1
|
Magnani RF, Volpe HXL, Luvizotto RAG, Mulinari TA, Agostini TT, Bastos JK, Ribeiro VP, Carmo-Sousa M, Wulff NA, Peña L, Leal WS. α-Copaene is a potent repellent against the Asian Citrus Psyllid Diaphorina citri. Sci Rep 2025; 15:3564. [PMID: 39875401 PMCID: PMC11775201 DOI: 10.1038/s41598-025-86369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
The Asian Citrus Psyllid (ACP), Diaphorina citri, severely threatens citrus production worldwide by transmitting the greening (= Huanglongbing)-causing bacterium Candidatus Liberibacter asiaticus. There is growing evidence that the push-pull strategy is suitable to partially mitigate HLB by repelling ACP with transgenic plants engineered to produce repellents and attracting the vector to plants with a minimal disease transmission rate. Species that pull ACP away from commercial citrus plants have been identified, and transgenic plants that repel ACP have been developed. The concept of a repellent-producing plant was first demonstrated with an Arabidopsis line engineered to overexpress a gene controlling the synthesis of β-caryophyllene and other sesquiterpenes. We have analyzed the volatile organic compounds released by this Arabidopsis line and identified α-humulene, α-copaene, and trace amounts of β-elemene, in addition to β-caryophyllene. Behavioral measurements demonstrated that α-copaene repels ACP at doses ca. 100× lower than those needed for β-caryophyllene repellence. In contrast, α-humulene is innocuous at the level emitted by the transgenic plant. We confirmed that a mixture of the three sesquiterpenes in the ratio 1:100:10 repels ACP. Likewise, a commercial sample of copaiba oil containing the three sesquiterpenes, in a proportion similar to that in the transgenic plant, repelled ACP.
Collapse
Affiliation(s)
- Rodrigo Facchini Magnani
- Department of Research and Development, Fund for Citrus Protection (Fundecitrus), Araraquara, São Paulo, Brazil
| | | | | | - Tatiana Aparecida Mulinari
- Department of Research and Development, Fund for Citrus Protection (Fundecitrus), Araraquara, São Paulo, Brazil
| | - Thiago Trevisoli Agostini
- Department of Research and Development, Fund for Citrus Protection (Fundecitrus), Araraquara, São Paulo, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Victor Pena Ribeiro
- School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Michele Carmo-Sousa
- Department of Research and Development, Fund for Citrus Protection (Fundecitrus), Araraquara, São Paulo, Brazil
| | - Nelson Arno Wulff
- Department of Research and Development, Fund for Citrus Protection (Fundecitrus), Araraquara, São Paulo, Brazil
| | - Leandro Peña
- Department of Research and Development, Fund for Citrus Protection (Fundecitrus), Araraquara, São Paulo, Brazil
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones, Valencia, Spain
| | - Walter S Leal
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Cardinelli CC, Passos JTG, Veiga-Junior VF, de Oliveira BGRB, dos Santos EP, Neto GG, Di Piero KC, de Freitas ZMF. Skin Tear Treatment with Copaifera multijuga Hayne in Polymeric Hydrogel: A Randomized Clinical Trial. Pharmaceuticals (Basel) 2024; 17:1691. [PMID: 39770533 PMCID: PMC11677374 DOI: 10.3390/ph17121691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
A double-blind, randomized, and controlled clinical trial with therapeutic intervention was performed at a university hospital in Rio de Janeiro to evaluate whether the addition of Copaifera multijuga Hayne oleoresin to a carboxypolymethylene hydrogel is more effective in skin tear healing than standard treatment. The sample consisted of 84 patients, predominantly men, with a mean age of 67.37 years. These participants were divided into three groups (29 in the intervention group, which received 10% Copaifera oleoresin; 28 in the intervention group, which received 2% Copaifera oleoresin; and 27 in the control group, which received carboxypolymethylene hydrogel). Data were tabulated and analyzed according to the relevant protocols and included only patients who had completed the treatment, while losses were excluded. Weekly follow-ups were conducted to monitor progress. The average healing time differed among the three groups (p > 0.05). There was also a significant difference in healing time between the two intervention groups. Ultimately, CopaibaPolyHy-2 led to significantly faster wound healing than CopaibaPolyHy-10 (p < 0.05). A high increase in granulation and epithelial tissue and a decrease in exudate quantity were observed in the CopaibaPolyHy-2 group. It was not possible to infer whether the wound size reduction differed between the treatments (p > 0.05). At the end of the study, 100% of wounds were healed, with 47,6% healing in week 2 (n = 40). No participants experienced local or serious adverse effects throughout the study period. The current study shows that CopaibaPolyHy-2 is effective, offering a statistically significantly faster healing time, better-quality tissue, and safe treatment for skin tears.
Collapse
Affiliation(s)
- Camila Castanho Cardinelli
- Department of Drugs and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jéssica Teixeira Gâmba Passos
- Department of Drugs and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | | | - Elisabete Pereira dos Santos
- Department of Drugs and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | - Karina Chamma Di Piero
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Zaida Maria Faria de Freitas
- Department of Drugs and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
3
|
Taffarel M, da Silva BS, Paulino AMB, Telles LO, Mendonça ST, dos Santos CV, Giordani MA, Nascimento AF, Aguiar DH, Sinhorin VDG, Andrighetti CR, Luvizotto RDAM, Bomfim GF. Copaiba Oleoresin Improves Weight Gain and IL-10 Concentration, with No Impact on Hepatic Histology, in Liver Cirrhosis. BIOLOGY 2024; 13:853. [PMID: 39596809 PMCID: PMC11591688 DOI: 10.3390/biology13110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
Copaifera sp. is a native tree in the Amazon region. Copaiba oleoresin has components such as sesquiterpenes, which have anti-inflammatory and antioxidant potential. Liver cirrhosis is the end stage of liver disease with limited therapeutic options. We aimed to evaluate the effect of copaiba oleoresin supplementation on the liver of animals with thioacetamide (TAA)-induced cirrhosis. For the induction of liver cirrhosis, 100 mg/kg of TAA was administered intraperitoneally twice a week for 8 weeks. A total of 200 mg/kg/day of copaiba oleoresin was administered via gavage for the same period. Copaiba oleoresin supplementation improved cirrhosis-associated cachexia by increasing weight gain and body fat. In addition, copaiba oleoresin attenuated systemic inflammation, as shown by the decrease in the circulating C-reactive protein. In the liver, the copaiba oleoresin decreased carbonyl proteins and increased IL-10 compared with TAA-treated rats. TAA groups demonstrated increased SOD, catalase, GST, and GSH activity in the liver. In conclusion, the supplementation of copaiba oleoresin demonstrated a beneficial systemic effect in alleviating cirrhotic cachexia and antioxidant and anti-inflammatory action in the liver. However, it failed to improve the serological and histological markers of liver damage, which could be associated with the advanced stage of the disease.
Collapse
Affiliation(s)
- Maiara Taffarel
- NUPADS—Center for Research and Teaching Support in Health, Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (M.T.); (B.S.d.S.); (A.M.B.P.); (L.O.T.); (S.T.M.); (C.V.d.S.); (M.A.G.); (A.F.N.); (R.d.A.M.L.)
| | - Bianca Sulzbacher da Silva
- NUPADS—Center for Research and Teaching Support in Health, Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (M.T.); (B.S.d.S.); (A.M.B.P.); (L.O.T.); (S.T.M.); (C.V.d.S.); (M.A.G.); (A.F.N.); (R.d.A.M.L.)
| | - Angélica Macedo Borgês Paulino
- NUPADS—Center for Research and Teaching Support in Health, Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (M.T.); (B.S.d.S.); (A.M.B.P.); (L.O.T.); (S.T.M.); (C.V.d.S.); (M.A.G.); (A.F.N.); (R.d.A.M.L.)
| | - Luciana Ortega Telles
- NUPADS—Center for Research and Teaching Support in Health, Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (M.T.); (B.S.d.S.); (A.M.B.P.); (L.O.T.); (S.T.M.); (C.V.d.S.); (M.A.G.); (A.F.N.); (R.d.A.M.L.)
| | - Sabrina Trigueiro Mendonça
- NUPADS—Center for Research and Teaching Support in Health, Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (M.T.); (B.S.d.S.); (A.M.B.P.); (L.O.T.); (S.T.M.); (C.V.d.S.); (M.A.G.); (A.F.N.); (R.d.A.M.L.)
| | - Cintia Vieira dos Santos
- NUPADS—Center for Research and Teaching Support in Health, Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (M.T.); (B.S.d.S.); (A.M.B.P.); (L.O.T.); (S.T.M.); (C.V.d.S.); (M.A.G.); (A.F.N.); (R.d.A.M.L.)
| | - Morenna Alana Giordani
- NUPADS—Center for Research and Teaching Support in Health, Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (M.T.); (B.S.d.S.); (A.M.B.P.); (L.O.T.); (S.T.M.); (C.V.d.S.); (M.A.G.); (A.F.N.); (R.d.A.M.L.)
| | - André Ferreira Nascimento
- NUPADS—Center for Research and Teaching Support in Health, Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (M.T.); (B.S.d.S.); (A.M.B.P.); (L.O.T.); (S.T.M.); (C.V.d.S.); (M.A.G.); (A.F.N.); (R.d.A.M.L.)
- ICS—Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil;
| | - Danilo Henrique Aguiar
- ICNHS—Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil;
| | - Valéria Dornelles Gindri Sinhorin
- Postgraduate Program in Biotechnology and Biodiversity of the Pro Centro-Oeste Network, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil;
| | - Carla Regina Andrighetti
- ICS—Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil;
| | - Renata de Azevedo Melo Luvizotto
- NUPADS—Center for Research and Teaching Support in Health, Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (M.T.); (B.S.d.S.); (A.M.B.P.); (L.O.T.); (S.T.M.); (C.V.d.S.); (M.A.G.); (A.F.N.); (R.d.A.M.L.)
- ICS—Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil;
| | - Gisele Facholi Bomfim
- NUPADS—Center for Research and Teaching Support in Health, Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil; (M.T.); (B.S.d.S.); (A.M.B.P.); (L.O.T.); (S.T.M.); (C.V.d.S.); (M.A.G.); (A.F.N.); (R.d.A.M.L.)
- ICS—Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil;
| |
Collapse
|
4
|
Lima EAS, Campos DR, Soares EFMS, Fortunato ABR, Silva TME, de Figueiredo Pereira N, Chaves DSDA, Cid YP, Coumendouros K. Insecticidal and Repellent Activity of Essential Oils from Copaifera reticulata, Citrus paradisi, Lavandula hybrida and Salvia sclarea Against Immature and Adult Stages of Ctenocephalides felis felis. Acta Parasitol 2024; 69:1426-1438. [PMID: 39147955 DOI: 10.1007/s11686-024-00874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
PURPOSE The flea Ctenocephalides felis (Siphonaptera: Pulicidae), parasitizes dogs and cats globally, acting as a vector for various pathogens affecting both animals and humans. Growing interest in environmentally friendly, plant-based products prompted this study. The aim of the study was to determine the chemical composition of essential oils (EOs) from Copaifera reticulata, Citrus paradisi, Lavandula hybrida and Salvia sclarea, assessing their insecticidal and repellent properties, determining lethal concentrations (LC50 and LC90), and evaluating residual efficacy in vitro against Ctenocephalides felis felis. METHODS Gas Chromatography with Flame Ionization Detector analyzed EO composition. In vitro tests involved preparing EO solutions at various concentrations. Ten specimens from each life stage (egg, larva, pupa, adult) were used for insecticidal activity assessment. Adulticidal activity was assessed using 10 cm2 filter paper strip, each treated with 0.200 mL of the test solution. Immature stages activities were evaluated using 23.76 cm2 discs of the same filter paper, each treated with 0.470 mL of the test solution. Mortality percentage was calculated using (number of dead insects × 100) / number of incubated insects. Probit analysis calculated LC50 values with a 95% confidence interval. RESULTS Major EO constituents were β-caryophyllene (EOCR), linalool (EOLH), linalyl acetate (EOSS), and limonene (EOCP). LC50 values were obtained for all stages except for the essential oil of C. paradisi. All oils showed repellent activity at 800 μg/cm2. OECR exhibited greater residual efficacy. CONCLUSION Each EO demonstrated superior insecticidal activity against specific C. felis felis stages.
Collapse
Affiliation(s)
- Emily Andressa Santos Lima
- Laboratory of Experimental Chemotherapy in Veterinary Parasitology (LQEPV), Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, BR 465, Km 7, Seropedica, Rio de Janeiro, 23890-000, Brazil
| | - Diefrey Ribeiro Campos
- Laboratory of Experimental Chemotherapy in Veterinary Parasitology (LQEPV), Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, BR 465, Km 7, Seropedica, Rio de Janeiro, 23890-000, Brazil
| | - Eduardo Fellipe Melo Santos Soares
- Laboratory of Experimental Chemotherapy in Veterinary Parasitology (LQEPV), Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, BR 465, Km 7, Seropedica, Rio de Janeiro, 23890-000, Brazil.
| | - Anna Beatriz Ribeiro Fortunato
- Laboratory of Experimental Chemotherapy in Veterinary Parasitology (LQEPV), Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, BR 465, Km 7, Seropedica, Rio de Janeiro, 23890-000, Brazil
| | - Taynara Monsores E Silva
- Laboratory of Experimental Chemotherapy in Veterinary Parasitology (LQEPV), Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, BR 465, Km 7, Seropedica, Rio de Janeiro, 23890-000, Brazil
| | - Nayana de Figueiredo Pereira
- Laboratory of Pharmacognosy and Bioactive Natural, Pharmaceutical Sciences Department, Health and Biological Science Institute, Federal Rural University of Rio de Janeiro, BR 465, Km 7, Seropedica, Rio de Janeiro, 23890-000, Brazil
| | - Douglas Siqueira de Almeida Chaves
- Laboratory of Pharmacognosy and Bioactive Natural, Pharmaceutical Sciences Department, Health and Biological Science Institute, Federal Rural University of Rio de Janeiro, BR 465, Km 7, Seropedica, Rio de Janeiro, 23890-000, Brazil
| | - Yara Peluso Cid
- Pharmaceutical Sciences Department, Health and Biological Science Institute, Federal Rural University of Rio de Janeiro, BR 465, Km 7, Seropedica, Rio de Janeiro, 23890-000, Brazil
| | - Katherina Coumendouros
- Laboratory of Experimental Chemotherapy in Veterinary Parasitology (LQEPV), Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, BR 465, Km 7, Seropedica, Rio de Janeiro, 23890-000, Brazil
| |
Collapse
|
5
|
de Mello NP, Carlos Ramos Espinoza F, da Silva Claudiano G, Yunis-Aguinaga J, Graça de Oliveira Carvalho J, Elizabeth Almeida Silva J, Cristina Pacheco de Oliveira E, Rodini Engrácia de Moraes J. Copaiba oil's bactericidal activity and its effects on health and zootechnical performance for Nile tilapia after oral supplementation. Sci Rep 2024; 14:17405. [PMID: 39075092 PMCID: PMC11286787 DOI: 10.1038/s41598-024-66024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Tilapia is one of the most important farmed fish in the world and the most cultivated in Brazil. The increase of this farming favors the appearance of diseases, including bacterial diseases. Therefore, the aim of this study was to evaluate the bactericidal activity of copaiba oil, Copaifera duckei, against Streptococcus agalactiae and Flavobacterium columnare and the dietary effect of copaiba oil on zootechnical performance, hematological, biochemical, immunological, and histological analysis before and after an intraperitoneal infection (body cavity) with S. agalactiae in Nile tilapia. For this, fish were randomly distributed into 15 fiber tanks in five treatments (0, 0.25, 0.50, 0.75, and 1.0%) and fed with a commercial diet supplemented with copaiba oil for 30 days. After this period, the fish were randomly redistributed for the experimental challenge with S. agalactiae into six treatments (T0, T1, T2, T3, T4, and T5), the fish were anesthetized, and blood samples were collected to assess hematological, biochemical, immunological, and histological parameters. Copaiba oil showed bactericidal activity against Streptococcus spp. and Flavobacterium spp. in vitro. In addition, concentrations of 0.75 and 1.0% of copaiba oil have an anti-inflammatory effect and improve hematological and immunological parameters, increasing leukocyte numbers, albumin, and serum lytic activity. Furthermore, there is an increase in the intestinal villus length and tissue damage in groups at concentrations of 0.75 and 1.0% of copaiba oil. In conclusion, copaiba oil presented bactericidal activity against Streptococcus spp. and Flavobacterium spp. in vitro, and oral supplementation at concentrations of 0.75 and 1.0% compared to the control group enhanced non-specific immune parameters and digestibility in Nile Tilapia.
