, was achieved with an HRT of 5 d. The study suggests a sizable energy saving with the anaerobic membrane process.
Collapse
Affiliation(s)
- Siti Nur Fatihah Moideen
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-2 Aoba, Aramaki-Aza, Sendai, Miyagi, 980-8579, Japan
| | - Santhana Krishnan
- Department of Civil and Environmental Engineering, PSU Energy Systems Research Institute (PERIN), Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| | - Yu-You Li
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-2 Aoba, Aramaki-Aza, Sendai, Miyagi, 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki-Aza, Sendai, Miyagi, 980-8579, Japan
| | - Mimi Haryani Hassim
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, University of Malaysia Pahang, Malaysia
| | - Mohd Fadhil Md Din
- Centre for Environmental Sustainability and Water Security (IPASA), Faculty of Engineering, School of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Khairunnisa Abdul Halim
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Sumate Chaiprapat
- Department of Civil and Environmental Engineering, PSU Energy Systems Research Institute (PERIN), Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
17
|
Zhang Y, Gu K, Zhao K, Deng H, Hu C. Enhancement of struvite generation and anti-fouling in an electro-AnMBR with Mg anode-MF membrane module. WATER RESEARCH 2023; 230:119561. [PMID: 36623383 DOI: 10.1016/j.watres.2022.119561] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Severe membrane fouling and the inability to remove/recover nitrogen and phosphorus are bottlenecks of anaerobic membrane bioreactors (AnMBRs) for large-scale application in wastewater treatment. Herein, an electrochemical AnMBR with a Mg anode-membrane module (electro-AnMBR) was built and showed good performance in terms of membrane fouling mitigation and nutrient recovery during sewage treatment. Compared with the traditional AnMBR, membrane fouling in the electro-AnMBR was reduced by up to 30%. The application of an electric field decreased the zeta potential, viscosity, and EPS concentration of the sludge-water liquor in the electro-AnMBR, which could improve the cake layer structure and thus enhance water permeability. Meanwhile, 26% of NH4+ and 48% of PO43- co-precipitated with Mg2+ generating from the sacrificial Mg anode and were recovered as struvite deposited onto cathode in the electro-AnMBR. Hydrogen evolution provided a relatively alkaline pH environment, resulting in struvite electrodeposition on the graphic cathode, which partly separated the formed struvite from the sludge with a purity of 77%. In the electro-AnMBR, the electrochemical reactions provided alkalinity and effectively inhibited anaerobic acidification. The applied voltage of 0.6 V reduced the relative abundance of methanosaeta, but increased that of methanosarcina, which is also beneficial for the membrane anti-fouling.
Collapse
Affiliation(s)
- Yuhan Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kanghui Gu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kai Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haiqian Deng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
18
|
Rout PR, Goel M, Pandey DS, Briggs C, Sundramurthy VP, Halder N, Mohanty A, Mukherjee S, Varjani S. Technological advancements in valorisation of industrial effluents employing hydrothermal liquefaction of biomass: Strategic innovations, barriers and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120667. [PMID: 36395914 DOI: 10.1016/j.envpol.2022.120667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/26/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Hydrothermal liquefaction (HTL) is identified as a promising thermochemical technique to recover biofuels and bioenergy from waste biomass containing low energy and high moisture content. The wastewater generated during the HTL process (HTWW) are rich in nutrients and organics. The release of the nutrients and organics enriched HTWW would not only contaminate the water bodies but also lead to the loss of valued bioenergy sources, especially in the present time of the energy crisis. Thus, biotechnological as well as physicochemical treatment of HTWW for simultaneous extraction of valuable resources along with reduction in polluting substances has gained significant attention in recent times. Therefore, the treatment of wastewater generated during the HTL of biomass for reduced environmental emission and possible bioenergy recovery is highlighted in this paper. Various technologies for treatment and valorisation of HTWW are reviewed, including anaerobic digestion, microbial fuel cells (MFC), microbial electrolysis cell (MEC), and supercritical water gasification (SCWG). This review paper illustrates that the characteristics of biomass play a pivotal role in the selection process of appropriate technology for the treatment of HTWW. Several HTWW treatment technologies are weighed in terms of their benefits and drawbacks and are thoroughly examined. The integration of these technologies is also discussed. Overall, this study suggests that integrating different methods, techno-economic analysis, and nutrient recovery approaches would be advantageous to researchers in finding way for maximising HTWW valorisation along with reduced environmental pollution.
