1
|
Khodadadeian F, Hossaini Sadr M, Afshar Mogaddam MR, Rezvani Z. Synthesis of 1,2,4-triazole-based deep eutectic solvents modified nickel ferrite nanoparticles and their application in dispersive solid phase extraction of triazole pesticides prior to LC-MS/MS analysis. Talanta 2025; 283:127050. [PMID: 39536616 DOI: 10.1016/j.talanta.2024.127050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
A dispersive solid phase extraction method using new magnetic nanoparticles based on nickel ferrite was introduced for the extraction of six triazole pesticides (penconazole, hexaconazole, tebuconazole, diniconazole, triadimefon, and difenoconazole) from water samples before liquid chromatography-tandem mass spectrometry analyses. Initially, a new deep eutectic solvent was synthesized with 1,2,4-triazole and n-octanol for surface modification of the nanoparticles easily achieved through microwave radiation. The nanoparticles morphology, magnetic properties, adsorption capacity, isotherms, and crystalline patterns of the sorbent were examined. The capability of the sorbent was evaluated by extracting the target pesticides from water samples showing significant differences in adsorption capacity and efficiency between the modified and non-modified nanoparticles. High extraction recoveries (68-86 %) were achieved for the analytes using small amounts of the sorbent with low limits of detection (0.03-0.08 ng mL-1) and quantification (0.13-0.29 ng mL-1), a wide linear range (0.29-250 ng mL-1), and acceptable precision (relative standard deviations ≤6.9 %).
Collapse
Affiliation(s)
- Fariba Khodadadeian
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Moayad Hossaini Sadr
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Chemistry and Chemical Engineering Department, Khazar University, 41 Mehseti Street, Baku, AZ1096, Azerbaijan.
| | - Zolfaghar Rezvani
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
2
|
Belesov AV, Mazur DM, Faleva AV, Varsegov IS, Pikovskoi II, Ulyanovskii NV, Kosyakov DS. 1-Butyl-3-methylimidazolium-Based Ionic Liquid in Biomass Fractionation-Green Solvent or Active Reagent Toward Lignin Compounds? Int J Mol Sci 2024; 25:12623. [PMID: 39684338 DOI: 10.3390/ijms252312623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
N,N'-Dialkylimidazolium-based ionic liquids are capable of completely dissolving lignocellulosic biomass at elevated temperatures and are considered as promising green solvents for future biorefining technologies. However, the obtained ionic liquid lignin preparations may contain up to several percent nitrogen. This indicates strong interactions between the biopolymer and the IL cation, the nature of which has not yet been clarified. The present study investigates mechanisms and pathways of the formation of nitrogen-containing lignin compounds. To achieve this goal, eight monomeric lignin-related phenols bearing different functional groups (ketone, aldehyde, hydroxyl, carbon-carbon double bonds) were treated with 1-butyl-3-methylimidazolium acetate (BmimOAc) under typical conditions of IL-assisted lignocellulose fractionation (80-150 °C). A number of the resulting products were tentatively identified, for all the studied model compounds, by two-dimensional NMR spectroscopy and high-performance liquid chromatography-high-resolution mass spectrometry. They all possess covalently bonded Bmim residues and occur through the nucleophilic addition of an N-heterocyclic carbene (deprotonated Bmim cation) to electron-deficient groups. The reactivity of lignin functional groups in their interaction with Bmim is greatly affected by the temperature and dissolved oxygen. IL's thermal degradation products act as additional reactive species toward lignin, further complicating the range of products formed. The obtained results made it possible to answer the question posed in this article's title and to assert that N,N'-dialkylimidazolium-based ILs act as active reagents with respect to lignin during the dissolution of lignocellulose.