Collapse
Affiliation(s)
- Nicoli Paganoti de Mello
- Postgraduated Program in Aquaculture/Aquaculture Center of UNESP, Caunesp, Jaboticabal, , São Paulo, Brazil
| | | | - Gustavo da Silva Claudiano
- Institute of Biodversity and Forests, Federal University of Western Pará, UFOPA-IBEF, Rua Vera Paz, s/n (Unidade Tapajós) Bairro Salé, Santarém, PA, CEP 68040-255, Brazil.
| | | | | | | | - Elaine Cristina Pacheco de Oliveira
- Institute of Biodversity and Forests, Federal University of Western Pará, UFOPA-IBEF, Rua Vera Paz, s/n (Unidade Tapajós) Bairro Salé, Santarém, PA, CEP 68040-255, Brazil
| | - Julieta Rodini Engrácia de Moraes
- Department of Pathology, Theriogenology and One Health, Faculty of Agrarian and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil.
- UNESP / Access Road Professor Paulo Donato Castelane Castellane S/N - Vila Industrial, Jaboticabal, 14884-900, Brazil.
| |
Collapse
|
6
|
Pontes ER, de Souza Guedes L, da Silva TF, Barbosa FCB, de Souza BWS, de Freitas Rosa M, Vieira RS, Andrade FK. Development of silanized bacterial cellulose aerogels for the incorporation of natural oils with healing properties: Copaiba (Copaifera officinalis), bourbon geranium (Pelargonium X ssp.) essential oils and buriti (Mauritia flexuosa) vegetable oil. Int J Biol Macromol 2024; 269:132266. [PMID: 38777689 DOI: 10.1016/j.ijbiomac.2024.132266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Bacterial cellulose (BC) represents a promising biomaterial, due to its unique and versatile properties. We report, herein, on purposely-designed structural modifications of BC that enhance its application as a wound dressing material. Chemical modification of the functional groups of BC was performed initially to introduce a hydrophobic/oleophilic character to its surface. Specifically, silanization was carried out in an aqueous medium using methyltrimethoxisilane (MTMS) as the silanizing agent, and aerogels were subsequently prepared by freeze-drying. The BC-MTMS aerogel obtained displayed a highly porous (99 %) and lightweight structure with an oil absorption capacity of up to 52 times its dry weight. The XRD pattern indicated that the characteristic crystallographic planes of the native BC were maintained after the silanization process. Thermal analysis showed that the thermal stability of the BC-MTMS aerogel increased, as compared to the pure BC aerogel (pBC). Moreover, the BC-MTMS aerogel was not cytotoxic to fibroblasts and keratinocytes. In the second step of the study, the incorporation of natural oils into the aerogel's matrix was found to endow antimicrobial and/or healing properties to BC-MTMS. Bourbon geranium (Pelargonium X ssp.) essential oil (GEO) was the only oil that exhibited antimicrobial activity against the tested microorganisms, whereas buriti (Mauritia flexuosa) vegetable oil (BVO) was non-cytotoxic to the cells. This study demonstrates that the characteristics of the BC structure can be modified, while preserving its intrinsic features, offering new possibilities for the development of BC-derived materials for specific applications in the biomedical field.
Collapse
Affiliation(s)
- Evellheyn Rebouças Pontes
- Department of Chemical Engineering, Research Laboratory of Biomaterials and Bioproducts, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil
| | - Luciana de Souza Guedes
- Department of Chemical Engineering, Research Laboratory of Biomaterials and Bioproducts, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil
| | - Thamyres Freire da Silva
- Department of Chemical Engineering, Research Laboratory of Biomaterials and Bioproducts, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil
| | | | | | | | - Rodrigo Silveira Vieira
- Department of Chemical Engineering, Research Laboratory of Biomaterials and Bioproducts, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil.
| | - Fábia Karine Andrade
- Department of Chemical Engineering, Research Laboratory of Biomaterials and Bioproducts, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil.
| |
Collapse
|
7
|
Pedrinha VF, Santos LM, Gonçalves CP, Garcia MT, Lameira OA, Queiroga CL, Marcucci MC, Shahbazi MA, Sharma PK, Junqueira JC, Sipert CR, de Andrade FB. Effects of natural antimicrobial compounds propolis and copaiba on periodontal ligament fibroblasts, molecular docking, and in vivo study in Galleria mellonella. Biomed Pharmacother 2024; 171:116139. [PMID: 38198959 DOI: 10.1016/j.biopha.2024.116139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Root canal treatment addresses infectious processes that require control. Occasionally, the radicular pulp is vital and inflamed, presenting a superficial infection. To preserve pulpal remnants, conservative procedures have gained favor, employing anti-inflammatory medications. This study investigated the effects of propolis (PRO), and copaiba oil-resin (COR) associated with hydrocortisone (H) and compared their impact to that of Otosporin® concerning cytotoxic and genotoxic activity, cytokine detection, and toxicity in the Galleria mellonella model. Human periodontal ligament fibroblasts (PDLFs) were exposed to drug concentrations and evaluated by the MTT assay. Associations were tested from concentrations that did not compromise cell density. Genotoxicity was evaluated through micronucleus counting, while cytokines IL-6 and TGF-β1 were detected in the cell supernatant using ELISA. Molecular docking simulations were conducted, considering the major compounds identified in PRO, COR, and H. Increasing concentrations of PRO and COR were assessed for acute toxicity in Galleria mellonella model. Cellular assays were analyzed using one-way ANOVA followed by Tukey tests, while larval survivals were evaluated using the Log-rank (Mantel-Cox) test (α = 0.05). PRO and COR promoted PDLFs proliferation, even in conjunction with H. No changes in cell metabolism were observed concerning cytokine levels. The tested materials induce the release of AT1R, proliferating the PDFLs through interactions. PRO and COR had low toxicity in larvae, suggesting safety at tested levels. These findings endorse the potential of PRO and COR in endodontics and present promising applications across medical domains, such as preventive strategies in inflammation, shedding light on their potential development into commercially available drugs.
Collapse
Affiliation(s)
- Victor Feliz Pedrinha
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB - USP), Bauru, São Paulo, Brazil; Department of Biomaterials and Biomedical Technology (BBT), University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands.
| | - Letícia Martins Santos
- Department of Operative Dentistry, School of Dentistry, University of São Paulo (FO-USP), São Paulo, Brazil
| | | | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
| | | | - Carmen Lucia Queiroga
- State University of Campinas, CPQBA, Division of Phytochemistry, Campinas, São Paulo, Brazil
| | - Maria Cristina Marcucci
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology (BBT), University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands
| | - Prashant Kumar Sharma
- Department of Biomaterials and Biomedical Technology (BBT), University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
| | - Carla Renata Sipert
- Department of Operative Dentistry, School of Dentistry, University of São Paulo (FO-USP), São Paulo, Brazil
| | - Flaviana Bombarda de Andrade
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB - USP), Bauru, São Paulo, Brazil
| |
Collapse
|
8
|
de Moraes LS, Galué-Parra AJ, Hage AAP, Moura HA, Garcia MSA, Macêdo CG, Rodrigues APD, Guilhon GMSP, da Silva EO. In Vitro Leishmanicidal Activity of Copaiba Oil and Kojic Acid Combination on the Protozoan Leishmania (Leishmania) amazonensis and Host Cell. Microorganisms 2023; 11:2925. [PMID: 38138069 PMCID: PMC10745933 DOI: 10.3390/microorganisms11122925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Leishmaniasis refers to a group of anthropozoonotic diseases caused by Leishmania. The major chemotherapeutic agent used for its treatment is Glucantime®®, but the search continues for new compounds that are economically viable and act on the protozoan without causing damage to the host cell. As an alternative approach, this study used a combination of copaiba oil (CO) and kojic acid (KA) to determine their in vitro action on host cells, on the Leishmania (Leishmania) amazonensis protozoan and its interaction with macrophages. (2) Methods: In vitro culture, analysis of cytokine release and microscopy assays were performed. Statistical analysis was performed with ANOVA (GraphPad Prism). (3) Results: The combination did not induce cytotoxic effects on macrophages after treatment but promoted morphological changes in the protozoan, such as nuclear alterations (apoptotic characteristics), alterations in the cellular body and an increase in the number of electrodense structures and acidocalcisomes, observed mainly at the concentrations of CO20KA50 and CO30KA50 μg/mL. We observed reductions in the intracellular amastigote number and in the production of proinflammatory cytokines, such as IL-6 and TNF-α, after treatment with CO30KA at 50 µg/mL. (4) Conclusions: We report here, for the first time, that the combination of CO and KA may be a promising approach against Leishmania (Leishmania) amazonensis.
Collapse
Affiliation(s)
- Lienne Silveira de Moraes
- Pharmaceutical Sciences Post Graduation Program, Health and Biological Sciences Department, Federal University of Amapa (UNIFAP), Macapa 68903-419, AP, Brazil;
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.J.G.-P.); (A.A.P.H.); (H.A.M.); (M.S.A.G.); (C.G.M.)
- National Institute of Science and Technology in Structural Biology and Bioimaging, Rio de Janeiro 21040-900, RJ, Brazil;
| | - Adan Jesús Galué-Parra
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.J.G.-P.); (A.A.P.H.); (H.A.M.); (M.S.A.G.); (C.G.M.)
| | - Amanda Anastácia Pinto Hage
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.J.G.-P.); (A.A.P.H.); (H.A.M.); (M.S.A.G.); (C.G.M.)
- National Institute of Science and Technology in Structural Biology and Bioimaging, Rio de Janeiro 21040-900, RJ, Brazil;
| | - Hévila Aragão Moura
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.J.G.-P.); (A.A.P.H.); (H.A.M.); (M.S.A.G.); (C.G.M.)
| | - Marcus Savio Araujo Garcia
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.J.G.-P.); (A.A.P.H.); (H.A.M.); (M.S.A.G.); (C.G.M.)
| | - Caroline Gomes Macêdo
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.J.G.-P.); (A.A.P.H.); (H.A.M.); (M.S.A.G.); (C.G.M.)
| | - Ana Paula Drummond Rodrigues
- National Institute of Science and Technology in Structural Biology and Bioimaging, Rio de Janeiro 21040-900, RJ, Brazil;
- Laboratory of Electron Microscopy, Evandro Chagas’s Institute, Department of Health Surveillance, Ministry of Health, Belém 70723-040, PA, Brazil
| | | | - Edilene Oliveira da Silva
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.J.G.-P.); (A.A.P.H.); (H.A.M.); (M.S.A.G.); (C.G.M.)
- National Institute of Science and Technology in Structural Biology and Bioimaging, Rio de Janeiro 21040-900, RJ, Brazil;
| |
Collapse
|
9
|
Frazão DR, Cruz JN, Santana de Oliveira M, Baia-da-Silva DC, Nazário RMF, Rodrigues MFDL, Saito MT, Souza-Rodrigues RD, Lima RR. Evaluation of the biological activities of Copaiba ( Copaifera spp): a comprehensive review based on scientometric analysis. Front Pharmacol 2023; 14:1215437. [PMID: 37719866 PMCID: PMC10502340 DOI: 10.3389/fphar.2023.1215437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/31/2023] [Indexed: 09/19/2023] Open
Abstract
Copaíba oil-resin is extracted from the trunk of the Copaíba tree and has medicinal, cosmetic, and industrial properties. As a result, widespread knowledge about the use of Copaíba oil-resin has evolved, attracting the scientific community's attention. This paper aims to map the global knowledge production regarding the biological activities of Copaíba (Copaifera spp.). Bibliometric methodological instruments were used to conduct a search of the Web of Science-Core Collection database. The search resulted in 822 references. After screening titles and abstracts, 581 references did not meet the eligibility criteria, leaving 246 references for full-text examination. Subsequently, 15 studies were excluded, resulting in a final set of 232 records for the bibliometric analysis. In vitro was the most published study type, mainly from Brazil, from 2010 to 2020. Regarding the authors, Bastos, JK, and Ambrosio, SR were the ones with the most significant number of papers included. The most frequent keywords were Copaíba oil, Copaíba, and Copaifera. Our findings revealed global study trends about Copaíba, mainly related to its various effects and use over time. In general, all countries have conducted more research on antimicrobial and anti-inflammatory activities, also exposing its antioxidant and healing properties. Copaifera reticulata was the most investigated, followed by Copaifera langsdorffi and Copaifera multijuga in both in vitro and in vivo studies. Therefore, there is a need for human reports, given the promising results that Copaíba oils have been demonstrating.
