1
|
Bartoszewska E, Molik K, Woźniak M, Choromańska A. Telomerase Inhibition in the Treatment of Leukemia: A Comprehensive Review. Antioxidants (Basel) 2024; 13:427. [PMID: 38671875 PMCID: PMC11047729 DOI: 10.3390/antiox13040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Leukemia, characterized by the uncontrolled proliferation and differentiation blockage of myeloid or lymphoid precursor cells, presents significant therapeutic challenges despite current treatment modalities like chemotherapy and stem cell transplantation. Pursuing novel therapeutic strategies that selectively target leukemic cells is critical for improving patient outcomes. Natural products offer a promising avenue for developing effective chemotherapy and preventive measures against leukemia, providing a rich source of biologically active compounds. Telomerase, a key enzyme involved in chromosome stabilization and mainly active in cancer cells, presents an attractive target for intervention. In this review article, we focus on the anti-leukemic potential of natural substances, emphasizing vitamins (such as A, D, and E) and polyphenols (including curcumin and indole-3-carbinol), which, in combination with telomerase inhibition, demonstrate reduced cytotoxicity compared to conventional chemotherapies. We discuss the role of human telomerase reverse transcriptase (hTERT), particularly its mRNA expression, as a potential therapeutic target, highlighting the promise of natural compounds in leukemia treatment and prevention.
Collapse
Affiliation(s)
- Elżbieta Bartoszewska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (K.M.)
| | - Klaudia Molik
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (K.M.)
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland;
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
2
|
Yu X, Wang Q, Dai Z. Ginsenosides Inhibit the Proliferation of Lung Cancer Cells and Suppress the Rate of Metastasis by Modulating EGFR/VEGF Signaling Pathways. J Oleo Sci 2024; 73:219-230. [PMID: 38311411 DOI: 10.5650/jos.ess23120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Ginsenosides Rg3 and Rg5 obtained from Panax (ginseng) have shown significant anticancer activity via the PI3K-Akt signaling pathway. This study evaluated the anticancer and antimetastatic effects of a combination of Rg3 and Rg5 on lung cancer cells. A combination of Rg3 and Rg5 was treated for lung cancer cell line A549 and human lung tumor xenograft mouse model, and anti-metastatic effects on Matrigel plug implantation in mice. The combination of Rg3 and Rg5 showed potent antiproliferative effects on A549 cells with IC50 values of 44.6 and 36.0 μM for Rg3 and Rg5 respectively. The combination of Rg3 and Rg5 (30 µM each) showed 48% cell viability as compared to Rg3 (72% viability) and Rg5 (64% viability) at 30 µM concentrations. The combination of Rg3 and Rg5 induced apoptosis in A549 cells characterized by activation of caspase-9 and caspase-3 and cleavage of PARP, as well as suppression of the autophagic marker LC3A/B. The antitumoral potentials of the combination of Rg3 and Rg5 were ascertained in a lung tumor xenograft mouse model with high efficacy as compared to individual ginsenosides. The metastasislimiting properties of the combination of Rg3 and Rg5 were assessed in Matrigel plug implantation in mice which showed the potent efficacy of the combination as compared to individual ginsenoside. Mechanistically, the combination of Rg3 and Rg5 inhibited the expression of PI3K/Akt/mTOR and EGFR/VEGF signaling pathways in lung cancer cells. Results suggest that the combination of Rg3 and Rg5 suppressed the tumor cell proliferation in lung cancer cells and limited the rate of metastasis which further suggest that the combination has a significant effect as compared to the administration of single ginsenoside.
Collapse
Affiliation(s)
- Xuelian Yu
- Department of Pulmonary, Muping Chinese Traditional Medical Hospital
| | - Qihu Wang
- Department of Pulmonary, Muping Chinese Traditional Medical Hospital
| | - Zhaoxin Dai
- Department of Pulmonary, Muping Chinese Traditional Medical Hospital
| |
Collapse
|
3
|
Ozdemir A, Tumkaya L, Mercantepe T, Celik Samanci T, Uyan M, Kalcan S, Demiral G, Pergel A, Yilmaz Kutlu E, Kilic Yilmaz H. The protective effects of ginseng on x-irradiation-induced intestinal damage in rats. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023:10.1007/s00411-023-01039-y. [PMID: 37410120 DOI: 10.1007/s00411-023-01039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Although radiotherapy is widely employed in the treatment of various malignancies in oncology patients, its use is limited by the toxic effects it causes in surrounding tissues, including the gastrointestinal system. Korean Red Ginseng (KRG) is a traditional drug reported to possess antioxidant and restorative properties in various studies. The purpose of the present study was to investigate the protective effects of KRG against radiation-associated small intestinal damage. Twenty-four male Sprague Dawley rats were randomly assigned into three groups. No procedure was performed on Group 1 (control) during the experiment, while Group 2 (x-irradiation) was exposed to radiation only. Group 3 (x-irradiation + ginseng) received ginseng via the intraperitoneal route for a week prior to x-irradiation. The rats were killed 24 h after radiation. Small intestinal tissues were evaluated using histochemical and biochemical methods. An increase in malondialdehyde (MDA) levels and a decrease in glutathione (GSH) were observed in the x-irradiation group compared to the control group. KRG caused a decrease in MDA and caspase-3 activity and an increase in GSH. Our findings show that it can prevent damage and apoptotic cell death caused by x-irradiation in intestinal tissue and can therefore play a protective role against intestinal injury in patients receiving radiotherapy.
Collapse
Affiliation(s)
- Ali Ozdemir
- Department of General Surgery, Faculty of Medicine, Recep Tayyip Erdogan University, Merkez, Box: 53020, Rize, Turkey.
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53010, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53010, Rize, Turkey
| | - Tugba Celik Samanci
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53010, Rize, Turkey
| | - Mikail Uyan
- Department of General Surgery, Faculty of Medicine, Recep Tayyip Erdogan University, Merkez, Box: 53020, Rize, Turkey
| | - Suleyman Kalcan
- Department of General Surgery, Faculty of Medicine, Recep Tayyip Erdogan University, Merkez, Box: 53020, Rize, Turkey
| | - Gokhan Demiral
- Department of General Surgery, Faculty of Medicine, Recep Tayyip Erdogan University, Merkez, Box: 53020, Rize, Turkey
| | - Ahmet Pergel
- Department of General Surgery, Faculty of Medicine, Recep Tayyip Erdogan University, Merkez, Box: 53020, Rize, Turkey
| | - Eda Yilmaz Kutlu
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53010, Rize, Turkey
| | - Hülya Kilic Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53010, Rize, Turkey
| |
Collapse
|
4
|
Wang JS, Gong XF, Feng JL, Xu HS, Bao BH, Meng FC, Deng S, Dai HH, Li HS, Cui HS, Wang B. Explore the effects of pulmonary fibrosis on sperm quality and the role of the PI3K/Akt pathway based on rat model. Andrologia 2021; 54:e14348. [PMID: 34932839 DOI: 10.1111/and.14348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 02/03/2023] Open
Abstract
Researches were reported that respiratory diseases can lead to male infertility; however, it is unclear whether there is a relationship between pulmonary fibrosis (PF) and male infertility. This study examined the influence of PF on sperm quality and its mechanisms. The key signalling pathway of male infertility caused by PF was predicted based on bioinformatics research. After modelling, we evaluated semen quality. Real-time quantitative polymerase chain reaction and Western blotting were used to measure the protein and mRNA expression levels of phosphatidylinositol 3-kinase (PI3K), phosphorylation-protein kinase B (p-Akt) and B-cell lymphoma 2 (Bcl2) in rat testicular cells. Compared with group A (48.77 ± 4.67; 59.77 ± 4.79), the sperm concentration and total sperm viability of group B (8.44 ± 1.71; 15.39 ± 3.48) showed a downward trend (p < 0.05). Western blotting showed that the protein expressions of PI3K, p-Akt and Bcl2 in the testes of group B (0.30 ± 0.06; 0.27 ± 0.05; 0.15 ± 0.03) was significantly lower than those of group A (0.71 ± 0.07; 0.72 ± 0.06; 0.50 ± 0.06) (p < 0.05). The hypoxic environment induced by PF can inhibit the expression of PI3K, p-Akt and Bcl2 protein and eventually cause dysfunctional spermatogenesis.
Collapse
Affiliation(s)
- Ji-Sheng Wang
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xue-Feng Gong
- Department of Traditional Chinese Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jun-Long Feng
- Beijing University of Chinese Medicine, Beijing, China
| | - Hong-Sheng Xu
- Beijing University of Chinese Medicine, Beijing, China
| | - Bing-Hao Bao
- Beijing University of Chinese Medicine, Beijing, China
| | - Fan-Chao Meng
- Beijing University of Chinese Medicine, Beijing, China
| | - Sheng Deng
- Beijing University of Chinese Medicine, Beijing, China
| | - Heng-Heng Dai
- Beijing University of Chinese Medicine, Beijing, China
| | - Hai-Song Li
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hong-Sheng Cui
- Pneumology Department, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Bin Wang
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Yu-lan T, Mai-lan L, Jian L, Nan L, Guo-shan Z, Jie Y, Qian-yun Y. Exploring the effect of acupuncture plus mild hypothermia on miRNA-204 and its target gene expressions in CIRI rat brain tissues based on MAPK signal pathway. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2021. [DOI: 10.1007/s11726-021-1264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Atazadegan MA, Bagherniya M, Askari G, Tasbandi A, Sahebkar A. The Effects of Medicinal Plants and Bioactive Natural Compounds on Homocysteine. Molecules 2021; 26:3081. [PMID: 34064073 PMCID: PMC8196702 DOI: 10.3390/molecules26113081] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Among non-communicable diseases, cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity in global communities. By 2030, CVD-related deaths are projected to reach a global rise of 25 million. Obesity, smoking, alcohol, hyperlipidemia, hypertension, and hyperhomocysteinemia are several known risk factors for CVDs. Elevated homocysteine is tightly related to CVDs through multiple mechanisms, including inflammation of the vascular endothelium. The strategies for appropriate management of CVDs are constantly evolving; medicinal plants have received remarkable attention in recent researches, since these natural products have promising effects on the prevention and treatment of various chronic diseases. The effects of nutraceuticals and herbal products on CVD/dyslipidemia have been previously studied. However, to our knowledge, the association between herbal bioactive compounds and homocysteine has not been reviewed in details. Thus, the main objective of this study is to review the efficacy of bioactive natural compounds on homocysteine levels according to clinical trials and animal studies. RESULTS Based on animal studies, black and green tea, cinnamon, resveratrol, curcumin, garlic extract, ginger, and soy significantly reduced the homocysteine levels. According to the clinical trials, curcumin and resveratrol showed favorable effects on serum homocysteine. In conclusion, this review highlighted the beneficial effects of medicinal plants as natural, inexpensive, and accessible agents on homocysteine levels based on animal studies. Nevertheless, the results of the clinical trials were not uniform, suggesting that more well-designed trials are warranted.