Collapse
Affiliation(s)
- Artyom V Belesov
- Core Facility Center 'Arktika', Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Dmitrii M Mazur
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China
- Department of Organic Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Anna V Faleva
- Core Facility Center 'Arktika', Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Ilya S Varsegov
- Core Facility Center 'Arktika', Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Ilya I Pikovskoi
- Core Facility Center 'Arktika', Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Nikolay V Ulyanovskii
- Core Facility Center 'Arktika', Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Dmitry S Kosyakov
- Core Facility Center 'Arktika', Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| |
Collapse
|
3
|
Aziz M, Palariya D, Mehtab S, Zaidi MGH, Vasseghian Y. Enhanced production of bioethanol through supercritical carbon dioxide-mediated pretreatment and saccharification of dewaxed bagasse. Sci Rep 2024; 14:21450. [PMID: 39271743 PMCID: PMC11399341 DOI: 10.1038/s41598-024-70727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The pretreatment and saccharification of dewaxed bagasse (DWB) has been investigated under various reaction conditions ranging 2000 to 3200 psi, at 70 ± 1 °C in supercritical carbon dioxide (SCC). This has been in attempt to transform the DWB into fermentable sugar and bioethanol in high yields. The effect of SCC mediated pretreatment and enzymatic hydrolysis on structural and morphological alterations in DWB has been ascertained through diverse analytical methods. The sugar has been released through cellulase (40 FPU/mL) mediated enzymatic hydrolysis of pretreated DWB in sodium acetate buffer (pH 4.7) within 1 h at SCC 2800 psi, 70 ± 1 °C. The released sugar was subsequently fermented in the presence of yeast (Saccharomyces crevices, 135 CFU) at 28 ± 1 °C over 72 h to afford the bioethanol. The SCC mediated process conducted in acetic acid:water media (1:1) at 2800 psi, 70 ± 1 °C over 6 h has afforded the pretreated DWB with maximum yield towards the production of fermentable sugar and bioethanol. The production of fermentable sugar and bioethanol has been electrochemically estimated through cyclic voltammetry (CV) and square wave voltammetry (SWV) over glassy carbon electrode in KOH (0.1 M). The electrochemical methods were found selective and in close agreement for estimation of the yields (%) of fermentable sugars and bioethanol. The yield (%) of fermentable sugar estimated from CV and SWV were 80.10 ± 5.34 and 79.00 ± 5.09 respectively. Whereas the yield (%) of bioethanol estimated from CV and SWV were 81.30 ± 2.78% and 78.6 ± 1.25% respectively. Present investigation delivers a SCC mediated green and sustainable method of pretreatment of DWB to afford the enhanced saccharification, to produce bioethanol in high yields.
Collapse
Affiliation(s)
- Mohammad Aziz
- Department of Chemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, 263145, India
| | - Diksha Palariya
- Department of Chemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, 263145, India
| | - Sameena Mehtab
- Department of Chemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, 263145, India.
| | - M G H Zaidi
- Department of Chemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, 263145, India.
| | - Yasser Vasseghian
- Department of Chemical Engineering and Material Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Bekavac N, Benković M, Jurina T, Valinger D, Gajdoš Kljusurić J, Jurinjak Tušek A, Šalić A. Advancements in Aqueous Two-Phase Systems for Enzyme Extraction, Purification, and Biotransformation. Molecules 2024; 29:3776. [PMID: 39202854 PMCID: PMC11357509 DOI: 10.3390/molecules29163776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
In recent years, the increasing need for energy conservation and environmental protection has driven industries to explore more efficient and sustainable processes. Liquid-liquid extraction (LLE) is a common method used in various sectors for separating components of liquid mixtures. However, the traditional use of toxic solvents poses significant health and environmental risks, prompting the shift toward green solvents. This review deals with the principles, applications, and advantages of aqueous two-phase systems (ATPS) as an alternative to conventional LLE. ATPS, which typically utilize water and nontoxic components, offer significant benefits such as high purity and single-step biomolecule extraction. This paper explores the thermodynamic principles of ATPS, factors influencing enzyme partitioning, and recent advancements in the field. Specific emphasis is placed on the use of ATPS for enzyme extraction, showcasing its potential in improving yields and purity while minimizing environmental impact. The review also highlights the role of ionic liquids and deep eutectic solvents in enhancing the efficiency of ATPS, making them viable for industrial applications. The discussion extends to the challenges of integrating ATPS into biotransformation processes, including enzyme stability and process optimization. Through comprehensive analysis, this paper aims to provide insights into the future prospects of ATPS in sustainable industrial practices and biotechnological applications.