Collapse
Affiliation(s)
- Prangya Ranjan Rout
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Mukesh Goel
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, UK
| | - Daya Shankar Pandey
- Center for Rural Development and Innovative Sustainable Technology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Caitlin Briggs
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, UK
| | | | - Nirmalya Halder
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Anee Mohanty
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab, India
| | | | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India.
| |
Collapse
|
19
|
Qi S, Grossman AD, Ronen A, Bernstein R. Low-biofouling anaerobic electro-conductive membrane bioreactor: The role of pH changes in bacterial inactivation and biofouling mitigation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Pu Y, Tang J, Zeng T, Hu Y, Wang Q, Huang J, Pan S, Wang XC, Li Y, Hao Ngo H, Abomohra A. Enhanced energy production and biological treatment of swine wastewater using anaerobic membrane bioreactor: Fouling mechanism and microbial community. BIORESOURCE TECHNOLOGY 2022; 362:127850. [PMID: 36031130 DOI: 10.1016/j.biortech.2022.127850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to reveal the membrane fouling mechanisms during anaerobic membrane bioreactor (AnMBR) operation for swine wastewater treatment under different organic loading rates (OLR). Results showed that AnMBR could achieve high pollutant removal (71.9-83.6 %) and energy recovery (0.18-0.23 L-CH4/g-COD) at an OLR range of 0.25-0.5 g-COD/g-VSS.d, realizing energy production. However, higher OLR would aggravate the membrane fouling due to accumulation of fine sludge particles, organic foulants, and extracellular polymeric substances (EPS) on cake layer. Based on the high-throughput sequencing, microbial communities significantly changed and fouling-causing bacteria (e.g. Pseudomonas, Methanosarcina and Methanothrix) enriched in the cake layer at higher OLR conditions, leading to lower membrane permeability. Backwash can effectively remove the cake layer from the membrane surface and recover membrane permeability. The present study provides important information about membrane fouling and microbial information that could have significant impact on large-scale AnMBR application.
Collapse
Affiliation(s)
- Yunhui Pu
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610225, China
| | - Jialing Tang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Ting Zeng
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qingyuan Wang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Jin Huang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Shengwang Pan
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuyou Li
- Department of Civil and Environmental Engineering, Tohoku University, Sendai 9808579, Japan
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Abdelfatah Abomohra
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
21
|
Resource recovery from food-processing wastewaters in a circular economy: a methodology for the future. Curr Opin Biotechnol 2022; 76:102735. [DOI: 10.1016/j.copbio.2022.102735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 01/01/2023]
|
22
|
Abstract
In recent years, anaerobic membrane bioreactor (AnMBRs) technology, a combination of a biological reactor and a selective membrane process, has received increasing attention from both industrialists and researchers. Undoubtedly, this is due to the fact that AnMBRs demonstrate several unique advantages. Firstly, this paper addresses fundamentals of the AnMBRs technology and subsequently provides an overview of the current state-of-the art in the municipal and domestic wastewaters treatment by AnMBRs. Since the operating conditions play a key role in further AnMBRs development, the impact of temperature and hydraulic retention time (HRT) on the AnMBRs performance in terms of organic matters removal is presented in detail. Although membrane technologies for wastewaters treatment are known as costly in operation, it was clearly demonstrated that the energy demand of AnMBRs may be lower than that of typical wastewater treatment plants (WWTPs). Moreover, it was indicated that AnMBRs have the potential to be a net energy producer. Consequently, this work builds on a growing body of evidence linking wastewaters treatment with the energy-efficient AnMBRs technology. Finally, the challenges and perspectives related to the full-scale implementation of AnMBRs are highlighted.
Collapse
|
23
|
Ahsani M, Oghyanous FA, Meyer J, Ulbricht M, Yegani R. PVDF membranes modified with diblock copolymer PEO-b-PMMA as additive: Effects of copolymer and barrier pore size on filtration performance and fouling in a membrane bioreactor. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Hu Y, Cai X, Du R, Yang Y, Rong C, Qin Y, Li YY. A review on anaerobic membrane bioreactors for enhanced valorization of urban organic wastes: Achievements, limitations, energy balance and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153284. [PMID: 35066041 DOI: 10.1016/j.scitotenv.2022.153284] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Sustainable urban development is threatened by an impending energy crisis and large amounts of organic wastes generated from the municipal sector among others. Conventional waste management methods involve greenhouse gas (GHG) emission and limited resource recovery, thus necessitating advanced techniques to convert such wastes into bioenergy, bio-fertilizers and valuable-added products. Research and application experiences from different scale applications indicate that the anaerobic membrane bioreactor (AnMBR) process is a kind of high-rate anaerobic digester for urban organic wastes valorization including food waste and waste sludge, while the research status is still insufficiently summarized. Through compiling recent achievements and literature, this review will focus on the following aspects, including AnMBR treatment performance and membrane fouling, technical limitations, energy balance and techno-economic assessment as well as future perspectives. AnMBR can enhance organic wastes treatment via complete retention of functional microbes and suspended solids, and timely separation of products and potential inhibitory substances, thus improving digestion efficiency in terms of increased organics degradation rates, biogas production and process robustness at a low footprint. When handling high-solid organic wastes, membrane fouling and mass transfer issues can be the challenges limiting AnMBR applications to a wet-type digestion, thus countermeasures are required to pursue extended implementations. A conceptual framework is proposed by taking various organic wastes disposal and final productions (permeate, biogas and biosolids) utilization into consideration, which will contribute to the development of AnMBR-based waste-to-resource facilities towards sustainable waste management and more economic-environmental benefits output.