Collapse
Affiliation(s)
- Mohammad Amin Atazadegan
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Gholamreza Askari
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Aida Tasbandi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
7
|
Panossian AG, Efferth T, Shikov AN, Pozharitskaya ON, Kuchta K, Mukherjee PK, Banerjee S, Heinrich M, Wu W, Guo D, Wagner H. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress- and aging-related diseases. Med Res Rev 2021; 41:630-703. [PMID: 33103257 PMCID: PMC7756641 DOI: 10.1002/med.21743] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/26/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
Adaptogens comprise a category of herbal medicinal and nutritional products promoting adaptability, resilience, and survival of living organisms in stress. The aim of this review was to summarize the growing knowledge about common adaptogenic plants used in various traditional medical systems (TMS) and conventional medicine and to provide a modern rationale for their use in the treatment of stress-induced and aging-related disorders. Adaptogens have pharmacologically pleiotropic effects on the neuroendocrine-immune system, which explain their traditional use for the treatment of a wide range of conditions. They exhibit a biphasic dose-effect response: at low doses they function as mild stress-mimetics, which activate the adaptive stress-response signaling pathways to cope with severe stress. That is in line with their traditional use for preventing premature aging and to maintain good health and vitality. However, the potential of adaptogens remains poorly explored. Treatment of stress and aging-related diseases require novel approaches. Some combinations of adaptogenic plants provide unique effects due to their synergistic interactions in organisms not obtainable by any ingredient independently. Further progress in this field needs to focus on discovering new combinations of adaptogens based on traditional medical concepts. Robust and rigorous approaches including network pharmacology and systems pharmacology could help in analyzing potential synergistic effects and, more broadly, future uses of adaptogens. In conclusion, the evolution of the adaptogenic concept has led back to basics of TMS and a new level of understanding of holistic approach. It provides a rationale for their use in stress-induced and aging-related diseases.
Collapse
Affiliation(s)
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and BiochemistryJohannes Gutenberg UniversityMainzGermany
| | - Alexander N. Shikov
- Department of technology of dosage formsSaint‐Petersburg State Chemical‐Pharmaceutical UniversitySt. PetersburgRussia
| | - Olga N. Pozharitskaya
- Department of BiotechnologyMurmansk Marine Biological Institute of the Kola Science Center of the Russian Academy of Sciences (MMBI KSC RAS)MurmanskRussia
| | - Kenny Kuchta
- Department of Far Eastern Medicine, Clinic for Gastroenterology and Gastrointestinal OncologyUniversity Medical Center GöttingenGöttingenGermany
| | - Pulok K. Mukherjee
- Department of Pharmaceutical Technology, School of Natural Product StudiesJadavpur UniversityKolkataIndia
| | - Subhadip Banerjee
- Department of Pharmaceutical Technology, School of Natural Product StudiesJadavpur UniversityKolkataIndia
| | - Michael Heinrich
- Research Cluster Biodiversity and Medicines, UCL School of Pharmacy, Centre for Pharmacognosy and PhytotherapyUniversity of LondonLondonUK
| | - Wanying Wu
- Shanghai Research Center for TCM Modernization, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - De‐an Guo
- Shanghai Research Center for TCM Modernization, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Hildebert Wagner
- Department of Pharmacy, Center for Pharma ResearchLudwig‐Maximilians‐Universität MünchenMunichGermany
| |
Collapse
|
8
|
The Effect of a 2-Week Red Ginseng Supplementation on Food Efficiency and Energy Metabolism in Mice. Nutrients 2020; 12:nu12061726. [PMID: 32526977 PMCID: PMC7352690 DOI: 10.3390/nu12061726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022] Open
Abstract
Red ginseng (RG) ingestion reportedly affects body weight, food intake, and fat accumulation reduction. It also induces changes in energy metabolism regulation and glycemic control. Previously, 2-week RG ingestion with endurance training was found to enhance fat oxidation during exercise. However, such effects on energy metabolism and the expression of mRNAs related to energy substrate utilization in resting mice (untrained mice) are still unclear. Here, we determined the effect of RG on energy metabolism and substrate utilization in untrained male mice. Twenty-four mice were separated into an RG group that received a daily dosage of 1 g/kg RG for 2 weeks, and a control (CON). Energy expenditure, blood and tissue glycogen levels, and expression of mRNAs related to energy substrate utilization in muscles were measured before and 2 weeks after treatment. Total food intake was significantly lower in the RG than in the CON group (p < 0.05), but final body weights did not differ. Carbohydrate and fat oxidation over 24 h did not change in either group. There were no significant differences in gastrocnemius GLUT4, MCT1, MCT4, FAT/CD36, and CPT1b mRNA levels between groups. Thus, the effects of RG ingested during rest differ from the effects of RG ingestion in combination with endurance exercise; administering RG to untrained mice for 2 weeks did not change body weight and energy metabolism. Therefore, future studies should consider examining the RG ingestion period and dosage for body weight control and improving energy metabolism.
Collapse
|
9
|
Berei J, Eckburg A, Miliavski E, Anderson AD, Miller RJ, Dein J, Giuffre AM, Tang D, Deb S, Racherla KS, Patel M, Vela MS, Puri N. Potential Telomere-Related Pharmacological Targets. Curr Top Med Chem 2020; 20:458-484. [DOI: 10.2174/1568026620666200109114339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022]
Abstract
Telomeres function as protective caps at the terminal portion of chromosomes, containing
non-coding nucleotide sequence repeats. As part of their protective function, telomeres preserve genomic
integrity and minimize chromosomal exposure, thus limiting DNA damage responses. With
continued mitotic divisions in normal cells, telomeres progressively shorten until they reach a threshold
at a point where they activate senescence or cell death pathways. However, the presence of the enzyme
telomerase can provide functional immortality to the cells that have reached or progressed past
senescence. In senescent cells that amass several oncogenic mutations, cancer formation can occur due
to genomic instability and the induction of telomerase activity. Telomerase has been found to be expressed
in over 85% of human tumors and is labeled as a near-universal marker for cancer. Due to this
feature being present in a majority of tumors but absent in most somatic cells, telomerase and telomeres
have become promising targets for the development of new and effective anticancer therapeutics.
In this review, we evaluate novel anticancer targets in development which aim to alter telomerase
or telomere function. Additionally, we analyze the progress that has been made, including preclinical
studies and clinical trials, with therapeutics directed at telomere-related targets. Furthermore, we review
the potential telomere-related therapeutics that are used in combination therapy with more traditional
cancer treatments. Throughout the review, topics related to medicinal chemistry are discussed,
including drug bioavailability and delivery, chemical structure-activity relationships of select therapies,
and the development of a unique telomere assay to analyze compounds affecting telomere elongation.
Collapse
Affiliation(s)
- Joseph Berei
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Adam Eckburg
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Edward Miliavski
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Austin D. Anderson
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Rachel J. Miller
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Joshua Dein
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Allison M. Giuffre
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Diana Tang
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Shreya Deb
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Kavya Sri Racherla
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Meet Patel
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Monica Saravana Vela
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| |
Collapse
|
10
|
Chen X, Tang WJ, Shi JB, Liu MM, Liu XH. Therapeutic strategies for targeting telomerase in cancer. Med Res Rev 2019; 40:532-585. [PMID: 31361345 DOI: 10.1002/med.21626] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022]
Abstract
Telomere and telomerase play important roles in abnormal cell proliferation, metastasis, stem cell maintenance, and immortalization in various cancers. Therefore, designing of drugs targeting telomerase and telomere is of great significance. Over the past two decades, considerable knowledge regarding telomere and telomerase has been accumulated, which provides theoretical support for the design of therapeutic strategies such as telomere elongation. Therefore, the development of telomere-based therapies such as nucleoside analogs, non-nucleoside small molecules, antisense technology, ribozymes, and dominant negative human telomerase reverse transcriptase are being prioritized for eradicating a majority of tumors. While the benefits of telomere-based therapies are obvious, there is a need to address the limitations of various therapeutic strategies to improve the possibility of clinical applications. In this study, current knowledge of telomere and telomerase is discussed, and therapeutic strategies based on recent research are reviewed.