Collapse
Affiliation(s)
- Nikša Bekavac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Tamara Jurina
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Davor Valinger
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Anita Šalić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia;
| |
Collapse
|
5
|
Saravanan P, Rajeswari S, Divyabaskaran, López-Maldonado EA, Rajeshkannan R, Viswanathan S. Recent developments on sustainable biobutanol production: a novel integrative review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46858-46876. [PMID: 38981967 DOI: 10.1007/s11356-024-34230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
Renewable and sustainable biofuel production, such as biobutanol, is becoming increasingly popular as a substitute for non-renewable and depleted petrol fuel. Many researchers have studied how to produce butanol cheaply by considering appropriate feedstock materials and bioprocess technologies. The production of biobutanol through acetone-butanol-ethanol (ABE) is highly sought after around the world because of its sustainable supply and lack of competition with food. The purpose of this study is to present the current biobutanol production research and to analyse the biobutanol research conducted during 2006 to 2023. The keyword used in this study is "Biobutanol," and the relevant data was extracted from the Web of Science database (WoS). According to the results, institutions and scholars from the People's Republic of China, the USA, and India have the highest number of cited papers across a broad spectrum of topics including acetone-butanol-ethanol (ABE) fermentation, biobutanol, various pretreatment techniques, and pervaporation. The success of biobutanol fermentation from biomass depends on the ability of the fermentation operation to match the microbial behaviour along with the appropriate bioprocessing strategies to improve the entire process to be suitable for industrial scale. Based on the review data, we will look at the biobutanol technologies and appropriate strategies that have been developed to improve biobutanol production from renewable biomass.
Collapse
Affiliation(s)
- Panchamoorthy Saravanan
- Department of Petrochemical Technology, Anna University, UCE-BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Shanmugam Rajeswari
- Department in the Library, Anna University, Tamil Nadu, UCE-BIT Campus, Tiruchirappalli, 620024, India
| | - Divyabaskaran
- Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, 59626, South Korea
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, 22424, Tijuana, Baja California, Mexico.
| | - Rajan Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Chidambaram, 608001, Tamil Nadu, India
| | - Saravanan Viswanathan
- Department of Chemical Engineering, Annamalai University, Chidambaram, 608001, Tamil Nadu, India
| |
Collapse
|
6
|
Yong KJ, Wu TY. Fractionation of oil palm fronds using ethanol-assisted deep eutectic solvent: Influence of ethanol concentration on enhancing enzymatic saccharification and lignin β-O-4 content. ENVIRONMENTAL RESEARCH 2024; 250:118366. [PMID: 38331153 DOI: 10.1016/j.envres.2024.118366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Numerous fractionation methods have been developed in recent years for separating components such as cellulose, hemicellulose, and lignin from lignocellulosic biomass wastes. Deep eutectic solvents (DES) have recently been widely investigated as captivating green solvents for biomass fractionation. However, most acidic-based deep eutectic solvent fractionation produces condensed lignin with low β-O-4 content. Besides, most DESs exhibit high viscosity, which results in poor mass transfer properties. This study aimed to address the challenges above by incorporating ethanol into the deep eutectic solvent at various concentrations (10-50 wt%) to fractionate oil palm fronds at a mild condition, i.e., 80 °C, 1 atm. Cellulose residues fractionated with ethanol-assisted deep eutectic solvent showed a maximum glucose yield of 85.8% when 20 wt% of ethanol was incorporated in the deep eutectic solvent, significantly higher than that achieved by pure DES (44.8%). Lignin extracted with ethanol-assisted deep eutectic solvent is lighter in color and higher in β-O-4 contents (up to 44 β-O-4 per 100 aromatic units) than pure DES-extracted lignin. Overall, this study has demonstrated that incorporating ethanol into deep eutectic solvents could enhance the applicability of deep eutectic solvents in the complete valorization of lignocellulosic biomass. Highly enzymatic digestible cellulose-rich solid and β-O-4-rich lignin attained from the fractionation could serve as sustainable precursors for the production of biofuels.
