1
|
Seidl R, Potterf M, Müller J, Turner MG, Rammer W. Patterns of early post-disturbance reorganization in Central European forests. Proc Biol Sci 2024; 291:20240625. [PMID: 39317320 PMCID: PMC11421910 DOI: 10.1098/rspb.2024.0625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/12/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024] Open
Abstract
Disturbances catalyse change in forest ecosystems, and a climate-driven increase in disturbance activity could accelerate forest reorganization. Here, we studied post-disturbance forests after the biggest pulse of tree mortality in Central Europe in at least 170 years, caused by drought and bark beetle (Scolytinae) outbreaks in 2018-2020. Our objectives were to characterize the early state of tree regeneration after mortality, quantify patterns of reorganization relative to undisturbed reference conditions and assess how management and patch size affect forest reorganization after disturbance. We surveyed 1244 plots in 120 patches under managed (salvage-logged, often planted) and unmanaged (deadwood remaining on site, no planting) conditions in Germany. We found that regeneration density on disturbed sites was high (median 11 897 stems ha-1), resulting from a cohort of advance regeneration. Disturbances were strong drivers of change, with indications for resilience on only 36.3% of patches. Reassembly (i.e. a change in species composition) was the dominant pattern of reorganization (61.5%), and Picea abies forests changed most strongly. Post-disturbance management facilitated forest change, particularly promoting a change in species composition. The strength of reorganization increased with patch size. We conclude that the recent wave of tree mortality will likely accelerate forest change in Central Europe.
Collapse
Affiliation(s)
- Rupert Seidl
- School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, Freising85354, Germany
- Berchtesgaden National Park, Doktorberg 6, Berchtesgaden83471, Germany
| | - Mária Potterf
- School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, Freising85354, Germany
| | - Jörg Müller
- Department of Animal Ecology and Tropical Biology, Biocenter, Field Station Fabrikschleichach, University of Würzburg, Glashüttenstr. 5, Rauhenebrach96181, Germany
- Bavarian Forest National Park, Freyungerstr. 2, Grafenau94481, Germany
| | - Monica G. Turner
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI53706, USA
| | - Werner Rammer
- School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, Freising85354, Germany
| |
Collapse
|
2
|
Cantarello E, Jacobsen JB, Lloret F, Lindner M. Shaping and enhancing resilient forests for a resilient society. AMBIO 2024; 53:1095-1108. [PMID: 38580897 PMCID: PMC11183019 DOI: 10.1007/s13280-024-02006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 04/07/2024]
Abstract
The world is currently facing uncertainty caused by environmental, social, and economic changes and by political shocks. Fostering social-ecological resilience by enhancing forests' ability to provide a range of ecosystem services, including carbon sequestration, habitat provision, and sustainable livelihoods, is key to addressing such uncertainty. However, policy makers and managers currently lack a clear understanding of how to operationalise the shaping of resilience through the combined challenges of climate change, the biodiversity crisis, and changes in societal demand. Based on a scientific literature review, we identified a set of actions related to ecosystem services, biodiversity conservation, and disturbance and pressure impacts that forest managers and policy makers should attend to enhance the resilience of European forest systems. We conclude that the resilience shaping of forests should (1) adopt an operational approach, which is currently lacking, (2) identify and address existing and future trade-offs while reinforcing win-wins and (3) attend to local particularities through an adaptive management approach.
Collapse
Affiliation(s)
- Elena Cantarello
- Department of Life and Environmental Sciences, Bournemouth University, Talbot Campus, Poole, BH12 5BB, UK.
| | - Jette Bredahl Jacobsen
- Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark
| | - Francisco Lloret
- Center for Ecological Research and Forestry Applications (CREAF), Universitat Autònoma Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Marcus Lindner
- European Forest Institute, Platz der Vereinten Nationen 7, 53113, Bonn, Germany
| |
Collapse
|
3
|
Lecina-Diaz J, Martínez-Vilalta J, Lloret F, Seidl R. Resilience and vulnerability: distinct concepts to address global change in forests. Trends Ecol Evol 2024; 39:706-715. [PMID: 38531712 DOI: 10.1016/j.tree.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
Resilience and vulnerability are important concepts to understand, anticipate, and manage global change impacts on forest ecosystems. However, they are often used confusingly and inconsistently, hampering a synthetic understanding of global change, and impeding communication with managers and policy-makers. Both concepts are powerful and have complementary strengths, reflecting their different history, methodological approach, components, and spatiotemporal focus. Resilience assessments address the temporal response to disturbance and the mechanisms driving it. Vulnerability assessments focus on spatial patterns of exposure and susceptibility, and explicitly address adaptive capacity and stakeholder preferences. We suggest applying the distinct concepts of resilience and vulnerability where they provide particular leverage, and deduce a number of lessons learned to facilitate the next generation of global change assessments.