Collapse
Affiliation(s)
- Deborah Ribeiro Frazão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Jorddy Neves Cruz
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | | | - Daiane Claydes Baia-da-Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rayssa Maitê Farias Nazário
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | | | - Miki Taketomi Saito
- Faculty of Dentistry, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Renata Duarte Souza-Rodrigues
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
10
|
Nogueira Barradas T, Araujo Cardoso S, de Castro Grimaldi P, Lohan-Codeço M, Escorsim Machado D, Medina de Mattos R, Eurico Nasciutti L, Palumbo A. Development, characterization and evidence of anti-endometriotic activity of Phytocannabinoid-Rich nanoemulsions. Int J Pharm 2023; 643:123049. [PMID: 37196880 DOI: 10.1016/j.ijpharm.2023.123049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
During the last decades, the cannabinoid research for therapeutic purposes has been rapidly advancing, with an ever-growing body of evidence of beneficial effects for a wide sort of conditions, including those related to mucosal and epithelial homeostasis, inflammatory processes, immune responses, nociception, and modulating cell differentiation. β-caryophyllene (BCP) is a lipophilic volatile sesquiterpene, known as non-cannabis-derived phytocannabinoid, with documented anti-inflammatory, anti-proliferative and analgesic effects in both in vitro and in vivo models. Copaiba oil (COPA) is an oil-resin, mainly composed of BCP and other lipophilic and volatile components. COPA is reported to show several therapeutic effects, including anti-endometriotic properties and its use is widespread throughout the Amazonian folk medicine. COPA was nanoencapsulated into nanoemulsions (NE), then evaluated regarding the potential for transvaginal drug delivery and providing endometrial stromal cell proliferation in vitro. Transmission electron microscopy (TEM) showed that spherical NE were obtained with COPA concentration that varied from 5 to 7 wt%, while surfactant was maintained at 7.75 wt%. Dynamic light scattering (DLS) measurements showed droplet sizes of 30.03 ± 1.18, 35.47 ± 2.02, 43.98 ± 4.23 and PdI of 0.189, 0.175 and 0.182, respectively, with stability against coalescence and Ostwald ripening during 90 days. Physicochemical characterization results suggest that NE were able to both improve solubility and loading capacity, and increase thermal stability of COPA volatile components. Moreover, they showed slow and sustained release for up to eight hours, following the Higuchi kinetic model. Endometrial stromal cells from non-endometriotic lesions and ectopic endometrium were treated with different concentrations of COPA-loaded NE for 48 h to evaluate its effect on cell viability and morphology. The results suggested significant decrease in cell viability and morphological modifications in concentrations higher than 150 μg/ml of COPA-loaded NE, but not when cells were treated with the vehicle (without COPA). Given the relevance of Copaifera spp. species in folk medicine and their bio economical importance in the Amazon, the development of novel formulations to overcome the technological limitations related to BCP and COPA, is promising. Our results showed that COPA-loaded NE can lead to a novel, uterus-targeting, more effective and promising natural alternative treatment of endometriosis.
Collapse
Affiliation(s)
- Thaís Nogueira Barradas
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), R. José Lourenço Kelmer, s/n, Juiz de Fora, Zip Code: 36036-900, Brazil.
| | - Stephani Araujo Cardoso
- Programa de Pós-Graduação em Ciência e Tecnologia de Polímeros, Instituto de Macromoléculas. Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Ilha do Fundão, Rio de Janeiro Zip Code: 21941-902, Brazil
| | - Paloma de Castro Grimaldi
- Instituto Federal do Rio de Janeiro (IFRJ), Rua Senador Furtado, n° 121/125, Maracanã, Rio de Janeiro Zip Code: 20260-100, Brazil
| | - Matheus Lohan-Codeço
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1766 (LS.3.01), Cidade Universitária, Ilha do Fundão, Rio de Janeiro Zip Code: 21941-902, Brazil
| | - Daniel Escorsim Machado
- Laboratório de Pesquisa em Ciências Farmacêuticas (LAPESF), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brasil
| | - Romulo Medina de Mattos
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1766 (LS.3.01), Cidade Universitária, Ilha do Fundão, Rio de Janeiro Zip Code: 21941-902, Brazil
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1766 (LS.3.01), Cidade Universitária, Ilha do Fundão, Rio de Janeiro Zip Code: 21941-902, Brazil
| | - Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1766 (LS.3.01), Cidade Universitária, Ilha do Fundão, Rio de Janeiro Zip Code: 21941-902, Brazil
| |
Collapse
|
11
|
de Oliveira MC, Balbinot RB, Villa Nova M, Gonçalves RS, Bidóia DL, Caetano W, Nakamura CV, Bruschi ML. Development of Environmentally Responsive Self-Emulsifying System Containing Copaiba Oil-Resin for Leishmaniasis Oral Treatment. Pharmaceutics 2023; 15:2127. [PMID: 37631341 PMCID: PMC10459651 DOI: 10.3390/pharmaceutics15082127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Leishmaniasis is a disease caused by protozoa species of the Leishmania genus, and the current treatments face several difficulties and obstacles. Most anti-leishmanial drugs are administered intravenously, showing many side effects and drug resistance. The discovery of new anti-leishmanial compounds and the development of new pharmaceutical systems for more efficient and safer treatments are necessary. Copaiba oil-resin (CO) has been shown to be a promising natural compound against leishmaniasis. However, CO displays poor aqueous solubility and bioavailability. Self-emulsifying drug delivery systems (SEDDS) can provide platforms for release of hydrophobic compounds in the gastrointestinal tract, improving their aqueous solubilization, absorption and bioavailability. Therefore, the present work aimed to develop SEDDS containing CO and Soluplus® surfactant for the oral treatment of leishmaniasis. The design of the systems was accomplished using ternary phase diagrams. Emulsification and dispersion time tests were used to investigate the emulsification process in gastric and intestinal environments. The formulations were nanostructured and improved the CO solubilization. Their in vitro antiproliferative activity against promastigote forms of L. amazonensis and L. infantum, and low in vitro cytotoxicity against macrophages were also observed. More studies are necessary to determine effectiveness of SOL in these systems, which can be candidates for further pharmacokinetics and in vivo investigations.
Collapse
Affiliation(s)
- Mariana Carla de Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Av. Colombo 5790, Maringa 87020-900, PR, Brazil; (M.C.d.O.); (M.V.N.)
| | - Rodolfo Bento Balbinot
- Postgraduate Program in Biological Sciences, Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, Department of Health Basic Sciences, State University of Maringa, Av. Colombo 5790, Maringa 87020-900, PR, Brazil; (R.B.B.); (D.L.B.); (C.V.N.)
| | - Mônica Villa Nova
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Av. Colombo 5790, Maringa 87020-900, PR, Brazil; (M.C.d.O.); (M.V.N.)
| | - Renato Sonchini Gonçalves
- Research Nucleus in Photodynamic Systems and Nanomedicine, Department of Chemistry, State University of Maringa, Av. Colombo 5790, Maringa 87020-900, PR, Brazil; (R.S.G.); (W.C.)
| | - Danielle Lazarin Bidóia
- Postgraduate Program in Biological Sciences, Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, Department of Health Basic Sciences, State University of Maringa, Av. Colombo 5790, Maringa 87020-900, PR, Brazil; (R.B.B.); (D.L.B.); (C.V.N.)
| | - Wilker Caetano
- Research Nucleus in Photodynamic Systems and Nanomedicine, Department of Chemistry, State University of Maringa, Av. Colombo 5790, Maringa 87020-900, PR, Brazil; (R.S.G.); (W.C.)
| | - Celso Vataru Nakamura
- Postgraduate Program in Biological Sciences, Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, Department of Health Basic Sciences, State University of Maringa, Av. Colombo 5790, Maringa 87020-900, PR, Brazil; (R.B.B.); (D.L.B.); (C.V.N.)
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Av. Colombo 5790, Maringa 87020-900, PR, Brazil; (M.C.d.O.); (M.V.N.)
| |
Collapse
|
12
|
Pinheiro Pinto E, Olivia Alves Mendes da Costa S, D'Haese C, Nysten B, Paiva Machado F, Machado Rocha L, Marcolino de Souza T, Beloqui A, Resende Machado R, Silva Araújo R. Poly-ɛ-caprolactone nanocapsules loaded with copaiba essential oil reduce inflammation and pain in mice. Int J Pharm 2023:123147. [PMID: 37336298 DOI: 10.1016/j.ijpharm.2023.123147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Diverse drugs have been used for the management of inflammation disorders and pain. However, they present many side effects and stimulate the search for new pharmacotherapeutic alternatives. Plant-derived products such as copaiba essential oil (CO) offer beneficial pharmacological effects. On the other hand, essential oil's low water solubility and physical instability hinder itsin vivoapplication. Thus, poly-ɛ-caprolactone (PCL)-based nanocarriers have been used to increase their stability and efficacy. This work aimed to encapsulate CO in PCL nanocapsules and evaluate their effect on inflammation models and pain. The polymeric nanocapsules loading CO (CO-NC) were prepared by nanoprecipitation technique, characterized, and analyzed for their anti-inflammatory effectin vitroandin vivo. The results showed that CO-NC presented a spherical shape, 229.3 ± 1.5 nm diameter, and a negative zeta potential (approximately -23 mV). CO and CO-NC presented anti-inflammatory and antioxidant effects by LPS-activated macrophages (J774 cells). In addition, CO-NC significantly reduced TNF-α secretion (3-fold) compared to CO.In vivo, pre-treatment with CO or CO-NC (50, 100, 200 mg/kg, intraperitoneal; i.p) reduced the mechanical allodynia, paw edema, and pro-inflammatory cytokines induced by intraplantar (i.pl) injection of carrageenan in mice. Specifically, CO-NC (200 mg/kg; i.p.) reduced the production of TNF-α similar to the control group. Our results support using polymeric nanocapsules for CO delivery in inflammatory conditions.
Collapse
Affiliation(s)
| | | | - Cecile D'Haese
- Université Catholique de Louvain, Institute of Condensed Matter and Nanosciences, Bio & Soft Matter, 1348 Louvain-la-Neuve, Belgium
| | - Bernard Nysten
- Université Catholique de Louvain, Institute of Condensed Matter and Nanosciences, Bio & Soft Matter, 1348 Louvain-la-Neuve, Belgium
| | - Francisco Paiva Machado
- Universidade Federal Fluminense, Faculdade de Farmácia, Laboratório de Tecnologia de Produtos Naturais, 24241-000 Niterói, Rio de Janeiro, Brazil
| | - Leandro Machado Rocha
- Universidade Federal Fluminense, Faculdade de Farmácia, Laboratório de Tecnologia de Produtos Naturais, 24241-000 Niterói, Rio de Janeiro, Brazil
| | | | - Ana Beloqui
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | | | | |
Collapse
|
13
|
Teixeira SC, Rosini AM, de Souza G, Fajardo Martínez AF, Silva RJ, Ambrósio SR, Sola Veneziani RC, Bastos JK, Gomes Martins CH, Barbosa BF, Vieira Ferro EA. Polyalthic acid and oleoresin from Copaifera trapezifolia Hayne reduce Toxoplasma gondii growth in human villous explants, even triggering an anti-inflammatory profile. Exp Parasitol 2023; 250:108534. [PMID: 37100271 DOI: 10.1016/j.exppara.2023.108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Due to the lack of efficient antiparasitic therapy and vaccines, as well as emerging resistance strains, congenital toxoplasmosis is still a public health issue worldwide. The present study aimed to assess the effects of an oleoresin obtained from the species Copaifera trapezifolia Hayne (CTO), and an isolated molecule found in the CTO, ent-polyalthic acid (ent-15,16-epoxy-8(17),13(16),14-labdatrien-19-oic acid) (named as PA), against T. gondii infection. We used human villous explants as an experimental model of human maternal-fetal interface. Uninfected and infected villous explants were exposed to the treatments; the parasite intracellular proliferation and the cytokine levels were measured. Also, T. gondii tachyzoites were pre-treated and the parasite proliferation was determined. Our findings showed that CTO and PA reduced efficiently the parasite growth with an irreversible action, but without causing toxicity to the villi. Also, treatments reduced the levels of IL-6, IL-8, MIF and TNF by villi, what configures a valuable treatment option for the maintenance of a pregnancy in an infectious context. In addition to a possible direct effect on parasites, our data suggest an alternative mechanism by which CTO and PA alter the villous explants environment and then impair parasite growth, since the pre-treatment of villi resulted in lower parasitic infection. Here, we highlighted PA as an interesting tool for the design of new anti-T. gondii compounds.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Aryani Felixa Fajardo Martínez
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Rafaela José Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Sergio Ricardo Ambrósio
- Nucleus of Research in Technological and Exact Sciences, University of Franca, Franca, SP, Brazil.
| | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Carlos Henrique Gomes Martins
- Department of Microbiology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
14
|
Lee J, Wang M, Zhao J, Ali Z, Hawwal MF, Khan IA. Chemical Characterization and Quality Assessment of Copaiba Oil-Resin Using GC/MS and SFC/MS. PLANTS (BASEL, SWITZERLAND) 2023; 12:1619. [PMID: 37111842 PMCID: PMC10144763 DOI: 10.3390/plants12081619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
In recent years, the popularity of copaiba oil-resin has increased worldwide due to its medicinal value and wide applications in industry. Despite its popularity, the oil has not been standardized by industry or regulatory agencies. Product adulteration in order to maximize profits has become a problem. To address these issues, the current study describes the chemical and chemometric characterization of forty copaiba oil-resin samples by GC/MS. The results demonstrated, with the exception of commercial samples, that all sample groups contained six characteristic compounds (β-caryophyllene, α-copaene, trans-α-bergamotene, α-humulene, γ-muurolene, and β-bisabolene) in varying concentrations. Furthermore, compositional patterns were observed in individual groups which corresponded to sample origin. Within the commercial group, two samples did not contain or contained only one of the characteristic compounds. Principal component analysis (PCA) revealed distinct groups which largely corresponded to sample origin. Moreover, commercial samples were detected by PCA as outliers, and formed a group far removed from the other samples. These samples were further subjected to analysis using a SFC/MS method. Product adulteration with soybean oil was clearly detected, with each individual triglyceride in soybean oil being unambiguously identified. By combining these analytical techniques, the overall quality of copaiba oil-resin can be assessed.