Collapse
Affiliation(s)
- Khai Jie Yong
- Department of Chemical Engineering, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ta Yeong Wu
- Department of Chemical Engineering, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Centre for Net-Zero Technology, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
7
|
Sonyeam J, Chaipanya R, Suksomboon S, Khan MJ, Amatariyakul K, Wibowo A, Posoknistakul P, Charnnok B, Liu CG, Laosiripojana N, Sakdaronnarong C. Process design for acidic and alcohol based deep eutectic solvent pretreatment and high pressure homogenization of palm bunches for nanocellulose production. Sci Rep 2024; 14:7550. [PMID: 38555319 PMCID: PMC10981746 DOI: 10.1038/s41598-024-57631-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
This research aimed to study on nanocellulose production from palm bunch using process design and cost analysis. Choline chloride based deep eutectic solvent pretreatment was selected for high-purity cellulose separation at mild condition, followed by nano-fibrillation using mechanical treatment. Three types of choline chloride-based deep eutectic solvents employing different hydrogen-bond donors (HBDs) namely lactic acid, 1,3-butanediol and oxalic acid were studied. The optimal cellulose extraction condition was choline chloride/lactic acid (ChLa80C) pretreatment of palm empty bunch at 80 °C followed by bleaching yielding 94.96%w/w cellulose content in product. Size reduction using ultrasonication and high-pressure homogenization produced nanocellulose at 67.12%w/w based on cellulose in raw material. Different morphologies of nanocellulose were tunable in the forms of nanocrystals, nano-rods and nanofibers by using dissimilar deep eutectic solvents. This work offered a sustainable and environmentally friendly process as well as provided analysis of DES pretreatment and overview operating cost for nanocellulose production. Application of nanocellulose for the fabrication of highly functional and biodegradable material for nanomedicine, electronic, optical, and micromechanical devices is achievable in the near future.
Collapse
Affiliation(s)
- Janejira Sonyeam
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Ratanaporn Chaipanya
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Sudarat Suksomboon
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Mohd Jahir Khan
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Krongkarn Amatariyakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Agung Wibowo
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Pattaraporn Posoknistakul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand
| | - Boonya Charnnok
- Department of Specialized Engineering, Energy Technology Program, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., Hat Yai, Songkhla, 90110, Thailand
| | - Chen Guang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mot, Thung Khru, Bangkok, 10140, Thailand
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
8
|
Chen Z, Chen L, Khoo KS, Gupta VK, Sharma M, Show PL, Yap PS. Exploitation of lignocellulosic-based biomass biorefinery: A critical review of renewable bioresource, sustainability and economic views. Biotechnol Adv 2023; 69:108265. [PMID: 37783293 DOI: 10.1016/j.biotechadv.2023.108265] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Urbanization has driven the demand for fossil fuels, however, the overly exploited resource has caused severe damage on environmental pollution. Biorefining using abundant lignocellulosic biomass is an emerging strategy to replace traditional fossil fuels. Value-added lignin biomass reduces the waste pollution in the environment and provides a green path of conversion to obtain renewable resources. The technology is designed to produce biofuels, biomaterials and value-added products from lignocellulosic biomass. In the biorefinery process, the pretreatment step is required to reduce the recalcitrant structure of lignocellulose biomass and improve the enzymatic digestion. There is still a gap in the full and deep understanding of the biorefinery process including the pretreatment process, thus it is necessary to provide optimized and adapted biorefinery solutions to cope with the conversion process in different biorefineries to further provide efficiency in industrial applications. Current research progress on value-added applications of lignocellulosic biomass still stagnates at the biofuel phase, and there is a lack of comprehensive discussion of emerging potential applications. This review article explores the advantages, disadvantages and properties of pretreatment methods including physical, chemical, physico-chemical and biological pretreatment methods. Value-added bioproducts produced from lignocellulosic biomass were comprehensively evaluated in terms of encompassing biochemical products , cosmetics, pharmaceuticals, potent functional materials from cellulose and lignin, waste management alternatives, multifunctional carbon materials and eco-friendly products. This review article critically identifies research-related to sustainability of lignocellulosic biomass to promote the development of green chemistry and to facilitate the refinement of high-value, environmentally-friendly materials. In addition, to align commercialized practice of lignocellulosic biomass application towards the 21st century, this paper provides a comprehensive analysis of lignocellulosic biomass biorefining and the utilization of biorefinery green technologies is further analyzed as being considered sustainable, including having potential benefits in terms of environmental, economic and social impacts. This facilitates sustainability options for biorefinery processes by providing policy makers with intuitive evaluation and guidance.
