1
|
Wechakorn K, Payaka A, Masoongnoen J, Wattanalaorsomboon S, Sansenya S. Inhibition potential of n-hexadecanoic and oleic acids from edible insects against α-glucosidase, α-amylase, tyrosinase, and acetylcholinesterase: in vitro and in silico studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3701-3711. [PMID: 39797568 DOI: 10.1002/jsfa.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Edible insects are used for consumption and traditional medicine due to their rich bioactive compounds. This study examined the bioactive compounds and inhibitory effects of crude extracts from Bombyx mori and Omphisa fuscidentalis on α-glucosidase, α-amylase, acetylcholinesterase (AChE), and tyrosinase. Fatty acids, including n-hexadecanoic acid and oleic acid, were identified in the extracts and evaluated for their inhibitory potential against the enzymes in vitro and in silico. RESULTS The total phenolic content of the edible insect extracts correlated with enzyme inhibitory activity. The quercetin and kaempferol content of B. mori ethyl acetate (EtOAc) extract was also closely related to α-amylase inhibitory activity. The EtOAc and hexane extracts of B. mori showed similar inhibition potential to acarbose and tacrine against α-amylase and AChE, respectively. The hexane extract of O. fuscidentalis exhibited comparable tyrosinase inhibitory activity to kojic acid. n-Hexadecanoic acid and oleic acid were the predominant bioactive compounds in all of the extracts. A kinetic study revealed that n-hexadecanoic acid acted as a mixed-type inhibitor against α-amylase, similar to acarbose, whereas oleic acid showed non-competitive inhibition against AChE, unlike tacrine. Docking studies suggested that these fatty acids bind to the active sites of α-amylase and AChE. CONCLUSION The findings suggest that n-hexadecanoic acid and oleic acid from edible insects could be potential candidates for treating diabetes mellitus and Alzheimer's disease. An animal model might be used for further examination to confirm these findings. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kanokorn Wechakorn
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Apirak Payaka
- School of Science, Walailak University, Nakhon Si Thammarat, Thailand
| | - Jintana Masoongnoen
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Sukrit Wattanalaorsomboon
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Sompong Sansenya
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| |
Collapse
|
2
|
Sharma D, Rajbongshi B, Isphak T, Basumatary S, Dutta K, Rudrapal M, Goswami AK. Plant-Based Therapies to Ameliorate Neuroinflammation in Parkinson's Disease, Alzheimer's Disease, and Epilepsy: A Narrative Review. Chem Biodivers 2025:e202500038. [PMID: 40237742 DOI: 10.1002/cbdv.202500038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 04/18/2025]
Abstract
Neuroinflammation plays a crucial role in the etiology of neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), and epilepsy. Several key inflammatory pathways are pivotal in the development of neuroinflammation in PD, AD, and epilepsy. The NF-κB pathway is a central regulator of inflammation, and its chronic activation triggers the transcription of genes that drive inflammatory responses. JAK-STAT signaling system triggers the production of cytokines and chemokines that generate neuroinflammation; mitogen-activated protein kinases mediate the p38 pathway and control the synthesis of cytokines. Activation of the NO signaling pathway causes oxidative stress and neuronal damage. Plant-based therapeutics are gaining attention due to their anti-neuroinflammatory and neuroprotective phytochemicals, which shield the neurons from damage. Some of the examples are curcumin, resveratrol, ginsenosides, cannabidiol, notoginseng, quercetin, and so on. Clinical studies also indicate that certain plant-based formulations like Wei Li Bai, IPX066, Bushen huoxue, and so on can be effective alternatives to presently available remedies. The review is an attempt at assimilating the information from available literature on the role of different neurotransmitters involved in neuroinflammation and their connection in AD, PD, and epilepsy and applications of plant-based therapies in the prevention and cure of the above-mentioned diseases.
Collapse
Affiliation(s)
- Dharmaraj Sharma
- School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, India
| | - Bitupan Rajbongshi
- School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, India
| | - Tarik Isphak
- School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, India
| | - Sunfung Basumatary
- School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, India
| | - Kundan Dutta
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, India
| | - Ashis Kumar Goswami
- School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
3
|
Jan T, Ali Shah SW, Khan N, Ahmad MS, Saleh IA, Okla MK, Abdel-Maksoud MA, AL-ghamdi AA, Alwasel YA, AbdElgawad H. Investigating the optimistic in-vitro and in-vivo therapeutic effects of wild grape: Vitis jacqumantii R. Parker. Heliyon 2024; 10:e40804. [PMID: 39698089 PMCID: PMC11652917 DOI: 10.1016/j.heliyon.2024.e40804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Vitis jacquemontii R. Parker is a wild grape traditionally used by indigenous people as a substitute for cultivated grapes. However, its therapeutic effects have not been extensively studied. In this study, we investigated the antioxidant, anticholinesterase, analgesic, and antidepressant properties of V. jacquemontii. The antioxidant potential of this wild fruit plant was evaluated using two widely recognized assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-asino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). In-vitro anticholinesterase effects were determined by assessing butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) inhibition. The analgesic activity was assessed through writhing and tail immersion test models, while the antidepressant effect was evaluated using forced swimming and tail suspension test models. Results revealed the exceptional potential of V. jacquemontii as a valuable natural resource. The fruit extract (VJF-Crd) demonstrated remarkable free radical scavenging abilities, with an impressive IC50 value of 34.96 μg/mL for DPPH and 56.48 μg/mL for ABTS. The leaf extract (VJL-Crd) also exhibited considerable antioxidant properties, with IC50 values of 73.68 μg/mL for DPPH and 86.72 μg/mL for ABTS. Furthermore, VJF-Crd and VJL-Crd extracts displayed potent inhibitory activity against cholinesterase enzymes, with VJF-Crd demonstrating strong inhibition and VJL-Crd showing moderate inhibition. In terms of analgesia, these extracts exhibited dose-dependent responses in various pain models, with significant protection against acetic acid-induced writhing and tail immersion, showcasing their potential as natural pain relievers. Moreover, both VJF-Crd and VJL-Crd extracts displayed a notable decrease in immobility in the forced swimming and tail suspension test models, indicating their potential as natural antidepressants. These findings underscore the untapped potential of V. jacquemontii as a source of valuable chemical constituents. The isolation and identification of phyto-constituents from this plant hold promise for new bioactive compounds, particularly in pain management. This study sheds light on the multifaceted medicinal attributes of V. jacquemontii and opens new avenues for developing natural remedies for different ailments, especially pain management.
Collapse
Affiliation(s)
- Tour Jan
- Department of Botany, University of Malakand, Dir (L), Khyber Pakhtunkhwa, Pakistan
| | - Syed Wadood Ali Shah
- Department of Pharmacy, University of Malakand, Dir (L), Khyber Pakhtunkhwa, Pakistan
| | - Nasrullah Khan
- Department of Botany, University of Malakand, Dir (L), Khyber Pakhtunkhwa, Pakistan
| | | | | | - Mohammad K. Okla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mostafa A. Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. AL-ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yasmeen A. Alwasel
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 16 Antwerp, Belgium
| |
Collapse
|
4
|
Benramdane H, Benariba N, Silva CFM, Catarino MD, Bartolomeu M, Fekhikher Z, Pinto DCGA. Phytochemical Profile, Antioxidant, Anti-Alzheimer, And α-Glucosidase Inhibitory Effect Of Algerian Peganum harmala Seeds Extract. Chem Biodivers 2024; 21:e202401308. [PMID: 39072993 DOI: 10.1002/cbdv.202401308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 07/30/2024]
Abstract
Peganum harmala seeds crude hydro-methanolic extract and their fractions (obtained with ethyl acetate and butan-1-ol) were analyzed and compared for their chemical profiles of alkaloids and polyphenols content. Moreover, their antioxidant, α-glucosidase, acetylcholinesterase, and butyrylcholinesterase inhibitory activities were evaluated. The butan-1-ol fraction revealed the highest total phenolic content and exhibited the highest antioxidant capacity. From the inhibitory enzyme evaluations, it should be highlighted the butan-1-ol fraction inhibitory potential of ɑ-glucosidase (the IC50=141.18±4 μg/mL), which was better than the acarbose inhibitory effect (IC50=203.41±1.07 μg/mL). The extracts' chemical profile analysis revealed several compounds, in which quercetin dimethyl ether, harmine and harmaline emerged as the major compounds. The different solvents used impacted Peganum harmala seed contents and biological responses. Statistical analysis showed a significant correlation between bioactive compounds and biological activities. Thus, Peganum harmala seeds could be a promising natural source of bioactive compounds at the crossroads of many human diseases, and its cultivation may be encouraged.
Collapse
Affiliation(s)
- Hanane Benramdane
- LAPSAB, Department of Biology, University of Abou Bekr Belkaid, Tlemcen, 13000, Algeria
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Nabila Benariba
- LAPSAB, Department of Biology, University of Abou Bekr Belkaid, Tlemcen, 13000, Algeria
| | - Carlos F M Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Marcelo D Catarino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Maria Bartolomeu
- CESAM, Department of Biology, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Zohra Fekhikher
- LAPSAB, Department of Biology, University of Abou Bekr Belkaid, Tlemcen, 13000, Algeria
| | - Diana C G A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
5
|
Chung MC, Su LJ, Chen CL, Wu LC. Revealing the antimicrobial potential of traditional Chinese medicine through text mining and molecular computation. Brief Bioinform 2024; 26:bbaf077. [PMID: 40007160 PMCID: PMC11859959 DOI: 10.1093/bib/bbaf077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/26/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Traditional Chinese Medicine (TCM), with its extensive knowledge base documented in ancient texts, offers a unique resource for contemporary drug discovery, particularly in combatting microbial infections. The success of antimalarial drugs like artemisinin and artesunate, derived from the TCM herb Artemisia annua L., exemplifies the potential of TCM-derived small molecules. This rich repository of natural products and intricate molecular structures could reveal novel compounds with unexplored mechanisms of action. Our study employs a multifaceted approach that combines text mining, detailed textual analysis, and modern antibacterial molecular prediction methodologies to unlock the potential of ancient TCM remedies. We use external knowledge maps, which include databases of known bioactive compounds and their targets, to identify promising TCM candidates. This approach leverages both historical texts and contemporary scientific data to explore the therapeutic potential of TCM. We discovered that herb patterns DiYu→ZeXie and Kushen→ShengJiang potentially combat both Grams-positive and Grams-negative bacteria. We utilized the AntiBac-Pred online tool to identify and analyze the chemical components of herbs, integrating data from ancient texts and TCMDB@Taiwan external knowledge graph. The DiYu→ZeXie groups showed antimicrobial potential against resistant Staphylococcus simulans, while the Kushen→ShengJiang groups exhibited dual antimicrobial effects against Bacillus subtilis. Exploring TCM's extensive repository offers numerous opportunities for discovering therapeutically active compounds. Our synergistic approach, which combines ancient wisdom with modern science, holds significant promise for enhancing our ability to combat infectious diseases. This method could pave the way for a new era of personalized medicine, addressing the urgent need for innovative treatments against multidrug-resistant bacteria and viruses.
Collapse
Affiliation(s)
- Meng-Chi Chung
- Department of Biomedical Science and Engineering, National Central University (NCU), Jhong-Li City, Taiwan, (ROC)
| | - Li-Jen Su
- Department of Biomedical Science and Engineering, National Central University (NCU), Jhong-Li City, Taiwan, (ROC)
- Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, NCU, Taoyuan, Taiwan, (ROC)
- Core Facilities for High Throughput Experimental Analysis, Department of Biomedical Sciences and Engineering, NCU, Taoyuan, Taiwan, (ROC)
- IIHMED Reproductive Center, Taipei, Taiwan, (ROC)
- Tian Medicine Phamaceutical Company Ltd., Taipei, Taiwan, (ROC)
| | - Chien-Lin Chen
- IIHMED Reproductive Center, Taipei, Taiwan, (ROC)
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan, (ROC)
- Department of Health Promotion and Health Education, National Taiwan Normal University, Taipei, Taiwan (ROC)
| | - Li-Ching Wu
- Department of Biomedical Science and Engineering, National Central University (NCU), Jhong-Li City, Taiwan, (ROC)
- Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, NCU, Taoyuan, Taiwan, (ROC)
| |
Collapse
|
6
|
Ahmed S, Nilofar, Cvetanović Kljakić A, Stupar A, Lončar B, Božunović J, Gašić U, Yıldıztugay E, Ferrante C, Zengin G. Exploring traditional and modern approaches for extracting bioactive compounds from Ferulago trachycarpa. Prep Biochem Biotechnol 2024; 54:1306-1319. [PMID: 38756105 DOI: 10.1080/10826068.2024.2349937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
For more than two millennia, Ferulago species have been revered as therapeutic herbs, maintaining their significance in present-day folk medicine practices. Therefore, the present study was conducted to investigate the phytochemical composition, inhibitory effects on metabolic enzymes, and possible therapeutic applications of F. trachycarpa, specifically focusing on its efficacy in diabetes management, anticholinergic effects, and antioxidant capabilities. The current investigation comprised an evaluation of a range of extracts acquired via conventional and modern methodologies, such as soxhlet (SOX), maceration (MAC) accelerated solvent extraction (ASE), homogenizer-assisted extraction (HAE), supercritical fluid extraction (SFE), microwave-assisted extraction (MW), and ultrasound-assisted extraction (UAE). Various techniques were employed to assess their antioxidant capacity and enzyme inhibition. Furthermore, the research utilized ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) to ascertain the principal phenolic compounds that are responsible for the antioxidant capacity observed in the various F. trachycarpa extracts. Among these, extracts from HAE, ASE, and MW revealed the most promise across all methodologies tested for their antioxidant potential. Furthermore, SFE and MAC extracts inhibited the most enzymes, including cholinesterases, tyrosinase, α -amylase, and α -glycosidase, indicating their potential as efficient natural treatments for several health-related issues.