Collapse
Affiliation(s)
- Joseph Lee
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Mei Wang
- Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University, MS 38677, USA
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 4545, Saudi Arabia
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
15
|
Rodrigues da Silva GH, Paes Lemes JB, Geronimo G, de Carvalho FV, Mendonça TC, Malange KF, de Lima FF, Breitkreitz MC, Parada CA, Dalla Costa T, de Paula E. Improved Local Anesthesia at Inflamed Tissue Using the Association of Articaine and Copaiba Oil in Avocado Butter Nanostructured Lipid Carriers. Pharmaceuticals (Basel) 2023; 16:ph16040546. [PMID: 37111303 PMCID: PMC10143371 DOI: 10.3390/ph16040546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Unsuccessful anesthesia often occurs under an inflammatory tissue environment, making dentistry treatment extremely painful and challenging. Articaine (ATC) is a local anesthetic used at high (4%) concentrations. Since nanopharmaceutical formulations may improve the pharmacokinetics and pharmacodynamics of drugs, we encapsulated ATC in nanostructured lipid carriers (NLCs) aiming to increase the anesthetic effect on the inflamed tissue. Moreover, the lipid nanoparticles were prepared with natural lipids (copaiba (Copaifera langsdorffii) oil and avocado (Persia gratissima) butter) that added functional activity to the nanosystem. NLC-CO-A particles (~217 nm) showed an amorphous lipid core structure according to DSC and XDR. In an inflammatory pain model induced by λ-carrageenan in rats, NLC-CO-A improved (30%) the anesthetic efficacy and prolonged anesthesia (3 h) in relation to free ATC. In a PGE2-induced pain model, the natural lipid formulation significantly reduced (~20%) the mechanical pain when compared to synthetic lipid NLC. Opioid receptors were involved in the detected analgesia effect since their blockage resulted in pain restoration. The pharmacokinetic evaluation of the inflamed tissue showed that NLC-CO-A decreased tissue ATC elimination rate (ke) by half and doubled ATC’s half-life. These results present NLC-CO-A as an innovative system to break the impasse of anesthesia failure in inflamed tissue by preventing ATC accelerated systemic removal by the inflammatory process and improving anesthesia by its association with copaiba oil.
Collapse
Affiliation(s)
| | - Julia Borges Paes Lemes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas 13083-862, SP, Brazil
| | - Gabriela Geronimo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas 13083-862, SP, Brazil
| | - Fabíola Vieira de Carvalho
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas 13083-862, SP, Brazil
| | - Talita Cesarim Mendonça
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas 13083-862, SP, Brazil
| | - Kauê Franco Malange
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas 13083-862, SP, Brazil
| | - Fernando Freitas de Lima
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas 13083-862, SP, Brazil
| | - Márcia Cristina Breitkreitz
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas—UNICAMP, Campinas 13083-970, SP, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas 13083-862, SP, Brazil
| | - Teresa Dalla Costa
- Department of Production and Control of Medicines, Faculty of Pharmacy, Federal University of Rio Grande do Sul—UFRGS, Porto Alegre 90610-000, RS, Brazil
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas 13083-862, SP, Brazil
| |
Collapse
|
16
|
Cardinelli CC, Silva JEAE, Ribeiro R, Veiga-Junior VF, dos Santos EP, de Freitas ZMF. Toxicological Effects of Copaiba Oil ( Copaifera spp.) and Its Active Components. PLANTS (BASEL, SWITZERLAND) 2023; 12:1054. [PMID: 36903915 PMCID: PMC10005474 DOI: 10.3390/plants12051054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Vegetable oils are among the most important traditional resources of Amazonia. Oleoresins are a type of oil that have interesting characteristics and highly bioactive properties with pharmacological potential. Oleoresins produced in the trunks of Copaifera (Fabaceae) spp. trees, known as copaiba oils, are made up of terpenes from the sesquiterpene (volatile) and diterpene (resinous) classes, but in amounts that vary between species and depending on several factors, such as soil type. Despite being used for medicinal purposes, via topical and oral application, the toxic effects of copaiba oils and their constituents are little known. The current paper reviews the toxicological studies, both in vitro and in vivo, described in the literature for copaiba oils, as well as the cytotoxic characteristics (against microorganisms and tumor cells) in in silico, in vitro and in vivo models for the sesquiterpenes and diterpenes that make up these oils.
Collapse
Affiliation(s)
- Camila Castanho Cardinelli
- Department of Drugs and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Josiane Elizabeth Almeida e Silva
- Department of Chemical Engineering, Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil
- Department of Biological Sciences, Institute of Biological Sciences, Federal University of Amazonas, Manaus 69080-900, Brazil
| | - Rayssa Ribeiro
- Department of Chemical Engineering, Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil
| | - Valdir F. Veiga-Junior
- Department of Chemical Engineering, Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil
| | - Elisabete Pereira dos Santos
- Department of Drugs and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Zaida Maria Faria de Freitas
- Department of Drugs and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
17
|
Blanco IMR, Barbosa RDM, Borges JMP, de Melo SABV, El-Bachá RDS, Viseras C, Severino P, Sanchez-Lopez E, Souto EB, Cabral-Albuquerque E. Conventional and PEGylated Liposomes as Vehicles of Copaifera sabulicola. Pharmaceutics 2023; 15:pharmaceutics15020671. [PMID: 36839993 PMCID: PMC9960246 DOI: 10.3390/pharmaceutics15020671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Traditional medicine uses resin oils extracted from plants of the genus Copaifera for several purposes. Resin oils are being studied to understand and profile their pharmacological properties. The aim of this work was to prepare and to characterize conventional and pegylated liposomes incorporating resin oils or the hexanic extract obtained from Copaifera sabulicola (copaiba) leaves. The cytotoxic effect of these products was also investigated. Conventional and stealth liposomes with copaiba extract showed similar average diameters (around 126 nm), encapsulation efficiencies greater than 75% and were stable for 90 days. A cytotoxicity test was performed on murine glioma cells and the developed liposomes presented antiproliferative action against these cancer cells at the average concentration of 30 μg/mL. Phytochemicals encapsulated in PEGylated liposomes induced greater reduction in the viability of tumor cells. In addition, bioassay-s measured the cytotoxicity of copaiba resin oil (Copaifera sabulicola) in liposomes (conventional and PEGylated), which was also checked against pheochromocytoma PC12 cells. Its safety was verified in normal rat astrocytes. The results indicate that liposomes encapsulating copaiba oil showed cytotoxic activity against the studied tumor strains in a dose-dependent fashion, demonstrating their potential applications as a chemotherapeutic bioactive formulation.
Collapse
Affiliation(s)
- Ian M. R. Blanco
- Industrial Engineering Program, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Bahia, Brazil
| | - Raquel de Melo Barbosa
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain
- Correspondence: (R.d.M.B.); (E.B.S.)
| | - Julita M. P. Borges
- Department of Science and Technology, State University of Southwestern Bahia, Salvador 45083-900, Bahia, Brazil
| | - Silvio A. B. Vieira de Melo
- Industrial Engineering Program, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Bahia, Brazil
| | - Ramon dos Santos El-Bachá
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, UFBA, Salvador 40170-110, Bahia, Brazil
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain
| | - Patricia Severino
- Biotechnological Postgraduate Program, Tiradentes University, Aracaju 49010-390, Sergipe, Brazil
| | - Elena Sanchez-Lopez
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08007 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
| | - Eliana B. Souto
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (R.d.M.B.); (E.B.S.)
| | - Elaine Cabral-Albuquerque
- Industrial Engineering Program, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Bahia, Brazil
| |
Collapse
|
18
|
Rodrigues VM, Oliveira WN, Pereira DT, Alencar ÉN, Porto DL, Aragão CFS, Moreira SMG, Rocha HAO, Amaral-Machado L, Egito EST. Copaiba Oil-Loaded Polymeric Nanocapsules: Production and In Vitro Biosafety Evaluation on Lung Cells as a Pre-Formulation Step to Produce Phytotherapeutic Medicine. Pharmaceutics 2023; 15:pharmaceutics15010161. [PMID: 36678788 PMCID: PMC9861736 DOI: 10.3390/pharmaceutics15010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Copaiba oil has been largely used due to its therapeutic properties. Nanocapsules were revealed to be a great nanosystem to carry natural oils due to their ability to improve the bioaccessibility and the bioavailability of lipophilic compounds. The aim of this study was to produce and characterize copaiba oil nanocapsules (CopNc) and to evaluate their hemocompatibility, cytotoxicity, and genotoxicity. Copaiba oil was chemically characterized by GC-MS and FTIR. CopNc was produced using the nanoprecipitation method. The physicochemical stability, toxicity, and biocompatibility of the systems, in vitro, were then evaluated. Β-bisabolene, cis-α-bergamotene, caryophyllene, and caryophyllene oxide were identified as the major copaiba oil components. CopNc showed a particle size of 215 ± 10 nm, a polydispersity index of 0.15 ± 0.01, and a zeta potential of -18 ± 1. These parameters remained unchanged over 30 days at 25 ± 2 °C. The encapsulation efficiency of CopNc was 54 ± 2%. CopNc neither induced hemolysis in erythrocytes, nor cytotoxic and genotoxic in lung cells at the range of concentrations from 50 to 200 μg·mL-1. In conclusion, CopNc showed suitable stability and physicochemical properties. Moreover, this formulation presented a remarkable safety profile on lung cells. These results may pave the way to further use CopNc for the development of phytotherapeutic medicine intended for pulmonary delivery of copaiba oil.
Collapse
Affiliation(s)
- Victor M. Rodrigues
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Wógenes N. Oliveira
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Daniel T. Pereira
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Éverton N. Alencar
- Graduate Program in Pharmaceutical Nanotechnology, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Dayanne L. Porto
- Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Cícero F. S. Aragão
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Susana M. G. Moreira
- Department of Cellular and Molecular Biology, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Hugo A. O. Rocha
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
- Laboratory of Natural Polymers Biotechnology, Federal University of Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Lucas Amaral-Machado
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Eryvaldo S. T. Egito
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
- Graduate Program in Pharmaceutical Nanotechnology, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
- Correspondence: or ; Tel.: +55-(84)-994318816
| |
Collapse
|
19
|
Docetaxel Loaded in Copaiba Oil-Nanostructured Lipid Carriers as a Promising DDS for Breast Cancer Treatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248838. [PMID: 36557969 PMCID: PMC9788038 DOI: 10.3390/molecules27248838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Breast cancer is the neoplasia of highest incidence in women worldwide. Docetaxel (DTX), a taxoid used to treat breast cancer, is a BCS-class-IV compound (low oral bioavailability, solubility and intestinal permeability). Nanotechnological strategies can improve chemotherapy effectiveness by promoting sustained release and reducing systemic toxicity. Nanostructured lipid carriers (NLC) encapsulate hydrophobic drugs in their blend-of-lipids matrix, and imperfections prevent drug expulsion during storage. This work describes the preparation, by design of experiments (23 factorial design) of a novel NLC formulation containing copaiba oil (CO) as a functional excipient. The optimized formulation (NLCDTX) showed approximately 100% DTX encapsulation efficiency and was characterized by different techniques (DLS, NTA, TEM/FE-SEM, DSC and XRD) and was stable for 12 months of storage, at 25 °C. Incorporation into the NLC prolonged drug release for 54 h, compared to commercial DTX (10 h). In vitro cytotoxicity tests revealed the antiproliferative effect of CO and NLCDTX, by reducing the cell viability of breast cancer (4T1/MCF-7) and healthy (NIH-3T3) cells more than commercial DTX. NLCDTX thus emerges as a promising drug delivery system of remarkable anticancer effect, (strengthened by CO) and sustained release that, in clinics, may decrease systemic toxicity at lower DTX doses.
Collapse
|
20
|
Development of a GC/Q-ToF-MS Method Coupled with Headspace Solid-Phase Microextraction to Evaluate the In Vitro Metabolism of β-Caryophyllene. Molecules 2022; 27:molecules27217441. [DOI: 10.3390/molecules27217441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Sample preparation remains both a challenging and time-consuming process in the field of bioanalytical chemistry. Many traditional techniques often require multi-step processes, which can introduce additional errors to the analytical method. Given the complexity of many biological matrices, thorough analyte extraction presents a major challenge to researchers. In the present study, a headspace solid-phase microextraction (HS-SPME) coupled with a GC/Q-ToF-MS method, was developed to quantify in vitro metabolism of β-caryophyllene by both human liver microsome (HLM) and S9 liver fractions. Validation of the method was demonstrated both in terms of linearity (R2 = 0.9948) and sensitivity with a limit of detection of 3 ng/mL and a limit of quantitation of 10 ng/mL. In addition, the method also demonstrated both inter- and intra-day precision with the relative standard deviation (RSD) being less than 10% with four concentrations ranging from 50–500 ng/mL. Since this method requires no solvents and minimal sample preparation, it provides a rapid and economical alternative to traditional extraction techniques. The method also eliminates the need to remove salts or buffers, which are commonly present in biological matrices. Although this method was developed to quantify in vitro metabolism of one analyte, it could easily be adapted to detect or quantify numerous volatiles and/or semi-volatiles found in biological matrices.
Collapse
|
21
|
dos Santos de Souza RBM, Soares NMM, Bastos TS, Kaelle GCB, de Oliveira SG, Félix FAP. Effects of dietary supplementation with a blend of functional oils to fecal microbiota, and inflammatory and oxidative responses, of dogs submitted to a periodontal surgical challenge. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
dos Santos VRN, Motta JVDS, Frazão DR, Ferreira RDO, Souza-Monteiro D, Baia-da-Silva DC, Mendes PFS, Bittencourt LO, de Moura JDM, Lameira OA, Balbinot GDS, Collares FM, Rösing CK, Lima RR. Biological Activity of Copaiba in Damage to the Alveolar Bone in a Model of Periodontitis Induced in Rats. Molecules 2022; 27:molecules27196255. [PMID: 36234793 PMCID: PMC9572349 DOI: 10.3390/molecules27196255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Several studies have investigated the effects of natural products in the treatment of diseases. Traditional Amazonian populations commonly use copaiba due to its well-known anti-inflammatory, antibacterial, and healing properties. In this study, we aimed to investigate the effects of systemic administration of copaiba oleoresin (Copaifera reticulata Ducke) on ligature-induced periodontitis in rats. To do so, 21 adult rats were divided into three groups (n = 7 each): a control group, ligature-induced periodontitis group, and ligature-induced periodontitis group treated with copaiba oleoresin (200 mg/kg/day). The ligature remained from day 0 to 14, and the copaiba oleoresin was administered via oral gavage during the last seven days. On day 14, the animals were euthanized, and mandibles were collected for histopathological evaluation and microcomputed tomography analysis. Our data showed that the administration of copaiba considerably reduced the inflammatory profile. Moreover, copaiba oleoresin limited alveolar bone loss, increased trabecular thickness and bone-to-tissue volume ratio, and decreased the number of trabeculae compared with those of the untreated experimental periodontitis group. Our findings provide pioneering evidence that supports the potential of copaiba oleoresin in reducing periodontitis-induced alveolar bone damage in rats.