Collapse
Affiliation(s)
- Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Xuli Cai
- XAUAT UniSA An De College, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Runda Du
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yuan Yang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Chao Rong
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
25
|
State-of-the-Art Review on the Application of Membrane Bioreactors for Molecular Micro-Contaminant Removal from Aquatic Environment. MEMBRANES 2022; 12:membranes12040429. [PMID: 35448399 PMCID: PMC9032214 DOI: 10.3390/membranes12040429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 12/27/2022]
Abstract
In recent years, the emergence of disparate micro-contaminants in aquatic environments such as water/wastewater sources has eventuated in serious concerns about humans’ health all over the world. Membrane bioreactor (MBR) is considered a noteworthy membrane-based technology, and has been recently of great interest for the removal micro-contaminants. The prominent objective of this review paper is to provide a state-of-the-art review on the potential utilization of MBRs in the field of wastewater treatment and micro-contaminant removal from aquatic/non-aquatic environments. Moreover, the operational advantages of MBRs compared to other traditional technologies in removing disparate sorts of micro-contaminants are discussed to study the ways to increase the sustainability of a clean water supplement. Additionally, common types of micro-contaminants in water/wastewater sources are introduced and their potential detriments on humans’ well-being are presented to inform expert readers about the necessity of micro-contaminant removal. Eventually, operational challenges towards the industrial application of MBRs are presented and the authors discuss feasible future perspectives and suitable solutions to overcome these challenges.
Collapse
|
26
|
Yao J, Wu Z, Liu Y, Zheng X, Zhang H, Dong R, Qiao W. Predicting membrane fouling in a high solid AnMBR treating OFMSW leachate through a genetic algorithm and the optimization of a BP neural network model. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114585. [PMID: 35085971 DOI: 10.1016/j.jenvman.2022.114585] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic membrane bioreactors are a promising technology in the treatment of high-strength wastewater; however, unpredictable membrane fouling largely limits their scale-up application. This study, therefore, adopted a backpropagation neural network model to predict the membrane filtration performance in a submerged system, which treats leachate from the organic fraction of municipal solid waste. Duration time, water yield flow, influent COD, pH, bulk sludge concentration, and the ratio of ΔTMP to filtration time were selected as input variables to simulate membrane permeability. The membrane pressure slightly increased by 1.1 kPa within 62 days of operation. The results showed that the AnMBR membrane filtration performance was acceptable when treating OFMSW leachate under a flux of 6 L/(m2·h). The model results indicated that the sludge concentration largely determined the membrane fouling with a contribution of 33.8%. Given the local minimization problem in the BP neural network process, a genetic algorithm was introduced to optimize the simulation process, and the relative error of the results was reduced from 5.57% to 3.57%. Conclusively, the artificial neural network could be a useful tool for the prediction of an AnMBR that is so far under development.
Collapse
Affiliation(s)
- Junqiang Yao
- College of Engineering, China Agricultural University, China; Research & Development Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development and Reform Committee, Beijing, 100083, China
| | - Zhiyue Wu
- College of Engineering, China Agricultural University, China; Research & Development Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development and Reform Committee, Beijing, 100083, China
| | - Yuan Liu
- Everbright Environmental Technology (China) Limited, Shenzhen, 518000, China
| | - Xiaoyu Zheng
- Everbright Environmental Technology Research Institute (Nanjing) Co., Ltd., Nanjing, 210007, China
| | - Haibo Zhang
- Everbright Environmental Technology Research Institute (Nanjing) Co., Ltd., Nanjing, 210007, China
| | - Renjie Dong
- College of Engineering, China Agricultural University, China; Research & Development Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development and Reform Committee, Beijing, 100083, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, China; Research & Development Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development and Reform Committee, Beijing, 100083, China.
| |
Collapse
|
27
|
Tang J, Pu Y, Zeng T, Hu Y, Huang J, Pan S, Wang XC, Li Y, Abomohra AEF. Enhanced methane production coupled with livestock wastewater treatment using anaerobic membrane bioreactor: Performance and membrane filtration properties. BIORESOURCE TECHNOLOGY 2022; 345:126470. [PMID: 34863846 DOI: 10.1016/j.biortech.2021.126470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The present study introduced a new method for enhanced biomethane production and pollution control of swine wastewater (SW) using anaerobic membrane bioreactor (AnMBR). Results confirmed 35 °C as the optimum temperature for enhanced anaerobic digestion which resulted in relatively higher methane production rate and potential. In AnMBR system, robust pollutants removal and conversion rate were achieved under various hydraulic retention time (HRT) ranging from 20 to 10 days, while the highest methane yield (0.24 L/g-CODremoved) and microbial activity (6.65 mg-COD/g-VSS·h) were recorded at HRT of 15 days. Reduction of HRT to 10 days resulted in serious membrane fouling due to accumulation of extracellularpolymericsubstances(EPS) and cake layer on the membrane. However, cake layer as the dominant membrane foulant could be effectively removed through periodic physical backwash to recover the membrane permeability. Overall, the suggested AnMBR is a promising technology to enhance SW treatment and energy recovery.