Collapse
Affiliation(s)
- Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Jing Bo Shi
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Ming Ming Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Xin-Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
11
|
An W, Lai H, Zhang Y, Liu M, Lin X, Cao S. Apoptotic Pathway as the Therapeutic Target for Anticancer Traditional Chinese Medicines. Front Pharmacol 2019; 10:758. [PMID: 31354479 PMCID: PMC6639427 DOI: 10.3389/fphar.2019.00758] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. Apoptosis is a process of programmed cell death and it plays a vital role in human development and tissue homeostasis. Mounting evidence indicates that apoptosis is closely related to the survival of cancer and it has emerged as a key target for the discovery and development of novel anticancer drugs. Various studies indicate that targeting the apoptotic signaling pathway by anticancer drugs is an important mechanism in cancer therapy. Therefore, numerous novel anticancer agents have been discovered and developed from traditional Chinese medicines (TCMs) by targeting the cellular apoptotic pathway of cancer cells and shown clinically beneficial effects in cancer therapy. This review aims to provide a comprehensive discussion for the role, pharmacology, related biology, and possible mechanism(s) of a number of important anticancer TCMs and their derivatives mainly targeting the cellular apoptotic pathway. It may have important clinical implications in cancer therapy.
Collapse
Affiliation(s)
- Weixiao An
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Nanchong Central Hospital, Nanchong, China
| | - Honglin Lai
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Yangyang Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
12
|
Li KK, Yan XM, Li ZN, Yan Q, Gong XJ. Synthesis and antitumor activity of three novel ginsenoside M1 derivatives with 3'-ester modifications. Bioorg Chem 2019; 90:103061. [PMID: 31216505 DOI: 10.1016/j.bioorg.2019.103061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/11/2019] [Accepted: 06/07/2019] [Indexed: 01/19/2023]
Abstract
Ginsenoside M1 (M1) was considered to be the main antitumor component of ginsenoside metabolites in the body. In order to enhance its potency on antitumor effect, three novel M1 3'-ester derivatives (1c, 2c, 3c) were synthesized and evaluated. The yield of these derivatives was between 41% and 69%. Compared with M1, 2c and 3c can improve the efficacy of the inhibition on breast cancer MCF-7 and MDA-MB-231 cells, especially for MCF-7 (fold: 0.7-4.2, p < 0.0001). Further study suggested that 2c and 3c may cause cell autophagy and promote apoptosis in MCF-7 cells. The results indicated the 3'-ester modified M1 derivatives 2c and 3c possess higher abilities of inhibition growth towards triple-positive breast cancer and provided a new source for synthesis of potential anti-breast cancer drugs.
Collapse
Affiliation(s)
- Ke-Ke Li
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Xiao-Mei Yan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, China
| | - Zheng-Ning Li
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
| | - Qiu Yan
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Xiao-Jie Gong
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
13
|
Assani G, Xiong Y, Zhou F, Zhou Y. Effect of therapies-mediated modulation of telomere and/or telomerase on cancer cells radiosensitivity. Oncotarget 2018; 9:35008-35025. [PMID: 30405890 PMCID: PMC6201854 DOI: 10.18632/oncotarget.26150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the leading causes of death in the world. Many strategies of cancer treatment such as radiotherapy which plays a key role in cancer treatment are developed and used nowadays. However, the side effects post-cancer radiotherapy and cancer radioresistance are two major causes of the limitation of cancer radiotherapy effectiveness in the cancer patients. Moreover, reduction of the limitation of cancer radiotherapy effectiveness by reducing the side effects post-cancer radiotherapy and cancer radioresistance is the aim of several radiotherapy-oncologic teams. Otherwise, Telomere and telomerase are two cells components which play an important role in cancer initiation, cancer progression and cancer therapy resistance such as radiotherapy resistance. For resolving the problems of the limitation of cancer radiotherapy effectiveness especially the cancer radio-resistance problems, the radio-gene-therapy strategy which is the use of gene-therapy via modulation of gene expression combined with radiotherapy was developed and used as a new strategy to treat the patients with cancer. In this review, we summarized the information concerning the implication of telomere and telomerase modulation in cancer radiosensitivity.
Collapse
Affiliation(s)
- Ganiou Assani
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biology Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yudi Xiong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biology Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biology Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biology Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Javed F, Manzoor S. HCV non-structural NS4A protein of genotype 3a induces mitochondria mediated death by activating Bax and the caspase cascade. Microb Pathog 2018; 124:346-355. [PMID: 30179714 DOI: 10.1016/j.micpath.2018.08.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
Currently almost 170 million of the world population is suffering with Hepatitis C virus (HCV) that is the major cause of liver diseases, which leads to liver fibrosis, cirrhosis and hepatocellular carcinoma. Approximately 6% of the Pakistani population is chronically infected with HCV, with genotype 3a being the most prominent strain in Pakistan. Complex of HCV non-structural proteins NS3-4A plays an important role in the viral replication machinery that together has serine protease and helicase activity. Genetic heterogeneity within HCV genotypes makes it pertinent to assess the apoptotic pathway within different HCV genotypes. Findings of present study reveal that HCV genotype 3a NS4A and NS3-NS4A induce cell death in Huh-7 cells. Moreover, our results demonstrated that NS3-4A and NS4A proteins were not only localized on ER but also on the mitochondria. Bax a pro-apoptotic protein was found translocated to the mitochondria in the transfected cells, while up-regulated expression of Bax and down-regulated expression of anti-apoptotic Bcl-xL protein was also observed in the presence of NS4A and NS3-4A proteins. High level of mitochondrial superoxide generation was observed in the transfected cells and NS3-4A and NS4A triggered a cascade of activation starting from caspase-9, then caspase-7 and caspase-3 that ultimately led to the cleavage of poly (ADP-ribose) polymerase PARP. Collectively findings of the present study suggest that NS4A and co-expression of NS3-4A and NS4A of genotype 3a has similar capacity to induce apoptosis through a Bax-triggered, mitochondrial-mediated, caspase cascade.
Collapse
Affiliation(s)
- Farakh Javed
- Atta-ur-Rehman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Science and Technology, Islamabad, Pakistan; Department of Microbiology, University of Haripur, Haripur, Pakistan.
| | - Sobia Manzoor
- Atta-ur-Rehman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Science and Technology, Islamabad, Pakistan.
| |
Collapse
|
15
|
Ryu J, Yoon J, Ryu S, Kang S, Kang M, Kim BS, Lee YW. CO2-assisted hydrothermal reactions for ginseng extract. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.11.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Ganesan K, Xu B. Telomerase Inhibitors from Natural Products and Their Anticancer Potential. Int J Mol Sci 2017; 19:ijms19010013. [PMID: 29267203 PMCID: PMC5795965 DOI: 10.3390/ijms19010013] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/10/2017] [Accepted: 12/19/2017] [Indexed: 12/25/2022] Open
Abstract
Telomeres and telomerase are nowadays exploring traits on targets for anticancer therapy. Telomerase is a unique reverse transcriptase enzyme, considered as a primary factor in almost all cancer cells, which is mainly responsible to regulate the telomere length. Hence, telomerase ensures the indefinite cell proliferation during malignancy—a hallmark of cancer—and this distinctive feature has provided telomerase as the preferred target for drug development in cancer therapy. Deactivation of telomerase and telomere destabilization by natural products provides an opening to succeed new targets for cancer therapy. This review aims to provide a fundamental knowledge for research on telomere, working regulation of telomerase and its various binding proteins to inhibit the telomere/telomerase complex. In addition, the review summarizes the inhibitors of the enzyme catalytic subunit and RNA component, natural products that target telomeres, and suppression of transcriptional and post-transcriptional levels. This extensive understanding of telomerase biology will provide indispensable information for enhancing the efficiency of rational anti-cancer drug design.
Collapse
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| |
Collapse
|
17
|
Kim C, Lee JH, Baek SH, Ko JH, Nam D, Ahn KS. Korean Red Ginseng Extract Enhances the Anticancer Effects of Sorafenib through Abrogation of CREB and c-Jun Activation in Renal Cell Carcinoma. Phytother Res 2017; 31:1078-1089. [DOI: 10.1002/ptr.5829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/20/2017] [Accepted: 04/15/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Chulwon Kim
- College of Korean Medicine; Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 Korea
| | - Jong Hyun Lee
- College of Korean Medicine; Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 Korea
| | - Seung Ho Baek
- College of Korean Medicine; Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 Korea
- College of Korean Medicine; Woosuk University; Wanju Jeonbuk 55338 Korea
| | - Jeong-Hyeon Ko
- College of Korean Medicine; Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 Korea
| | - Dongwoo Nam
- College of Korean Medicine; Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 Korea
| | - Kwang Seok Ahn
- College of Korean Medicine; Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 Korea
| |
Collapse
|
18
|
Biswas T, Mathur AK, Mathur A. A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations. Appl Microbiol Biotechnol 2017; 101:4009-4032. [PMID: 28411325 DOI: 10.1007/s00253-017-8279-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Ginseng, an oriental gift to the world of healthcare and preventive medicine, is among the top ten medicinal herbs globally. The constitutive triterpene saponins, ginsenosides, or panaxosides are attributed to ginseng's miraculous efficacy towards anti-aging, rejuvenating, and immune-potentiating benefits. The major ginsenosides such as Rb1, Rb2, Rc, Rd., Re, and Rg1, formed after extensive glycosylations of the aglycone "dammaranediol," dominate the chemical profile of this genus in vivo and in vitro. Elicitations have successfully led to appreciable enhancements in the production of these major ginsenosides. However, current research on ginseng biotechnology has been focusing on the enrichment or production of the minor ginsenosides (the less glycosylated precursors of the major ginsenosides) in ginseng preparations, which are either absent or are produced in very low amounts in nature or via cell cultures. The minor ginsenosides under current scientific scrutiny include diol ginsenosides such as Rg3, Rh2, compound K, and triol ginsenosides Rg2 and Rh1, which are being touted as the next "anti-neoplastic pharmacophores," with better bioavailability and potency as compared to the major ginsenosides. This review aims at describing the strategies for ginsenoside production with special attention towards production of the minor ginsenosides from the major ginsenosides via microbial biotransformation, elicitations, and from heterologous expression systems.