Collapse
Affiliation(s)
- Vinicius Ruan Neves dos Santos
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - João Victor da Silva Motta
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Deborah Ribeiro Frazão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Railson de Oliveira Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Deiweson Souza-Monteiro
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Daiane Claydes Baia-da-Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Paulo Fernando Santos Mendes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - João Daniel Mendonça de Moura
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Osmar Alves Lameira
- Laboratory of Biotechnology, Embrapa Amazônia Oriental, Belém 66075-110, PA, Brazil
| | - Gabriela de Souza Balbinot
- Dental Materials Laboratory, Faculty of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, RS, Brazil
| | - Fabrício Mezzomo Collares
- Dental Materials Laboratory, Faculty of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, RS, Brazil
| | - Cassiano Kuchenbecker Rösing
- Department of Periodontology, Faculty of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, RS, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Correspondence:
| |
Collapse
|
23
|
Rahman MM, Bibi S, Rahaman MS, Rahman F, Islam F, Khan MS, Hasan MM, Parvez A, Hossain MA, Maeesa SK, Islam MR, Najda A, Al-Malky HS, Mohamed HRH, AlGwaiz HIM, Awaji AA, Germoush MO, Kensara OA, Abdel-Daim MM, Saeed M, Kamal MA. Natural therapeutics and nutraceuticals for lung diseases: Traditional significance, phytochemistry, and pharmacology. Biomed Pharmacother 2022; 150:113041. [PMID: 35658211 DOI: 10.1016/j.biopha.2022.113041] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lung diseases including chronic obstructive pulmonary disease (COPD), infections like influenza, acute respiratory distress syndrome (ARDS), asthma and pneumonia lung cancer (LC) are common causes of sickness and death worldwide due to their remoteness, cold and harsh climatic conditions, and inaccessible health care facilities. PURPOSE Many drugs have already been proposed for the treatment of lung diseases. Few of them are in clinical trials and have the potential to cure infectious diseases. Plant extracts or herbal products have been extensively used as Traditional Chinese Medicine (TCM) and Indian Ayurveda. Moreover, it has been involved in the inhibition of certain genes/protiens effects to promote regulation of signaling pathways. Natural remedies have been scientifically proven with remarkable bioactivities and are considered a cheap and safe source for lung disease. METHODS This comprehensive review highlighted the literature about traditional plants and their metabolites with their applications for the treatment of lung diseases through experimental models in humans. Natural drugs information and mode of mechanism have been studied through the literature retrieved by Google Scholar, ScienceDirect, SciFinder, Scopus and Medline PubMed resources against lung diseases. RESULTS In vitro, in vivo and computational studies have been explained for natural metabolites derived from plants (like flavonoids, alkaloids, and terpenoids) against different types of lung diseases. Probiotics have also been biologically active therapeutics against cancer, anti-inflammation, antiplatelet, antiviral, and antioxidants associated with lung diseases. CONCLUSION The results of the mentioned natural metabolites repurposed for different lung diseases especially for SARS-CoV-2 should be evaluated more by advance computational applications, experimental models in the biological system, also need to be validated by clinical trials so that we may be able to retrieve potential drugs for most challenging lung diseases especially SARS-CoV-2.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China; Department of Biosciences, Shifa Tameer-e-Milat University, Islamabad, Pakistan.
| | - Md Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Firoza Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muhammad Saad Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Anwar Parvez
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Abid Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Saila Kabir Maeesa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah, Saudi Arabia
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hussah I M AlGwaiz
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Osama A Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7067, Makkah 21955, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudia Arabia
| | - Mohammad Amjad Kamal
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh; West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| |
Collapse
|
24
|
Fractionation of sesquiterpenes and diterpenic acids from copaiba (Copaifera officinalis) oleoresin using supercritical adsorption. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Mosquera Narvaez LE, Ferreira LMDMC, Sanches S, Alesa Gyles D, Silva-Júnior JOC, Ribeiro Costa RM. A Review of Potential Use of Amazonian Oils in the Synthesis of Organogels for Cosmetic Application. Molecules 2022; 27:molecules27092733. [PMID: 35566084 PMCID: PMC9100349 DOI: 10.3390/molecules27092733] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 02/01/2023] Open
Abstract
New strategies for the delivery of bioactives in the deeper layers of the skin have been studied in recent years, using mainly natural ingredients. Among the strategies are organogels as a promising tool to load bioactives with different physicochemical characteristics, using vegetable oils. Studies have shown satisfactory skin permeation, good physicochemical stability mainly due to its three-dimensional structure, and controlled release using vegetable oils and low-molecular-weight organogelators. Within the universe of natural ingredients, vegetable oils, especially those from the Amazon, have a series of benefits and characteristics that make them unique compared to conventional oils. Several studies have shown that the use of Amazonian oils brings a series of benefits to the skin, among which are an emollient, moisturizing, and nourishing effect. This work shows a compilation of the main Amazonian oils and their nutraceutical and physicochemical characteristics together with the minority polar components, related to health benefits, and their possible effects on the synthesis of organogels for cosmetic purposes.
Collapse
Affiliation(s)
- Luis Eduardo Mosquera Narvaez
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil; (L.E.M.N.); (L.M.d.M.C.F.); (S.S.)
| | | | - Suellen Sanches
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil; (L.E.M.N.); (L.M.d.M.C.F.); (S.S.)
| | - Desireé Alesa Gyles
- Jamaica College of Health Sciences, School of Pharmacy, University of Technology, 237 Old Hope Road, Kinston 6, Jamaica;
| | | | - Roseane Maria Ribeiro Costa
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil; (L.E.M.N.); (L.M.d.M.C.F.); (S.S.)
- Correspondence: ; Tel.: +55-91-3201-7203
| |
Collapse
|
26
|
dos Santos Menezes AC, Alves LDB, Goldemberg DC, de Melo AC, Antunes HS. Anti-inflammatory and wound healing effect of Copaiba Oleoresin on the oral cavity: A systematic review. Heliyon 2022; 8:e08993. [PMID: 35243105 PMCID: PMC8873535 DOI: 10.1016/j.heliyon.2022.e08993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 12/03/2021] [Accepted: 02/16/2022] [Indexed: 01/07/2023] Open
Abstract
Copaiba oleoresin has been related to properties including healing and anti-inflammatory effects, making it a potential candidate to treat oral lesions. We aimed to define the benefits related to the anti-inflammatory and healing capacity of Copaiba-based formulations on the oral cavity. This is a systematic review, conducted in PubMed, Web of Science, Scopus, Embase, Scielo, Cochrane Library, BVS, and Google Scholar databases selecting full articles in English, Portuguese, or Spanish, until March 3rd, 2021. Pre-clinical, clinical, or randomized clinical trials, cohort and case-control in vivo studies were included; studies with other designs, in vitro, and those that did not match the PICO question were excluded (PROSPERO: CRD42021244938). Data was collected and synthesized descriptively through a specific form. The risk of bias was evaluated by SYRCLE's RoB Tool. So, five studies were included. Two reported beneficial wound healing effects, such as early reduction in the wound area and greater immature bone formation in the rats' mandibles; and two related benefic anti-inflammatory effects, like reduced acute inflammatory reaction and more advanced tissue repair stage, early formation of collagen fibrils, with greater quantity, thickness and better organization, and more expressive anti-inflammatory activity, reduction of the edema intensity and the CD68 + macrophages concentration. Based on the articles, benefits related to the wound healing and anti-inflammatory effects in the oral cavity of rats treated with Copaiba oleoresin were suggested. However, due to the limited data, future studies are necessary, especially clinical ones.
Collapse
|
27
|
Nogueira RJL, Grazul RM, Silva Filho AAD, Nascimento JWL. Evaluation of copaiba oil as enhancer of ibuprofen skin permeation. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Santos MDO, Camilo CJ, Macedo JGF, Lacerda MNSD, Lopes CMU, Rodrigues AYF, Costa JGMD, Souza MMDA. Copaifera langsdorffii Desf.: A chemical and pharmacological review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Anti-Inflammatory Potential of the Oleoresin from the Amazonian Tree Copaifera reticulata with an Unusual Chemical Composition in Rats. Vet Sci 2021; 8:vetsci8120320. [PMID: 34941847 PMCID: PMC8706095 DOI: 10.3390/vetsci8120320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Copaifera reticulata Ducke is a popularly known species known as copaíba that is widely spread throughout the Amazon region. The tree yields an oleoresin which is extensively used in local traditional medicine mainly as an anti-inflammatory and antinociceptive agent. The aim of the present study was to assess the anti-inflammatory potential of this oleoresin obtained from a national forest in the central Amazon which presented an unusual chemical composition. The chemical composition of volatile compounds of oleoresin was analyzed by gas chromatography-mass spectrometry. The acute toxicity assay was performed with a single dose of 2000 mg/kg. The anti-inflammatory potential was evaluated by carrageenan-induced paw edema and air pouch assays using four different C. reticulata oleoresin concentrations (10, 100, and 400 mg/kg). The exudate was evaluated for nitrite concentration through the colorimetric method and for TNF-α, IL-1β, and PGE2 by ELISA. C. reticulata oleoresin collected in the Amazonian summer contained six major sesquiterpene compounds (β-bisabolene, cis-eudesma-6,11-diene, trans-α-bergamotene, β-selinene, α-selinene, and β-elemene) and was nontoxic at a dose of 2000 mg/kg, showing low acute toxicity. Different from oleoresin obtained from other sites of the Brazilian Amazon, the major volatile compound found was β-Bisabolene with 25.15%. This β-Bisabolene-rich oleoresin reduced the formation of paw edema induced by carrageenan and reduced the global number of cells in the air pouch assay, as well as exudate volume and nitrite, TNF-α, IL-1β, and prostaglandin E2 levels (p < 0.05). C. reticulata oleoresin with a high β-Bisabolene concentration showed anti-inflammatory activity, reducing vascular permeability and consequently edema formation, and thus reducing cell migration and the production of inflammatory cytokine, confirming its traditional use by local Amazonian communities.
Collapse
|
30
|
Prospective, Randomized, Double-Blind, Placebo-Controlled Study on Efficacy of Copaiba Oil in Silicone-Based Gel to Reduce Scar Formation. Dermatol Ther (Heidelb) 2021; 11:2195-2205. [PMID: 34687435 PMCID: PMC8611146 DOI: 10.1007/s13555-021-00634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction Scars are the end result of a biologic and natural process of wound repair after injury, surgery, acne, illness, burns, and infection. When skin is damaged, a fast and coordinated body response is triggered by four highly integrated and overlapping phases including homeostasis, inflammation, proliferation, and tissue remodeling. Healing of a skin wound may result in an abnormal scar if the balance among these four phases is lost during the healing process. Various topical treatments have been used for their ability to reduce unsightly scar formation. Recently, studies have shown improvement in scar appearance after treating with silicone gels containing natural herbal ingredients. The aim of this study is to evaluate the efficacy of a novel silicone-based gel containing copaiba oil (Copaderm) for prevention and/or appearance reduction of different types of abnormal scars. Methods This study was designed as a prospective, randomized, double-blind, placebo-controlled trial involving 42 patients with abnormal scars, divided into two groups. Each group received either a topical scar formulation consisting of copaiba oil in silicone gel or a placebo gel twice a day for 84 days. Assessments of the scars were performed at 0, 28, and 84 days following the onset of topical application using three methods: a clinical assessment using the Manchester Scar Scale, a photographic assessment to establish before and after treatment improvements, and at the end of the study period, patients completed a final satisfaction questionnaire. Results Of the original 42 patients, 32 completed the evaluation. There was a significant difference with respect to the overall score of the Manchester Scar Scale between the two groups from baseline to 84 days (P < 0.05). All patients with copaiba oil in silicone gel achieved improvement of their scars, based on overall score at 84 days. A visible scar reduction was observed with photographic assessment. Eighty-nine percent of subjects (n = 16) with copaiba oil in silicone gel rated as being satisfied or very satisfied after 84 days of treatment. Conclusion Our findings support the hypothesis that copaiba oil in silicone-derivative gel was able obtain significant improvement in color, contour, distortion, and texture for different types of scar through the Manchester Scar Scale analysis. These findings contribute to reducing abnormal scar formation during the healing process.
Collapse
|
31
|
da Cruz CBL, Sousa Filho LF, Lima DA, de Gois JI, de Oliveira ED. Effect of Phonophoresis and Copaiba Oil on Oxidative Stress Biomarkers after Skeletal Muscle Injury in Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2657-2663. [PMID: 34243989 DOI: 10.1016/j.ultrasmedbio.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 04/03/2021] [Accepted: 04/11/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to analyze the effectiveness of phonophoresis with copaiba oil gel, in comparison to therapeutic pulsed ultrasound alone or topical application of copaiba oil gel, on oxidative stress after a traumatic muscle injury. Forty male Wistar rats were divided into five groups: control, muscle injury, therapeutic pulsed ultrasound (TPU), copaiba oil gel (CO) and TPU plus CO. TPU and CO application occurred at 2, 12, 24, 48, 72 and 96 h after injury. The gastrocnemius muscle was injured by mechanical trauma. Malondialdehyde (a lipoperoxidation marker) and superoxide dismutase and catalase (antioxidant enzymes) were assessed 98 h after muscle injury. All were elevated in the muscle injury group. There was a significant difference among treatment groups favoring TPU plus CO for reducing malondialdehyde levels, but all treatments reduced superoxide dismutase and catalase activity, with no between-groups difference. In conclusion, phonophoresis-the application of TPU plus CO-was superior to TPU or CO alone for reducing lipoperoxidation. Phonophoresis, TPU alone and CO were all effective in decreasing antioxidant enzyme activity after a traumatic skeletal muscle injury.