Collapse
Affiliation(s)
- Judit Lecina-Diaz
- Technical University of Munich, TUM School of Life Sciences, Ecosystem Dynamics and Forest Management Group, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany.
| | - Jordi Martínez-Vilalta
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain; Universitat Autònoma de Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Francisco Lloret
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain; Universitat Autònoma de Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Rupert Seidl
- Technical University of Munich, TUM School of Life Sciences, Ecosystem Dynamics and Forest Management Group, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany; Berchtesgaden National Park, Doktorberg 6, 83471 Berchtesgaden, Germany
| |
Collapse
|
4
|
Wu C, Su Y, Wang Z. Urban landscape sustainability in karst mountainous cities: A landscape resilience perspective. Heliyon 2024; 10:e31651. [PMID: 38828330 PMCID: PMC11140713 DOI: 10.1016/j.heliyon.2024.e31651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
In the context of the rapid progress of global urbanization, the massive encroachment of social landscapes into ecological and productive landscapes has led to a series of environmental problems. Furthermore, analyzing the landscape resilience could effectively reveal the sustainable development ability of the urban landscape. This study establishes a social-ecological productive landscape resilience (SEPLR) evaluation system and reveals trade-offs and synergies between different landscape types and resilience. Finally, this study provides landscape management zonings based on the spatial and temporal dynamic characteristics of landscape resilience and subsystem resilience. The findings showed that: (1) The CUAG has significant landscape heterogeneity and change drastically, which is mainly manifested by the massive encroachment of social landscape into productive landscape. (2) The SEPLR of CUAG decreased slightly by 0.75 % over the decade, with significant changes of spatial distribution. (3) The comprehensive remediation areas and social development areas are the dominant management zones. The findings could be incorporated into the decision-making of land use trade-off development in CUAG to promote the coordinated development of social-ecological productive systems and improve the sustainability of urban landscape.
Collapse
Affiliation(s)
- Chao Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Yuan Su
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Zhijie Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| |
Collapse
|
5
|
Dobor L, Baldo M, Bílek L, Barka I, Máliš F, Štěpánek P, Hlásny T. The interacting effect of climate change and herbivory can trigger large-scale transformations of European temperate forests. GLOBAL CHANGE BIOLOGY 2024; 30:e17194. [PMID: 38385958 DOI: 10.1111/gcb.17194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
In many regions of Europe, large wild herbivores alter forest community composition through their foraging preferences, hinder the forest's natural adaptive responses to climate change, and reduce ecosystem resilience. We investigated a widespread European forest type, a mixed forest dominated by Picea abies, which has recently experienced an unprecedented level of disturbance across the continent. Using the forest landscape model iLand, we investigated the combined effect of climate change and herbivory on forest structure, composition, and carbon and identified conditions leading to ecosystem transitions on a 300-year timescale. Eight climate change scenarios, driven by Representative Concentration Pathways 4.5 and 8.5, combined with three levels of regeneration browsing, were tested. We found that the persistence of the current level of browsing pressure impedes adaptive changes in community composition and sustains the presence of the vulnerable yet less palatable P. abies. These development trajectories were tortuous, characterized by a high disturbance intensity. On the contrary, reduced herbivory initiated a transformation towards the naturally dominant broadleaved species that was associated with an increased forest carbon and a considerably reduced disturbance. The conditions of RCP4.5 combined with high and moderate browsing levels preserved the forest within its reference range of variability, defining the actual boundaries of resilience. The remaining combinations of browsing and climate change led to ecosystem transitions. Under RCP4.5 with browsing effects excluded, the new equilibrium conditions were achieved within 120 years, whereas the stabilization was delayed by 50-100 years under RCP8.5 with higher browsing intensities. We conclude that forests dominated by P. abies are prone to transitions driven by climate change. However, reducing herbivory can set the forest on a stable and predictable trajectory, whereas sustaining the current browsing levels can lead to heightened disturbance activity, extended transition times, and high variability in the target conditions.
Collapse
Affiliation(s)
- Laura Dobor
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Prague 6, Suchdol, Czech Republic
| | - Marco Baldo
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Prague 6, Suchdol, Czech Republic
| | - Lukáš Bílek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Prague 6, Suchdol, Czech Republic
| | - Ivan Barka
- National Forest Centre - Forest Research Institute Zvolen, Zvolen, Slovakia
| | - František Máliš
- National Forest Centre - Forest Research Institute Zvolen, Zvolen, Slovakia
- Faculty of Forestry, Technical University Zvolen, Zvolen, Slovakia
| | - Petr Štěpánek
- Global Change Research Institute, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Hlásny
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Prague 6, Suchdol, Czech Republic
| |
Collapse
|