Collapse
Affiliation(s)
- Shakeel Ahmed
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación, CSIC-UAM, Madrid, Spain
| | - Nilofar
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | | | - Alena Stupar
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | - Biljana Lončar
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Božunović
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Evren Yıldıztugay
- Department of Biotechnology, Science Faculty, Selcuk University, Konya, Turkey
| | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
7
|
Mohamed IE, Osman EE, Saeed A, Ming LC, Goh KW, Razi P, Abdullah ADI, Dahab M. Plant extracts as emerging modulators of neuroinflammation and immune receptors in Alzheimer's pathogenesis. Heliyon 2024; 10:e35943. [PMID: 39229544 PMCID: PMC11369442 DOI: 10.1016/j.heliyon.2024.e35943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Memory loss is becoming an increasingly significant health problem, largely due to Alzheimer's disease (AD), which disrupts the brain in several ways, including causing inflammation and weakening the body's defenses. This study explores the potential of medicinal plants as a source of novel therapeutic agents for AD. First, we tested various plant extracts against acetylcholinesterase (AChE) in vitro, following molecular docking simulations with key AD-related protein targets such as MAO-B, P-gp, GSK-3β, and CD14. Rosemary extract was found to be the most inhibitory towards AChE. The compounds found in rosemary (oleanolic acid), sage (pinocembrin), and cinnamon (italicene) showed promise in potentially binding to MAO-B. These chemicals may interact with a key protein in the brain and alter the production and removal of amyloid-β. Luteolin (from rosemary), myricetin (from sage), chamigrene, and italicene (from cinnamon) exhibited potential for inhibiting tau aggregation. Additionally, ursolic acid found in rosemary, sage, and chamigrene from cinnamon could modulate CD14 activity. For the first time, our findings shed light on the intricate interplay between neuroinflammation, neuroprotective mechanisms, and the immune system's role in AD. Further research is needed to validate the in vivo efficacy and safety of these plant-derived compounds, as well as their interactions with key protein targets, which could lead to the development of novel AD therapeutics.
Collapse
Affiliation(s)
- Intisar E. Mohamed
- Department of Biochemistry, Faculty of Medicine, University of Bahri, P.O. Box 2469, Khartoum, 12223, Sudan
| | - Elbadri E. Osman
- Department of Microbiology, Faculty of Pure and Applied Sciences, International University of Africa, P.O. Box 2469, Khartoum, 12223, Sudan
| | - Ahmed Saeed
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Centre for Research, P.O. Box 2404, Khartoum, 12223, Sudan
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Pakhrur Razi
- Center of Disaster Monitoring and Earth Observation, Universitas Negeri Padang, Padang, Indonesia
| | - Amar Daud Iskandar Abdullah
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
| | - Mahmoud Dahab
- Department of Microbiology, Faculty of Pure and Applied Sciences, International University of Africa, P.O. Box 2469, Khartoum, 12223, Sudan
| |
Collapse
|
8
|
Fantasma F, Samukha V, Aliberti M, Colarusso E, Chini MG, Saviano G, De Felice V, Lauro G, Casapullo A, Bifulco G, Iorizzi M. Essential Oils of Laurus nobilis L.: From Chemical Analysis to In Silico Investigation of Anti-Inflammatory Activity by Soluble Epoxide Hydrolase (sEH) Inhibition. Foods 2024; 13:2282. [PMID: 39063366 PMCID: PMC11276180 DOI: 10.3390/foods13142282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Laurus nobilis L. is commonly used in folk medicine in the form of infusion or decoction to treat gastrointestinal diseases and flatulence as a carminative, antiseptic, and anti-inflammatory agent. In this study, the essential oil (EO) composition of wild-grown L. nobilis L. leaves collected from seven different altitudinal locations in the Molise region and adjacent regions (Abruzzo and Campania) was investigated. EOs from the leaves were obtained by hydrodistillation and analyzed by GC-FID and GC/MS, and 78 compounds were identified. The major oil components were 1,8-cineol (43.52-31.31%), methyl-eugenol (14.96-4.07%), α-terpinyl acetate (13.00-8.51%), linalool (11.72-1.08%), sabinene (10.57-4.85%), α-pinene (7.41-3.61%), eugenol (4.12-1.97%), and terpinen-4-ol (2.33-1.25%). Chemometric techniques have been applied to compare the chemical composition. To shed light on the nutraceutical properties of the main hydrophobic secondary metabolites (≥1.0%) of laurel EOs, we assessed the in vitro antioxidant activities based on 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging activity and the reducing antioxidant power by using a ferric reducing power (FRAP) assay. Furthermore, we highlighted the anti-inflammatory effects of seven EOs able to interfere with the enzyme soluble epoxide hydrolase (sEH), a key enzyme in the arachidonic acid cascade, in concentrations ranging from 16.5 ± 4.3 to 8062.3 ± 580.9 mg/mL. Thanks to in silico studies, we investigated and rationalized the observed anti-inflammatory properties, ascribing the inhibitory activity toward the disclosed target to the most abundant volatile phytochemicals (≥1.0%) of seven EOs.
Collapse
Affiliation(s)
- Francesca Fantasma
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| | - Vadym Samukha
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| | - Michela Aliberti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (M.A.); (E.C.); (G.L.); (A.C.)
| | - Ester Colarusso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (M.A.); (E.C.); (G.L.); (A.C.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| | - Gabriella Saviano
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| | - Vincenzo De Felice
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (M.A.); (E.C.); (G.L.); (A.C.)
| | - Agostino Casapullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (M.A.); (E.C.); (G.L.); (A.C.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (M.A.); (E.C.); (G.L.); (A.C.)
| | - Maria Iorizzi
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| |
Collapse
|
9
|
Ji Y, Zhang R, Bensalel J, Morcol T, Gu R, Gallego-Delgado J, Kennelly EJ, Long C. Metabolomic and chemometric analyses of St. John's wort and related Asian Hypericum species linked to bioactivity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118163. [PMID: 38588986 DOI: 10.1016/j.jep.2024.118163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants in the genus Hypericum (Hypericaceae), include more than 500 species worldwide, and many are valued for their medicinal properties, and are used as traditional herbal medicines. However, only H. perforatum is officially recognized as herbal drug in several pharmacopoeias, and used as an antidepressant clinically. Hypericum perforatum had been used as an herbal medicine since the Han Dynasty (206 B.C. -220 A.D.) in China. It taxonomically belongs to the section Hypericum in the genus Hypericum. There are about 42 species in the section Hypericum, with six species occurring in China. All six are recorded as traditional herbal medicines for treating aliments, including hepatitis, malaria, traumatic hemorrhage, irregular menstruation, wounds, and bruises. AIM OF THE STUDY The study aimed to characterize the chemical profiles of five phylogenetically related Hypericum species, and compare their metabolites with three H. perforatum products. Informed by ethnobotanical use, the extracts prepared from the five species were further investigated into anticancer, anti-inflammatory and antiplasmodial activity. This study tested the hypothesis that systematic metabolomic and bioactivity characterization of species in section Hypericum will help to validate their phytotherapeutic use and reveal potential drug lead compounds. MATERIALS AND METHODS Targeted and non-targeted metabolic analyses coupled with chemometrics were conducted on H. perforatum and four medicinal species, H. attenuatum, H. enshiense, H. erectum, and H. faberi, native to China from section Hypericum. UPLC-QTOF-MS/MS and UPLC-TQD-MS/MS were used for non-targeted and targeted metabolic analyses, respectively. Cytotoxicity bioassays on four cancer cell lines, anti-inflammation tests and anti-plasmodial activity on Plasmodium falciparum 3D7, selected based on traditional medicinal use, were evaluated on extracts from Hypericum species. Progenesis QI and EZinfo were used for chemometrics analysis to link the chemical profile and bioassay activity to aid in the identification of bioactive compounds. RESULTS In total, 58 compounds were identified from the five species, including compounds with well-characterized bioactivity. Hypericum attenuatum, H. erectum, and H. perforatum, displayed the highest cytotoxicity, and contain the cytotoxic compounds petiolin A, prolificin A, and hypercohin G, respectively. Hypericum faberi and H. perforatum showed the highest anti-inflammatory activity, with pseudohypericin, quercetin and chlorogenic acid being observed at higher concentrations. Hypericum perforatum and H. erectum showed anti-plasmodial activity, with higher hyperforin and xanthones in these species that may account for the anti-plasmodial activity. CONCLUSIONS This study characterized the chemical differences among five Hypericum species using metabolomics. These ethnomedically important species were tested for their biological activities in three distinct in vitro assays. The ethnobotanical data were useful for identifying bioactive Hypericum species. Hypericum attenuatum, H. erectum and H. faberi are promising phytotherapeutic species, although they are much less studied than H. perforatum, St. John's wort. Combining ethnobotanical surveys with chemometric analyses and bioactivity screening can greatly enhance the discovery of promising active constituents.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, 10468, United States.
| | - Ruifei Zhang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, 10468, United States.
| | - Johanna Bensalel
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, 10468, United States; Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY, 10016, United States.
| | - Taylan Morcol
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, 10468, United States; Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY, 10016, United States.
| | - Ronghui Gu
- School of Liquor and Food Engineering, Guizhou University, Huixia Road in Huaxi District, Guiyang, 550025, China.
| | - Julio Gallego-Delgado
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, 10468, United States; Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY, 10016, United States.
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, 10468, United States; Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY, 10016, United States.
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China.
| |
Collapse
|
10
|
Nieto Camacho A, Baca Ibarra II, Huerta-Reyes M. Antioxidant and Anti-Inflammatory Profiles of Two Mexican Heteropterys Species and Their Relevance for the Treatment of Mental Diseases: H. brachiata (L.) DC. and H. cotinifolia A. Juss. (Malpighiaceae). Molecules 2024; 29:3053. [PMID: 38999004 PMCID: PMC11243223 DOI: 10.3390/molecules29133053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Depression and anxiety are recognized as the most common mental diseases worldwide. New approaches have considered different therapeutic targets, such as oxidative stress and the inflammation process, due to their close association with the establishment and progression of mental diseases. In the present study, we evaluated the antioxidant and anti-inflammatory activities of the methanolic extracts of the plant species Heteropterys brachiata and Heteropterys cotinifolia and their main compounds, chlorogenic acid and rutin, as potential complementary therapeutic tools for the treatment of anxiety and depression, since the antidepressant and anxiolytic activities of these methanolic extracts have been shown previously. Additionally, we also evaluated their inhibitory activity on the enzyme acetylcholinesterase (AChE). Our results revealed that both species exhibited potent antioxidant activity (>90%) through the TBARS assay, while by means of the DPPH assay, only H. cotinifolia exerted potent antioxidant activity (>90%); additionally, low metal chelating activity (<40%) was detected for all samples tested in the ferrozine assay. The methanolic extracts of H. brachiata and H. cotinifolia exhibited significant anti-inflammatory activities in the TPA-induced ear edema, while only H. cotinifolia exerted significant anti-inflammatory activities in the MPO assay (>45%) and also exhibited a higher percentage of inhibition on AChE of even twice (>80%) as high as the control in concentrations of 100 and 1000 µg/mL. Thus, the potent antioxidant and inflammatory properties and the inhibition of AChE may be involved in the antidepressant activities of the species H. cotinifolia, which would be positioned as a candidate for study in drug development as an alternative in the treatment of depression.
Collapse
Affiliation(s)
- Antonio Nieto Camacho
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico;
| | - Itzel Isaura Baca Ibarra
- Bioterio, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc 06720, Ciudad de México, Mexico;
| | - Maira Huerta-Reyes
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc 06720, Ciudad de México, Mexico
| |
Collapse
|
11
|
Wang Y, Huang Y, Ma A, You J, Miao J, Li J. Natural Antioxidants: An Effective Strategy for the Treatment of Alzheimer's Disease at the Early Stage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11854-11870. [PMID: 38743017 DOI: 10.1021/acs.jafc.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The critical role of oxidative stress in Alzheimer's disease (AD) has been recognized by researchers recently, and natural antioxidants have been demonstrated to have anti-AD activity in animal models, such as Ginkgo biloba extract, soy isoflavones, lycopene, and so on. This paper summarized these natural antioxidants and points out that natural antioxidants always have multiple advantages which are help to deal with AD, such as clearing free radicals, regulating signal transduction, protecting mitochondrial function, and synaptic plasticity. Based on the available data, we have created a relatively complete pathway map of reactive oxygen species (ROS) and AD-related targets and concluded that oxidative stress caused by ROS is the core of AD pathogenesis. In the prospect, we introduced the concept of a combined therapeutic strategy, termed "Antioxidant-Promoting Synaptic Remodeling," highlighting the integration of antioxidant interventions with synaptic remodeling approaches as a novel avenue for therapeutic exploration.
Collapse
Affiliation(s)
- Yifeng Wang
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Yan Huang
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Aixia Ma
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jiahe You
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jing Miao
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- National Demonstration Center for Experimental Biology Education, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jinyao Li
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- National Demonstration Center for Experimental Biology Education, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| |
Collapse
|
12
|
Hamdi D, Hafidi A, Lemaire JJ, Messaoud C. A comparative study of secondary metabolites profiling and biological activity of Smyrnium olusatrum L. leaf, flower and fruit. Nat Prod Res 2024:1-15. [PMID: 38415755 DOI: 10.1080/14786419.2024.2321484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
Essential oil (EO) composition of Smyrnium olusatrum was characterised by high proportion of furanosesquiterpenes (51.66-69.35%). The leaf methanolic extract composition was found to be rich with Quercetin-O-hexoside (39.78%). Apigenin 6,8-di-Chexoside represent the major component of flower (18.2%) and fruits (18.82%). Flower extract exhibited the highest contents of total phenolic (48.97 mg GAE/g) and flavonoid (52.63 mg RE/g). The β-carotene and lycopene contents were in the order of 4.55-26.14 mg/100g, and 8.00-49.45 mg/100g, respectively. Methanolic extracts and EOs of different organs were found to possess antioxidant activities, as determined by scavenging effect, chelating activity and β-carotene-linoleic acid model system. Furthermore, Fruit S. olusatrum EO exhibited a potent inhibitory activity against Acetylcholinesterase, while the methanolic extract showed a weaker activity. The methanolic extract displayed inhibitory effects on α-amylase, whereas the EOs was not as efficient in inhibiting this enzyme. The observed level of biological activities varied depending on the specific extracts and organs studied.