Collapse
Affiliation(s)
| | - Luis Fernando Sousa Filho
- Department of Physiotherapy, Federal University of Sergipe, São Cristovão, Brazil; Graduate Program in Physical Education, Federal University of Sergipe, São Cristovão, Brazil
| | - Diego Alves Lima
- Department of Physiotherapy, Federal University of Sergipe, São Cristovão, Brazil
| | - Joyce Izabel de Gois
- Department of Physiotherapy, Federal University of Sergipe, São Cristovão, Brazil
| | | |
Collapse
|
32
|
Silva MAC, dos Anjos Melo DF, de Oliveira SAM, Cruz ADC, da Conceição EC, de Paula JR, Lino Junior RDS, da Cunha LC. Acute and a 28-repeated dose toxicity study of commercial oleoresin from Copaifera sp. in rodents. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
( E)-2,6,10-Trimethyldodec-8-en-2-ol: An Undescribed Sesquiterpenoid from Copaiba Oil. Molecules 2021; 26:molecules26154456. [PMID: 34361609 PMCID: PMC8348878 DOI: 10.3390/molecules26154456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
The use of copaiba oil has been reported since the 16th century in Amazon traditional medicine, especially as an anti-inflammatory ingredient and for wound healing. The use of copaiba oil continues today, and it is sold in various parts of the world, including the United States. Copaiba oil contains mainly sesquiterpenes, bioactive compounds that are popular for their positive effect on human health. As part of our ongoing research endeavors to identify the chemical constituents of broadly consumed herbal supplements or their adulterants, copaiba oil was investigated. In this regard, copaiba oil was subjected to repeated silica gel column chromatography to purify the compounds. As a result, one new and seven known sesquiterpenes/sesquiterpenoids were isolated and identified from the copaiba oil. The new compound was elucidated as (E)-2,6,10-trimethyldodec-8-en-2-ol. Structure elucidation was achieved by 1D- and 2D NMR and GC/Q-ToF mass spectral data analyses. The isolated chemical constituents in this study could be used as chemical markers to evaluate the safety or quality of copaiba oil.
Collapse
|
34
|
Ibiapina A, Gualberto LDS, Dias BB, Freitas BCB, Martins GADS, Melo Filho AA. Essential and fixed oils from Amazonian fruits: proprieties and applications. Crit Rev Food Sci Nutr 2021; 62:8842-8854. [PMID: 34137326 DOI: 10.1080/10408398.2021.1935702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Amazon biome is rich in oilseed plant species, which have essential physical-chemical, nutritional and pharmacological properties, in addition to potential economic value for different biotechnological and industrial applications. In the extraction of fixed oils, some Amazon fruit that are oleaginous matrices are acquiring more prominence, such as tucumã (Astrocaryum vulgare), pupunha (Bactris gasipaes), buriti (Mauritia flexuosa), Brazil nut (Bertholletia excelsa), pracaxi (Pentaclethra macroloba), patawa (Oenocarpus bataua), among others. These oilseed fruits have natural antioxidants, essential fatty acids, and good oxidative stability. The essential oils from these oilseed species have antibiotic and anti-inflammatory properties, in addition to the presence of natural antioxidants, such as carotenoids and tocopherols. Thus, Amazonian oilseed species are valuable resources. For these properties to be preserved during fruit processing, the process of extracting the oil is critical. More studies are needed on their properties and applications, seeking to add commercial value, and the optimization of oils and fats processing to obtain quality products. Therefore, this article aims to present Amazonian fruits' potential to obtain fixed and essential oils and possible application in the food industry.
Collapse
Affiliation(s)
- Andréia Ibiapina
- Laboratory of Kinetics and Process Modeling, Federal University of Tocantins, Palmas, TO, Brazil
| | | | - Bianca Barros Dias
- Laboratory of Kinetics and Process Modeling, Federal University of Tocantins, Palmas, TO, Brazil
| | | | | | | |
Collapse
|
35
|
Símaro GV, Lemos M, Mangabeira da Silva JJ, Ribeiro VP, Arruda C, Schneider AH, Wagner de Souza Wanderley C, Carneiro LJ, Mariano RL, Ambrósio SR, Faloni de Andrade S, Banderó-Filho VC, Sasse A, Sheridan H, Andrade E Silva ML, Bastos JK. Antinociceptive and anti-inflammatory activities of Copaifera pubiflora Benth oleoresin and its major metabolite ent-hardwickiic acid. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113883. [PMID: 33508366 DOI: 10.1016/j.jep.2021.113883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Copaifera species folkloric names are "copaíbas, copaibeiras, copaívas or oil stick", which are widely used in Brazilian folk medicine. Among all ethnopharmacological applications described for Copaifera spp oleoresins, their anti-inflammatory effect stands out. However, the knowledge of anti-inflammatory and antinociceptive properties of Copaifera pubiflora Benth is scarce. AIM OF THE STUDY To investigate the cytotoxic, anti-inflammatory, and antinociceptive activities of C. pubiflora oleoresin (CPO), and its major compound ent-hardwickiic acid (HA). MATERIAL AND METHODS The phosphatase assay was used to evaluate the cytotoxicity of CPO and HA in three different cell lines. CPO and HA doses of 1, 3, and 10 mg/kg were employed in the biological assays. The assessment of motor activity was performed using open-field and rotarod tests. Anti-inflammatory activity of CPO and HA was assessed through luciferase assay, measurement of INF-γ, IL-1β, IL-6, IL-10, and TNF-α in a multi-spot system with the immortalized cell line THP-1, zymosan-induced arthritis, and carrageenan-induced paw edema. Acetic acid-induced abdominal writhing and formalin tests were undertaken to evaluate the antinociceptive potential of CPO and HA. In addition, the evaluation using carrageenan was performed to investigate the effect of CPO in pain intensity to a mechanical stimulus (mechanical hyperalgesia), using the von Frey filaments. A tail-flick test was used to evaluate possible central CPO and HA actions. RESULTS In the cytotoxicity evaluation, CPO and HA were not cytotoxic to the cell lines tested. CPO and HA (10 mg/kg) did not affect animals' locomotor capacity in both open-field and rotarod tests. In the luciferase assay, CPO and HA significantly reduced luciferase activity (p < 0.05). This reduction indicates a decrease in NF-κB activity. HA and CPO decreased INF-γ, IL-1β, IL-6, IL-10, and TNF-α at 24 and 72 h in the multi-spot system. In zymosan-induced arthritis, CPO and HA decreased the number of neutrophils in the joint of arthritic mice and the number of total leukocytes (p < 0.05). In experimental arthritis HA significantly decreased joint swelling (p < 0.05). CPO and HA also increased the mechanical threshold during experimental arthritis. HA and CPO significantly inhibited the carrageenan-induced paw edema, being the doses of 10 mg/kg the most effective, registering maximum inhibitions of 58 ± 8% and 76 ± 6% respectively, p < 0.05. CPO and HA reduced the nociceptive behavior in both phases of formalin at all tested doses. The highest doses tested displayed inhibitions of 87 ± 1% and 72 ± 4%, respectively, p < 0.001, in the first phase, and 87 ± 1% and 81 ± 2%, respectively, p < 0.001, in the second phase. Oral treatment of CPO and HA (1, 3, 10 mg/kg) significantly reduced the nociceptive response in acetic acid-induced abdominal writhings, and the 10 mg/kg dose was the most effective with maximum inhibitions of 86 ± 2% and 82 ± 1%, respectively, p < 0.001. Both HA and CPO significantly decreased the intensity of mechanical inflammatory hyper-nociception on carrageenan-induced hyperalgesia at all tested doses, and 10 mg/kg was the most effective dose with maximum inhibitions of 73 ± 5% and 74 ± 7%, respectively, p < 0.05.CPO increased the tail-flick latencies in mice, and concomitant administration of naloxone partially reduced its effect. CONCLUSIONS CPO and HA may inhibit the production of inflammatory cytokines by suppressing the NF-κB signaling pathway, resulting in anti-inflammatory and antinociceptive activities.
Collapse
Affiliation(s)
- Guilherme Venâncio Símaro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Marivane Lemos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Jonas Joaquim Mangabeira da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Caroline Arruda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil
| | - Ayda Henriques Schneider
- Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes S/N, 14049-900, Ribeirão Preto, SP, Brazil
| | | | - Luiza Junqueira Carneiro
- Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Roberta Lopes Mariano
- Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Sérgio Ricardo Ambrósio
- Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Sérgio Faloni de Andrade
- Universidade Lusófona, CBIOS, Research Center for Biosciences and Health Technologies, Av. Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Vilmar C Banderó-Filho
- Universidade Lusófona, CBIOS, Research Center for Biosciences and Health Technologies, Av. Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Astrid Sasse
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Helen Sheridan
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Márcio Luis Andrade E Silva
- Núcleo de Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles de Oliveira, 2001, 14404-600 Franca, SP, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café S/N, 14040-930, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
36
|
Da Cruz Campos MI, Campos CN, Corrêa JOA, Aarestrup FM, Aarestrup BJV. Induced oral mucositis in Wistar rats treated with different drugs: Preventive potential in cytokine production. Mol Clin Oncol 2021; 14:127. [PMID: 33981431 PMCID: PMC8108041 DOI: 10.3892/mco.2021.2289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 04/01/2021] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the preventive potential of pentoxifylline, atorvastatin and trans-caryophyllene in oral mucositis through histopathological analysis of wounds in the oral mucosa of Wistar rats treated with 5-FU, and to evaluate the immunomodulatory effect of these drugs on serum nitrite production, in situ IFN-γ, TNF-α and TGF-β, and TNF-α in tissues. A total of 32 male Wistar rats with an average age of 9 weeks and an average body weight of 250 g were divided into four treatment groups: Saline, trans-caryophyllene, pentoxifylline and atorvastatin. Oral mucositis was then induced. On days 3 and 4, the mucosa of the mouth of eight pre-treated animals in each group was bilaterally scarified twice with the tip of a sterile needle, with an anesthetic solution. Mucosal samples from animals treated with trans-caryophyllene preserved a thin epithelial lining associated with focal perivascular inflammatory infiltrates. Pentoxifylline-treated animals exhibited total epithelial loss in oral wounds with severe inflammatory infiltrates and mild re-epithelialization associated with mild and diffuse inflammatory infiltrates. Samples from atorvastatin-treated animals exhibited no epithelial dissolution, with preserved thin lining and mild diffuse inflammatory infiltrates. The analysis of TNF-α expression revealed improved results in trans-caryophyllene animals. The analysis of TGF-β expression revealed positive mononuclear cells. Preventive treatment with atorvastatin was demonstrated to modulate the serum expression levels of TNF-α during all stages of the experiment. Treatment with trans-caryophyllene modulated serum IFN-γ levels negatively, whereas treatment with atorvastatin and trans-caryophyllene maintained lower levels of IFN-γ compared with the control group.
Collapse
Affiliation(s)
- Maria Inês Da Cruz Campos
- Laboratory of Immunopathology and Experimental Pathology, Reproductive Biology Center, Department of Morphology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330, Brazil
| | - Celso Neiva Campos
- School of Dentistry Clinic, Department of Dental Clinic, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330, Brazil
| | - José Otávio Amaral Corrêa
- Laboratory of Pharmacology, Department of Immunohistochemistry, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330, Brazil
| | - Fernando Monteiro Aarestrup
- Laboratory of Immunopathology and Experimental Pathology, Reproductive Biology Center, Department of Dental Clinic, Faculty of Medical Sciences and Juiz de Fora Health-SUPREMA, Juiz de Fora, Minas Gerais 36036-330, Brazil
| | - Beatriz Julião Vieira Aarestrup
- Laboratory of Immunopathology and Experimental Pathology, Reproductive Biology Center, Department of Morphology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330, Brazil
| |
Collapse
|
37
|
de Oliveira Moreira AC, Braga JWB. Authenticity Identification of Copaiba Oil Using a Handheld NIR Spectrometer and DD-SIMCA. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01933-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Rodrigues da Silva GH, Geronimo G, García-López JP, Ribeiro LNM, de Moura LD, Breitkreitz MC, Feijóo CG, de Paula E. Articaine in functional NLC show improved anesthesia and anti-inflammatory activity in zebrafish. Sci Rep 2020; 10:19733. [PMID: 33184457 PMCID: PMC7665027 DOI: 10.1038/s41598-020-76751-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/02/2020] [Indexed: 02/08/2023] Open
Abstract
Anesthetic failure is common in dental inflammation processes, even when modern agents, such as articaine, are used. Nanostructured lipid carriers (NLC) are systems with the potential to improve anesthetic efficacy, in which active excipients can provide desirable properties, such as anti-inflammatory. Coupling factorial design (FD) for in vitro formulation development with in vivo zebrafish tests, six different NLC formulations, composed of synthetic (cetyl palmitate/triglycerides) or natural (avocado butter/olive oil/copaiba oil) lipids were evaluated for loading articaine. The formulations selected by FD were physicochemically characterized, tested for shelf stability and in vitro release kinetics and had their in vivo effect (anti-inflammatory and anesthetic effect) screened in zebrafish. The optimized NLC formulation composed of avocado butter, copaiba oil, Tween 80 and 2% articaine showed adequate physicochemical properties (size = 217.7 ± 0.8 nm, PDI = 0.174 ± 0.004, zeta potential = - 40.2 ± 1.1 mV, %EE = 70.6 ± 1.8) and exhibited anti-inflammatory activity. The anesthetic effect on touch reaction and heart rate of zebrafish was improved to 100 and 60%, respectively, in comparison to free articaine. The combined FD/zebrafish approach was very effective to reveal the best articaine-in-NLC formulation, aiming the control of pain at inflamed tissues.
Collapse
Affiliation(s)
- Gustavo H Rodrigues da Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Rua Monteiro Lobato, 255, Cid. Universitária Zeferino Vaz, Campinas, São Paulo, 13083862, Brazil
| | - Gabriela Geronimo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Rua Monteiro Lobato, 255, Cid. Universitária Zeferino Vaz, Campinas, São Paulo, 13083862, Brazil
| | - Juan P García-López
- Laboratory of Fish Immunology, Department of Biological Sciences, Faculty of Life Sciences, Andres Bello University, 8370146, Santiago, Chile
| | - Lígia N M Ribeiro
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Rua Monteiro Lobato, 255, Cid. Universitária Zeferino Vaz, Campinas, São Paulo, 13083862, Brazil
| | - Ludmilla D de Moura
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Rua Monteiro Lobato, 255, Cid. Universitária Zeferino Vaz, Campinas, São Paulo, 13083862, Brazil
| | - Márcia C Breitkreitz
- Department of Analytical Chemistry, Institute of Chemistry, UNICAMP, Campinas, São Paulo, Brazil
| | - Carmen G Feijóo
- Laboratory of Fish Immunology, Department of Biological Sciences, Faculty of Life Sciences, Andres Bello University, 8370146, Santiago, Chile.