Collapse
Affiliation(s)
- Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Lin Chen
- School of Civil Engineering, Chongqing University, Chongqing 400045, China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom.
| | | | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| |
Collapse
|
9
|
Yong KJ, Wu TY. Recent advances in the application of alcohols in extracting lignin with preserved β-O-4 content from lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2023; 384:129238. [PMID: 37245662 DOI: 10.1016/j.biortech.2023.129238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Utilizing lignocellulosic biomass wastes to produce bioproducts is essential to address the reliance on depleting fossil fuels. However, lignin is often treated as a low-value-added component in lignocellulosic wastes. Valorization of lignin into value-added products is crucial to improve the economic competitiveness of lignocellulosic biorefinery. Monomers obtained from lignin depolymerization could be upgraded into fuel-related products. However, lignins obtained from conventional methods are low in β-O-4 content and, therefore, unsuitable for monomer production. Recent literature has demonstrated that lignins extracted with alcohol-based solvents exhibit preserved structures with high β-O-4 content. This review discusses the recent advances in utilizing alcohols to extract β-O-4-rich lignin, where discussion based on different alcohol groups is considered. Emerging strategies in employing alcohols for β-O-4-rich lignin extraction, including alcohol-based deep eutectic solvent, flow-through fractionation, and microwave-assisted fractionation, are reviewed. Finally, strategies for recycling or utilizing the spent alcohol solvents are also discussed.
Collapse
Affiliation(s)
- Khai Jie Yong
- Department of Chemical Engineering, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ta Yeong Wu
- Department of Chemical Engineering, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
10
|
Shabbirahmed AM, Joel J, Gomez A, Patel AK, Singhania RR, Haldar D. Environment friendly emerging techniques for the treatment of waste biomass: a focus on microwave and ultrasonication processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79706-79723. [PMID: 37336854 DOI: 10.1007/s11356-023-28271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/11/2023] [Indexed: 06/21/2023]
Abstract
In the recent past, an increasing interest is mostly observed in using microwave and ultrasonic irradiation to aid the biological conversion of waste materials into value-added products. This study is focused on various individual impacts of microwaves and ultrasonic waves for the treatment of biomass before the synthesis of value-added products. Following, a comprehensive review of the mechanisms governing microwaves and ultrasonication as the treatment methods, their effects on biomass disruption, solubilization of organic matter, modification of the crystalline structure, enzymatic hydrolysis and production of reducing sugars was performed. However, based on the lab-scale experiments evaluated, microwaves and ultrasonication were studied to be economically and energetically ineffective despite their beneficial effects on the waste biomass. This article reviews some of the difficulties associated with using microwaves and ultrasonic irradiation for the efficient processing of waste biomasses and identified some potential directions for future study.
Collapse
Affiliation(s)
- Asma Musfira Shabbirahmed
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Jesse Joel
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Anbu Gomez
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, 226029, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India.