Collapse
Affiliation(s)
- Tanya Biswas
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India
| | - A K Mathur
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India
| | - Archana Mathur
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India.
| |
Collapse
|
19
|
Kim HK, Son TG, Jo DG, Kim DC, Hyun DH. Cytotoxicity of lipid-soluble ginseng extracts is attenuated by plasma membrane redox enzyme NQO1 through maintaining redox homeostasis and delaying apoptosis in human neuroblastoma cells. Arch Pharm Res 2016; 39:1339-1348. [DOI: 10.1007/s12272-016-0817-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022]
|
20
|
Park JG, Son YJ, Aravinthan A, Kim JH, Cho JY. Korean Red Ginseng water extract arrests growth of xenografted lymphoma cells. J Ginseng Res 2016; 40:431-436. [PMID: 27746697 PMCID: PMC5052435 DOI: 10.1016/j.jgr.2016.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 11/27/2022] Open
Abstract
Background Although numerous studies of the anticancer activities of Korean Red Ginseng (KRG) have been performed, the therapeutic effect of KRG on leukemia has not been fully elucidated. In this study, we investigated the antileukemia activities of KRG and its cellular and molecular mechanisms. Methods An established leukemia tumor model induced by xenografted T cell lymphoma (RMA cells) was used to test the therapeutic activity of KRG water extract (KRG-WE). Direct cytotoxic activity of KRG-WE was confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The immunomodulatory activities of KRG-WE were verified by immunohistochemistry, nitric oxide production assay. The inhibitory effect of KRG-WE on cell survival signaling was also examined. Results Orally administered KRG-WE reduced the sizes of tumor masses. Levels of apoptosis regulatory enzymes and cleaved forms of caspases-3 and -8 were increased by this extract. In addition, expression of matrix metalloproteinase-9, a metastasis regulatory enzyme, was decreased by KRG-WE treatment. The proportion of CD11c+ cells was remarkably increased in the KRG-treated group compared to the control group. However, KRG-WE did not show significant direct cytotoxicity against RMA cells. Conclusion Our results strongly suggest that the KRG might have antileukemia activity through CD11c+ cell-mediated antitumor immunity.
Collapse
Affiliation(s)
- Jae Gwang Park
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon, Korea
| | - Adithan Aravinthan
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Jong-Hoon Kim
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
21
|
Faezizadeh Z, Gharib A, Godarzee M. Anti-Proliferative and Apoptotic Effects of Beta-Ionone in Human Leukemia Cell Line K562. ACTA ACUST UNITED AC 2016. [DOI: 10.17795/zjrms-7364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Lee D, Kang KS, Yu JS, Woo JY, Hwang GS, Eom DW, Baek SH, Lee HL, Kim KH, Yamabe N. Protective effect of Korean Red Ginseng against FK506-induced damage in LLC-PK1 cells. J Ginseng Res 2016; 41:284-289. [PMID: 28701868 PMCID: PMC5489745 DOI: 10.1016/j.jgr.2016.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/09/2016] [Accepted: 05/15/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Compound FK506 is an immunosuppressant agent that is frequently used to prevent rejection of solid organs upon transplant. However, nephrotoxicity due to apoptosis and inflammatory response mediated by FK506 limit its usefulness. In this study, the protective effect of Korean Red Ginseng (KRG) against FK506-induced damage in LLC-PK1 pig kidney epithelial cells was investigated. METHODS LLC-PK1 cells were exposed to FK506 with KRG and cell viability was measured. Western blotting and RT-PCR analyses evaluated protein expression of MAPKs, caspase-3, and KIM-1. TLR-4 gene expression was assessed. Caspase-3 activities were also determined. The number of apoptotic cells was measured using an image-based cytometric assay. RESULTS The reduction in LLC-PK1 cell viability by 60μM FK506 was recovered by KRG cotreatment in a dose-dependent manner. The phosphorylation of p38, p44/42 MAPKs (ERK), KIM-1, cleaved caspase-3, and TLR-4 mRNA expression was increased markedly in LLC-PK1 cells treated with 60μM FK506. However, with the exception of p-ERK, elevated levels of p-p38, KIM-1, cleaved caspase-3, and TLR-4 mRNA expression were significantly decreased after cotreatment with KRG. Activity level of caspase-3 was also attenuated by KRG cotreatment. Moreover, image-based cytometric assay showed that apoptotic cell death was increased by 60μM FK506 treatment, whereas it was decreased after cotreatment with KRG. CONCLUSION Taken together, these results suggest that the molecular mechanism of KRG in the FK506-induced nephrotoxicity may lead to the development of an adjuvant for the inhibition of adverse effect FK506 in the kidney.
Collapse
Affiliation(s)
- Dahae Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung-Yoon Woo
- The Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Dae-Woon Eom
- Department of Pathology, University of Ulsan College of Medicine, Gangneung Asan Hospital, Gangneung, Republic of Korea
| | - Seung-Hoon Baek
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Hye Lim Lee
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Corresponding author. School of Pharmxacy, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea.
| | - Noriko Yamabe
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
- Corresponding author. College of Korean Medicine, Gachon University, 1342 Seongnamdaero, Seongnam 13120, Republic of Korea.
| |
Collapse
|
23
|
Cai YM, Zhang Y, Zhang PB, Zhen LM, Sun XJ, Wang ZL, Xu RY, Xue RL. Neuroprotective effect of Shenqi Fuzheng injection pretreatment in aged rats with cerebral ischemia/reperfusion injury. Neural Regen Res 2016; 11:94-100. [PMID: 26981095 PMCID: PMC4774243 DOI: 10.4103/1673-5374.175052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Shenqi Fuzheng injection is extracted from the Chinese herbs Radix Astragali and Radix Codonopsis. The aim of the present study was to investigate the neuroprotective effects of Shenqi Fuzheng injection in cerebral ischemia and reperfusion. Aged rats (20–22 months) were divided into three groups: sham, model, and treatment. Shenqi Fuzheng injection or saline (40 mL/kg) was injected into the tail vein daily for 1 week, after which a cerebral ischemia/reperfusion injury model was established. Compared with model rats that received saline, rats in the treatment group had smaller infarct volumes, lower brain water and malondialdehyde content, lower brain Ca2+ levels, lower activities of serum lactate dehydrogenase and creatine kinase, and higher superoxide dismutase activity. In addition, the treatment group showed less damage to the brain tissue ultrastructure and better neurological function. Our findings indicate that Shenqi Fuzheng injection exerts neuroprotective effects in aged rats with cerebral ischemia/reperfusion injury, and that the underlying mechanism relies on oxygen free radical scavenging and inhibition of brain Ca2+ accumulation.
Collapse
Affiliation(s)
- Ying-Min Cai
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yong Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Peng-Bo Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Lu-Ming Zhen
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xiao-Ju Sun
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zhi-Ling Wang
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ren-Yan Xu
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Rong-Liang Xue
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
24
|
Wong AST, Che CM, Leung KW. Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. Nat Prod Rep 2015; 32:256-72. [PMID: 25347695 DOI: 10.1039/c4np00080c] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Ginseng, a key ingredient in traditional Chinese medicine, shows great promise as a new treatment option. As listed by the U.S. National Institutes of Health as a complementary and alternative medicine, its anti-cancer functions are being increasingly recognized. This review covers the mechanisms of action of ginsenosides and their metabolites, which can modulate signaling pathways associated with inflammation, oxidative stress, angiogenesis, metastasis, and stem/progenitor-like properties of cancer cells. The emerging use of structurally modified ginsenosides and recent clinical studies on the use of ginseng either alone or in combination with other herbs or Western medicines which are exploited as novel therapeutic strategies will also be explored.
Collapse
Affiliation(s)
- Alice S T Wong
- State Key Laboratory of Oncogenes and Related Genes, and School of Biological Sciences, The University of Hong Kong, Hong Kong.
| | | | | |
Collapse
|
25
|
Yun J, Kim BG, Kang JS, Park SK, Lee K, Hyun DH, Kim HM, In MJ, Kim DC. Lipid-soluble ginseng extract inhibits invasion and metastasis of B16F10 melanoma cells. J Med Food 2015; 18:102-8. [PMID: 25354136 DOI: 10.1089/jmf.2013.3138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study was performed to elucidate the effect of a lipid-soluble ginseng extract (LSGE) on cancer invasion and metastasis. The LSGE, even at noncytotoxic concentrations, potently inhibited invasion and migration of B16F10 mouse melanoma cells in a dose-dependent manner. In the presence of 3 μg/mL of LSGE, the invasion and migration of B16F10 cells were significantly inhibited by 98.1% and 71.4%, respectively. Furthermore, the LSGE decreased mRNA and protein levels of matrix metalloproteinase (MMP)-2 in B16F10 cells, leading to a decrease in MMP-2 activity. After B16F10 cells were intravenously injected in the tail vein of C57BL/6 mice, 1000 mg/kg/day of LSGE was orally administered for 13 days, after which lung metastasis of cancer cells was inhibited by 59.3%. These findings indicate that LSGE inhibits cancer cell invasion and migration in vitro and lung metastasis of melanoma cells in vivo by inhibiting MMP-2 expression.
Collapse
Affiliation(s)
- Jieun Yun
- 1 Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology , Ochang, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Xu H, Zhao X, Liu X, Xu P, Zhang K, Lin X. Antitumor effects of traditional Chinese medicine targeting the cellular apoptotic pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2735-44. [PMID: 26056434 PMCID: PMC4445699 DOI: 10.2147/dddt.s80902] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Defects in apoptosis are common phenomena in many types of cancer and are also a critical step in tumorigenesis. Targeting the apoptotic pathway has been considered an intriguing strategy for cancer therapy. Traditional Chinese medicine (TCM) has been used in the People’s Republic of China for thousands of years, and many of the medicines have been confirmed to be effective in the treatment of a number of tumors. With increasing cancer rates worldwide, the antitumor effects of TCMs have attracted more and more attention globally. Many of the TCMs have been shown to have antitumor activity through multiple targets, and apoptosis pathway-related targets have been extensively studied and defined to be promising. This review focuses on several antitumor TCMs, especially those with clinical efficacy, based on their effects on the apoptotic signaling pathway. The problems with and prospects of development of TCMs as anticancer agents are also presented.