Collapse
Affiliation(s)
- Dhouha Hamdi
- Laboratory of Nanobiotechnology and Valorization of Medicinal Phytoresources, University of Carthage National Institute of Applied Science and Technology UR17ES22, Tunis Cedex, Tunisia
- INP, Institut Pascal, TGI, University of Clermont Auvergne, Clermont Ferrand, France
| | - Aziz Hafidi
- INP, Institut Pascal, TGI, University of Clermont Auvergne, Clermont Ferrand, France
| | - Jean Jacques Lemaire
- INP, Institut Pascal, TGI, University of Clermont Auvergne, Clermont Ferrand, France
| | - Chokri Messaoud
- Laboratory of Nanobiotechnology and Valorization of Medicinal Phytoresources, University of Carthage National Institute of Applied Science and Technology UR17ES22, Tunis Cedex, Tunisia
| |
Collapse
|
13
|
Ceylan Z, Meral R, Alav A, Torusdağ G, Bildik F, Altay F. Combined Effects of Zein Nanofiber Coating Containing Laurel ( Laurus nobilis) and Air Fryer Cooking on Quality Properties of Fish Fillets during Cold Storage. ACS OMEGA 2024; 9:8940-8946. [PMID: 38434834 PMCID: PMC10905579 DOI: 10.1021/acsomega.3c06318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 03/05/2024]
Abstract
In this study, the effects of zein nanofibers (Zn) containing ground laurel leaves (GLL) and air fry cooking on the quality characteristics of Rainbow trout (Oncorhynchus mykiss) were investigated. The zein nanofibers possessing 335.8 ± 43.6 nm average diameters were fabricated containing GLL. The Fourier transform infrared spectroscopy (FTIR) results of the zein, Zn, GLL, and zein nanofibers containing GLL (LZn) confirmed the electrospinning encapsulation of GLL into Zn and their interactions. The effects of the combination of LZn coating and air fryer cooking of fish fillets on the quality characteristics during storage at 4 °C for 10 days were monitored in terms of oxidative and microbiological stability, color, and sensory parameters. As compared to the control, the combination of LZn coating and air fryer cooking provided a microbial limitation of up to 45.21% during the analysis (p < 0.05). The changes in ΔE values between the control and the LZn-coated samples were obtained as ≤7.56 during 6 days, but then a dramatic color difference was observed. Besides overall sensory acceptability, particularly the odor parameter in the cooked fish samples coated with LZn was significantly preferred (p < 0.05). The combination of LZn coating and air fryer cooking delayed the thiobarbituric acid increase in the fish meat samples (3.51 to 2.57 mg malondialdehyde (MDA)/kg) up to the third day of storage. This study showed that LZn coating is a very functional layer on the fish meat and could be applied for not only fresh fish meat but also other fresh meat products.
Collapse
Affiliation(s)
- Zafer Ceylan
- Science
Faculty, Department of Molecular Biology and Genetics/Biotechnology, Bartın University, Bartın 74100, Türkiye
| | - Raciye Meral
- Faculty
of Engineering, Department of Food Engineering, Van Yuzuncu Yıl University, Tuşba, Van 65080, Türkiye
| | - Aslıhan Alav
- Institute
of Science, Department of Food Engineering, Van Yuzuncu Yıl University, Tuşba, Van 65080, Türkiye
| | - Gülşen
Berat Torusdağ
- Faculty
of Tourism, Department of Gastronomy, Van
Yuzuncu Yıl University, Tuşba, Van 65080, Türkiye
| | - Fatih Bildik
- Faculty
of Chemical and Metallurgical Engieering, Department of Food Engineering, Istanbul Technical University, Maslak, Sarıyer, Istanbul 34469, Turkey
| | - Filiz Altay
- Faculty
of Chemical and Metallurgical Engieering, Department of Food Engineering, Istanbul Technical University, Maslak, Sarıyer, Istanbul 34469, Turkey
| |
Collapse
|
14
|
Djaoudene O, Bachir-Bey M, Schisano C, Djebari S, Tenore GC, Romano A. A Sustainable Extraction Approach of Phytochemicals from Date ( Phoenix dactylifera L.) Fruit Cultivars Using Ultrasound-Assisted Deep Eutectic Solvent: A Comprehensive Study on Bioactivity and Phenolic Variability. Antioxidants (Basel) 2024; 13:181. [PMID: 38397779 PMCID: PMC10886234 DOI: 10.3390/antiox13020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The present study aimed to evaluate the efficacy of natural deep eutectic solvents (NADESs) on the extraction of phytochemicals from eight Algerian date fruit cultivars (Phoenix dactylifera L.). In this study, lactic acid/sucrose-based NADESs were used as an alternative to conventional chemical solvents using the ultrasound-assisted extraction (UAE) method. The obtained extracts were assessed for the determination of bioactive compound contents, phenolic composition, antioxidant activity, and enzyme inhibitory potential. The results showed a considerable variation in phytochemical compositions and related activities between cultivars, where the greatest contents of total phenolics (1288.7 mg GAE/100 g), total flavonoids (53.8 mg QE/100 g), proanthocyanidins (179.5 mg CE/g), and total triterpenoids (12.88 mg OAE/100 g) were detected in the fruits of the Ourous cultivar. The same cultivar displayed the highest antioxidant capacity against DPPH• free radical (595 mg AAE/100 g), ABTS•+ cation radical (839 mg TE/100 g), and ferric reducing antioxidant potential (704 mg AAE/100 g). All extracts manifested moderate antioxidant activities tested by phosphomolybdenum, NO•, and linoleic acid lipid peroxidation assays. These extracts also exhibited interesting levels of in vitro enzyme inhibition; the Ourous cultivar gave the best inhibitory activity against α-amylase and acetylcholinesterase with 45 and 37%, respectively. HPLC-DAD-MS detected a total of five compounds, with phenolic acids and flavonoids being the main phenolics identified in the extract. The phenolic composition exhibited significant variability among cultivars. Notably, the highest amounts were revealed in the Tazizaout cultivar, with the predominance of gallic acid. The results confirmed that the combination of UAE and NADESs provides a novel and important alternative to chemical solvents for sustainable and environmentally friendly extraction and can represent a good alternative in food and pharmaceutical industry applications.
Collapse
Affiliation(s)
- Ouarda Djaoudene
- Centre de Recherche en Technologies Agroalimentaires, Route de Targa Ouzemmour, Campus Universitaire, Bejaia 06000, Algeria
| | - Mostapha Bachir-Bey
- Laboratory of Applied Biochemistry, Department of Food Sciences, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria;
| | - Connie Schisano
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (C.S.); (G.C.T.)
| | - Sabrina Djebari
- Laboratory of Biomathematic, Biophysic, Biochemistry and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria;
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (C.S.); (G.C.T.)
| | - Anabela Romano
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| |
Collapse
|
15
|
Smach MA, Hafsa J, Ben Abdallah J, Charfeddine B, Limem K. Neuroprotective and anti-amnesic effects of Laurus Nobilis essential oil against scopolamine-induced memory deficits in mice brain. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117151. [PMID: 37689325 DOI: 10.1016/j.jep.2023.117151] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Laurus nobilis L. (Lauraceae family) has been widely used in traditional Tunisian medicine for the treatment of different health problems such as rheumatism and some neurological disorders. AIM In this study, the essential oil obtained from Laurus nobilis L. species from Tunisia (LEO) was studied for its chemical composition and anti-amnesic activities on memory impairment caused by scopolamine injection in mice. The major compounds of LEO oil, 1,8-cineole and, α-terpinyl acetate were docked with AChE (Acetylcholinesterase), using Autodock Vina and Discovery Studio visualizer software. MATERIALS AND METHODS The Morris water maze (MWM) tests and the Y maze were used to assess the anti-amnesic effects of LEO in mice with scopolamine-induced memory impairments. In brain tissues, the levels of biomarkers, enzyme activity, and protein expression related to the cholinergic system were measured. RESULTS Chronic administration of scopolamine led to a significant decline in cognitive performance in both the Morris Water Maze (MWM) and Y maze tests, accompanied by pronounced oxidative damage and a significant increase in acetylcholinesterase activity compared to the other groups. However, compared to the scopolamine group, treatment with LEO (100 mg/kg) significantly enhanced cognitive function and ameliorated the oxidative damage (p < 0.05 versus scopolamine) CONCLUSION: This study demonstrates the beneficial effect of LEO on scopolamine-induced dementia in mice, potentially achieved through the modulation of cholinergic activity and antioxidant properties. The docking analysis of the major compounds, 1,8-cineole and α-terpinyl acetate, further substantiates their potential as memory enhancers.
Collapse
Affiliation(s)
- Mohamed Ali Smach
- University of Sousse, Department of Biochemistry, Faculty of Medicine Sousse, 4002, Sousse, Tunisia.
| | - Jawhar Hafsa
- University of Sousse, Department of Biochemistry, Faculty of Medicine Sousse, 4002, Sousse, Tunisia
| | - Jihen Ben Abdallah
- University of Sousse, Department of Biochemistry, Faculty of Medicine Sousse, 4002, Sousse, Tunisia
| | - Bassem Charfeddine
- University of Sousse, Department of Biochemistry, Faculty of Medicine Sousse, 4002, Sousse, Tunisia
| | - Khalifa Limem
- University of Sousse, Department of Biochemistry, Faculty of Medicine Sousse, 4002, Sousse, Tunisia
| |
Collapse
|
16
|
Paul ZA, Malla AT, Dar MA, Masoodi MH. Phytochemistry and Pharmacological Activity of Malva sylvestris L: A Detailed Insight. Comb Chem High Throughput Screen 2024; 27:2309-2322. [PMID: 37855358 DOI: 10.2174/0113862073269336231009110313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 10/20/2023]
Abstract
Malva sylvestris L., is commonly referred to as Mallow and is found in Europe, Asia and Africa. This has been traditionally used for inflammation, gastrointestinal disturbances, skin disorders, menstrual pains, and urological disorders. This review covers phytoconstituents and Pharmacological activities of M. sylvestris. The plant contains a large number of phytochemical constituents having diverse pharmacological activities. The plant contains many phenolic compounds responsible for its strong antioxidant activity. Coumarins from Mallow have a potential anticancer activity. Malva sylvestris also contains essential as well as non-essential elements and minerals. Many researchers have provided evidence that Malva sylvestris is a good candidate for use as a medicinal herb and has good nutritional value. The leaves, in particular, offer properties like anticancer, skin whitening, and anti-aging. Furthermore, the aqueous extract was recently shown to have an anti-ulcerogenic effect. Malva sylvestris has a high potential for use in cosmetics such as skin whitening and anti-aging treatments. Methanolic extracts of Malva sylvestris leaves, and flowers showed strong antibacterial activity against a common plant pathogen bacterium. The plant also contains Malvone A, which is responsible for antibacterial action. The plant also possesses anti-inflammatory, analgesic, wound healing properties and various other activities.
Collapse
Affiliation(s)
- Zahid Ahmad Paul
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Aamir Tariq Malla
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Mohammad Akbar Dar
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| |
Collapse
|
17
|
Vilas-Boas AA, Goméz-García R, Machado M, Nunes C, Ribeiro S, Nunes J, Oliveira ALS, Pintado M. Lavandula pedunculata Polyphenol-Rich Extracts Obtained by Conventional, MAE and UAE Methods: Exploring the Bioactive Potential and Safety for Use a Medicine Plant as Food and Nutraceutical Ingredient. Foods 2023; 12:4462. [PMID: 38137266 PMCID: PMC10742868 DOI: 10.3390/foods12244462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Nowadays, plant-based bioactive compounds (BCs) are a key focus of research, supporting sustainable food production and favored by consumers for their perceived safety and health advantages over synthetic options. Lavandula pedunculata (LP) is a Portuguese, native species relevant to the bioeconomy that can be useful as a source of natural BCs, mainly phenolic compounds. This study compared LP polyphenol-rich extracts from conventional maceration extraction (CE), microwave and ultrasound-assisted extraction (MAE and UAE). As a result, rosmarinic acid (58.68-48.27 mg/g DE) and salvianolic acid B (43.19-40.09 mg/g DE) were the most representative phenolic compounds in the LP extracts. The three methods exhibited high antioxidant activity, highlighting the ORAC (1306.0 to 1765.5 mg Trolox equivalents (TE)/g DE) results. In addition, the extracts obtained with MAE and CE showed outstanding growth inhibition for B. cereus, S. aureus, E. coli, S. enterica and P. aeruginosa (>50%, at 10 mg/mL). The MAE extract showed the lowest IC50 (0.98 mg DE/mL) for angiotensin-converting enzyme inhibition and the best results for α-glucosidase and tyrosinase inhibition (at 5 mg/mL, the inhibition was 87 and 73%, respectively). The LP polyphenol-rich extracts were also safe on caco-2 intestinal cells, and no mutagenicity was detected. The UAE had lower efficiency in obtaining LP polyphenol-rich extracts. MAE equaled CE's efficiency, saving time and energy. LP shows potential as a sustainable raw material, allowing diverse extraction methods to safely develop health-promoting food and nutraceutical ingredients.
Collapse
Affiliation(s)
- Ana A. Vilas-Boas
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.A.V.-B.); (R.G.-G.); (M.M.); (A.L.S.O.)
| | - Ricardo Goméz-García
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.A.V.-B.); (R.G.-G.); (M.M.); (A.L.S.O.)