Collapse
Affiliation(s)
- Jialing Tang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yunhui Pu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610225, Sichuan, China
| | - Ting Zeng
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| | - Jin Huang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Shengwang Pan
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| | - Yuyou Li
- Department of Civil and Environmental Engineering, Tohoku University, Sendai 9808579, Japan
| | - Abd El-Fatah Abomohra
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
28
|
Guo G, Li Y, Zhou S, Chen Y, Qin Y, Li YY. Enhanced degradation and biogas production of waste activated sludge by a high-solid anaerobic membrane bioreactor together with in pipe thermal pretreatment process. BIORESOURCE TECHNOLOGY 2022; 346:126583. [PMID: 34929331 DOI: 10.1016/j.biortech.2021.126583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
An integrated system combining in pipe thermal pretreatment with a high-solid anaerobic membrane bioreactor (AnMBR) was developed to promote the anaerobic digestion of waste activated sludge (WAS). Two different pretreatment methods investigated were the venturi nozzle treatment (VNT) and steam injector treatment (SIT), both at a low temperature of 70 °C. The biogas production after pretreatment was 23.5-30.5% higher than that of untreated WAS, and the VS based biogas yield was 0.46-0.47 L/g-VS when HRT was 15 days. The membrane operated smoothly when the average flux was 9.6 and 4.5 L/m2/h under an MLTS of 25 and 30 g/L, respectively. The calculations of the mass balance indicated that 44-45% COD was converted to methane with pretreatment and only 1% remained in the permeate. That is, high energy recovery and organic matter removal efficiency were achieved for the treatment of WAS using the high-solid AnMBR with in pipe thermal pretreatment.
Collapse
Affiliation(s)
- Guangze Guo
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Yemei Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Material Cycles Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Shitong Zhou
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
29
|
Ricky R, Shanthakumar S. Phycoremediation integrated approach for the removal of pharmaceuticals and personal care products from wastewater - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113998. [PMID: 34717103 DOI: 10.1016/j.jenvman.2021.113998] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/24/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are of emerging concerns because of their large usage, persistent nature which promised their continuous disposal into the environment, as these pollutants are stable enough to pass through wastewater treatment plants causing hazardous effects on all the organisms through bioaccumulation, biomagnification, and bioconcentration. The available technologies are not capable of eliminating all the PPCPs along with their degraded products but phycoremediation has the advantage over these technologies by biodegrading the pollutants without developing resistant genes. Even though phycoremediation has many advantages, industries have found difficulty in adapting this technology as a single-stage treatment process. To overcome these drawbacks recent research studies have focused on developing technology that integrated phycoremediation with the commonly employed treatment processes that are in operation for treating the PPCPs effectively. This review paper focuses on such research approaches that focused on integrating phycoremediation with other technologies such as activated sludge process (ASP), advanced oxidation process (AOP), Up-flow anaerobic sludge blanket reactor (UASBR), UV irradiation, and constructed wetland (CW) with the advantages and limitations of each integration processes. Furthermore, augmenting phycoremediation by co-metabolic mechanism with the addition of sodium chloride, sodium acetate, and glucose for the removal of PPCPs has been highlighted in this review paper.
Collapse
Affiliation(s)
- R Ricky
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - S Shanthakumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
30
|
Aslam A, Khan SJ, Shahzad HMA. Anaerobic membrane bioreactors (AnMBRs) for municipal wastewater treatment- potential benefits, constraints, and future perspectives: An updated review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149612. [PMID: 34438128 DOI: 10.1016/j.scitotenv.2021.149612] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/11/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
The application of Anaerobic Membrane Bioreactors (AnMBRs) for municipal wastewater treatment has been made sufficiently sustainable for practical implementations. The potential benefits are significant as AnMBRs effectively remove a broad range of contaminants from wastewater for water reuse, degrade organics in wastewater to yield methane-rich biogas for resultant energy production, and concentrate nutrients for subsequent recovery for fertilizer production. However, there still exist some concerns requiring vigilant considerations to make AnMBRs economically and technically viable. This review paper briefly describes process fundamentals and the basic AnMBR configurations and highlights six major factors which obstruct the way to AnMBRs installations affecting their performance for municipal wastewater treatment: (i) organic strength, (ii) membrane fouling, (iii) salinity build-up, (iv) inhibitory substances, (v) temperature, and (vi) membrane stability. This review also covers the energy utilization and energy potential in AnMBRs aiming energy neutrality or positivity of the systems which entails the requirement to further determine the economics of AnMBRs. The implications and related discussions have also been made on future perspectives of the concurrent challenges being faced in AnMBRs operation.