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Rua Monteiro Lobato, 255, Cid. Universitária Zeferino Vaz, Campinas, São Paulo, 13083862, Brazil.
| |
Collapse
|
39
|
Ribeiro Neto JA, Pimenta Tarôco BR, Batista Dos Santos H, Thomé RG, Wolfram E, Maciel de A Ribeiro RI. Using the plants of Brazilian Cerrado for wound healing: From traditional use to scientific approach. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112547. [PMID: 31917276 DOI: 10.1016/j.jep.2020.112547] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Brazilian Cerrado is a biome with a remarkable diversity of plant species, many of which are used mainly by local communities as a source of treatment to several pathologic processes, especially for the treatment of wounds. However, no systematic review exists focusing on the plants used in this respect and on the appropriate pharmacological investigations that substantiate the actions that are reported. This study revisits the traditional use of medicinal plants from the Brazilian Cerrado in the treatment of wounds and the pharmacological characteristics of the reported plant species. METHOD ology: For the present article, previous studies on plants of the Brazilian Cerrado used for wound healing carried out between 1996 and 2018 were researched on various academic databases (PubMed, Elsevier, Springer, Lilacs, Google Escolar, and Scielo). RESULTS A total of 33 studies were carried out on 29 plant species distributed into 18 families, mainly Fabaceae or Leguminosae (9), Bignoniaceae (2), Asteraceae (2), Euphorbiaceae (2). Considering the great diversity of Cerrado plants, only a small number of wound healing studies were carried out between 1996 and 2018. It was observed that there is a large gap between experimentation assay and traditional use. There are only few connections between the form of use by the population and the experiments conducted in the laboratory. We found that only about 12% of these studies considered to use the methodologies, or at least in parts, to obtain extracts such as those used in folk medicine. Approximately 37% of the experiments were performed using the bark as well as the same ratio for leaves, 6% using the fruits, and 9% using the seeds, roots or flowers. In several studies, there are reports of chemical constituents such as flavonoids and tannins, followed by steroid terpenes, saponins, and fatty acids, and alkaloids. However, approximately 35% of the studies did not supply information about compounds present in the preparation or the effect which could be attributed to these agents in respect to wound healing. Regarding treatment, most of the studies employed a topical treatment, though intraperitoneal and oral treatment were also described using either topical, oil-based formulations, but also gel- or saline-based formulations. CONCLUSIONS Although, there has been an increase in knowledge about the biological actions of plants from Cerrado biome, the scientific basis for the traditional use of these local medicinal plants in wound healing does not provide sufficient information on the efficacy of the treatment, the molecular mechanisms, or, in particular, the effective doses used and the drug interactions. Thus, focused research investigating these hypotheses from traditional knowledge is necessary to prove the evidence of the potential pharmacological action.
Collapse
Affiliation(s)
- José Antônio Ribeiro Neto
- Universidade Federal de São João Del Rey - UFSJ - Divinópolis-MG, Rua Sebastião Gonçalves Coelho, 400, Bairro Chanadour, Cep 35.501-296, Divinópolis, MG, Brazil.
| | - Bruna Renata Pimenta Tarôco
- Universidade Federal de São João Del Rey - UFSJ - Divinópolis-MG, Rua Sebastião Gonçalves Coelho, 400, Bairro Chanadour, Cep 35.501-296, Divinópolis, MG, Brazil.
| | - Hélio Batista Dos Santos
- Universidade Federal de São João Del Rey - UFSJ - Divinópolis-MG, Rua Sebastião Gonçalves Coelho, 400, Bairro Chanadour, Cep 35.501-296, Divinópolis, MG, Brazil.
| | - Ralph Gruppi Thomé
- Universidade Federal de São João Del Rey - UFSJ - Divinópolis-MG, Rua Sebastião Gonçalves Coelho, 400, Bairro Chanadour, Cep 35.501-296, Divinópolis, MG, Brazil.
| | - Evelyn Wolfram
- Zurich University of Applied Sciences, Department of Life Sciences and Facility Management (ZHAW), CH-8820, Wädenswil, Switzerland.
| | - Rosy Iara Maciel de A Ribeiro
- Universidade Federal de São João Del Rey - UFSJ - Divinópolis-MG, Rua Sebastião Gonçalves Coelho, 400, Bairro Chanadour, Cep 35.501-296, Divinópolis, MG, Brazil.
| |
Collapse
|
40
|
Plant Natural Sources of the Endocannabinoid ( E)-β-Caryophyllene: A Systematic Quantitative Analysis of Published Literature. Int J Mol Sci 2020; 21:ijms21186540. [PMID: 32906779 PMCID: PMC7554841 DOI: 10.3390/ijms21186540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
(E)-β-caryophyllene (BCP) is a natural sesquiterpene hydrocarbon present in hundreds of plant species. BCP possesses several important pharmacological activities, ranging from pain treatment to neurological and metabolic disorders. These are mainly due to its ability to interact with the cannabinoid receptor 2 (CB2) and the complete lack of interaction with the brain CB1. A systematic analysis of plant species with essential oils containing a BCP percentage > 10% provided almost 300 entries with species belonging to 51 families. The essential oils were found to be extracted from 13 plant parts and samples originated from 56 countries worldwide. Statistical analyses included the evaluation of variability in BCP% and yield% as well as the statistical linkage between families, plant parts and countries of origin by cluster analysis. Identified species were also grouped according to their presence in the Belfrit list. The survey evidences the importance of essential oil yield evaluation in support of the chemical analysis. The results provide a comprehensive picture of the species with the highest BCP and yield percentages.
Collapse
|
41
|
Norcino L, Mendes J, Natarelli C, Manrich A, Oliveira J, Mattoso L. Pectin films loaded with copaiba oil nanoemulsions for potential use as bio-based active packaging. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105862] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
42
|
Couto RSD, Rodrigues MFSD, Ferreira LS, Diniz IMA, Silva FDS, Lopez TCC, Lima RR, Marques MM. Evaluation of Resin-Based Material Containing Copaiba Oleoresin ( Copaifera Reticulata Ducke): Biological Effects on the Human Dental Pulp Stem Cells. Biomolecules 2020; 10:biom10070972. [PMID: 32605172 PMCID: PMC7407412 DOI: 10.3390/biom10070972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 01/08/2023] Open
Abstract
The purpose of this study was to analyze in vitro the biological effects on human dental pulp stem cells triggered in response to substances leached or dissolved from two experimental cements for dental pulp capping. The experimental materials, based on extracts from Copaifera reticulata Ducke (COP), were compared to calcium hydroxide [Ca(OH)2] and mineral trioxide aggregate (MTA), materials commonly used for direct dental pulp capping in restorative dentistry. For this, human dental pulp stem cells were exposed to COP associated or not with Ca(OH)2 or MTA. Cell cytocompatibility, migration, and differentiation (mineralized nodule formation (Alizarin red assay) and gene expression (RT-qPCR) of OCN, DSPP, and HSP-27 (genes regulated in biomineralization events)) were evaluated. The results showed that the association of COP reduced the cytotoxicity of Ca(OH)2. Upregulations of the OCN, DSPP, and HSP-27 genes were observed in response to the association of COP to MTA, and the DSPP and HSP-27 genes were upregulated in the Ca(OH)2 + COP group. In up to 24 h, cell migration was significantly enhanced in the MTA + COP and Ca(OH)2 + COP groups. In conclusion, the combination of COP with the currently used materials for dental pulp capping [Ca(OH)2 and MTA] improved the cell activities related to pulp repair (i.e., cytocompatibility, differentiation, mineralization, and migration) including a protective effect against the cytotoxicity of Ca(OH)2.
Collapse
Affiliation(s)
- Roberta Souza D’Almeida Couto
- Department of Restorative Dentistry, School of Dentistry, University of Sao Paulo, São Paulo, SP 05508-060, Brazil; (L.S.F.); (M.M.M.)
- School of Dentistry, Federal University of Pará, Belém, PA 66075-110, Brazil
- Correspondence: ; Tel.: +55-091-3201-7637
| | | | - Leila Soares Ferreira
- Department of Restorative Dentistry, School of Dentistry, University of Sao Paulo, São Paulo, SP 05508-060, Brazil; (L.S.F.); (M.M.M.)
| | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizionte, MG 31270-901, Brazil;
| | - Fernando de Sá Silva
- Departamento de Ciências da Vida, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil;
| | - Talita Christine Camilo Lopez
- Postgraduation Program in Biophotonics Applied to Health Sciences, Nove de Julho University, São Paulo, SP 02112-000, Brazil; (M.F.S.D.R.); (T.C.C.L.)
| | - Rafael Rodrigues Lima
- Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil;
| | - Márcia Martins Marques
- Department of Restorative Dentistry, School of Dentistry, University of Sao Paulo, São Paulo, SP 05508-060, Brazil; (L.S.F.); (M.M.M.)
- Post graduation course in Dentistry, Ibirapuera University, São Paulo, SP 04661-100, Brazil
| |
Collapse
|
43
|
Nea F, Kambiré DA, Genva M, Tanoh EA, Wognin EL, Martin H, Brostaux Y, Tomi F, Lognay GC, Tonzibo ZF, Fauconnier ML. Composition, Seasonal Variation, and Biological Activities of Lantana camara Essential Oils from Côte d'Ivoire. Molecules 2020; 25:molecules25102400. [PMID: 32455772 PMCID: PMC7287757 DOI: 10.3390/molecules25102400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/16/2022] Open
Abstract
This work aims to study the variations in the composition of Lantana camara leaf, flower, and stem essential oils over two years. L. camara organs were harvested in Bregbo (East Côte d'Ivoire) each month from June 2015 to June 2017. The essential oils were obtained by hydrodistillation and characterized by GC-MS and 13C NMR. Eighty-four compounds accounting for 84.4-99.1% of the essential oils have been identified. The essential oils hydrodistillated from L. camara are dominated by sesquiterpenes such as (E)-β-caryophyllene and α-humulene, which were found in all samples. Some monoterpenes such as thymol, sabinene, and α-pinene were also present. Statistical analysis (principal component analysis and clustering) revealed a high variability in essential oil composition between the different organs and also within the studied periods, as the thymol proportion was higher during flowering and fruiting months. In addition, the stem, flower, and fruit essential oils were more concentrated in thymol than the leaf essential oils. The proportions of (E)-β-caryophyllene and α-humulene were strictly inverted with the thymol proportion throughout the harvest period or vegetative cycle. The antioxidant, anti-inflammatory and insecticidal activities of leaves and flowers essential oils were also studied. Results showed that L. camara leaf and flower essential oils displayed high antioxidant, anti-inflammatory and insecticidal activities.
Collapse
Affiliation(s)
- Fatimata Nea
- Laboratory of Biological Organic Chemistry, UFR-SSMT, University Félix Houphouët-Boigny, 01 BP 582 Abidjan 01, Ivory Coast; (D.A.K.); (E.A.T.); (E.L.W.); (Z.F.T.)
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium; (M.G.); (H.M.); (M.-L.F.)
- Correspondence:
| | - Didjour Albert Kambiré
- Laboratory of Biological Organic Chemistry, UFR-SSMT, University Félix Houphouët-Boigny, 01 BP 582 Abidjan 01, Ivory Coast; (D.A.K.); (E.A.T.); (E.L.W.); (Z.F.T.)
| | - Manon Genva
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium; (M.G.); (H.M.); (M.-L.F.)
| | - Evelyne Amenan Tanoh
- Laboratory of Biological Organic Chemistry, UFR-SSMT, University Félix Houphouët-Boigny, 01 BP 582 Abidjan 01, Ivory Coast; (D.A.K.); (E.A.T.); (E.L.W.); (Z.F.T.)
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium; (M.G.); (H.M.); (M.-L.F.)
| | - Esse Leon Wognin
- Laboratory of Biological Organic Chemistry, UFR-SSMT, University Félix Houphouët-Boigny, 01 BP 582 Abidjan 01, Ivory Coast; (D.A.K.); (E.A.T.); (E.L.W.); (Z.F.T.)
- Laboratory of Instrumentation Image and Spectroscopy, National Polytechnic Institute Felix Houphouët-Boigny, BP 1093 Yamoussoukro, Ivory Coast
| | - Henri Martin
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium; (M.G.); (H.M.); (M.-L.F.)
| | - Yves Brostaux
- Applied Statistics, Computer Science and Modelling Unit, Gembloux Agro-Bio Tech, University of Liège, avenue de la Faculté d’Agronomie 8, B-5030 Gembloux, Belgium;
| | - Félix Tomi
- Université de Corse-CNRS, UMR 6134 SPE, Equipe Chimie et Biomasse, Route des Sanguinaires, F-20000 Ajaccio, France;
| | - Georges C. Lognay
- Analytical Chemistry Laboratory, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium;
| | - Zanahi Félix Tonzibo
- Laboratory of Biological Organic Chemistry, UFR-SSMT, University Félix Houphouët-Boigny, 01 BP 582 Abidjan 01, Ivory Coast; (D.A.K.); (E.A.T.); (E.L.W.); (Z.F.T.)
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium; (M.G.); (H.M.); (M.-L.F.)
| |
Collapse
|
44
|
Santos TMM, Chaves BB, Cerqueira JS, Canario MM, Bresolin D, Pinto JC, Machado RAF, Cabral-Albuquerque ECM, Vieira de Melo SAB. Dispersion Polymerization of Methyl Methacrylate in Supercritical CO 2: A Preliminary Evaluation of In Situ Incorporation of Copaiba Oil. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- T. M. M. Santos
- Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, 40210-630 Salvador, BA, Brazil
| | - B. B. Chaves
- Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, 40210-630 Salvador, BA, Brazil
| | - J. S. Cerqueira
- Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, 40210-630 Salvador, BA, Brazil
| | - M. M. Canario
- Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, 40210-630 Salvador, BA, Brazil
| | - D. Bresolin
- Programa de Pós-graduação em Engenharia Química, Universidade Federal de Santa Catarina, 88040-900 Santa Catarina, SC, Brazil
| | - J. C. Pinto
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, RJ, Brazil
| | - R. A. F. Machado
- Programa de Pós-graduação em Engenharia Química, Universidade Federal de Santa Catarina, 88040-900 Santa Catarina, SC, Brazil
| | - E. C. M Cabral-Albuquerque
- Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, 40210-630 Salvador, BA, Brazil
| | - S. A. B. Vieira de Melo
- Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, 40210-630 Salvador, BA, Brazil
- Centro Interdisciplinar em Energia e Ambiente, Campus Universitário da Federação/Ondina, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil
| |
Collapse
|
45
|
Safety and Effectiveness of Copaiba Oleoresin ( C. reticulata Ducke) on Inflammation and Tissue Repair of Oral Wounds in Rats. Int J Mol Sci 2020; 21:ijms21103568. [PMID: 32443593 PMCID: PMC7278981 DOI: 10.3390/ijms21103568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
In traditional communities of the Brazilian Amazon, the copaiba oleoresin (C. reticulata Ducke) is widely known for its therapeutic activity, especially its wound healing and anti-inflammatory actions. Our study aimed to evaluate these effects in oral lesions and the safety of the dosage proposed. A punch biopsy wound was induced on the ventral surface of the tongue of forty-five male Wistar rats under anesthesia. Animals were randomly allocated to one of three groups based on the treatment: control, corticoid and copaiba. A daily dose of each treatment and vehicle was administrated by oral gavage for three consecutive days. Sample collections took place on the third, seventh and 15th days post-wounding for clinical and histopathological analyses. Blood was collected on the third and seventh days for kidneys and liver function tests. Semi-quantitative analyses were performed based on scores of inflammation and reepithelization. Tissue collagen deposition was detected by PicroSirius red staining. Copaiba-treated wounds revealed a smaller wound area, decreased of acute inflammatory reaction and enhanced reepithelization. The levels of kidney and liver function tests did not reveal presence of damage post-treatments. Our findings suggest that copaiba oleoresin is a safe and effective alternative therapy for inflammation and tissue repair of oral wounds in this animal model.