| |
Collapse
|
11
|
Wang X, Xu W, Zhang D, Li X, Shi J. Structural Characteristics-Reactivity Relationships for Catalytic Depolymerization of Lignin into Aromatic Compounds: A Review. Int J Mol Sci 2023; 24:ijms24098330. [PMID: 37176036 PMCID: PMC10179062 DOI: 10.3390/ijms24098330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Developing renewable biomass resources is an urgent task to reduce climate change. Lignin, the only renewable aromatic feedstock present in nature, has attracted considerable global interest in its transformation and utilization. However, the complexity of lignin's structure, uncertain linkages, stability of side chain connection, and inevitable recondensation of reaction fragments make lignin depolymerization into biofuels or platform chemicals a daunting challenge. Therefore, understanding the structural characteristics and reactivity relationships is crucial for achieving high-value utilization of lignin. In this review, we summarize the key achievements in the field of lignin conversion with a focus on the effects of the β-O-4 content, S/G ratio, lignin sources, and an "ideal" lignin-catechyl lignin. We discuss how these characteristics influence the formation of lignin monomer products and provide an outlook on the future direction of lignin depolymerization.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| | - Wenbiao Xu
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| | - Dan Zhang
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| | - Xiangyu Li
- Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| | - Junyou Shi
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
- Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| |
Collapse
|
12
|
Dharmaraja J, Shobana S, Arvindnarayan S, Francis RR, Jeyakumar RB, Saratale RG, Ashokkumar V, Bhatia SK, Kumar V, Kumar G. Lignocellulosic biomass conversion via greener pretreatment methods towards biorefinery applications. BIORESOURCE TECHNOLOGY 2023; 369:128328. [PMID: 36402280 DOI: 10.1016/j.biortech.2022.128328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulose biomass during pretreatment releases various compounds, among them the most important is reducing sugars, which can be utilized for the production of biofuels and some other products. Thereby, innovative greener pretreatment techniques for lignocellulosic materials have been considered to open a new door in the aspects of digestibility of the rigid carbohydrate-lignin matrix to reduce the particle size and remove hemicellulose/lignin contents to successfully yield valid bioproducts. This article reviews about the composition of lignocelluloses and emphasizes various green pretreatments viz novel green solvent-based IL and DES steam explosion, supercritical carbon dioxide explosion (Sc-CO2) and co-solvent enhanced lignocellulosic fractionation (CELF) along with suitable mechanistic pathway of LCB pretreatment process. Finally, this article concludes that the existing pretreatments should be redesigned to conquer the demands by large scale production and suggests combined pretreatment methods to carry out various biomass pre-processing.
Collapse
Affiliation(s)
- Jeyaprakash Dharmaraja
- Division of Chemistry, Faculty of Science and Humanities, AAA College of Engineering and Technology, Amathur-626005, Virudhunagar District, Tamil Nadu, India
| | - Sutha Shobana
- Green Technology and Sustainable Development in Construction Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Sundaram Arvindnarayan
- Department of Mechanical Engineering, Lord Jegannath College of Engineering and Technology, Marungoor - 629402, Kanyakumari District, Tamil Nadu, India
| | - Rusal Raj Francis
- Department of Chemistry, Birla Institute of Technology & Science, Dubai International Academic City, Dubai Campus, Box 345055, Pilani, Dubai, United Arab Emirates
| | - Rajesh Banu Jeyakumar
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudy, Thiruvarur-610005, Tamil Nadu, India
| | - Rijuta Ganesh Saratale
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Veeramuthu Ashokkumar
- Biorefineries for Biofuels & Bioproducts Laboratory, Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus 4036, Stavanger, Norway.
| |
Collapse
|
13
|
Xiao K, Li H, Liu L, Liu X, Lian Y. Quantitative comparison of the delignification performance of lignocellulosic biomass pretreatment technologies for enzymatic saccharification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22929-22940. [PMID: 36307567 DOI: 10.1007/s11356-022-23817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Pretreatments for delignification are required for the enzymatic saccharification of lignocellulosic biomasses. However, in the current literature, various pretreatment approaches have been applied for the same kinds of biomass. To find the optimum pretreatments for biomaterials containing various lignin contents, in this study, a quantitative comparison was carried out on the delignification performance of 15 categories of pretreatments. In total, 1729 sets of biomass, cellulose, hemicellulose, and lignin recovery data were collected from 214 relevant studies. Box plots and Cate-Nelson-like graphs were applied for analyses. The results showed that alkali, oxidation, organic solvent, and multistep pretreatments generally were better at removing lignin and recovering cellulose. Moreover, among these four categories, alkali pretreatments had the best performance, increasing the saccharification efficiency by approximately five-fold. Considering both delignification performance and saccharification improvement, alkali pretreatments are currently considered to be the optimum pretreatment methods for enzymatic saccharification.