Collapse
Affiliation(s)
- Alia Aslam
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Sher Jamal Khan
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan.
| | - Hafiz Muhammad Aamir Shahzad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
31
|
Mohanty A, Mankoti M, Rout PR, Meena SS, Dewan S, Kalia B, Varjani S, Wong JW, Banu JR. Sustainable utilization of food waste for bioenergy production: A step towards circular bioeconomy. Int J Food Microbiol 2022; 365:109538. [DOI: 10.1016/j.ijfoodmicro.2022.109538] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/10/2021] [Accepted: 01/08/2022] [Indexed: 10/19/2022]
|
32
|
Mohanty A, Rout PR, Dubey B, Meena SS, Pal P, Goel M. A critical review on biogas production from edible and non-edible oil cakes. BIOMASS CONVERSION AND BIOREFINERY 2022; 12:949-966. [PMID: 33520587 PMCID: PMC7835450 DOI: 10.1007/s13399-021-01292-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 05/11/2023]
Abstract
The circular economy is at the core of sustainable development. The generation of biogas from the massive quantity of agricultural waste biomass is one of the critical drivers of the circular economy. Biogas has enormous renewable energy potential and has multitudes of applications in today's energy-intensive society. Oil cakes, a known Agri-waste, are the by-product of oil processing, and are rich in nutrients. The edible oil cakes mostly have been used as a cattle feed; however, non-edible oil cakes do not find many applications. Their production is continuously escalating as non-edible oils are increasingly used in biodiesel production. Recently, there is a lot of emphasis on biogas production from these oil cakes. This paper reviews in detail biogas production from both edible and non-edible oil cakes. Chemical composition and various other applications of the cakes are also reviewed in brief. The survey illustrates that multiple parameters such as inoculum sources, co-digestion and reactor design affect the biogas production. All those factors, along with biogas upgrading and the economy of the process, are reviewed. Finally, future research opportunities are suggested to improve the viability of the biogas production from oil cakes.
Collapse
Affiliation(s)
- Anee Mohanty
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Jalandhar, Punjab India
| | - Prangya Ranjan Rout
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Bipro Dubey
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, S11WB UK
| | - Sumer Singh Meena
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Jalandhar, Punjab India
| | - Parimal Pal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, India
| | - Mukesh Goel
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, S11WB UK
| |
Collapse
|
33
|
Gautam RK, Kamilya T, Verma S, Muthukumaran S, Jegatheesan V, Navaratna D. Evaluation of membrane cake fouling mechanism to estimate design parameters of a submerged AnMBR treating high strength industrial wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113867. [PMID: 34607143 DOI: 10.1016/j.jenvman.2021.113867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/10/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
A mathematical model, which was previously developed for submerged aerobic membrane bioreactors, was successfully applied to elucidate the membrane cake-layer fouling mechanisms due to bound extracellular polymeric substances (eEPS) in a submerged anaerobic membrane bioreactor (SAnMBR). This biofouling dynamic model explains the mechanisms such as attachment, consolidation and detachment of eEPS produced in the bioreactor on the membrane surface. The 4th order Runge-Kutta method was used to solve the model equations, and the parameters were estimated from simulated and experimental results. The key design parameters representing the behaviour of cake fouling dynamics were systematically investigated. Organic loading rate (OLR) was considered a controlling factor governing the mixed liquor suspended solids (MLSS), eEPS production, filtration resistance (Rt), and transmembrane pressure (TMP) variations in a SAnMBR. eEPS showed a proportional relation with OLR at subsequent MLSS variations. The consolidation of EPS increased the specific eEPS resistance (αs), influencing the cake resistance (Rc). The propensities of eEPS showed a positive correlation with Rt and TMP. The outcomes of the study also estimated a set of valuable design parameters which would be vital for applying in AnMBRs treating industrial wastewater.
Collapse
Affiliation(s)
- Rajneesh Kumar Gautam
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, VIC, 3011, Australia.
| | - Tuhin Kamilya
- Department of Earth and Environmental Studies, National Institute of Technology Durgapur, West Bengal, 713209, India.
| | - Saumya Verma
- Department of Statistics, University of Lucknow, Lucknow, 226007, India.
| | - Shobha Muthukumaran
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, VIC, 3011, Australia.
| | - Veeriah Jegatheesan
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 8001, Australia.
| | - Dimuth Navaratna
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, VIC, 3011, Australia.
| |
Collapse
|
34
|
Tomczak W, Grubecki I, Gryta M. The Use of NaOH Solutions for Fouling Control in a Membrane Bioreactor: A Feasibility Study. MEMBRANES 2021; 11:887. [PMID: 34832116 PMCID: PMC8625605 DOI: 10.3390/membranes11110887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
Nowadays, the microbial production of 1,3-propanediol (1,3-PD) is recognized as preferable to the chemical synthesis. However, finding a technological approach allowing the production of 1,3-PD in the membrane bioreactor (MBR) is a great challenge. In the present study, a ceramic ultrafiltration (UF) membrane (8 kDa) for treatment of 1,3-PD broths was used. It has been demonstrated that the membrane used provides the stable permeate flux that is necessary to ensure the stability of the fermentation process in MBR technology. It was noticed that the broth pH has a significant impact on both the final 1,3-PD concentration and permeate flux. Moreover, the feasibility of using NaOH for fouling control in the MBR was evaluated. It has been shown that 1% NaOH solution is effective in restoring the initial membrane performance. To the best of our knowledge, this study is the first to shed light onto the possibility of reducing the amount of the alkaline solutions generated during the MBR operation. Indeed, it has been found that 1% NaOH solution can be successfully used several times for both membrane cleaning and to stabilize the broth pH. Finally, based on the results obtained, the technological conceptions of the MBR technology were designed.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland;
| | - Ireneusz Grubecki
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland;
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland;
| |
Collapse
|
35
|
Shahid MK, Batool A, Kashif A, Nawaz MH, Aslam M, Iqbal N, Choi Y. Biofuels and biorefineries: Development, application and future perspectives emphasizing the environmental and economic aspects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113268. [PMID: 34280865 DOI: 10.1016/j.jenvman.2021.113268] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/11/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
The fossil fuel utilization adversely affected the environmental health due to the rising emission levels of greenhouse gases. Consequently, the challenges of climate change loaded great stress on renewable energy sources. It is noted that extreme consumption of fossil fuels increased the earth temperature by 1.9 °C that adversely influenced the life and biodiversity. Biorefinery is the sustainable process for the production of biofuels and other bio-products from biomass feedstock using different conversion technologies. Biofuel is an important component of renewable energy sources contributing to overall carbon-neutral energy system. Studies reported that on global scale, over 90% of petroleum goods could be produced from renewable resources by 2023, whereas, 33% chemicals, and 50% of the pharmaceutical market share is also expected to be bio-based. This study details the brief review of operation, development, application, limitations, future perspectives, circular bioeconomy, and life cycle assessment of biorefinery. The economic and environmental aspects of biofuels and biorefineries are briefly discussed. Lastly, considering the present challenges, the future perspectives of biofuels and biorefineries are highlighted.