Collapse
|
46
|
Becker G, Brusco I, Casoti R, Marchiori MCL, Cruz L, Trevisan G, Oliveira SM. Copaiba oleoresin has topical antinociceptive activity in a UVB radiation-induced skin-burn model in mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112476. [PMID: 31838179 DOI: 10.1016/j.jep.2019.112476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Copaiba oleoresin, extracted from Copaifera L., is used as a wound healing, analgesic, antimicrobial and, mainly, anti-inflammatory agent. Thus, in this study we investigated the antinociceptive and anti-inflammatory effects of a topical formulation containing Copaiba oleoresin (3%) in a UVB radiation-induced skin burn model (0.75 J/cm2) in mice and performed a cream-formulation stability study. MATERIALS AND METHODS The chemical composition of Copaiba oleoresin was analyzed using gas chromatography (GC-MS). The topical antinociceptive (evaluated through mechanical allodynia and thermal hyperalgesia) and the anti-inflammatory (dermal thickness and inflammatory cell infiltration) effects of treatments were assessed. The cream-formulation stability study was performed after two months, and organoleptic characteristics, pH, spreadability and rheological characteristics were analyzed. RESULTS Copaiba oleoresin cream was able to prevent UVB radiation-induced mechanical allodynia on the 2nd, 3rd and 4th day after UVB radiation exposure with a maximum inhibition (Imax) of 64.6 ± 7% observed on the 2nd day; it also reduced the thermal hyperalgesia on the 1st and 2nd days post UVB radiation, with a Imax of 100% observed on the 2nd day. Moreover, topical treatment with Copaiba oleoresin cream inhibited the inflammatory cell infiltration, but did not reduce the dermal thickness. Such effects can be attributed, at least in part, to the presence of biological components, such as β-caryophyllene and other sesquiterpenes identified by GC-MS. CONCLUSION Our results demonstrate that the topical formulation containing Copaiba oleoresin presented antinociceptive and anti-inflammatory effects in mice subjected to a UVB radiation and that the cream-formulation was stable for two months. Thus, use of Copaiba oleoresin is a promising strategy for the treatment of inflammatory pain associated with sunburn.
Collapse
Affiliation(s)
- Gabriela Becker
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Biochemistry Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Indiara Brusco
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Biochemistry Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rosana Casoti
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | - Marila Crivellaro Lay Marchiori
- Laboratory of Pharmaceutical Technology, Graduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Letícia Cruz
- Laboratory of Pharmaceutical Technology, Graduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Biochemistry Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
47
|
Ritter C, Dalenogare DP, de Almeida AS, Pereira VL, Pereira GC, Fialho MFP, Lückemeyer DD, Antoniazzi CT, Kudsi SQ, Ferreira J, Oliveira SM, Trevisan G. Nociception in a Progressive Multiple Sclerosis Model in Mice Is Dependent on Spinal TRPA1 Channel Activation. Mol Neurobiol 2020; 57:2420-2435. [PMID: 32095993 DOI: 10.1007/s12035-020-01891-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022]
Abstract
Central neuropathic pain is a common untreated symptom in progressive multiple sclerosis (PMS) and is associated with poor quality of life and interference with patients' daily activities. The neuroinflammation process and mitochondrial dysfunction in the PMS lesions generate reactive species. The transient potential receptor ankyrin 1 (TRPA1) has been identified as one of the major mechanisms that contribute to neuropathic pain signaling and can be activated by reactive compounds. Thus, the goal of our study was to evaluate the role of spinal TRPA1 in the central neuropathic pain observed in a PMS model in mice. We used C57BL/6 female mice (20-30 g), and the PMS model was induced by the experimental autoimmune encephalomyelitis (EAE) using mouse myelin oligodendrocyte glycoprotein (MOG35-55) antigen and CFA (complete Freund's adjuvant). Mice developed progressive clinical score, with motor impairment observed after 15 days of induction. This model induced mechanical and cold allodynia and heat hyperalgesia which were measured up to 14 days after induction. The hypersensitivity observed was reduced by the administration of selective TRPA1 antagonists (HC-030031 and A-967079, via intrathecal and intragastric), antioxidants (α-lipoic acid and apocynin, via intrathecal and intragastric), and TRPA1 antisense oligonucleotide (via intrathecal). We also observed an increase in TRPA1 mRNA levels, NADPH oxidase activity, and 4-hydroxinonenal (a TRPA1 agonist) levels in spinal cord samples of PMS-EAE induced animals. In conclusion, these results support the hypothesis of the TRPA1 receptor involvement in nociception observed in a PMS-EAE model in mice.
Collapse
Affiliation(s)
- Camila Ritter
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, RS, 97105-900, Brazil
| | - Diéssica Padilha Dalenogare
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, RS, 97105-900, Brazil
| | - Amanda Spring de Almeida
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, RS, 97105-900, Brazil
| | - Vitória Loreto Pereira
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, RS, 97105-900, Brazil
| | - Gabriele Cheiran Pereira
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, RS, 97105-900, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Débora Denardin Lückemeyer
- Graduated Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil
| | - Caren Tatiane Antoniazzi
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, RS, 97105-900, Brazil
| | - Sabrina Qader Kudsi
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, RS, 97105-900, Brazil
| | - Juliano Ferreira
- Graduated Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil
| | - Sara Marchesan Oliveira
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Gabriela Trevisan
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
48
|
Amaral-Machado L, Oliveira WN, Moreira-Oliveira SS, Pereira DT, Alencar ÉN, Tsapis N, Egito EST. Use of Natural Products in Asthma Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:1021258. [PMID: 32104188 PMCID: PMC7040422 DOI: 10.1155/2020/1021258] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
Abstract
Asthma, a disease classified as a chronic inflammatory disorder induced by airway inflammation, is triggered by a genetic predisposition or antigen sensitization. Drugs currently used as therapies present disadvantages such as high cost and side effects, which compromise the treatment compliance. Alternatively, traditional medicine has reported the use of natural products as alternative or complementary treatment. The aim of this review was to summarize the knowledge reported in the literature about the use of natural products for asthma treatment. The search strategy included scientific studies published between January 2006 and December 2017, using the keywords "asthma," "treatment," and "natural products." The inclusion criteria were as follows: (i) studies that aimed at elucidating the antiasthmatic activity of natural-based compounds or extracts using laboratory experiments (in vitro and/or in vivo); and (ii) studies that suggested the use of natural products in asthma treatment by elucidation of its chemical composition. Studies that (i) did not report experimental data and (ii) manuscripts in languages other than English were excluded. Based on the findings from the literature search, aspects related to asthma physiopathology, epidemiology, and conventional treatment were discussed. Then, several studies reporting the effectiveness of natural products in the asthma treatment were presented, highlighting plants as the main source. Moreover, natural products from animals and microorganisms were also discussed and their high potential in the antiasthmatic therapy was emphasized. This review highlighted the importance of natural products as an alternative and/or complementary treatment source for asthma treatment, since they present reduced side effects and comparable effectiveness as the drugs currently used on treatment protocols.
Collapse
Affiliation(s)
- Lucas Amaral-Machado
- Graduate Program in Health Sciences, Dispersed System Laboratory (LaSid), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petrópolis, Natal 59012-570, Brazil
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Wógenes N. Oliveira
- Graduate Program in Health Sciences, Dispersed System Laboratory (LaSid), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petrópolis, Natal 59012-570, Brazil
| | - Susiane S. Moreira-Oliveira
- Graduate Program in Health Sciences, Dispersed System Laboratory (LaSid), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petrópolis, Natal 59012-570, Brazil
| | - Daniel T. Pereira
- Graduate Program in Health Sciences, Dispersed System Laboratory (LaSid), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petrópolis, Natal 59012-570, Brazil
| | - Éverton N. Alencar
- Graduate Program in Pharmaceutical Nanotechnology, LaSid, UFRN, Av. General Gustavo de Cordeiro-SN-Petropolis, Natal 59012-570, Brazil
| | - Nicolas Tsapis
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Eryvaldo Sócrates T. Egito
- Graduate Program in Health Sciences, Dispersed System Laboratory (LaSid), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petrópolis, Natal 59012-570, Brazil
- Graduate Program in Pharmaceutical Nanotechnology, LaSid, UFRN, Av. General Gustavo de Cordeiro-SN-Petropolis, Natal 59012-570, Brazil
| |
Collapse
|
49
|
Caputo LS, Campos MIC, Dias HJ, Crotti AEM, Fajardo JB, Vanelli CP, Presto ÁCD, Alves MS, Aarestrup FM, Paula ACC, Da Silva Filho AA, Aarestrup BJV, Pereira OS, Corrêa JODA. Copaiba oil suppresses inflammation in asthmatic lungs of BALB/c mice induced with ovalbumin. Int Immunopharmacol 2020; 80:106177. [PMID: 32007706 DOI: 10.1016/j.intimp.2019.106177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/05/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic inflammatory disease that represents high hospitalizations and deaths in world. Copaiba oil (CO) is popularly used for relieving asthma symptoms and has already been shown to be effective in many inflammation models. This study aimed to investigate the immunomodulatory relationship of CO in ovalbumin (OVA)-induced allergic asthma. The composition of CO sample analyzed by GC and GC-MS and the toxicity test was performed in mice at doses of 50 or 100 mg/kg (by gavage). After, the experimental model of allergic asthma was induced with OVA and mice were orally treated with CO in two pre-established doses. The inflammatory infiltrate was evaluated in bronchoalveolar lavage fluid (BALF), while cytokines (IL-4, IL-5, IL-17, IFN-γ, TNF-α), IgE antibody and nitric oxide (NO) production was evaluated in BALF and lung homogenate (LH) of mice, together with the histology and histomorphometry of the lung tissue. CO significantly attenuated the number of inflammatory cells in BALF, suppressing NO production and reducing the response mediated by TH2 and TH17 (T helper) cells in both BALF and LH. Histopathological and histomorphometric analysis confirmed that CO significantly reduced the numbers of inflammatory infiltrate in the lung tissue, including in the parenchyma area. Our results indicate that CO has an effective in vivo antiasthmatic effect.
Collapse
Affiliation(s)
- Ludmila S Caputo
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Maria Inês C Campos
- Laboratory of Experimental Immunology and Pathology, Reproduction Biology Center (CBR), Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Herbert J Dias
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantesn° 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Antônio E M Crotti
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantesn° 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Júlia B Fajardo
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Chislene P Vanelli
- Health Department, Faculty of Medical Sciences and Health of Juiz de Fora (SUPREMA), Alameda Salvaterra n° 200, Salvaterra, 36.033-003 Juiz de Fora, MG, Brazil
| | - Álvaro C D Presto
- Laboratory of Experimental Immunology and Pathology, Reproduction Biology Center (CBR), Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Maria S Alves
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Fernando M Aarestrup
- Laboratory of Experimental Immunology and Pathology, Reproduction Biology Center (CBR), Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Ana Claudia C Paula
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Ademar A Da Silva Filho
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Beatriz J V Aarestrup
- Laboratory of Experimental Immunology and Pathology, Reproduction Biology Center (CBR), Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Olavo S Pereira
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - José Otávio do A Corrêa
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil.
| |
Collapse
|
50
|
do Carmo Silva L, Miranda MACM, de Freitas JV, Ferreira SFA, de Oliveira Lima EC, de Oliveira CMA, Kato L, Terezan AP, Rodriguez AFR, Faria FSEDV, de Almeida Soares CM, Pereira M. Antifungal activity of Copaíba resin oil in solution and nanoemulsion against Paracoccidioides spp. Braz J Microbiol 2019; 51:125-134. [PMID: 31833006 DOI: 10.1007/s42770-019-00201-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/27/2019] [Indexed: 11/29/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a disease caused by fungi of the genus Paracoccidioides. The disease is responsible for high rates of premature deaths and socioeconomic repercussions. The limitations of antifungal agents against PCM have motivated the search for new compounds. In our ongoing exploration of Cerrado plants as potential sources of new antifungal agents, we selected Copaifera langsdorffii oil (Copaíba resin oil) in order to explore its bioactive potential and test a formulation to increase oil stability and solubilization employing Pluronic F-127 to obtain the nanoemulsion of the oil. We aim at testing both Copaíba resin oil and its nanoemulsion against four species of the Paracoccidioides genus. We performed cytotoxicity test in Balb/C3T3 cells, hemolytic activity and interaction of Copaíba resin oil and Copaíba resin oil nanoemulsion (CopaPlu) with the antifungal agents such as amphotericin B, co-trimoxazole, and itraconazole. Moreover, the Copaíba resin oil was analyzed by mass spectrometry to identify its chemical profile. Eventually, a new methodology to prepare the nanoemulsion is presented. The Copaíba resin oil and CopaPlu nanoemulsion inhibited Paracoccidioides sp. growth efficiently, and no cytotoxicity or hemolytic effect was observed at minimum inhibitory concentration (MIC). When combined with amphotericin B, Copaíba resin oil and its nanoemulsion showed an additive effect with reduction of MIC values. The Copaíba resin oil and CopaPlu nanoemulsion is a promising antifungal agent against Paracoccidioides.
Collapse
Affiliation(s)
- Lívia do Carmo Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Meire Ane Costa Miguel Miranda
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Julianna Veiga de Freitas
- Laboratory of Colloids and Nanostructured Materials, Institute of Chemistry, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Sarah Fernanda Araújo Ferreira
- Laboratory of Colloids and Nanostructured Materials, Institute of Chemistry, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Emília Celma de Oliveira Lima
- Laboratory of Colloids and Nanostructured Materials, Institute of Chemistry, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Lucilia Kato
- Laboratory of Natural Products, Institute of Chemistry, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Ana Paula Terezan
- Laboratory of Natural Products, Institute of Chemistry, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | | | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil.
| |
Collapse
|