- Centro de Investigación e Innovación Científica y Tecnológica—CIICYT, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Manuela Machado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.A.V.-B.); (R.G.-G.); (M.M.); (A.L.S.O.)
| | - Catarina Nunes
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Senhora da Conceição, 3045-155 Oliveira do Hospital, Portugal; (C.N.); (S.R.); (J.N.)
| | - Sónia Ribeiro
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Senhora da Conceição, 3045-155 Oliveira do Hospital, Portugal; (C.N.); (S.R.); (J.N.)
| | - João Nunes
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Senhora da Conceição, 3045-155 Oliveira do Hospital, Portugal; (C.N.); (S.R.); (J.N.)
| | - Ana L. S. Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.A.V.-B.); (R.G.-G.); (M.M.); (A.L.S.O.)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.A.V.-B.); (R.G.-G.); (M.M.); (A.L.S.O.)
| |
Collapse
|
18
|
Haouam C, Boudiba S, Tamfu AN, Kucukaydin S, Hanini K, Zohra HF, Hioun S, Botezatu AD, Ceylan Ö, Boudiba L, Duru ME, Dinica RM. Assessment of Chemical Composition and In Vitro Antioxidant, Antidiabetic, Anticholinesterase and Microbial Virulence-Quenching Effects of Salad Burnet ( Sanguisorba minor L.) Harvested from Algeria. PLANTS (BASEL, SWITZERLAND) 2023; 12:4134. [PMID: 38140461 PMCID: PMC10748046 DOI: 10.3390/plants12244134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
Sanguisorba minor is a medicinal vegetable used in seasoning desserts, juices, and beverages. An evaluation of the total flavonoid, phenolic, tannin and anthocyanin contents indicated that these classes of compounds are distributed variably in the different fractions. In summary, the HPLC-DAD analyses enabled the identification and quantification of thirteen phenolic compounds in an ethyl acetate extract (EAE), nine in a dichloromethane extract (DCME), seven in an aqueous extract (AQE) and four in a butanol extract (BE). Rutin was the most abundant phenolic compound in the BE (278.4 ± 1.20 µg/g) and AQE (32.87 ± 0.23 µg/g) fractions, while apigenin was the most abundant in the DCME (84.75 ± 0.60 µg/g) and EAE (156.8 ± 0.95 µg/g) fractions. The presence of phenolic compounds in the fractions conferred good antioxidant capacity, especially the EAE and DCME fractions, which both exhibited higher antioxidant effects than BHA and α-tocopherol in DPPH• and CUPRAC assays. Additionally, in the ABTS•+ assay, EAE (IC50 = 9.27 ± 0.33 µg/mL) was more active than α-tocopherol (IC50 = 35.50 ± 0.55 µg/mL), and BHA (IC50 = 12.70 ± 0.10 µg/mL). At 200 µg/mL, the fractions inhibited acetylcholinesterase and butyrylcholinesterase as well as α-amylase and α-glucosidase, indicating that they can slow neurodegeneration and hyperglycemia. Minimal inhibitory concentration (MIC) values ranged from 0.312 mg/mL to 1.25 mg/mL, and fractions showed good biofilm inhibition against Staphylococcus aureus and Escherichia coli. The extracts exhibited good violacein inhibition in Chromobacterium violaceum CV12472 and Chromobacterium violaceum CV026, despite the supply of external acyl-homoserine lactone to CV026. The antioxidant, quorum-sensing, antibiofilm and enzyme inhibition attributes indicate the potential for the application of S. minor as a food preservative.
Collapse
Affiliation(s)
- Chahrazed Haouam
- Laboratory of Applied Chemistry and Renewable Energies (LACRE), Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria (H.F.Z.)
| | - Sameh Boudiba
- Laboratory of Applied Chemistry and Renewable Energies (LACRE), Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria (H.F.Z.)
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere 454, Cameroon
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Mugla 48000, Turkey
| | - Selcuk Kucukaydin
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Mugla 48000, Turkey
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, Mugla 48800, Turkey
| | - Karima Hanini
- Laboratory of Applied Chemistry and Renewable Energies (LACRE), Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria (H.F.Z.)
| | - Haouaouchi Fatma Zohra
- Laboratory of Applied Chemistry and Renewable Energies (LACRE), Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria (H.F.Z.)
- Laboratory of Organic Materials and Heterochemistry (LOMH), Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria
| | - Soraya Hioun
- Department of Natural and Life Sciences FSESNV, Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria
| | - Andreea Dediu Botezatu
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University, 47 Domneasca Str., 800008 Galati, Romania
| | - Özgür Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey
| | - Louiza Boudiba
- Laboratory of Applied Chemistry and Renewable Energies (LACRE), Echahid Cheikh Larbi Tebessi University, Constantine Road, Tebessa 12002, Algeria (H.F.Z.)
| | - Mehmet Emin Duru
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Mugla 48000, Turkey
| | - Rodica Mihaela Dinica
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University, 47 Domneasca Str., 800008 Galati, Romania
| |
Collapse
|
19
|
Jung JI, Choi YJ, Kim J, Baek KS, Kim EJ. Aqueous extract of Laurus nobilis leaf accelerates the alcohol metabolism and prevents liver damage in single-ethanol binge rats. Nutr Res Pract 2023; 17:1113-1127. [PMID: 38053830 PMCID: PMC10694424 DOI: 10.4162/nrp.2023.17.6.1113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/02/2023] [Accepted: 09/08/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND/OBJECTIVES Excessive alcohol consumption has harmful health effects, including alcohol hangovers and alcohol-related liver disease. Therefore, methods to accelerate the alcohol metabolism are needed. Laurus nobilis is a spice, flavoring agent, and traditional herbal medicine against various diseases. This study examined whether the standardized aqueous extract of L. nobilis leaves (LN) accelerates the alcohol metabolism and protects against liver damage in single-ethanol binge Sprague-Dawley (SD) rats. MATERIALS/METHODS LN was administered orally to SD rats 1 h before ethanol administration (3 g/kg body weight [BW]) at 100 and 300 mg/kg BW. Blood samples were collected 0.5, 1, 2, and 4 h after ethanol administration. The livers were excised 1 h after ethanol administration to determine the hepatic enzyme activity. The alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities in the liver tissue were measured. RESULTS LN decreased the serum ethanol and acetaldehyde levels in ethanol-administered rats. LN increased the hepatic ADH and ALDH activities but decreased the alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transferase activities in the ethanol-administered rats. In addition, LN inhibited lipid peroxidation and increased the activities of SOD and GPx. CONCLUSIONS LN modulates the mediators of various etiological effects of excessive alcohol consumption and enhances the alcohol metabolism and antioxidant activity, making it a potential candidate for hangover treatments.
Collapse
Affiliation(s)
- Jae In Jung
- Industry coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Korea
| | - Yean-Jung Choi
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Korea
| | - Jinhak Kim
- R&D Division, Daehan Chemtech Co. Ltd., Gwacheon 13840, Korea
| | - Kwang-Soo Baek
- R&D Division, Daehan Chemtech Co. Ltd., Gwacheon 13840, Korea
| | - Eun Ji Kim
- Industry coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
20
|
Bano A, Hepsomali P, Rabbani F, Farooq U, Kanwal A, Saleem A, Bugti AA, Khan AA, Khalid Z, Bugti M, Mureed S, Khan S, Ujjan ID, Şahin S, Kara M, Khan A. The possible "calming effect" of subchronic supplementation of a standardised phospholipid carrier-based Melissa officinalis L. extract in healthy adults with emotional distress and poor sleep conditions: results from a prospective, randomised, double-blinded, placebo-controlled clinical trial. Front Pharmacol 2023; 14:1250560. [PMID: 37927585 PMCID: PMC10620697 DOI: 10.3389/fphar.2023.1250560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023] Open
Abstract
Background: Emotional distress conditions such as depression, anxiety, stress, and poor sleep are widespread health problems that have a significant impact on people's lives. Conventional drugs are commonly prescribed to treat emotional distress and poor sleep conditions; however, these medications have several limitations and have shown multiple side effects. Over recent years botanicals-based pharmacological agents have gained increasing research and clinical interest in the management of emotional distress and sleep disorder. Of note, Melissa officinalis L. (MO) leaf extract has demonstrated considerable neuropharmacological properties both in animal and human studies and has emerged as a promising natural "calming agent." However, research in this area is limited, and more studies are needed to validate its efficacy in amelioration of emotional distress and poor sleep conditions. Objectives: We aimed to assess the pharmacological effects of subchronic supplementation of an innovative standardised phospholipid carrier-based MO aqueous extract on emotional distress and poor sleep conditions. Design: A 3-week prospective, randomised, placebo-controlled, parallel-group, double-blinded clinical trial was conducted in 100 healthy adults complaining of a moderate degree of depression, anxiety, or stress, with scores of ≥14, ≥10, and ≥19, respectively, in the self-report Depression, Anxiety, and Stress Scale (DASS-42) or poor sleep, as indicated by the score of >5 in the Pittsburgh Sleep Quality Index (PSQI) scale. In addition, the impact of emotional distress and/or poor sleep on participants' mental wellbeing, emotional feelings, and quality of life was also assessed using the self-reported Warwick-Edinburgh Mental Wellbeing Scale (WEMWBS), Positive and Negative Affect Schedule (PANAS) scale, and quality of life (WHO-QoL-BREF) scale, respectively. Results: Oral supplementation of 200 mg of phospholipid-based MO aqueous extract (Relissa™) tablets twice a day (i.e., 400 mg/day) for 3 weeks led to significant improvements in the depressive mood, anxiety, stress, positive and negative affect (emotional feelings), overall mental wellbeing, and quality-of-life scores (all p values <0.001). Supplementation of MO extract was well tolerated, and no treatment-emergent effects or serious adverse events were reported. Conclusion: According to the results of this study, the phospholipid carrier-based MO aqueous extract possesses considerable neuropharmacological properties, and its supplementation may provide a promising therapeutic option for the management of moderate emotional distress and/or poor sleep conditions. Clinical Trial Registration: clinicaltrials.gov, identifier NCT05602688.
Collapse
Affiliation(s)
- Aasiya Bano
- PEOC, Department of Health, Quetta, Balochistan, Pakistan
| | - Piril Hepsomali
- School of Psychology, University of Roehampton, London, United Kingdom
| | - Fazle Rabbani
- Department of Psychiatry, Lady Reading Hospital, Peshawar, Pakistan
| | - Umer Farooq
- Ayub Medical College and Teaching Hospital, Abbottabad, Pakistan
| | - Ayesha Kanwal
- Department of Psychiatry, Lady Reading Hospital, Peshawar, Pakistan
| | - Aisha Saleem
- Ayub Medical College and Teaching Hospital, Abbottabad, Pakistan
| | - Ali Akbar Bugti
- Department of General Surgery, Bolan Medical Complex Hospital (BMCH), Quetta, Pakistan
| | - Aftab Alam Khan
- Ayub Medical College and Teaching Hospital, Abbottabad, Pakistan
| | - Zainab Khalid
- Ayub Medical College and Teaching Hospital, Abbottabad, Pakistan
| | - Mahroo Bugti
- Department of Gynaecology and Obstetrics, BMCH, Quetta, Pakistan
| | - Shah Mureed
- Department of Paediatrics, BMCH, Quetta, Pakistan
| | - Saeed Khan
- Department of Pathology, Dow University of Health Sciences, Karachi, Pakistan
| | - Ikram Din Ujjan
- Department of Pathology, Liaquat University of Medical and Health Sciences (LUMHS), Jamshoro, Pakistan
| | - Sümeyye Şahin
- Department of Food Engineering, Ordu University, Ordu, Türkiye
| | - Mehtap Kara
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Amjad Khan
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, LUMHS, Jamshoro, Pakistan
| |
Collapse
|
21
|
Iyigundogdu Z, Petek BS, Capkin Yurtsever M, Ceylan S. Melissa officinalisessential oil loaded polycaprolactone membranes: evaluation of antimicrobial activities and cytocompatibility for tissue engineering applications. Biomed Mater 2023; 18:065012. [PMID: 37741274 DOI: 10.1088/1748-605x/acfc9d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/22/2023] [Indexed: 09/25/2023]
Abstract
Antimicrobial biomaterials play important role in tissue engineering applications to protect damaged tissue from infections. The aim of this study is producing antimicrobial polycaprolactone (PCL) membranes by using a plant based antimicrobial agent. Therefore,Melissa officinalisessential oil (MEO) was investigated against ten types of microorganisms and remarkable antimicrobial activity was demonstrated. PCL:MEO membranes were prepared by solvent casting method by mixing MEO into PCL in various ratios (PCL:0M, PCL:0.25M, PCL:0.5M, and PCL:1M w/w). Water contact angle measurements showed that hydrophilicity of the membranes increased with increasing concentrations of MEO from 103.44° to 83.36° for PCL:0M and PCL:1M, respectively. It was determined that there was an inverse relationship between the MEO concentration and the mechanical properties. Notable antioxidant activity of PCL/MEO membranes was exhibited by the inhibition percent of 2,2-diphenyl-1-picrylhydrazyl (DPPH) which was increased from 24.74% to 44.79% for PCL:0M and PCL:1M, respectively. The antimicrobial activity of MEO was also highly maintained in PCL membranes. For PCL/MEO membranes, at least 99.9% of microorganisms were inhibited. Cytocompatibility of the membranes were investigated by resazurin assay, scanning electron microscopy analysis and 4',6-diamidino-2-phenylindole (DAPI) staining. PCL:0.25M and PCL:0.5M membranes supported the viability of L929 cells more than 87% when compared to PCL:0M membranes on day 6. However, the viability of L929 cells on PCL:1M membranes was about 43% indicating significant decrease on cellular activity. In conclusion, PCL:0.25M and PCL:0.5M membranes with their high antimicrobial activity, acceptable mechanical properties and cytocompatible properties, they can be considered as an alternative biomaterial for tissue engineering applications.
Collapse
Affiliation(s)
- Zeynep Iyigundogdu
- Department of Bioengineering, Adana Alparslan Turkes Science and Technology University, Adana, Türkiye
| | - Betül Sena Petek
- Department of Bioengineering, Adana Alparslan Turkes Science and Technology University, Adana, Türkiye
| | - Merve Capkin Yurtsever
- Department of Bioengineering, Adana Alparslan Turkes Science and Technology University, Adana, Türkiye
| | - Seda Ceylan
- Department of Bioengineering, Adana Alparslan Turkes Science and Technology University, Adana, Türkiye
| |
Collapse
|
22
|
Teng Y, Yuan Q, Wu Y, Wu S, Su J, Zhang P, Zhang Y. Research on the Chemical Constituents against Alzheimer's Disease of the Fruits of Physalis alkekengi L. var. franchetii (Mast.) Makino. Chem Biodivers 2023; 20:e202301075. [PMID: 37505462 DOI: 10.1002/cbdv.202301075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/29/2023]
Abstract
Physalis alkekengi L. var. franchetii (Mast.) Makino (PA) is a natural plant which is utilised as a traditional herbal medicine. It has properties that make it effective against inflammation and free radical damage. In the present study, the major constituents of four extraction parts of the fruits of PA (PAF) were investigated by combining ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The mice model of Alzheimer's disease (AD) induced by aluminum chloride (AlCl3 ) combined with D-galactose (D-gal) was established to comprehend the mechanism behind PAF's anti-AD activity from both behavioural and pathological perspectives. The results showed that four extraction parts of PAF (PAFE) had favorable anti-AD effects and the ethyl acetate (EA) group showed the best activity. UPLC-Q-TOF-MS analysis identified Physalin B, Nobiletin and Caffeic acid as the main anti-AD active constituents in EA extract. This study reveals that PAF can reduce neuroinflammatory damage by inhibiting p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway, which is the theoretical basis for clinical development and utilization of PAF in AD therapy.