Collapse
Affiliation(s)
- Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Daejeon, Republic of Korea.
| | - Ayesha Batool
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Kashif
- Department of Senior Health Care, Graduate School, Eulji University, Uijeongbu, Republic of Korea
| | - Muhammad Haq Nawaz
- Department of Physics, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Nafees Iqbal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Younggyun Choi
- Department of Environmental & IT Engineering, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
36
|
Rout PR, Shahid MK, Dash RR, Bhunia P, Liu D, Varjani S, Zhang TC, Surampalli RY. Nutrient removal from domestic wastewater: A comprehensive review on conventional and advanced technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113246. [PMID: 34271353 DOI: 10.1016/j.jenvman.2021.113246] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/13/2021] [Accepted: 07/07/2021] [Indexed: 05/06/2023]
Abstract
Nitrogen and phosphorous are indispensable for growth and vitality of living beings, hence termed as nutrients. However, discharge of nutrient rich waste streams to aquatic ecosystems results in eutrophication. Therefore, nutrient removal from wastewater is crucial to meet the strict nutrient discharge standards. Similarly, nutrient recovery from waste streams is vital for the realization of a circular economy by avoiding the depletion of finite resources. This manuscript presents analysis of existing information on different conventional as well as advanced treatment technologies that are commonly practiced for the removal of nutrient from domestic wastewater. First, the information pertaining to the biological nutrient removal technologies are discussed. Second, onsite passive nutrient removal technologies are reviewed comprehensively. Third, advanced nutrient removal technologies are summarized briefly. The mechanisms, advantages, and disadvantages of these technologies along with their efficiencies and limitations are discussed. An integrated approach for simultaneous nutrient removal and recovery is recommended. The fifth section of the review highlights bottlenecks and potential solutions for successful implementation of the nutrient removal technologies. It is anticipated that the review will offer an instructive overview of the progress in nutrient removal and recovery technologies and will illustrate necessity of further investigations for development of efficient nutrient removal and recovery processes.
Collapse
Affiliation(s)
- Prangya Ranjan Rout
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Muhammad Kashif Shahid
- Department of Environmental Engineering, Chungnam National University, Republic of Korea
| | - Rajesh Roshan Dash
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, India
| | - Puspendu Bhunia
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, India
| | - Dezhao Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India.
| | - Tian C Zhang
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Omaha, NE, 68182, USA
| | - Rao Y Surampalli
- Global Institute for Energy, Environment and Sustainability, Kansas, USA
| |
Collapse
|
37
|
He C, Wang K, Fang K, Gong H, Jin Z, He Q, Wang Q. Up-concentration processes of organics for municipal wastewater treatment: New trends in separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147690. [PMID: 34004540 DOI: 10.1016/j.scitotenv.2021.147690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Carbon neutrality is a pressing goal for the whole society. Over 20% of municipality electrical energy on public utilities was consumed by the operation of wastewater treatment plants (WWTPs). Up-concentration of organic matters and maximum energy recovery is essential for a more sophisticated municipal wastewater management. Chemical coagulation and biological adsorption have been used to achieve efficient carbon capture, while separation is an overlooked step. It may lead to poor effluent quality, as well as consume most of the time and volume. The introduction of new driving forces, such as pressure and magnetism, significantly improved the retention rate and speed, respectively. In this paper, recent works were comprehensively reviewed and a horizontal comparison was conducted from aspects of separation speed, retention rate, concentrate characteristics and economic costs. This review also discussed the selection of technologies under different conditions. Finally, the practical application, fouling mitigation with considering the value of the concentrate, identification of unique concentrate characteristics, and the establishment of an evaluation system was suggested as core issues for future researches. This review will promote the development of an energy-efficient wastewater treatment system with up-concentration processes.