Collapse
Affiliation(s)
- Huanli Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, 302 Hospital of Chinese People's Liberation Army, Beijing, People's Republic of China
| | - Xiaohui Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Pingxiang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Keming Zhang
- Department of Hepatobiliary Surgery, 302 Hospital of Chinese People's Liberation Army, Beijing, People's Republic of China
| | - Xiukun Lin
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
27
|
Jung SY, Kim C, Kim WS, Lee SG, Lee JH, Shim BS, Kim SH, Ahn KS, Ahn KS. Korean Red Ginseng Extract Enhances the Anticancer Effects of Imatinib Mesylate Through Abrogation p38 and STAT5 Activation in KBM-5 Cells. Phytother Res 2015; 29:1062-72. [PMID: 25857479 DOI: 10.1002/ptr.5347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/03/2015] [Accepted: 03/13/2015] [Indexed: 11/11/2022]
Abstract
Although imatinib mesylate (IM) in the treatment of chronic myelogenous leukemia (CML) remains the best example of successful targeted therapy, majority of patients with CML suffer its toxicity profile and develop chemoresistance to existing therapeutic agents. Thus, there is a need to develop novel alternative therapies for the treatment of CML. Here, we investigated whether Korean red ginseng extract (KRGE) could suppress the proliferation and induce chemosensitization in human CML cells. Also, we used a human phospho-antibody array containing 46 antibodies against signaling molecules to examine a subset of phosphorylation events after treatment. Korean red ginseng extract broadly suppressed the proliferation of five different cell lines, but KRGE was found to be the most potent inducer of apoptosis against KBM-5 cells. It also abrogated the expression of Bcl-2 (B-cell lymphoma 2), Bcl-xL (B-cell lymphoma-extra large), survivin, inhibitors of apoptosis protein 1/2, COX-2 (Cyclooxygenase-2), cyclin D1, matrix metalloproteinase-9, and VEGF (Vascular endothelial growth factor), as well as upregulated the expression of pro-apoptotic gene products. Interestingly, KRGE also enhanced the cytotoxic and apoptotic effect of IM in KBM-5 cells. The combination treatment of KRGE and IM caused pronounced suppression of p38 and signal transducer and activator of transcription 5 phosphorylation and induced phosphorylation of p53 compared with the individual treatment. Our results demonstrate that KRGE can enhance the anticancer activity of IM and may have a substantial potential in the treatment of CML.
Collapse
Affiliation(s)
- Sang Yoon Jung
- College of Korean Medicine, Kyung Hee University, 1 Hoegidong, Dongdaemun-gu, Seoul, 130-701, Korea
| | - Chulwon Kim
- College of Korean Medicine, Kyung Hee University, 1 Hoegidong, Dongdaemun-gu, Seoul, 130-701, Korea
| | - Wan-Seok Kim
- Botanical Drug Laboratory, R&D Headquarter, Korea Ginseng Corporation, Daejeon, 305-805, Korea
| | - Seok-Geun Lee
- College of Korean Medicine, Kyung Hee University, 1 Hoegidong, Dongdaemun-gu, Seoul, 130-701, Korea
| | - Jun-Hee Lee
- College of Korean Medicine, Kyung Hee University, 1 Hoegidong, Dongdaemun-gu, Seoul, 130-701, Korea
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee University, 1 Hoegidong, Dongdaemun-gu, Seoul, 130-701, Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, 1 Hoegidong, Dongdaemun-gu, Seoul, 130-701, Korea
| | - Kyoo Seok Ahn
- College of Korean Medicine, Kyung Hee University, 1 Hoegidong, Dongdaemun-gu, Seoul, 130-701, Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 1 Hoegidong, Dongdaemun-gu, Seoul, 130-701, Korea
| |
Collapse
|
28
|
Kim SJ, Kim AK. Anti-breast cancer activity of Fine Black ginseng (Panax ginseng Meyer) and ginsenoside Rg5. J Ginseng Res 2015; 39:125-34. [PMID: 26045685 PMCID: PMC4452536 DOI: 10.1016/j.jgr.2014.09.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/21/2014] [Accepted: 09/22/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Black ginseng (Ginseng Radix nigra, BG) refers to the ginseng steamed for nine times and fine roots (hairy roots) of that is called fine black ginseng (FBG). It is known that the content of saponin of FBG is higher than that of BG. Therefore, in this study, we examined antitumor effects against MCF-7 breast cancer cells to target the FBG extract and its main component, ginsenoside Rg5 (Rg5). METHODS Action mechanism was determined by MTT assay, cell cycle assay and western blot analysis. RESULTS The results from MTT assay showed that MCF-7 cell proliferation was inhibited by Rg5 treatment for 24, 48 and 72 h in a dose-dependent manner. Rg5 at different concentrations (0, 25, 50 and 100 μM), induced cell cycle arrest in G0/G1 phase through regulation of cell cycle-related proteins in MCF-7 cells. As shown in the results from western blot analysis, Rg5 increased expression of p53, p21(WAF1/CIP1) and p15(INK4B) and decreased expression of Cyclin D1, Cyclin E2 and CDK4. Expression of apoptosis-related proteins including Bax, PARP and Cytochrome c was also regulated by Rg5. These results indicate that Rg5 stimulated cell apoptosis and cell cycle arrest at G0/G1 phase via regulation of cell cycle-associated proteins in MCF-7 cells. CONCLUSION Rg5 promotes breast cancer cell apoptosis in a multi-path manner with higher potency compared to 20(S)-ginsenoside Rg3 (Rg3) in MCF-7 (HER2-/ER+) and MDA-MB-453 (HER2+/ER-) human breast cancer cell lines, and this suggests that Rg5 might be an effective natural new material in improving breast cancer.
Collapse
Affiliation(s)
| | - An Keun Kim
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
29
|
Noureini SK, Wink M. Dose-dependent cytotoxic effects of boldine in HepG-2 cells-telomerase inhibition and apoptosis induction. Molecules 2015; 20:3730-43. [PMID: 25719742 PMCID: PMC6272231 DOI: 10.3390/molecules20033730] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 01/14/2023] Open
Abstract
Plant metabolites are valuable sources of novel therapeutic compounds. In an anti-telomerase screening study of plant secondary metabolites, the aporphine alkaloid boldine (1,10-dimethoxy-2,9-dihydroxyaporphine) exhibited a dose and time dependent cytotoxicity against hepatocarcinoma HepG-2 cells. Here we focus on the modes and mechanisms of the growth-limiting effects of this compound. Telomerase activity and expression level of some related genes were estimated by real-time PCR. Modes of cell death also were examined by microscopic inspection, staining methods and by evaluating the expression level of some critically relevant genes. The growth inhibition was correlated with down-regulation of the catalytic subunit of telomerase (hTERT) gene (p < 0.01) and the corresponding reduction of telomerase activity in sub-cytotoxic concentrations of boldine (p < 0.002). However, various modes of cell death were stimulated, depending on the concentration of boldine. Very low concentrations of boldine over a few passages resulted in an accumulation of senescent cells so that HepG-2 cells lost their immortality. Moreover, boldine induced apoptosis concomitantly with increasing the expression of bax/bcl2 (p < 0.02) and p21 (p < 0.01) genes. Boldine might thus be an interesting candidate as a potential natural compound that suppresses telomerase activity in non-toxic concentrations.
Collapse
Affiliation(s)
- Sakineh Kazemi Noureini
- Deptartment of Biology, Faculty of Basic Sciences, Hakim Sabzevari University, P.O. Box 397, Sabzevar, 9617966376 Iran.
| | - Michael Wink
- Department of Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, 69120, Heidelberg, Germany.
| |
Collapse
|
30
|
Zhang F, Song X, Li L, Wang J, Lin L, Li C, Li H, Lv Y, Jin Y, Liu Y, Hu Y, Xin T. Polygala tenuifolia polysaccharide (PTP) inhibits cell proliferation by repressing Bmi-1 expression and downregulating telomerase activity. Tumour Biol 2014; 36:2907-12. [DOI: 10.1007/s13277-014-2920-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 11/28/2014] [Indexed: 02/04/2023] Open
|
31
|
You RX, Liu JY, Li SJ, Wang L, Wang KP, Zhang Y. Alkali-soluble polysaccharide, isolated from Lentinus edodes, induces apoptosis and G2/M cell cycle arrest in H22 cells through microtubule depolymerization. Phytother Res 2014; 28:1837-45. [PMID: 25111860 DOI: 10.1002/ptr.5209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/16/2014] [Accepted: 07/08/2014] [Indexed: 02/04/2023]
Abstract
The aim of the study was to evaluate the pro-apoptotic effects of polysaccharides derived from Lentinus edodes and further elucidated the mechanisms of this action. Our results demonstrated that marked morphological changes of apoptosis were observed after treatment of L. edodes polysaccharides [Lentinan (LTN)]. Moreover, LTN-induced cell apoptosis was characterized by a rapid stimulation of reactive oxygen species production, the loss of mitochondrial membrane potential and an increase in intracellular concentration of Ca(2+) . In addition, the results of the haematoxylin and eosin and TUNEL assay further confirmed that LTN-induced apoptosis in vivo. Furthermore, flow cytometry analysis showed that LTN could arrest the cell cycle at G2/M phase, and immunofluorescence showed LTN caused disruption of microtubule. These results suggest that disruption of cellular microtubule network, arrest of the cell cycle at G2/M phase and induction of apoptosis may be one of the possible mechanisms of anti-tumour effect of LTN.