Collapse
Affiliation(s)
- Yang Teng
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi, 154007, China
| | - Qi Yuan
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - You Wu
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Shuang Wu
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Jin Su
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi, 154007, China
| | - Pengxia Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi, 154007, China
| | - Yu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi, 154007, China
| |
Collapse
|
23
|
Lolak N, Akocak S, Durgun M, Duran HE, Necip A, Türkeş C, Işık M, Beydemir Ş. Novel bis-ureido-substituted sulfaguanidines and sulfisoxazoles as carbonic anhydrase and acetylcholinesterase inhibitors. Mol Divers 2023; 27:1735-1749. [PMID: 36136229 DOI: 10.1007/s11030-022-10527-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
To discover alternative substances to compounds used to treat many diseases, especially treating Alzheimer's disease (AD) and Parkinson's disease targeting carbonic anhydrase (hCA) and acetylcholinesterase (AChE) enzymes, is important. For this purpose, a series of novel bis-ureido-substituted sulfaguanidine (SG1-4) and sulfisoxazole (SO1-4) derivatives were synthesized, and their inhibitory capacities were screened against hCA isoenzymes (hCA I and II) and AChE. Possible binding mechanisms of inhibitors to the active site were elucidated by in silico studies, and the results were supported by in vitro results. Moreover, the percent radical scavenging capacities of the derivatives were also evaluated. The derivatives (SG1-4 and SO1-4) were more effective against hCAs compared to standard drug acetazolamide (KI values of 98.28-439.17 nM for hCA I and II, respectively) and exhibited the highest inhibition with the KIs in the ranges of 2.54 ± 0.50-41.02 ± 7.52 nM for hCA I, 11.20 ± 2.97-67.14 ± 13.58 nM for hCA II, and 257.60 ± 27.84-442.60 ± 52.13 nM for AChE. Also, compounds SG1 and SO1 also showed ABTS radical scavenging activity at the rate of 70% and 78%, respectively. These results will contribute to the literature for the rational design and synthesis of new potent and selective inhibitors targeting hCAs and AChE with multifunctional effects such as radical scavenging as well as inhibition. This study focused on the synthesis and inhibitory effects of bis-ureido-substituted sulfaguanidine (SG1-4) and sulfisoxazole (SO1-4) derivatives against human hCA I and II isoforms and AChE. In order to test synthesized derivatives' free radical scavenging potentials were the DPPH and ABTS assays. In silico studies elucidated possible binding mechanisms of inhibitors to the active site.
Collapse
Affiliation(s)
- Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adiyaman, Turkey.
| | - Süleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adiyaman, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, 63290, Şanlıurfa, Turkey
| | - Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, 36100, Kars, Turkey
| | - Adem Necip
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, 63300, Şanlıurfa, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey.
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| |
Collapse
|
24
|
Calva J, Ludeña C, Bec N, Larroque C, Salinas M, Vidari G, Armijos C. Constituents and Selective BuChE Inhibitory Activity of the Essential Oil from Hypericum aciculare Kunth. PLANTS (BASEL, SWITZERLAND) 2023; 12:2621. [PMID: 37514236 PMCID: PMC10383752 DOI: 10.3390/plants12142621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
A potential source of new inhibitors of cholinesterase enzymes are certain compounds of natural plant origin; therefore, in the study described herein we have determined the chemical composition and the acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities of the essential oil (EO) steam distilled from aerial parts of Hypericum aciculare, which was collected in southern Ecuador. The oil qualitative and quantitative composition was determined by GC-FID and GC-MS using a non-polar and a polar chromatographic column. A total of fifty-three constituents were identified, that accounted for about 98% of the EO content. The hydrocarbon n-nonane (16.4-28.7%) and the aldehyde n-decanal (20.7-23.1%) were the predominant oil constituents. In addition, the EO showed significant inhibition of BuChE (IC50 = 28.3 ± 2.7 μg/mL) and moderate activity towards AChE (IC50 = 82.1 ± 12.1 µg/mL). Thus, the EO from H. aciculare aerial parts is an interesting candidate to investigate the mechanism of selective ChE inhibition by the two ChE enzymes with the aim to discover potential targets to control the progression of the Alzheimer's disease (AD).
Collapse
Affiliation(s)
- James Calva
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja 1101608, Ecuador
| | - Carlos Ludeña
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja 1101608, Ecuador
| | - Nicole Bec
- Institute for Regenerative Medicine and Biotherapy (IRMB), Université de Montpellier, National Institute of Health, and Medical Research (INSERM), 34295 Montpellier, France
| | - Christian Larroque
- Institute for Regenerative Medicine and Biotherapy (IRMB), Université de Montpellier, National Institute of Health, and Medical Research (INSERM), 34295 Montpellier, France
- Department Nephrol Dialysis & Transplantat, Montpellier University Hospital, 34295 Montpellier, France
| | - Melissa Salinas
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja 1101608, Ecuador
| | - Giovanni Vidari
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Kurdistan Region, Erbil 44001, Iraq
| | - Chabaco Armijos
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja 1101608, Ecuador
| |
Collapse
|
25
|
Tocai Moţoc AC, Kokeric T, Tripon S, Barbu-Tudoran L, Barjaktarevic A, Cupara S, Vicas SI. Sanguisorba minor Scop.: An Overview of Its Phytochemistry and Biological Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112128. [PMID: 37299107 DOI: 10.3390/plants12112128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Since ancient times, many plants have been cultivated for their nutritional and medicinal properties. The genus Sanguisorba has been used for medicinal purposes for more than 2000 years. These species are distributed in temperate, arctic, or alpine areas in the Northern Hemisphere. Elongated, imparipinnate leaves and densely clustered flower heads are characteristics of the genus Sanguisorba. While Sanguisorba officinalis L. is mainly known for its significant medicinal applications, Sanguisorba minor Scop. is beginning to attract greater interest for its chemical composition and biological effects. Our research collected extensive information on Sanguisorba minor, including its history, taxonomy, habitat, and distribution, as well as its bioactive components and biological activities. In addition to electron microscopy of plant parts (root, stems, and leaves), which is described for the first time in the literature in the case of S. minor, the study also provides information on potential pests or beneficial insects that may be present. Our goal was to provide important information that will serve as a solid foundation for upcoming research on Sanguisorba minor Scop.
Collapse
Affiliation(s)
| | - Tijana Kokeric
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Septimiu Tripon
- Electron Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat St., 400293 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat St., 400293 Cluj-Napoca, Romania
| | - Ana Barjaktarevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Snezana Cupara
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Simona Ioana Vicas
- Doctoral School of Biomedical Science, University of Oradea, 410087 Oradea, Romania
- Department of Food Engineering, Faculty of Environmental Protection, University of Oradea, 410048 Oradea, Romania
| |
Collapse
|
26
|
Ullah S, Sirajuddin M, Ullah Z, Mushtaq A, Naz S, Zubair M, Haider A, Ali S, Kubicki M, Wani TA, Zargar S, Rehman MU. Synthesis, Structural Elucidation and Pharmacological Applications of Cu(II) Heteroleptic Carboxylates. Pharmaceuticals (Basel) 2023; 16:ph16050693. [PMID: 37242476 DOI: 10.3390/ph16050693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Six heteroleptic Cu(II) carboxylates (1-6) were prepared by reacting 2-chlorophenyl acetic acid (L1), 3-chlorophenyl acetic acid (L2), and substituted pyridine (2-cyanopyridine and 2-chlorocyanopyridine). The solid-state behavior of the complexes was described via vibrational spectroscopy (FT-IR), which revealed that the carboxylate moieties adopted different coordination modes around the Cu(II) center. A paddlewheel dinuclear structure with distorted square pyramidal geometry was elucidated from the crystal data for complexes 2 and 5 with substituted pyridine moieties at the axial positions. The presence of irreversible metal-centered oxidation reduction peaks confirms the electroactive nature of the complexes. A relatively higher binding affinity was observed for the interaction of SS-DNA with complexes 2-6 compared to L1 and L2. The findings of the DNA interaction study indicate an intercalative mode of interaction. The maximum inhibition against acetylcholinesterase enzyme was caused for complex 2 (IC50 = 2 µg/mL) compared to the standard drug Glutamine (IC50 = 2.10 µg/mL) while the maximum inhibition was found for butyrylcholinesterase enzyme by complex 4 (IC50 = 3 µg/mL) compared to the standard drug Glutamine (IC50 = 3.40 µg/mL). The findings of the enzymatic activity suggest that the under study compounds have potential for curing of Alzheimer's disease. Similarly, complexes 2 and 4 possess the maximum inhibition as revealed from the free radical scavenging activity performed against DPPH and H2O2.
Collapse
Affiliation(s)
- Shaker Ullah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Sirajuddin
- Department of Chemistry, University of Science and Technology Bannu, Bannu 28100, Pakistan
| | - Zafran Ullah
- Department of Chemistry, University of Science and Technology Bannu, Bannu 28100, Pakistan
| | - Afifa Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saba Naz
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ali Haider
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saqib Ali
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maciej Kubicki
- Department of Chemistry, Adam Mickiewicz University in Poznan, 61-712 Poznan, Poland
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
27
|
Batiha GES, Tene ST, Teibo JO, Shaheen HM, Oluwatoba OS, Teibo TKA, Al-kuraishy HM, Al-Garbee AI, Alexiou A, Papadakis M. The phytochemical profiling, pharmacological activities, and safety of malva sylvestris: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:421-440. [PMID: 36418467 PMCID: PMC9898411 DOI: 10.1007/s00210-022-02329-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/05/2022] [Indexed: 11/26/2022]
Abstract
Malva sylvestris is a plant commonly found in Europe, Asia, and Africa. The leaves and flowers of this plant have been used for centuries in traditional medicine to treat various ailments such as cough, cold, diarrhoea, and constipation. Google Scholar, PubMed, Scopus, and Web of Science were used to search for relevant material on the phytochemical profiling and pharmacologic activities of Malva sylvestris. The techniques used in phytochemical profiling and the pharmacologic activity of each compound were extracted from the included studies, including in vitro, in vivo, and clinical studies. The phytochemical analysis of Malva sylvestris revealed that the leaves and flowers are the most commonly used parts of the plant and contain various bioactive compounds such as flavonoids, mucilages, terpenoids, phenol derivatives, coumarins, sterols, tannins, saponins, and alkaloids. These phytochemicals are responsible for the many pharmacological activities of Malva sylvestris, such as anti-inflammatory, antimicrobial, hepatoprotective, laxative, antiproliferative and antioxidant properties. This review has presented an overview of the antinociceptive and anti-inflammatory activities and the cytotoxic effects of Malva sylvestris on different types of cancer cells. It has also summarised the work on developing copper oxide nanoparticles using Malva sylvestris leaf extract and its potential use in food and medicine. This review aims to highlight the traditional uses, phytochemistry, pharmacological activities, and safety of Malva sylvestris.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| | - Stephano Tambo Tene
- Research Unit of Biochemistry of Medicinal Plants, Food Sciences and Nutrition, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - John Oluwafemi Teibo
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo Brazil
| | - Hazem M. Shaheen
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| | - Oyerinde Samson Oluwatoba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - Titilade Kehinde Ayandeyi Teibo
- Department of Maternal-Infant and Public Health Nursing, College of Nursing, Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo Brazil
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, Almustansiriyiah University, Bagh-Dad, Iraq
| | - Ali I. Al-Garbee
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, Almustansiriyiah University, Bagh-Dad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Wien, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| |
Collapse
|
28
|
Domingues J, Delgado F, Gonçalves JC, Zuzarte M, Duarte AP. Mediterranean Lavenders from Section Stoechas: An Undervalued Source of Secondary Metabolites with Pharmacological Potential. Metabolites 2023; 13:metabo13030337. [PMID: 36984777 PMCID: PMC10054607 DOI: 10.3390/metabo13030337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Globally, climate change and wildfires are disrupting natural ecosystems, thus setting several endemic species at risk. The genus Lavandula is widely present in the Mediterranean region and its species, namely, those included in the section Stoechas, are valuable resources of active compounds with several biological assets. Since ancient times lavenders have been used in traditional medicine and for domestic purposes. These species are melliferous, decorative, and essential oil-producing plants with a high economic interest in the pharmaceutical, flavor, fragrance, and food industries. The essential oils of Lavandula section Stoechas are characterized by high amounts of 1,8-cineole, camphor, fenchone, and specifically for L. stoechas subsp. luisieri one of the major compounds is trans-α-necrodyl acetate. On the other hand, the diversity of non-volatile components like phenolic compounds, such as phenolic acids and flavonoids, make these species an important source of phytochemicals with pharmacological interest. Rosmarinic, caffeic, and salvianolic B acids are the major phenolic acids, and luteolin and eriodictyol-O-glucuronide are the main reported flavonoids. However, the concentration of these secondary metabolites is strongly affected by the plant’s phenological phase and varies in Lavandula sp. from different areas of origin. Indeed, lavender extracts have shown promising antioxidant, antimicrobial, anti-inflammatory, and anticancer properties as well as several other beneficial actions with potential for commercial applications. Despite several studies on the bioactive potential of lavenders from the section Stoechas, a systematized and updated review of their chemical profile is lacking. Therefore, we carried out the present review that gathers relevant information on the different types of secondary metabolites found in these species as well as their bioactive potential.