Collapse
Affiliation(s)
- Conghui He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kuo Fang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Hui Gong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhengyu Jin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qiuhang He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qi Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
38
|
Shahid MK, Choi Y. Sustainable Membrane-Based Wastewater Reclamation Employing CO 2 to Impede an Ionic Precipitation and Consequent Scale Progression onto the Membrane Surfaces. MEMBRANES 2021; 11:membranes11090688. [PMID: 34564505 PMCID: PMC8471102 DOI: 10.3390/membranes11090688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
CO2 capture and utilization (CCU) is a promising approach in controlling the global discharge of greenhouse gases (GHG). This study details the experimental investigation of CO2 utilization in membrane-based water treatment systems for lowering the potential of ionic precipitation on membrane surface and subsequent scale development. The CO2 utilization in feed water reduces the water pH that enables the dissociation of salts in their respective ions, which leave the system as a concentrate. This study compares the efficiency of CO2 and other antifouling agents (CA-1, CA-2, and CA-3) for fouling control in four different membrane-based wastewater reclamation operations. These systems include Schemes 1, 2, 3, and 4, which were operated with CA-1, CA-2, CA-3, and CO2 as antiscalants, respectively. The flux profile and percent salt rejection achieved in Scheme 4 confirmed the higher efficiency of CO2 utilization compared with other antifouling agents. This proficient role of CO2 in fouling inhibition is further endorsed by the surface analysis of used membranes. The SEM, EDS, and XRD examination confirmed the higher suitability of CO2 utilization in controlling scale deposition compared with other antiscalants. The cost estimation also supported the CO2 utilization for environmental friendly and safe operation.
Collapse
Affiliation(s)
- Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Daejeon 34134, Korea;
| | - Younggyun Choi
- Department of Environmental & IT Engineering, Chungnam National University, Daejeon 34134, Korea
- Correspondence:
| |
Collapse
|
39
|
Current advances in treatment technologies for removal of emerging contaminants from water – A critical review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213993] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Saulat H, Khan MM, Aslam M, Chawla M, Rafiq S, Zafar F, Khan MM, Bokhari A, Jamil F, Bhutto AW, Bazmi AA. Wind speed pattern data and wind energy potential in Pakistan: current status, challenging platforms and innovative prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34051-34073. [PMID: 33119799 DOI: 10.1007/s11356-020-10869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Energy is an essential parameter for the economic growth and sustainable development of any country. Due to the rapid increase in energy demand, depletion of fossil fuels and environmental concerns, many developing and developed countries are moving towards alternative renewable resources such as solar energy, wind energy and biomass. Wind energy as a renewable energy source is gaining a lot of significant attention. Wind energy is a sustainable solution to produce energy having potential benefits such as clean source, reduced toxic gases emission and environmental friendly protocol for operation. Pakistan is among the top countries facing the worst energy crisis due to different political and financial issues. Pakistan is blessed with a huge potential of wind energy having all the basic requirements such as windy regions and good wind speed for harnessing energy. Pakistan can utilize the potential of wind energy to reduce the problem of energy outrage in the country and also take steps towards green economy from conventional fuel economy. This critical review highlights the current status, potential and the steps taken in the past and present to overcome the energy shortage in Pakistan by employing wind energy. Outlook on wind speed data, deployment of wind energy, environmental effect of wind energy and its barriers in the adoption are discussed with recommendations and suggestions to utilize this clean energy in an effective way. Graphical abstract.
Collapse
Affiliation(s)
- Hammad Saulat
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Muhammad Masood Khan
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan.
| | - Muhammad Chawla
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Sikander Rafiq
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Lahore, Pakistan
| | - Faisal Zafar
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Sebou-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Muhammad Mahmood Khan
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Awais Bokhari
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Farrukh Jamil
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | | | - Aqeel Ahmed Bazmi
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan.
- Process and Energy Systems Engineering Center-PRESTIGE, Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan.
| |
Collapse
|
41
|
Lee HS, Liao B. Anaerobic membrane bioreactors for wastewater treatment: Challenges and opportunities. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:993-1004. [PMID: 33151594 DOI: 10.1002/wer.1475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/03/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic membrane bioreactors (AnMBRs) have become a new mature technology and entered into the wastewater market, but there are several challenges to be addressed for wide applications. In this review, we discuss challenges and potentials of AnMBRs focusing on wastewater treatment. Nitrogen and dissolved methane control, membrane fouling and its control, and membrane associated cost including energy consumption are main bottlenecks to facilitating AnMBR application in wastewater treatment. Accumulation of dissolved methane in AnMBR permeate decreases the benefit of methane energy and contributes to methane gas emissions to atmosphere. Separate control units for nitrogen and dissolved methane add system complexity and increase capital and operating and maintenance (O & M) costs in AnMBR-centered wastewater treatment. Alternatively, methane-based denitrification can be an ideal nitrogen control process due to simultaneous removal of nitrogen and dissolved methane. Membrane fouling and energy associated with membrane fouling control are major limitations, in addition to membrane cost. More efforts are required to decrease capital and O & M costs associated with the control of dissolved methane nitrogen and membrane fouling to facilitate AnMBRs for wastewater treatment. PRACTITIONER POINTS: AnMBRs can accelerate anaerobic wastewater treatment including dilute wastewater. Nitrogen and dissolved methane control is detrimental for AnMBR application to wastewater treatment. Membrane biofilm reactors using gas-permeable membranes are suitable for simultaneous nitrogen and dissolved methane control. High capital and O & M costs from membranes are a major bottleneck to wide application of AnMBRs. Dynamic membranes could be an option to reduce capital and O & M costs for AnMBRs.