Collapse
Affiliation(s)
- Ru-Xu You
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Road, Wuhan, 430022, China
| | | | | | | | | | | |
Collapse
|
32
|
Suo L, Kang K, Wang X, Cao Y, Zhao H, Sun X, Tong L, Zhang F. Carvacrol alleviates ischemia reperfusion injury by regulating the PI3K-Akt pathway in rats. PLoS One 2014; 9:e104043. [PMID: 25083879 PMCID: PMC4118998 DOI: 10.1371/journal.pone.0104043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 07/09/2014] [Indexed: 01/29/2023] Open
Abstract
Background Liver ischemia reperfusion (I/R) injury is a common pathophysiological process in many clinical settings. Carvacrol, a food additive commonly used in essential oils, has displayed antimicrobials, antitumor and antidepressant-like activities. In the present study, we investigated the protective effects of carvacrol on I/R injury in the Wistar rat livers and an in vitro hypoxia/restoration (H/R) model. Methods The hepatoportal vein, hepatic arterial and hepatic duct of Wistar rats were isolated and clamped for 30 min, followed by a 2 h reperfusion. Buffalo rat liver (BRL) cells were incubated under hypoxia for 4 h, followed normoxic conditions for 10 h to establish the H/R model in vitro. Liver injury was evaluated by measuring serum levels of alanine aminotransferase (ALT) and aspatate aminotransferase (AST), and hepatic levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and malondiadehyde (MDA), and hepatic histology and TUNEL staining. MTT assay, flow cytometric analysis and Hoechst 33258 staining were used to evaluate the proliferation and apoptosis of BRL cells in vitro. Protein expression was examined by Western Blot analysis. Results Carvacrol protected against I/R-induced liver damage, evidenced by significantly reducing the serum levels of ALT and AST, histological alterations and apoptosis of liver cells in I/R rats. Carvacrol exhibited anti-oxidative activity in the I/R rats, reflected by significantly reducing the activity of SOD and the content of MDA, and restoring the activity of CAT and the content of GSH, in I/R rats. In the in vitro assays, carvacrol restored the viability and inhibited the apoptosis of BRL cells, which were subjected to a mimic I/R injury induced by hypoxia. In the investigation on molecular mechanisms, carvacrol downregulated the expression of Bax and upregulated the expression of Bcl-2, thus inhibited the activation of caspase-3. Carvacrol was also shown to enhance the phosphorylation of Akt. Conclusion The results suggest that carvacrol could alleviate I/R-induced liver injury by its anti-oxidative and anti-apoptotic activities, and warrant a further investigation for using carvacrol to protect I/R injury in clinic.
Collapse
Affiliation(s)
- Lida Suo
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang Province, China
| | - Kai Kang
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang Province, China
| | - Xun Wang
- Department of General Surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, China
| | - Yonggang Cao
- Department of Pharmacology, Daqing Campus of Harbin Medical University, Daqing, Heilongjiang Province, China
| | - Haifeng Zhao
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang Province, China
| | - Xueying Sun
- The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liquan Tong
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang Province, China
- * E-mail: (LT); (FZ)
| | - Feng Zhang
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang Province, China
- * E-mail: (LT); (FZ)
| |
Collapse
|
33
|
Nguyen CT, Luong TT, Kim GL, Pyo S, Rhee DK. Korean Red Ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor β-mediated phosphatidylinositol-3 kinase/Akt signaling. J Ginseng Res 2014; 39:69-75. [PMID: 25535479 PMCID: PMC4268566 DOI: 10.1016/j.jgr.2014.06.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/02/2014] [Accepted: 06/12/2014] [Indexed: 02/07/2023] Open
Abstract
Background Ginseng has been shown to exert antistress effects both in vitro and in vivo. However, the effects of ginseng on stress in brain cells are not well understood. This study investigated how Korean Red Ginseng (KRG) controls hydrogen peroxide-induced apoptosis via regulation of phosphatidylinositol-3 kinase (PI3K)/Akt and estrogen receptor (ER)-β signaling. Methods Human neuroblastoma SK-N-SH cells were pretreated with KRG and subsequently exposed to H2O2. The ability of KRG to inhibit oxidative stress-induced apoptosis was assessed in MTT cytotoxicity assays. Apoptotic protein expression was examined by Western blot analysis. The roles of ER-β, PI3K, and p-Akt signaling in KRG regulation of apoptosis were studied using small interfering RNAs and/or target antagonists. Results Pretreating SK-N-SH cells with KRG decreased expression of the proapoptotic proteins p-p53 and caspase-3, but increased expression of the antiapoptotic protein BCL2. KRG pretreatment was also associated with increased ER-β, PI3K, and p-Akt expression. Conversely, ER-β inhibition with small interfering RNA or inhibitor treatment increased p-p53 and caspase-3 levels, but decreased BCL2, PI3K, and p-Akt expression. Moreover, inhibition of PI3K/Akt signaling diminished p-p53 and caspase-3 levels, but increased BCL2 expression. Conclusion Collectively, the data indicate that KRG represses oxidative stress-induced apoptosis by enhancing PI3K/Akt signaling via upregulation of ER-β expression.
Collapse
Affiliation(s)
| | | | - Gyu-Lee Kim
- School of Pharmacy, Sungkyunkwan University, Su-Won, Korea
| | - Suhkneung Pyo
- School of Pharmacy, Sungkyunkwan University, Su-Won, Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Su-Won, Korea
| |
Collapse
|
34
|
Gharib A, Faezizadeh Z. In vitro anti-telomerase activity of novel lycopene-loaded nanospheres in the human leukemia cell line K562. Pharmacogn Mag 2014; 10:S157-63. [PMID: 24914298 PMCID: PMC4047593 DOI: 10.4103/0973-1296.127368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/03/2012] [Accepted: 02/21/2014] [Indexed: 12/27/2022] Open
Abstract
Background: Lycopene, a plant carotenoid, has potent effects against the various types of cancer cells. To date, the effect of lycopene in the free and encapsulated forms on the telomerase activity in human leukemia cell line K562 have not been investigated. The aim of the present study was to prepare a novel lycopene-loaded nanosphere and compare its anti-telomearse activity in K562 cell line with those of free lycopene. Materials and Methods: The lycopene-loaded nanospheres were prepared by nanoprecipitation method. The lycopene entrapment efficacy was measured by high-performance liquid chromatography (HPLC) method. The anti-proliferation effect of the lycopene in the free and encapsulated forms in the different times (0-72 h) and the different doses (0-100 μg/ml) on K562 cell line was studied using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The changes of telomerase activity, following treatment with the lycopene in the free and encapsulated forms, were detected using the telomeric repeat amplification protocol-enzyme-linked immunosorbent assay. Results: The entrapment efficacy of lycopene was 78.5% ± 2. Treatment of the K562 cell line with lycopene, in particular in encapsulated form, resulted in a significant inhibition of the cell growth and increasing of percentage of apoptotic cells. It has also been observed that the telomerase activity in the lycopene-loaded nanospheres-treated cells was significantly inhibited in a dose and time-dependent manner. Conclusion: Our data suggest a novel mechanism in the anti-cancer activity of the lycopene, in particular in encapsulated form, and could be provided a basis for the future development of anti-telomerase therapies.
Collapse
Affiliation(s)
- Amir Gharib
- Department of Laboratory Sciences, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | - Zohreh Faezizadeh
- Department of Laboratory Sciences, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| |
Collapse
|
35
|
Chang JW, Choi JW, Lee BH, Park JK, Shin YS, Oh YT, Noh OK, Kim CH. Protective effects of Korean red ginseng on radiation-induced oral mucositis in a preclinical rat model. Nutr Cancer 2014; 66:400-7. [PMID: 24617451 DOI: 10.1080/01635581.2014.884234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Numerous studies' attempts to improve radiation-induced oral mucositis have not produced a qualified treatment yet. Our aim was to investigate the effectiveness of Korean red ginseng (KRG) on radiation-induced damage in an in vivo rat model. After 20 Gy of irradiation, rats were divided randomly into the following 4 groups: control, KRG only, radiotherapy (RT) only, and RT + KRG group. The rats were monitored in terms of survival rate, activity, mucositis grade, oral intake, and body weight. The tongue, buccal mucosa, and submandibular gland (SMG) were harvested, and the weight of the SMG was analyzed. The samples then underwent hematoxylin and eosin, TUNEL, and immunohistochemical staining. Radiation-induced severe oral mucositis and SMG injury led to poor oral intake and delayed healing, resulting in the death of some rats. We found that survival rate, oral intake, and body weight increased. Moreover, rats treated with KRG showed less severe mucositis and decreased histologic changes of the oral mucosa and SMG. Furthermore, we showed that the protective effects of KRG were caused by inhibition of the apoptotic signal transduction pathway linked to caspase-3. In conclusion, KRG protects the oral mucosa and SMG from radiation-induced damage by inhibiting caspase-mediated apoptosis in rats.