Collapse
Affiliation(s)
- Joana Domingues
- Plant Biotechnology Centre of Beira Interior (CBPBI), 6001-909 Castelo Branco, Portugal
- Health Sciences Research Centre (CICS), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Fernanda Delgado
- Plant Biotechnology Centre of Beira Interior (CBPBI), 6001-909 Castelo Branco, Portugal
- Polytechnic Institute of Castelo Branco-School of Agriculture (IPCB-ESA), 6001-909 Castelo Branco, Portugal
- Research Centre for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco (CERNAS-IPCB), 6001-909 Castelo Branco, Portugal
| | - José Carlos Gonçalves
- Plant Biotechnology Centre of Beira Interior (CBPBI), 6001-909 Castelo Branco, Portugal
- Polytechnic Institute of Castelo Branco-School of Agriculture (IPCB-ESA), 6001-909 Castelo Branco, Portugal
- Research Centre for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco (CERNAS-IPCB), 6001-909 Castelo Branco, Portugal
| | - Mónica Zuzarte
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Ana Paula Duarte
- Health Sciences Research Centre (CICS), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
29
|
Sut S, Dall’Acqua S, Zengin G, Senkardes I, Uba AI, Bouyahya A, Aktumsek A. Novel Signposts on the Road from Natural Sources to Pharmaceutical Applications: A Combinative Approach between LC-DAD-MS and Offline LC-NMR for the Biochemical Characterization of Two Hypericum Species (H. montbretii and H. origanifolium). PLANTS (BASEL, SWITZERLAND) 2023; 12:648. [PMID: 36771732 PMCID: PMC9921756 DOI: 10.3390/plants12030648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The members of the genus Hypericum have great potential to develop functional uses in nutraceutical and pharmaceutical applications. With this in mind, we aimed to determine the chemical profiling and biological properties of different extracts (ethyl acetate, methanol and water) from two Hypericum species (H. montbretii and H. origanifolium). We combined two approaches (LC-DAD-MS and LC-NMR) to identify and quantify chemical compounds of the extracts. Antioxidant properties (free radical quenching, reducing power and metal chelating) and enzyme inhibitory effects (cholinesterase, tyrosinase, amylase and glucosidase) were determined as biological properties. The tested extracts were rich in caffeic acid derivatives and flavonoids, and among them, 3-caffeoyl quinic acid and myricetin-3-O-rhamnoside were found to be the main compounds. The total phenolic and flavonoid levels were determined to be 50.97-134.99 mg GAE/g and 9.87-82.63 mg RE/g, respectively. With the exception of metal chelating, the methanol and water extracts showed stronger antioxidant properties than the ethyl acetate extracts. However, different results were obtained for each enzyme inhibition assay, and in general, the ethyl acetate extracts present more enzyme-inhibiting properties than the water or methanol extracts. Results from chemical and biological analyses were combined using multivariate analysis, which allowed establishing relationships between composition and observed effects of the Hypericum extracts based on the extraction solvents. To gain more insights between chemical compounds and enzyme-inhibiting effects, we performed molecular docking analysis. We observed favorable interactions between certain compounds and the tested enzymes during our analysis, confirming the data obtained from the multivariate approach. In conclusion, the obtained results may shed light on the road from natural sources to functional applications, and the tested Hypericum species may be considered potential raw materials, with promising chemical constituents and biological activities.
Collapse
Affiliation(s)
- Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Ismail Senkardes
- Department of Pharmaceutical Botany, Pharmacy Faculty, Marmara University, 34722 Istanbul, Turkey
| | | | - Abdelhakim Bouyahya
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 1014, Morocco
| | | |
Collapse
|
30
|
Ansari L, Mahdinezhad MR, Rakhshandeh H, Hosseini A, Noughabi SB, Gholami N, Rajabian A. Acute and sub-acute toxicity assessment of the standardized extract of Sanguisorba minor in vivo. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:987-997. [PMID: 34881541 DOI: 10.1515/jcim-2021-0391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Although Sanguisorba minor has been used as herbal medicine, no study has ever examined its potential toxicity. This study investigated acute and subacute toxicities of S. minor hydroalcoholic extract (SE). In the acute toxicity test, a single oral dose (300, 2,000, and 3,000 mg/kg) of SE was given to mice. The oral administration of SE (100, 200, and 400 mg/kg for 4 weeks) was performed to evaluate subacute toxicity. After the treatments, neurobehavioral, histopathology, hematological, and biochemical parameters were monitored. In vitro cytotoxicity was also assessed. Moreover, high-performance liquid chromatography fingerprint was done for the standardization of SE. The no-observed-adverse-effect level of SE was up to 2,000 mg/kg, and the LD50 of the prepared extract was over 3,000 mg/kg. The rats exposed to the extract did not show any marked change in their body weight. The extract at used doses did not affect neuromuscular coordination. According to the hematological, biochemical, and histological examinations, no significant treatment-related adverse effect of the extract was observed, even at 400 mg/kg. Only 48 h exposure to 400 μg/mL of SE reduced the viability of PC12 cells. The findings revealed that this plant could be well-tolerated, regarded safe, and used as herbal medicine.
Collapse
Affiliation(s)
- Legha Ansari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Reza Mahdinezhad
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Boroumand Noughabi
- Department of Pathology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najibeh Gholami
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Tavakoli M, Tarkesh Esfahani M, Soltani S, Karamian R, Aliarabi H. Effects of ecological factors on phenolic compounds in Salvia multicaulis Vahl (Lamiaceae). BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Caldeira GI, Gouveia LP, Serrano R, Silva OD. Hypericum Genus as a Natural Source for Biologically Active Compounds. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192509. [PMID: 36235373 PMCID: PMC9573133 DOI: 10.3390/plants11192509] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/08/2023]
Abstract
Hypericum L. genus plants are distributed worldwide, with numerous species identified throughout all continents, except Antarctica. These plant species are currently used in various systems of traditional medicine to treat mild depression, wounds and burns, diarrhea, pain, fevers, and their secondary metabolites previously shown, and the in vitro and/or in vivo cytotoxic, antimicrobial, anti-inflammatory, antioxidant, antihyperglycemic, and hepatoprotective activities, as well as the acetylcholinesterase and monoamine oxidase inhibitory activities. We conducted a systematic bibliographic search according to the Cochrane Collaboration guidelines to answer the question: "What is known about plants of Hypericum genus as a source of natural products with potential clinical biological activity?" We documented 414 different natural products with confirmed in vitro/in vivo biological activities, and 58 different Hypericum plant species as sources for these natural products. Phloroglucinols, acylphloroglucinols, xanthones, and benzophenones were the main chemical classes identified. The selective cytotoxicity against tumor cells, cell protection, anti-inflammatory, antimicrobial, antidepressant, anti-Alzheimer's, and adipogenesis-inhibition biological activities are described. Acylphloroglucinols were the most frequent compounds with anticancer and cell-protection mechanisms. To date, no work has been published with a full descriptive list directly relating secondary metabolites to their species of origin, plant parts used, extraction methodologies, mechanisms of action, and biological activities.
Collapse
|
33
|
Fernandes F, Barroso MF, De Simone A, Emriková E, Dias-Teixeira M, Pereira JP, Chlebek J, Fernandes VC, Rodrigues F, Andrisano V, Delerue-Matos C, Grosso C. Multi-target neuroprotective effects of herbal medicines for Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115107. [PMID: 35176467 DOI: 10.1016/j.jep.2022.115107] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease is the most common form of dementia, but its treatment options remain few and ineffective. To find new therapeutic strategies, natural products have gained interest due to their neuroprotective potential, being able to target different pathological hallmarks associated with this disorder. Several plant species are traditionally used due to their empirical neuroprotective effects and it is worth to explore their mechanism of action. AIM OF THE STUDY This study intended to explore the neuroprotective potential of seven traditional medicinal plants, namely Scutellaria baicalensis, Ginkgo biloba, Hypericum perforatum, Curcuma longa, Lavandula angustifolia, Trigonella foenum-graecum and Rosmarinus officinalis. The safety assessment with reference to pesticides residues was also aimed. MATERIALS AND METHODS Decoctions prepared from these species were chemically characterized by HPLC-DAD and screened for their ability to scavenge four different free radicals (DPPH•, ABTS•+, O2•‒ and •NO) and to inhibit enzymes related to neurodegeneration (cholinesterases and glycogen synthase kinase-3β). Cell viability through MTT assay was also evaluated in two different brain cell lines, namely non-tumorigenic D3 human brain endothelial cells (hCMEC/D3) and NSC-34 motor neurons. Furthermore, and using GC, 21 pesticides residues were screened. RESULTS Regarding chemical composition, chromatographic analysis revealed the presence of several flavonoids, phenolic acids, curcuminoids, phenolic diterpenoids, one alkaloid and one naphthodianthrone in the seven decoctions. All extracts were able to scavenge free radicals and were moderate glycogen synthase kinase-3β inhibitors; however, they displayed weak to moderate acetylcholinesterase and butyrylcholinesterase inhibition. G. biloba and L. angustifolia decoctions were the less cytotoxic to hCMEC/D3 and NSC-34 cell lines. No pesticides residues were detected. CONCLUSIONS The results extend the knowledge on the potential use of plant extracts to combat multifactorial disorders, giving new insights into therapeutic avenues for Alzheimer's disease.
Collapse
Affiliation(s)
- Filipe Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - M Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Angela De Simone
- Department of Drug Science and Technology University of Turin, via P.Giuria 9, 10125, Torino, Italy
| | - Eliška Emriková
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921, Rimini, Italy
| | - Mónica Dias-Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal; NICiTeS-Núcleo de Investigação em Ciências e Tecnologias da Saúde, Escola Superior de Saúde Ribeiro Sanches, Lisboa, Portugal
| | - José Paulo Pereira
- NICiTeS-Núcleo de Investigação em Ciências e Tecnologias da Saúde, Escola Superior de Saúde Ribeiro Sanches, Lisboa, Portugal
| | - Jakub Chlebek
- Department of Pharmaceutical Botany, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Virgínia Cruz Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921, Rimini, Italy
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
| |
Collapse
|
34
|
Gaspar-Pintiliescu A, Mihai E, Ciucan T, Popescu AF, Luntraru C, Tomescu J, Craciunescu O. Antioxidant and acetylcholinesterase inhibition capacity of hyrosols from lamiaceae plants for biopesticide use: role of phenolics. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2071289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexandra Gaspar-Pintiliescu
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, Bucharest, Romania
| | - Elena Mihai
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, Bucharest, Romania
| | - Teodora Ciucan
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, Bucharest, Romania
| | | | | | | | - Oana Craciunescu
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, Bucharest, Romania
| |
Collapse
|
35
|
Unassisted and Carbon Dioxide-Assisted Hydro- and Steam-Distillation: Modelling Kinetics, Energy Consumption and Chemical and Biological Activities of Volatile Oils. Pharmaceuticals (Basel) 2022; 15:ph15050567. [PMID: 35631393 PMCID: PMC9145560 DOI: 10.3390/ph15050567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
The demand for more suitable eco-friendly extraction processes has grown over the last few decades and driven research to develop efficient extraction processes with low energy consumption and low costs, but always assuring the quality of the volatile oils (VOs). The present study estimated the kinetic extraction and energy consumption of simultaneous hydro- and steam-distillation (SHSD), and SHSD assisted by carbon dioxide (SHSDACD), using an adopted modelling approach. The two isolation methods influenced the VOs yield, chemical composition and biological activities, namely, antioxidant, anti-glucosidase, anti-acetylcholinesterase and anti-inflammatory properties. SHSDACD provided higher VOs yields than the SHSD at a shorter extraction time: 2.8% at 30 min vs. 2.0% at 120 min, respectively, for Rosmarinus officinalis, 1.5% at 28 min vs. 1.2% at 100 min, respectively, for Lavandula angustifolia, and 1.7% at 20 min vs. 1.6% at 60 min, respectively, for Origanum compactum. The first order and sigmoid model fitted to SHSD and SHSDACD, respectively, with R2 value at 96% and with mean square error (MSE) < 5%, where the k distillation rate constant of SHSDACD was fivefold higher and the energy consumption 10 times lower than the SHSD. The rosemary SHSD and SHSDACD VOs chemical composition were similar and dominated by 1,8-cineole (50% and 48%, respectively), and camphor (15% and 12%, respectively). However, the lavender and oregano SHSDACD VOs were richer in linalyl acetate and carvacrol, respectively, than the SHSD VOs. The SHSDACD VOs generally showed better capacity for scavenging the nitric oxide and superoxide anions free radicals as well as for inhibiting α-glucosidase, acetylcholinesterase, and lipoxygenase.
Collapse
|
36
|
Phytochemical Profile and Antioxidant Activity of Lavandula angustifolia and Lavandula x intermedia Cultivars Extracted with Different Methods. Antioxidants (Basel) 2022; 11:antiox11040711. [PMID: 35453396 PMCID: PMC9027103 DOI: 10.3390/antiox11040711] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 01/27/2023] Open
Abstract
Lavender is a valuable perennial plant from the Lamiaceae family. It is grown mainly for its essential oil, but it also contains polar bioactive compounds such as polyphenols and coumarins. Their level depends on the species, cultivars, geographical origin, climatic conditions, harvest time and extraction method. The authors investigated the effect of several extraction procedures (maceration, decoction and ultrasound-assisted extraction) applied to three cultivars of Lavandula angustifolia (Betty’s Blue, Elizabeth, Hidcote) and two cultivars of Lavandula x intermedia (Grosso, Gros Bleu) on the yield of the polyphenolic compounds and antioxidant activity. HPLC analysis showed the presence of rosmarinic acid (2.52–10.82 mg/g), ferulic acid glucoside (2.94–8.67 mg/g), caffeic acid (1.70–3.10 mg/g), morin (1.02–13.63 mg/g), coumarin (1.01–5.97 mg/g) and herniarin (1.05–8.02 mg/g). The content of phenolic acids and flavonoids was higher in lavender, while the content of coumarins was higher in lavandin in all types of extracts. The antioxidant activity was determined by DPPH-EPR assay for antiradical properties (104.58–206.77 μmol Trolox/g) and FRAP assay for reducing properties (79.21–203.06 μmol Trolox/g). The obtained results showed that the cultivar is the dominant factor differentiating the samples. Still, the extraction method plays an important role in the final bioactive substances content and antioxidant properties of obtained extracts.