Collapse
Affiliation(s)
- Hyung-Sool Lee
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Ontario, Canada
| |
Collapse
|
42
|
Shahid K, Srivastava V, Sillanpää M. Protein recovery as a resource from waste specifically via membrane technology-from waste to wonder. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10262-10282. [PMID: 33442801 PMCID: PMC7884582 DOI: 10.1007/s11356-020-12290-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 12/29/2020] [Indexed: 05/31/2023]
Abstract
Economic growth and the rapid increase in the world population has led to a greater need for natural resources, which in turn, has put pressure on said resources along with the environment. Water, food, and energy, among other resources, pose a huge challenge. Numerous essential resources, including organic substances and valuable nutrients, can be found in wastewater, and these could be recovered with efficient technologies. Protein recovery from waste streams can provide an alternative resource that could be utilized as animal feed. Membrane separation, adsorption, and microbe-assisted protein recovery have been proposed as technologies that could be used for the aforementioned protein recovery. This present study focuses on the applicability of different technologies for protein recovery from different wastewaters. Membrane technology has been proven to be efficient for the effective concentration of proteins from waste sources. The main emphasis of the present short communication is to explore the possible strategies that could be utilized to recover or restore proteins from different wastewater sources. The presented study emphasizes the applicability of the recovery of proteins from various waste sources using membranes and the combination of the membrane process. Future research should focus on novel technologies that can help in the efficient extraction of these high-value compounds from wastes. Lastly, this short communication will evaluate the possibility of integrating membrane technology. This study will discuss the important proteins present in different industrial waste streams, such as those of potatoes, poultry, dairy, seafood and alfalfa, and the possible state of the art technologies for the recovery of these valuable proteins from the wastewater.
Collapse
Affiliation(s)
- Kanwal Shahid
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, FI-50130, Mikkeli, Finland.
| | - Varsha Srivastava
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, QLD, 4350, Australia
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| |
Collapse
|
43
|
Kong Z, Wu J, Rong C, Wang T, Li L, Luo Z, Ji J, Hanaoka T, Sakemi S, Ito M, Kobayashi S, Kobayashi M, Qin Y, Li YY. Large pilot-scale submerged anaerobic membrane bioreactor for the treatment of municipal wastewater and biogas production at 25 °C. BIORESOURCE TECHNOLOGY 2021; 319:124123. [PMID: 32971330 DOI: 10.1016/j.biortech.2020.124123] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 05/27/2023]
Abstract
The aim of this work was to demonstrate the operation of a large pilot-scale submerged anaerobic membrane bioreactor (5.0 m3) for biogas production from municipal wastewater at ambient temperature of 25 °C. To the best of our knowledge, this is the largest one-stage submerged AnMBR that has ever been reported. This AnMBR realized a hydraulic retention time (HRT) of 6 h and a treatment capacity of 20 m3 d-1, obtaining excellent effluent quality with COD removal efficiency over 90% and BOD5 removal over 95%. The biogas yield of the AnMBR was 0.25-0.27 L g-1 removed COD and 0.09-0.10 L L-1 raw wastewater. The methane content of the biogas was at the range of 75%-81%. The COD and nitrogen mass balance were also identified based on long-term operation. The hollow-fiber membrane module realized a flux of 2.75-17.83 LMH. An online backwash chemical cleaning system helped to lower the transmembrane pressure timely.
Collapse
Affiliation(s)
- Zhe Kong
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Jiang Wu
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Chao Rong
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tianjie Wang
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Lu Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zibin Luo
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Jiayuan Ji
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Taira Hanaoka
- Solution Engineering Group, Environmental Engineering Department, Mitsubishi Kakoki Kaisha, Ltd., 1-2 Miyamae-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0012, Japan
| | - Shinichi Sakemi
- Solution Engineering Group, Environmental Engineering Department, Mitsubishi Kakoki Kaisha, Ltd., 1-2 Miyamae-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0012, Japan
| | - Masami Ito
- Global Water Recycling and Reuse System Association, Japan, 5-1, Soto-Kanda 1-Chome, Chiyoda-Ku, Tokyo 101-0021, Japan
| | - Shigeki Kobayashi
- Global Water Recycling and Reuse System Association, Japan, 5-1, Soto-Kanda 1-Chome, Chiyoda-Ku, Tokyo 101-0021, Japan
| | - Masumi Kobayashi
- Separation and Aqua Chemicals Department, Mitsubishi Chemical Corporation, Gate City Osaki East Tower, 11-2 Osaki 1-chome, Shinagawa-Ku, Tokyo 141-0032, Japan
| | - Yu Qin
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|