Collapse
Affiliation(s)
- Kai Xiao
- College of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Huangshi, 435003, China
| | - Haixiao Li
- College of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Le Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaoning Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yi Lian
- College of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, 300387, China
| |
Collapse
|
14
|
Li P, Zhang Z, Zhang X, Li K, Jin Y, Wu W. DES: their effect on lignin and recycling performance. RSC Adv 2023; 13:3241-3254. [PMID: 36756401 PMCID: PMC9872775 DOI: 10.1039/d2ra06033g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2023] Open
Abstract
Lignocellulosic biomass raw materials are renewable resources with abundant reserves in nature, and have many advantages, such as being green, biodegradable and cheap. Lignin, one of the three significant components of lignocellulose, possesses a chemical structure rich in phenylpropane and is a primary aromatic resource for the bio-based economy. For the extraction and degradation of lignin, the most common method is the pretreatment of lignocellulose with deep eutectic solvents (DES), which have similar physicochemical properties to ionic liquids (ILs) but address the disadvantages associated with ILs (DES have the advantages of low cost, low toxicity, and non-flammability). In lignocellulose pretreatment, a large amount of solvent is generally required to achieve the desired effect. However, after treatment, a substantial volume of solvent will be wasted, and thus, the problem of the recovery and reuse of DES solution needs to be adequately solved. The methods and mechanisms of perfect DES regeneration will be discussed from the perspective of the elemental composition and features of DESs in this review, which will also outline the present DES recovery methods, such as rotary evaporation, membrane separation, freeze-drying, electrodialysis, etc. The detailed process and the advantages and disadvantages of each method since 2018 are introduced in detail. Future DES recovery methods have been prospected, and the optimization of the functional properties of DESs after recovery is discussed. It is expected to find a convenient and efficient application method for DES extraction or degradation of lignin with low energy and low cost.
Collapse
Affiliation(s)
- Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China .,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Zihui Zhang
- College of Light Industry and Food Engineering, Nanjing Forestry UniversityNanjing210037China
| | - Xiaoxue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China .,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Kongyan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China .,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China .,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China .,College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
15
|
Chemical hydrolysis of hemicellulose from sugarcane bagasse. A comparison between the classical sulfuric acid method with the acidic ionic liquid 1-ethyl-3-methylimidazolium hydrogen sulfate. ACTA INNOVATIONS 2022. [DOI: 10.32933/actainnovations.46.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Dilute sulfuric acid and acidic ionic liquids are pretreatment methods used to selectively hydrolyze hemicellulose from lignocellulosic biomasses. In this work, a comparison between these techniques is carried out by treating sugarcane bagasse both with 1-ethyl-3-methylimidazolium hydrogen sulfate at different ionic-liquid and water contents and with H 2 SO 4 at the same conditions and equivalent ionic liquid molar contents. Results from the use of ionic liquid showed that it was possible to tune the biomass treatment either to achieve high hemicellulose hydrolysis yields of 72.5 mol% to very low furan and glucose co-production, or to obtain furfural at moderate yields of 18.7 mol% under conditions of low water concentration. In comparison to the use of ionic liquid, sulfuric acid pretreatment increased hemicellulose hydrolysis yields by 17%, but the 8.6 mol% furfural yield was also higher, and these yields were obtained at high water concentration conditions. Besides, no such tuning ability of the biomass treatment conditions can be made.
Collapse
|
16
|
Belesov AV, Shkaeva NV, Popov MS, Skrebets TE, Faleva AV, Ul’yanovskii NV, Kosyakov DS. New Insights into the Thermal Stability of 1-Butyl-3-methylimidazolium-Based Ionic Liquids. Int J Mol Sci 2022; 23:ijms231810966. [PMID: 36142873 PMCID: PMC9502186 DOI: 10.3390/ijms231810966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most promising applications of ionic liquids (ILs) with 1-butyl-3-methylimidazolium (bmim) cation is based on their unique ability to dissolve and fractionate lignocellulosic biomass, allowing for the development of green biorefining technologies. A complete dissolution of lignocellulose requires prolonged treatment at elevated temperatures, which can cause the partial degradation of ILs. In the present study, a combination of various analytical techniques (GC-MS, HPLC-HRMS, 2D-NMR, synchronous thermal analysis) was used for the comprehensive characterization of bmim acetate, chloride, and methyl sulfate degradation products formed at 150 °C during 6- and 24-h thermal treatment. A number of volatile and non-volatile products, including monomeric and dimeric alkyl substituted imidazoles, alcohols, alkyl amines, methyl and butyl acetates, and N-alkylamides, was identified. By thermal lability, ILs can be arranged in the following sequence, coinciding with the decrease in basicity of the anion: [bmim]OAc > [bmim]Cl > [bmim]MeSO4. The accumulation of thermal degradation products in ILs, in turn, affects their physico-chemical properties and thermal stability, and leads to a decrease in the decomposition temperature, a change in the shape of the thermogravimetric curves, and the formation of carbon residue during pyrolysis.