Collapse
|
37
|
Characterization and Valorization of the Agricultural Waste Obtained from Lavandula Steam Distillation for Its Reuse in the Food and Pharmaceutical Fields. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051613. [PMID: 35268713 PMCID: PMC8911589 DOI: 10.3390/molecules27051613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
The main focus of the current research was the characterization of the by-products from the steam distillation of Lavandula angustifolia Mill. (LA) and Lavandula x intermedia Emeric ex Loisel (LI) aerial parts, as they are important sources of bioactive compounds suitable for several applications in the food, cosmetic, and pharmaceutical industries. The oil-exhausted biomasses were extracted and the total polyphenol and flavonoid contents were, respectively, 19.22 ± 4.16 and 1.56 ± 0.21 mg/g for LA extract and 17.06 ± 3.31 and 1.41 ± 0.10 mg/g for LI extract. The qualitative analysis by liquid chromatography-electrospray tandem mass spectrometry (HPLC-ESI-MS) revealed that both the extracts were rich in phenolic acids and glycosylated flavonoids. The extracts exhibited radical scavenging, chelating, reducing activities, and inhibitory capacities on acetylcholinesterase and tyrosinase. The IC50 values against acetylcholinesterase and tyrosinase were, respectively, 5.35 ± 0.47 and 5.26 ± 0.02 mg/mL for LA, and 6.67 ± 0.12 and 6.56 ± 0.16 mg/mL for LI extracts. In conclusion, the oil-exhausted biomasses demonstrated to represent important sources of bioactive compounds, suitable for several applications in the food, cosmetic, and pharmaceutical industries.
Collapse
|
38
|
Stojanović NM, Mladenović MZ, Maslovarić A, Stojiljković NI, Randjelović PJ, Radulović NS. Lemon balm (Melissa officinalis L.) essential oil and citronellal modulate anxiety-related symptoms - In vitro and in vivo studies. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114788. [PMID: 34718102 DOI: 10.1016/j.jep.2021.114788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Besides psyche-related symptoms, patients with anxiety disorders can have a large number of somatic symptoms as well. Although the treatment of these disorders is mainly focused on resolving their mental component, one cannot neglect the need for the treatment of accompanying somatic symptoms. Melissa officinalis L. (lemon balm), in various formulations, has been extensively used as an ethnomedicinal remedy for the treatment of different psyche-related symptoms, and its use is considered relatively safe. AIM OF THE STUDY In the present study, the activity of M. officinalis (MO) essential oil was evaluated in several in vitro and in vivo models mimicking or involving anxiety-related somatic symptoms. MATERIALS AND METHODS To address the effect of MO essential oil on the gastrointestinal and heart-related symptoms accompanying anxiety disorders, in vitro models were utilized that follow the function of the isolated mouse ileum and atria tissues, respectively, after exposure to MO essential oil. Effects of MO essential oil on BALB/c mice motor activity was estimated using the open field, rota-rod, and horizontal wire tests. Additionally, the essential oil was assayed for its potential in inhibiting acetylcholinesterase activity. RESULTS The performance of mice treated with 25 mg/kg of the oil showed a statistically significant decrease in the motor impairment arising from acute anxiety (open field test), while there was a prolonged latency and a reduction of the frequency of falling from a rotating rod and/or a horizontal wire (signs of muscle weakness/spasms). Concentrations of the essential oil higher than 1 μg/mL were found to inhibit both spontaneous and induced ileum contractions. Moreover, the essential oil and citronellal were found to decrease isolated mouse atria contraction frequency, as well as contraction force. However, the oil was found to be a very weak acetylcholinesterase inhibitor. CONCLUSION The modulation of anxiety-related symptoms by the oil was found not to be mediated through the inhibition of the acetylcholinesterase, nonetheless, the mechanistic studies involving the ileum and cardiac tissues, revealed that the activity of MO and citronellal might be related to the modification of either voltage-gated Ca2+ channels or muscarinic receptors. Mice locomotion, balance, and muscle strength were not impacted by the essential oil; however, its main constituent, citronellal, was found to exert a certain degree of muscle function inhibition. All these results suggest that the activity of MO essential oil arises from synergistic and/or antagonistic interactions of its constituents, and is not completely dependent on the oil's main constituent.
Collapse
Affiliation(s)
| | - Marko Z Mladenović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Serbia.
| | | | | | | | - Niko S Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Serbia.
| |
Collapse
|
39
|
Hosseini Z, Mansouritorghabeh F, Kakhki FSH, Hosseini M, Rakhshandeh H, Hosseini A, Hasanpour M, Iranshahi M, Rajabian A. Effect of Sanguisorba minor on scopolamine-induced memory loss in rat: involvement of oxidative stress and acetylcholinesterase. Metab Brain Dis 2022; 37:473-488. [PMID: 34982352 DOI: 10.1007/s11011-021-00898-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 12/26/2021] [Indexed: 01/07/2023]
Abstract
Sanguisorba minor (S. minor) has neuroprotective and antioxidant activities. However, its potential benefits in ameliorating learning and memory functions have been explored in no studies up to now. So, in the current study, rats were treated with S. minor hydro-ethanolic extract (50, 100, and 200 mg/kg, intraperitoneal (i.p.)) as well as rivastigmine (0.5 mg/kg, i.p.) for 21 consecutive days. Thereafter, their behavioral performance was assessed using Morris water maze (MWM) and passive avoidance (PA) tasks. Notably, 30 min before conducting the tasks, scopolamine was injected. Finally, the biochemical assessments were done using the brain tissue. The extract characterization was performed by liquid chromatography-mass spectrometry, which confirmed the presence of quercetin, myricetin, kaempferol, catechin, ellagic acid, and gallic acid derivatives. In the MWM test, the extract reduced both escape latency and the travelled distance, compared to the scopolamine group. Moreover, in the PA test, the latency to enter the dark chamber significantly increased by the extract, compared to the scopolamine group (p < 0.05-p < 0.001). Notably, the beneficial effects of S. minor on cognitive performance of the scopolamine-treated rats appeared to be similar or even better than rivastigmine in behavior performance. Similar to rivastigmine, it was observed that the extract attenuated both AChE activity and oxidative injury in the brain as evidenced by the increased antioxidant enzymes and total thiol content; however, it decreased malondialdehyde level (p < 0.05-p < 0.001). In conclusion, the results suggested the effectiveness of S. minor in preventing cognitive dysfunction induced by scopolamine. Accordingly, these protective effects might be produced by the regulation of cholinergic activity and oxidative stress. S. minor could be considered as a potential alternative therapy in cognition disorders.
Collapse
Affiliation(s)
- Zeinab Hosseini
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Mahmoud Hosseini
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
40
|
Zuzarte M, Sousa C, Cavaleiro C, Cruz MT, Salgueiro L. The Anti-Inflammatory Response of Lavandula luisieri and Lavandula pedunculata Essential Oils. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030370. [PMID: 35161351 PMCID: PMC8838270 DOI: 10.3390/plants11030370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 05/13/2023]
Abstract
Portuguese lavenders remain undervalued in global markets due to the lack of high-quality end-products and scarcity of scientific-based studies validating their bioactive potential. Moreover, chemical variability is frequent in these species, and can compromise both safety and efficacy. In the present study, the anti-inflammatory potential of L. luisieri and L. pedunculata, two highly prevalent species in Portugal, was assessed and correlated with their chemical variability. Representative samples with distinct chemical profiles were selected to assess the anti-inflammatory effect on LPS-stimulated macrophages. L. luisieri essential oil with low quantities of necrodane derivatives was the most potent at inhibiting NO production. Interestingly, the essential oil was more effective than its main compounds (1,8-cineole and fenchone), assessed alone or in combination. Our results also demonstrated a significant effect of the oil on the expression of the inflammatory proteins (iNOS and pro-IL-1β) and on the NF-κB pathway. Overall, this study highlights the impact of chemical variability on oils' efficacy by showing distinct effects among the chemotypes. We also identify L. luisieri essential oil, with low quantities of necrodane derivatives, as the most promising in the mitigation of the inflammatory response, thus corroborating its traditional uses and paving the way for the development of herbal medicinal products.
Collapse
Affiliation(s)
- Monica Zuzarte
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (C.S.); (M.T.C.)
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-480-220
| | - Cátia Sousa
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (C.S.); (M.T.C.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (C.C.); (L.S.)
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carlos Cavaleiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (C.C.); (L.S.)
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Maria Teresa Cruz
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (C.S.); (M.T.C.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (C.C.); (L.S.)
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (C.C.); (L.S.)
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
41
|
Dobroslavić E, Repajić M, Dragović-Uzelac V, Elez Garofulić I. Isolation of Laurus nobilis Leaf Polyphenols: A Review on Current Techniques and Future Perspectives. Foods 2022; 11:235. [PMID: 35053967 PMCID: PMC8774556 DOI: 10.3390/foods11020235] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, the market demand for products enhanced with ingredients derived from natural products, such as polyphenols, is rapidly increasing. Laurus nobilis L., known as bay, sweet bay, bay laurel, Roman laurel or daphne is an evergreen Mediterranean shrub whose leaves have traditionally been used in cuisines and folk medicine due to their beneficial health effects, which can nowadays be scientifically explained by various biological activities of the leaf extracts. Many of these activities can be attributed to phenolic compounds present in L. nobilis leaves which include flavonoids, phenolic acids, tannins (proanthocyanidins) and lignans. In order to enable efficient industrial utilization of these valuable compounds, it is crucial to establish optimal extraction procedures resulting in the highest yields and quality of the extracts. This paper offers the first systematic review of current literature on the influence of conventional and advanced extraction techniques, including microwave-assisted, ultrasound-assisted, enzyme-assisted, supercritical-CO2 and mechanochemical-assisted extraction on the phenolic content of L. nobilis leaf extracts, allowing more efficient planning of further research and simplifying the steps towards industrial utilization of this plant.
Collapse
Affiliation(s)
- Erika Dobroslavić
- Faculty of Food Technology & Biotechnology, University of Zagreb, Pierottijeva 6, 10,000 Zagreb, Croatia; (M.R.); (V.D.-U.); (I.E.G.)
| | | | | | | |
Collapse
|
42
|
Ayoub I, George MY, Menze ET, Mahmoud M, Botros M, Essam M, Ashmawy I, Shendi P, Hany A, Galal M, Ayman M, Labib R. Insights on the neuroprotective effects of Salvia officinalis L. and Salvia microphylla Kunth in memory impairment rat model. Food Funct 2022; 13:2253-2268. [DOI: 10.1039/d1fo02988f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Salvia species have a traditional longstanding culinary use mostly consumed in the Mediterranean diet as a common spice added to food. Salvia is commonly consumed as an herbal tea for...
Collapse
|
43
|
Gangaram S, Naidoo Y, Dewir YH, El-Hendawy S. Phytochemicals and Biological Activities of Barleria (Acanthaceae). PLANTS 2021; 11:plants11010082. [PMID: 35009086 PMCID: PMC8747396 DOI: 10.3390/plants11010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 12/31/2022]
Abstract
Plant species belonging to the family Acanthaceae are globally known to possess various medicinal properties and have cultural and economic importance in both traditional medicine and horticulture. They are important to both animals and humans and are used as food or for ornamental purposes worldwide. Barleria is the third largest genus in the family Acanthaceae. A few of the highly important and reported species of Barleria include B. prionitis, B. cristata, B. grandiflora, and B. lupulina. The flowers, leaves, stems, roots, and seed extracts of plants belonging to this genus are rich in bioactive compounds and have exhibited significant medicinal potential for the treatment of various ailments and infections. Evidence derived from several studies has demonstrated the antioxidant, antibacterial, antifungal, anti-inflammatory, anticancer, antidiabetic, antiulcer, hepatoprotective, analgesic, antiamoebic, antihelminthic, antiarthritic, antihypertensive, antiviral properties and toxicity of extracts, in addition inhibition of acetylcholinesterase activity and biosynthesis of nanoparticles, of the plant and seed extracts of species belonging to Barleria. Studies have reported that bioactive compounds such as flavonoids, quinones, iridoids, phenylethanoid glycosides, the immunostimulant protein “Sankaranin”, and antibiotics isolated from Barleria species are resposnsible for the above biological activities. Traditionally, the genus Barleria has significant medicinal potential; however, there is a scarcity of information on various species that are yet to be evaluated. This review provides a comprehensive report on existing literature, concerning the phytochemistry and biological activities of the genus Barleria.
Collapse
Affiliation(s)
- Serisha Gangaram
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (S.G.); (Y.N.)
| | - Yougasphree Naidoo
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (S.G.); (Y.N.)