Collapse
Affiliation(s)
- Jae Won Chang
- a Department of Otolaryngology, School of Medicine , Ajou University, Suwon, Korea and Center for Cell Death Regulating Biodrugs, School of Medicine, Ajou University , Suwon , Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Jo S, Lee H, Kim S, Lee CH, Chung H. Korean red ginseng extract induces proliferation to differentiation transition of human acute promyelocytic leukemia cells via MYC-SKP2-CDKN1B axis. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:700-707. [PMID: 24095829 DOI: 10.1016/j.jep.2013.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 09/02/2013] [Accepted: 09/13/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Korean red ginseng has been used as traditional medicine in East Asia. Recent scientific research revealed multiple effects of Korean red ginseng, including anticancer activity. To evaluate the effect of Korean red ginseng extract (KRGE) in acute promyelocytic leukemia (APL) and elucidate its molecular mechanism. MATERIALS AND METHODS NB4 cells were treated with 1mg/ml KRGE for 48 h and examined for cell proliferation and differentiation. Cell cycle distribution of KRGE-treated cells was analyzed and the expression level of G1 phase regulators was determined. MYC was overexpressed by retroviral transduction and its effect on SKP2 and CDKN1B gene expression, cell proliferation, cell cycle and differentiation was evaluated in KRGE-treated cells. RESULTS KRGE alone was sufficient to induce granulocytic differentiation accompanied with growth inhibition. KRGE treatment resulted in cell cycle arrest at the G1 phase with augmented Cdkn1b proteins without changes in transcript levels. Cycloheximide treatment revealed reduced degradation of Cdkn1b protein by KRGE. In addition, KRGE treatment reduced expression of MYC and SKP2 genes, both at mRNA and protein levels. Upon ectopic expression of MYC, the effect of KRGE was reversed with lesser reduction and induction of SKP2 gene and Cdkn1b protein, respectively. Taken together, these results suggest a sequential molecular mechanism from MYC reduction, SKP2 reduction, Cdkn1b protein stabilization, G1 phase arrest to granulocytic differentiation by KRGE in human APL. CONCLUSIONS KRGE induces leukemic proliferation to differentiation transition in APL through modulation of the MYC-SKP2-CDKN1B axis.
Collapse
Affiliation(s)
- Sungsin Jo
- Department of Biomedical Science, Graduate School of Biomedical Science and Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea; Hanyang Biomedical Research Institute, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea.
| | | | | | | | | |
Collapse
|
37
|
Fu Y, Yin Z, Wu L, Yin C. Fermentation of ginseng extracts by Penicillium simplicissimum GS33 and anti-ovarian cancer activity of fermented products. World J Microbiol Biotechnol 2013; 30:1019-1025. [DOI: 10.1007/s11274-013-1520-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
|
38
|
Jeon C, Kang S, Park S, Lim K, Hwang KW, Min H. T Cell Stimulatory Effects of Korean Red Ginseng through Modulation of Myeloid-Derived Suppressor Cells. J Ginseng Res 2013; 35:462-70. [PMID: 23717093 PMCID: PMC3659549 DOI: 10.5142/jgr.2011.35.4.462] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/01/2011] [Accepted: 10/01/2011] [Indexed: 01/01/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) actively suppress immune cells and have been considered as an impediment to successful cancer immunotherapy. Many approaches have been made to overcome such immunosuppressive factors and to exert effective anti-tumor effects, but the possibility of using medicinal plants for this purpose has been overlooked. Korean red ginseng (KRG) is widely known to possess a variety of pharmacological properties, including immunoboosting and anti-tumor activities. However, little has been done to assess the anti-tumor activity of KRG on MDSCs. Therefore, we examined the effects of KRG on MDSCs in tumor-bearing mice and evaluated immunostimulatory and anti-tumor activities of KRG through MDSC modulation. The data show that intraperitoneal administration of KRG compromises MDSC function and induces T cell proliferation and the secretion of IL-2 and IFN-γ, while it does not exhibit direct cytotoxicity on tumor cells and reduced MDSC accumulation. MDSCs isolated from KRG-treated mice also express significantly lower levels of inducible nitric oxide synthase and IL-10 accompanied by a decrease in nitric oxide production compared with control. Taken together, the present study demonstrates that KRG enhances T cell function by inhibiting the immunosuppressive activity of MDSCs and suggests that although KRG alone does not exhibit direct anti-tumor effects, the use of KRG together with conventional chemo- or immunotherapy may provide better outcomes to cancer patients through MDSC modulation.
Collapse
Affiliation(s)
- Chanoh Jeon
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | | | | | |
Collapse
|
39
|
Liu HX, Fei SJ, Ye HH, Zhang JL, Zhang YM. Effect of propofol on proliferation and apoptosis of gastric mucosal cells in gastric ischemia-reperfusion injury in mice. Shijie Huaren Xiaohua Zazhi 2012; 20:1495-1501. [DOI: 10.11569/wcjd.v20.i17.1495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the changes in proliferation and apoptosis of gastric mucosal cells in gastric ischemia-reperfusion (I/R) injury, and to clarify whether propofol has a gastric protection effect and the possible mechanisms involved.
METHODS: Seventy-two Kunming mice were randomly divided into four groups: sham operation group, I/R injury group, fat emulsion group, and propofol group. Except the sham operation group, I/R injury was induced in other groups by clamping the celiac artery for 30 min and allowing reperfusion for 1h. The mice were finally sacrificed to observe morphological changes and investigate gastric mucosal damage index (GMDI). The histological changes of the stomach were observed using light microscopy. The content of malondialdehyde (MDA) and activity of superoxide dismutas (SOD) in gastric mucosal cells were measured by colorimetry analysis. Immunohistochemistry and TdT-mediated d-UTP-biotin nick end-labeling (TUNEL) assay were used to observe PCNA expression and apoptosis in gastric mucosa, and the expression of Bax and Bcl-2 proteins was determined by Western blot.
RESULTS: Severe mucosal lesions induced by gastric I/R were considerably reduced following administration of propofol (25 mg/kg); mucosal and submueosal hyperemia, edema, and deep erosion were improved significantly. Compared to the I/R group, treatment with propofol significantly reduced gastric mucosal MDA content and cell apoptosis (33.9% ± 1.3% vs 60.8% ± 6.9%, P < 0.01), enhanced SOD activity, promoted cell proliferation (16.0% ± 1.8% vs 6.4% ± 1.2%, P < 0.01), and regulated Bax (0.453 ± 0.025 vs 0.268 ± 0.023, P < 0.01) and Bcl-2 (0.513 ± 0.014 vs 0.752 ± 0.015, P < 0.01) protein expression.
CONCLUSION: Propofol protects against gastric gastric I/R injury possibly by promoting gastric mucosal cell proliferation and inhibiting apoptosis.
Collapse
|
40
|
Herrmann F, Sporer F, Tahrani A, Wink M. Antitrypanosomal properties of Panax ginseng C. A. Meyer: new possibilities for a remarkable traditional drug. Phytother Res 2012; 27:86-98. [PMID: 22473703 DOI: 10.1002/ptr.4692] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 08/16/2011] [Accepted: 03/02/2012] [Indexed: 01/08/2023]
Abstract
African trypanosomiasis is still a major health problem in many sub-Saharan countries in Africa. We investigated the effects of three preparations of Panax ginseng, Panax notoginseng, isolated ginsenosides, and the polyacetylene panaxynol on Trypanosoma brucei brucei and the human cancer cell line HeLa. Hexane extracts and the pure panaxynol were toxic and at the same time highly selective against T. b. brucei, whereas methanol extracts and 12 isolated ginsenosides were significantly less toxic and showed only weak selectivity. Panaxynol was cytotoxic against T. b. brucei at the concentration of 0.01 µg/mL with a selectivity index of 858, superior even to established antitrypanosomal drugs. We suggest that the inhibition of trypanothione reductase, which is only found in trypanosomes, might explain the observed selectivity. The high selectivity together with a cytotoxic concentration in the range of the bioavailability makes panaxynol and other polyacetylenes in general very promising lead compounds for the treatment of African trypanosomiasis.
Collapse
Affiliation(s)
- Florian Herrmann
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Germany.
| | | | | | | |
Collapse
|
41
|
Nag SA, Qin JJ, Wang W, Wang MH, Wang H, Zhang R. Ginsenosides as Anticancer Agents: In vitro and in vivo Activities, Structure-Activity Relationships, and Molecular Mechanisms of Action. Front Pharmacol 2012; 3:25. [PMID: 22403544 PMCID: PMC3289390 DOI: 10.3389/fphar.2012.00025] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/11/2012] [Indexed: 02/06/2023] Open
Abstract
Conventional chemotherapeutic agents are often toxic not only to tumor cells but also to normal cells, limiting their therapeutic use in the clinic. Novel natural product anticancer compounds present an attractive alternative to synthetic compounds, based on their favorable safety and efficacy profiles. Several pre-clinical and clinical studies have demonstrated the anticancer potential of Panax ginseng, a widely used traditional Chinese medicine. The anti-tumor efficacy of ginseng is attributed mainly to the presence of saponins, known as ginsenosides. In this review, we focus on how ginsenosides exert their anticancer effects by modulation of diverse signaling pathways, including regulation of cell proliferation mediators (CDKs and cyclins), growth factors (c-myc, EGFR, and vascular endothelial growth factor), tumor suppressors (p53 and p21), oncogenes (MDM2), cell death mediators (Bcl-2, Bcl-xL, XIAP, caspases, and death receptors), inflammatory response molecules (NF-κB and COX-2), and protein kinases (JNK, Akt, and AMP-activated protein kinase). We also discuss the structure–activity relationship of various ginsenosides and their potentials in the treatment of various human cancers. In summary, recent advances in the discovery and evaluation of ginsenosides as cancer therapeutic agents support further pre-clinical and clinical development of these agents for the treatment of primary and metastatic tumors.
Collapse
Affiliation(s)
- Subhasree Ashok Nag
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center Amarillo, TX, USA
| | | | | | | | | | | |
Collapse
|
42
|
Hossain MA, Kim DH, Jang JY, Kang YJ, Yoon JH, Moon JO, Chung HY, Kim GY, Choi YH, Copple BL, Kim ND. Aspirin induces apoptosis in vitro and inhibits tumor growth of human hepatocellular carcinoma cells in a nude mouse xenograft model. Int J Oncol 2011; 40:1298-304. [PMID: 22179060 PMCID: PMC3584583 DOI: 10.3892/ijo.2011.1304] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 11/29/2011] [Indexed: 12/21/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to induce apoptosis in a variety of cancer cells, including colon, prostate, breast and leukemia. Among them, aspirin, a classical NSAID, shows promise in cancer therapy in certain types of cancers. We hypothesized that aspirin might affect the growth of liver cancer cells since liver is the principal site for aspirin metabolism. Therefore, we investigated the effects of aspirin on the HepG2 human hepatocellular carcinoma cell line in vitro and the HepG2 cell xenograft model in BALB/c nude mice. We found that treatment with aspirin inhibited cell growth and induced apoptosis involving both extrinsic and intrinsic pathways as measured by DNA ladder formation, alteration in the Bax/Bcl-2 ratio, activation of the caspase activities and related protein expressions. In vivo antitumor activity assay also showed that aspirin resulted in significant tumor growth inhibition compared to the control. Oral administration of aspirin (100 mg/kg/day) caused a significant reduction in the growth of HepG2 tumors in nude mice. These findings suggest that aspirin may be used as a promising anticancer agent against liver cancer.