Collapse
|
17
|
Sharma V, Tsai ML, Chen CW, Sun PP, Patel AK, Singhania RR, Nargotra P, Dong CD. Deep eutectic solvents as promising pretreatment agents for sustainable lignocellulosic biorefineries: A review. BIORESOURCE TECHNOLOGY 2022; 360:127631. [PMID: 35850394 DOI: 10.1016/j.biortech.2022.127631] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Increasing reliance on non-renewable fuels has shifted research attention to environmentally friendly and sustainable energy sources.The inherently recalcitrant nature of lignocellulosic biomass (LCB) makes downstream processing of the bioprocess challenging. Deep eutectic solvents (DESs) are popular and inexpensive green liquids found effective for LCB valorisation. DESs have negligible vapor-pressure and are non-flammable, recyclable, cost-economic, and thermochemically stable. This review provides a detailed overview on the DESs types, properties and their role in effective delignification and enzymatic digestibility of polysaccharides for cost-effective conversion of LCB into biofuels and bioproducts. The conglomeration of DESs with assistive pretreatment techniques can augment the process of biomass deconstruction. The current challenges in upscaling the DESs-based pretreatment technology up to commercial scale is summarized, with possible solutions and future directions. These insights would fill the knowledge-gaps to towards development of lignocellulosic biorefineries and to address the global energy crisis and environment issues.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | | | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
18
|
Lee CBTL, Wu TY, Yong KJ, Cheng CK, Siow LF, Jahim JM. Investigation into Lewis and Brønsted acid interactions between metal chloride and aqueous choline chloride-oxalic acid for enhanced furfural production from lignocellulosic biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154049. [PMID: 35202677 DOI: 10.1016/j.scitotenv.2022.154049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Furfural has been identified as a valuable biobased platform chemical that can be further converted into bioenergy and biochemicals. Furfural is derived from lignocellulosic biomass and can also be regarded as a sustainable alternative to petrochemical products. Herein, the performance of trivalent metal chlorides (FeCl3, AlCl3) and tetravalent metal chlorides (SnCl4, TeCl4) as Lewis acidic cocatalysts was investigated in an aqueous choline chloride-oxalic acid (16.4 wt% H2O) deep eutectic solvent (DES) system for producing furfural from oil palm fronds (OPFs). The metal chlorides with greater electrical field gradients were stronger Lewis acids that enhanced both furfural production and degradation reactions. The main degradation product in this reaction system was humin, and this result was confirmed by FTIR analysis. By subjecting OPFs to an aqueous DES reaction (120 °C, 45 min) with SnCl4 (2.50 wt%), a furfural yield of 59.4% was obtained; without incorporated metal chlorides, the furfural yield was 46.1%. Characterization studies showed synergistic Lewis and Brønsted acid interactions between metal chlorides and DES components. Overall, the residual OPFs showed high glucan content, which led to the production of glucose (71.4%) as a byproduct via enzymatic hydrolysis. Additionally, the aqueous DES system was recycled and reused for several additional runs. The proposed aqueous DES system presents a promising biorefinery approach for the conversion of OPFs to biochemicals.
Collapse
Affiliation(s)
- Cornelius Basil Tien Loong Lee
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ta Yeong Wu
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Khai Jie Yong
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Chin Kui Cheng
- Center for Catalysis and Separation (CeCaS), Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Lee Fong Siow
- School of Science, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Jamaliah Md Jahim
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|