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
- Department of Horticulture, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Correspondence: author:
| | - Salah El-Hendawy
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
- Department of Agronomy, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
44
|
Trifan A, Zengin G, Brebu M, Skalicka-Woźniak K, Luca SV. Phytochemical Characterization and Evaluation of the Antioxidant and Anti-Enzymatic Activity of Five Common Spices: Focus on Their Essential Oils and Spent Material Extractives. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122692. [PMID: 34961163 PMCID: PMC8708095 DOI: 10.3390/plants10122692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 05/27/2023]
Abstract
The essential oil industry of aromatic herbs and spices is currently producing a significant amount of by-products, such as the spent plant materials remaining after steam or hydrodistillation, that are simply discarded. The aim of this study was to comparatively investigate the phytochemical composition, antioxidant and multi-enzymatic inhibitory potential of the essential oils and spent plant material extractives obtained from cinnamon, cumin, clove, laurel, and black pepper. The essential oils were characterized by the presence of several phytochemical markers (cinnamaldehyde, cuminaldehyde, eugenol, eucalyptol, α-terpinene, limonene, β-caryophyllene or β-pinene). On the other hand, the LC-HRMS/MS profiling of the spent material extracts allowed the annotation of species specific and non-specific metabolites, such as organic acids, phenolic acids, flavonoids, proanthocyanidins, hydrolysable tannins, fatty acids, or piperamides. All samples exhibited very strong antioxidant effects, with the clove essential oil displaying the strongest radical scavenging (525.78 and 936.44 mg TE/g in DPPH and ABTS assays), reducing (2848.28 and 1927.98 mg TE/g in CUPRAC and FRAP), and total antioxidant capacity (68.19 mmol TE/g). With respect to the anti-acetylcholinesterase (0.73-2.95 mg GALAE/g), anti-butyrylcholinesterase (0-3.41 mg GALAE/g), anti-tyrosinase (0-76.86 mg KAE/g), anti-amylase and anti-glucosidase (both 0-1.00 mmol ACAE/g) assays, the spice samples showed a modest activity. Overall, our study reports that, not only the volatile fractions of common spices, but also their spent plant materials remaining after hydrodistillation can be regarded as rich sources of bioactive molecules with antioxidant and multi-enzymatic inhibitory effects.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey;
| | - Mihai Brebu
- Physical Chemistry of Polymers Laboratory, “Petru Poni” Institute of Macromolecular Chemistry, 700481 Iasi, Romania;
| | | | - Simon Vlad Luca
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
- Biothermodynamics, TUM School of Life and Food Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
45
|
Abstract
Collagen-based materials are widely used as adhesives in medicine and cosmetology. However, for several applications, their properties require modification. In this work, the influence of Melissa officinalis on the properties of collagen films was studied. Collagen was extracted from Silver Carp skin. Thin collagen films were prepared by solvent evaporation. The structure of films was researched using infrared spectroscopy. The surface properties of films were investigated using Atomic Force Microscopy (AFM). Mechanical properties were measured as well. Antioxidant activity was determined by spectrophotometric methods using DPPH free radicals, FRAP, and CUPRAC methods. Total phenolic compounds were determined by the Folin–Ciocalteau method. It was found that the addition of Melissa officinalis modified the roughness of collagen films and their mechanical properties. Moreover, the obtained material has antioxidant properties. The parameters mentioned above are very important in potential applications of collagen films containing Melissa officinalis in cosmetics.
Collapse
|
46
|
El Kharraf S, Faleiro ML, Abdellah F, El-Guendouz S, El Hadrami EM, Miguel MG. Simultaneous Hydrodistillation-Steam Distillation of Rosmarinus officinalis, Lavandula angustifolia and Citrus aurantium from Morocco, Major Terpenes: Impact on Biological Activities. Molecules 2021; 26:5452. [PMID: 34576924 PMCID: PMC8472154 DOI: 10.3390/molecules26185452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/23/2022] Open
Abstract
Interest in the use of essential oils (EOs) in the biomedical and food industries have seen growing over the last decades due to their richness in bioactive compounds. The challenges in developing an EO extraction process that assure an efficient levels of monoterpenes with impact on biological activities have driven the present study, in which the EO extraction process of rosemary, lavender and citrus was performed by simultaneous hydrodistillation-steam distillation, and the influence of EO composition on biological activities, namely antioxidant, anti-inflammatory, antidiabetic, anti-acetylcholinesterase, anti-tyrosinase, antibacterial, and antibiofilm activity, were evaluated. The EO yields of combinations were generally higher than the individual plants (R. officinalis (Ro), L. angustifolia (La), and C. aurantium (Ca)) extracted by the conventional hydrodistillation. The EOs obtained by this process generally had a better capacity for scavenging the free radicals, inhibiting α-glucosidase, and acetylcholinesterase activities than the individual EOs. The combination of EOs did not improve the ability for scavenging peroxide hydrogen or the capacity for inhibiting lipoxygenase activity. The antioxidant activity or the enzyme inhibition activity could not only be attributed to their major compounds because they presented lower activities than the EOs. The chemical composition of the combination Ro:La:Ca, at the ratio 1/6:1/6:2/3, was enriched in 1,8-cineole, linalool, and linalyl acetate and resulted in lower MIC values for all tested strains in comparison with the ratio 1/6:2/3:1/6 that was deprived on those components. The biofilm formation of Gram positive and Gram negative bacteria was impaired by the combination Ro:La:Ca at a sub-inhibitory concentration.
Collapse
Affiliation(s)
- Sara El Kharraf
- Applied Organic Chemistry Laboratory, Faculty of Sciences and Technique, University Sidi Mohamed Ben Abdellah, BP: 2202, Imouzzer, Fes 30000, Morocco; (S.E.K.); (F.A.); (E.M.E.H.)
- Faculdade de Ciências e Tecnologia, C8, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (M.L.F.); (S.E.-G.)
| | - Maria Leonor Faleiro
- Faculdade de Ciências e Tecnologia, C8, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (M.L.F.); (S.E.-G.)
- Algarve Biomedical Center, Research Institute, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Farah Abdellah
- Applied Organic Chemistry Laboratory, Faculty of Sciences and Technique, University Sidi Mohamed Ben Abdellah, BP: 2202, Imouzzer, Fes 30000, Morocco; (S.E.K.); (F.A.); (E.M.E.H.)
| | - Soukaïna El-Guendouz
- Faculdade de Ciências e Tecnologia, C8, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (M.L.F.); (S.E.-G.)
- Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, C8, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - El Mestafa El Hadrami
- Applied Organic Chemistry Laboratory, Faculty of Sciences and Technique, University Sidi Mohamed Ben Abdellah, BP: 2202, Imouzzer, Fes 30000, Morocco; (S.E.K.); (F.A.); (E.M.E.H.)
| | - Maria Graça Miguel
- Faculdade de Ciências e Tecnologia, C8, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (M.L.F.); (S.E.-G.)
- Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, C8, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
47
|
Chemical Composition, In Vitro and In Silico Antioxidant Potential of Melissa officinalis subsp. officinalis Essential Oil. Antioxidants (Basel) 2021; 10:antiox10071081. [PMID: 34356313 PMCID: PMC8301138 DOI: 10.3390/antiox10071081] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 01/16/2023] Open
Abstract
The investigation aimed to study the in vitro and in silico antioxidant properties of Melissa officinalis subsp. officinalis essential oil (MOEO). The chemical composition of MOEO was determined using GC–MS analysis. Among 36 compounds identified in MOEO, the main were beta-cubebene (27.66%), beta-caryophyllene (27.41%), alpha-cadinene (4.72%), caryophyllene oxide (4.09%), and alpha-cadinol (4.07%), respectively. In vitro antioxidant properties of MOEO have been studied in 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging, and inhibition of β-carotene bleaching assays. The half-maximal inhibitory concentration (IC50) for the radical scavenging abilities of ABTS and DPPH were 1.225 ± 0.011 μg/mL and 14.015 ± 0.027 μg/mL, respectively, demonstrating good antioxidant activity. Moreover, MOEO exhibited a strong inhibitory effect (94.031 ± 0.082%) in the β-carotene bleaching assay by neutralizing hydroperoxides, responsible for the oxidation of highly unsaturated β-carotene. Furthermore, molecular docking showed that the MOEO components could exert an in vitro antioxidant activity through xanthine oxidoreductase inhibition. The most active structures are minor MOEO components (approximately 6%), among which the highest affinity for the target protein belongs to carvacrol.
Collapse
|
48
|
Hayes M. Bioactive Peptides in Preventative Healthcare: An Overview of Bioactivities and Suggested Methods to Assess Potential Applications. Curr Pharm Des 2021; 27:1332-1341. [PMID: 33550961 DOI: 10.2174/1381612827666210125155048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
Food derived bioactive peptides can be generated from various protein sources and usually consist of between 2-30 amino acids with bulky, side-chain aromatic amino acids preferred in the ultimate and penultimate positions at the C-terminal end of the amino acid chain. They are reported to impart a myriad of preventative health beneficial effects to the consumer once ingested and these include heart health benefits through inhibition of enzymes including renin (EC 3.4.23.15) and angiotensin- I-converting enzyme (ACE-1; EC 3.4.15.1) within the renin angiotensin aldosterone system (RAAS) anti-inflammatory (due to inhibition of ACE-I and other enzymes) and anti-cancer benefits, prevention of type-2 diabetes through inhibition of dipeptidyl peptidase IV (DPP-IV), bone and dental strength, antimicrobial and immunomodulatory effects and several others. Peptides have also reported health benefits in the treatment of asthma, neuropathic pain, HIV and wound healing. However, the structure, amino acid composition and length of these peptides, along with the quantity of peptide that can pass through the gastrointestinal tract and often the blood-brain barrier (BBB), intact and reach the target organ, are important for the realisation of these health effects in an in vivo setting. This paper aims to collate recent important research concerning the generation and detection of peptides in the laboratory. It discusses products currently available as preventative healthcare peptide options and relevant legislation barriers to place a food peptide product on the market. The review also highlights useful in silico computer- based methods and analysis that may be used to generate specific peptide sequences from proteins whose amino acid sequences are known and also to determine if the peptides generated are unique and bioactive. The topic of food-derived bioactive peptides for health is of great interest to scientific research and industry due to evolving drivers in food product innovation, including health and wellness for the elderly, infant nutrition and optimum nutrition for sports athletes and the humanisation of pets. This paper provides an overview of what is required to generate bioactive peptide containing hydrolysates, what methods should be used in order to characterise the beneficial health effects of these hydrolysates and the active peptide sequences, potential applications of bioactive peptides and legislative requirements in Europe and the United States. It also highlights success stories and barriers to the development of peptide-containing food products that currently exist.
Collapse
Affiliation(s)
- Maria Hayes
- Food BioSciences Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
49
|
Elshamy AI, Mohamed TA, Ibrahim MAA, Atia MAM, Yoneyama T, Umeyama A, Hegazy MEF. Two novel oxetane containing lignans and a new megastigmane from Paronychia arabica and in silico analysis of them as prospective SARS-CoV-2 inhibitors. RSC Adv 2021; 11:20151-20163. [PMID: 35479905 PMCID: PMC9033657 DOI: 10.1039/d1ra02486h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/15/2021] [Indexed: 12/22/2022] Open
Abstract
The chemical characterization of the extract of the aerial parts of Paronychia arabica afforded two oxetane containing lignans, paronychiarabicine A (1) and B (2), and one new megastigmane, paronychiarabicastigmane A (3), alongside a known lignan (4), eight known phenolic compounds (5–12), one known elemene sesquiterpene (13) and one steroid glycoside (14). The chemical structures of the isolated compounds were constructed based upon the HRMS, 1D, and 2D-NMR results. The absolute configurations were established via NOESY experiments as well as experimental and TDDFT-calculated electronic circular dichroism (ECD). Utilizing molecular docking, the binding scores and modes of compounds 1–3 towards the SARS-CoV-2 main protease (Mpro), papain-like protease (PLpro), and RNA-dependent RNA polymerase (RdRp) were revealed. Compound 3 exhibited a promising docking score (−9.8 kcal mol−1) against SARS-CoV-2 Mpro by forming seven hydrogen bonds inside the active site with the key amino acids. The reactome pathway enrichment analysis revealed a correlation between the inhibition of GSK3 and GSK3B genes (identified as the main targets of megastigmane treatment) and significant inhibition of SARS-CoV-1 viral replication in infected Vero E6 cells. Our results manifest a novel understanding of genes, proteins and corresponding pathways against SARS-CoV-2 infection and could facilitate the identification and characterization of novel therapeutic targets as treatments of SARS-CoV-2 infection. The hydromethanolic extract of Paronychia arabica aerial parts afforded two oxetane containing lignans, paronychiarabicine A (1) and B (2), and one new megastigmane, paronychiarabicastigmane A (3), alongside a known secondary metabolites (4–14).![]()
Collapse
Affiliation(s)
- Abdelsamed I Elshamy
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University Yamashiro-cho Tokushima 770-8514 Japan.,Chemistry of Natural Compounds Department, National Research Centre Dokki Giza 12622 Egypt
| | - Tarik A Mohamed
- Chemistry of Medicinal Plants Department, National Research Centre 33 El-Bohouth St., Dokki Giza 12622 Egypt +20-233370931 +20-233371635
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| | - Mohamed A M Atia
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC) Giza 12619 Egypt
| | - Tatsuro Yoneyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University Yamashiro-cho Tokushima 770-8514 Japan
| | - Akemi Umeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University Yamashiro-cho Tokushima 770-8514 Japan
| | - Mohamed-Elamir F Hegazy
- Chemistry of Medicinal Plants Department, National Research Centre 33 El-Bohouth St., Dokki Giza 12622 Egypt +20-233370931 +20-233371635.,Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Staudinger Weg 5 55128 Mainz Germany
| |
Collapse
|
50
|
Vairinhos J, Miguel MG. Essential oils of spontaneous species of the genus Lavandula from Portugal: a brief review. ACTA ACUST UNITED AC 2021; 75:233-245. [PMID: 32452196 DOI: 10.1515/znc-2020-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022]
Abstract
Spontaneous lavender growing in uncultivated fields in Portugal have been used in traditional medicine for internal and external uses. The essential oils (EOs) of Lavandula stoechas subsp. luisieri are characterized by the presence of trans-α-necrodyl acetate and trans-necrodol. These EOs are able to prevent the generation and deposition of neurotoxic β-amyloid peptide in Alzheimer's disease. The EOs also present antibacterial, anti-fungal, anti-Leishmania, antioxidant, anti-inflammatory and antifeedant effects. In the case of hydrodistillation, the predominant compound of Lavandula viridis EO was 1,8-cineole, nevertheless in the case of supercritical fluid extraction, the main constituent was camphor. In in vitro shoots EOs, 1,8-cineole and α-pinene were the most important compounds. The EOs presented anti-fungal activity particularly against Cryptococcus neoformans and dermatophytes. The antioxidant and anti-protozoal activities of L. viridis EOs were lower than L. stoechas subsp. luisieri EOs, with hydrodistillation being the best method for obtaining samples with higher antioxidant and anti-acetylcholinesterase activities. The presence of fenchone, 1,8-cineole and camphor was a common trace of the Lavandula pedunculata subsp. pedunculata EOs and in in vitro axillary shoots EOs. Lavandula pedunculata subsp. lusitanica EOs were predominantly constituted of fenchone and camphor. The antioxidant activity of L. pedunculata subsp. lusitanica EOs was poorer than other Lavandula EOs from Portugal.
Collapse
Affiliation(s)
- Jessica Vairinhos
- Department of Chemistry and Pharmacy, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria Graça Miguel
- Mediterranean Institute for Agriculture, Environment and Development, Department of Chemistry and Pharmacy, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|