Collapse
Affiliation(s)
- Mohammad Akbar Hossain
- Division of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhang Z, Wang J, Li J, Xu S. Telomerase-mediated apoptosis of chicken lymphoblastoid tumor cell line by lanthanum chloride. Biol Trace Elem Res 2011; 144:657-67. [PMID: 21448564 DOI: 10.1007/s12011-011-9027-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/08/2011] [Indexed: 11/25/2022]
Abstract
To investigate the biological effects of lanthanum on chicken lymphoid tumors, cultures of the MDCC-MSB1 chicken lymphoblastoid cell line were treated with 2.5 mM lanthanum chloride for 2 days at 12-h intervals. The apoptotic cells were detected using the TdT-mediated dUTP nick end labeling assay and flow cytometer analysis. The telomerase activity and the chTERT mRNA expression levels of the MDCC-MSB1 cells were examined. The results showed that MDCC-MSB1 cell apoptosis occurred after incubation for 12 to 48 h induced by 2.5 mM LaCl(3). Consistent with the apoptosis results, telomerase activities in LaCl(3)-treated cells significantly decreased (P < 0.05) compared with 0 h group. Furthermore, the transcription of chTERT gene in MDCC-MSB1 cell was significantly inhibited in LaCl(3) treatment group (P < 0.05). These results suggest that the decrease of the chTERT transcription and telomerase activity play an important role in the La-induced apoptosis in chicken lymphoid tumor.
Collapse
Affiliation(s)
- Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | | | | | | |
Collapse
|
44
|
Hwang SY, Ahn SH. Biological Activities and Cell Proliferation effects of Red Ginseng Ethanol Extracts. J Pharmacopuncture 2011. [DOI: 10.3831/kpi.2011.14.3.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
45
|
Kang MR, Kim HM, Kang JS, Lee K, Lee SD, Hyun DH, In MJ, Park SK, Kim DC. Lipid-soluble ginseng extract induces apoptosis and G0/G1 cell cycle arrest in NCI-H460 human lung cancer cells. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2011; 66:101-106. [PMID: 21611769 DOI: 10.1007/s11130-011-0232-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study was performed to elucidate the anticancer mechanism of a lipid-soluble ginseng extract (LSGE) by analyzing induction of apoptosis and arrest of cell cycle progression using the NCI-H460 human lung cancer cell line. Proliferation of NCI-H460 cells was potently inhibited by LSGE in a dose-dependent manner. The cell cycle arrest at the G0/G1 phase in NCI-H460 cells was induced by LSGE. The percentage of G0/G1 phase cells significantly increased, while that of S phase cells decreased after treatment with LSGE. The expression levels of cyclin-dependent kinase2 (CDK2), CDK4, CDK6, cyclin D3 and cyclin E related to G0/G1 cells progression were also altered by LSGE. In addition, LSGE-induced cell death occurred through apoptosis, which was accompanied by increasing the activity of caspases including caspase-8, caspase-9 and caspase-3. Consistent with enhancement of caspase activity, LSGE increased protein levels of cleaved caspase-3, caspase-8, caspase-9, and poly-ADP-ribose polymerase (PARP). These apoptotic effects of LSGE were inhibited by the pan-caspase inhibitor Z-VAD-fmk. These findings indicate that LSGE inhibits NCI-H460 human lung cancer cell growth by cell cycle arrest at the G0/G1 phase and induction of caspase-mediated apoptosis.
Collapse
Affiliation(s)
- Moo Rim Kang
- Bio-evaluation center, Korea Research Institute of Bioscience and Biotechnology, Ochang, 363-883, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wee J, Park K, Chung AS. Biological Activities of Ginseng and Its Application to Human Health. OXIDATIVE STRESS AND DISEASE 2011. [DOI: 10.1201/b10787-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
47
|
Park HJ, Han ES, Park DK. The ethyl acetate extract of PGP (Phellinus linteus grown on Panax ginseng) suppresses B16F10 melanoma cell proliferation through inducing cellular differentiation and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2010; 132:115-121. [PMID: 20691773 DOI: 10.1016/j.jep.2010.07.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/26/2010] [Accepted: 07/29/2010] [Indexed: 05/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phellinus linteus and Panax ginseng have been widely used as traditional herbal medicines to treat various diseases including cancer in East Asia. AIM OF THE STUDY The present study sought to investigate the possible mechanism in anti-proliferative effect of Phellinus linteus that was grown on Panax ginseng (PGP) on B16F10 melanoma cells. MATERIALS AND METHODS The anti-proliferative effect of PGP on B16F10 was evaluated by CCK-8 assays. Apoptotic cells were detected by flow cytometry analysis. The proteins involved in apoptosis and cellular differentiation were assessed by immunoblot analysis. Ginsenosides contents of PG or PGP were analyzed using HPLC. RESULTS The ethyl acetate fraction (EtOAc) of PGP exhibited the strongest anti-proliferative activity among PGP fractions (butanol or water) on B16F10 cells. PGP EtOAc extract showed stronger inhibitory effect than Panax ginseng (PG) or Phellinus linteus (PL) EtOAc extract on B16F10 melanoma cell proliferation. PGP EtOAc extract induced the dendrite-like structures and the melanin production in B16F10 cells. PGP EtOAc extract increased a sub-G1 cell population through inducing p53/p21 and activated caspase-8 protein expression in B16F10 cells. Notably, PGP EtOAc extract contained ginsenosides Rd, Rg3, Rb2, Rg1 and Rb1 more than PG EtOAc extract. Rd and Rg3 significantly inhibited B16F10 cell proliferation. CONCLUSION Our data suggest that PGP EtOAc extract inhibits B16F10 cell proliferation through inducing apoptosis and cellular differentiation.
Collapse
Affiliation(s)
- Hye-Jin Park
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul 143-701, Republic of Korea.
| | | | | |
Collapse
|
48
|
Liu JP, Chen SM, Cong YS, Nicholls C, Zhou SF, Tao ZZ, Li H. Regulation of telomerase activity by apparently opposing elements. Ageing Res Rev 2010; 9:245-56. [PMID: 20362078 DOI: 10.1016/j.arr.2010.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 03/22/2010] [Accepted: 03/23/2010] [Indexed: 01/08/2023]
Abstract
Telomeres, the ends of chromosomes, undergo frequent remodeling events that are important in cell development, proliferation and differentiation, and neoplastic immortalization. It is not known how the cellular environment influences telomere remodeling, stability, and lengthening or shortening. Telomerase is a ribonucleoprotein complex that maintains and lengthens telomeres in the majority of cancers. Recent studies indicate that a number of factors, including hormones, cytokines, ligands of nuclear receptor, vitamins and herbal extracts have significantly influence telomerase activity and, in some instances, the remodeling of telomeres. This review summarizes the advances in understanding of the positive and negative regulation by extracellular factors of telomerase activity in cancer, stem cells and other systems in mammals.
Collapse
Affiliation(s)
- Jun-Ping Liu
- Molecular Signaling Laboratory, Department of Immunology, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Qi F, Li A, Zhao L, Xu H, Inagaki Y, Wang D, Cui X, Gao B, Kokudo N, Nakata M, Tang W. Cinobufacini, an aqueous extract from Bufo bufo gargarizans Cantor, induces apoptosis through a mitochondria-mediated pathway in human hepatocellular carcinoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2010; 128:654-61. [PMID: 20193751 DOI: 10.1016/j.jep.2010.02.022] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/18/2010] [Accepted: 02/11/2010] [Indexed: 05/20/2023]
Abstract
AIM OF THE STUDY Cinobufacini (Huachansu), an aqueous extract from the skin and parotid venom glands of Bufo bufo gargarizans Cantor, is a traditional Chinese medicine widely used in clinical cancer therapy in China. The present study sought to investigate the possible signaling pathway implicated in cinobufacini-induced apoptosis in the hepatocellular carcinoma cell lines HepG(2) and Bel-7402. MATERIALS AND METHODS The effects of cinobufacini on cell proliferation of HepG(2) and Bel-7402 cells were evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assays. Cell apoptosis was detected by Hoechst 33258 staining and flow cytometry analysis. The mitochondrial membrane potential (Deltapsim) and caspase-9 and -3 activity were detected using MitoCapture reagent staining and colorimetric assays, respectively. The expression of apoptosis-related proteins and release of cytochrome c were assessed by Western blot analysis. RESULTS Cinobufacini significantly inhibited cell proliferation of both cell lines in a dose- and time-dependent manner. Marked changes in apoptotic morphology and apoptosis rates were clearly observed after cinobufacini treatment. The protein expression of Bax increased whereas that of Bcl-2 decreased, leading to an increase in the Bax/Bcl-2 ratio. Subsequently, cinobufacini disrupted the mitochondrial membrane potential (Deltapsim) and resulted in the release of cytochrome c, activation of both caspase-9 and -3, and cleavage of poly (ADP-ribose) polymerase (PARP). CONCLUSION The present study indicated that cinobufacini can induce apoptosis of HepG(2) and Bel-7402 cells through a mitochondria-mediated apoptosis pathway.
Collapse
Affiliation(s)
- Fanghua Qi
- Department of Traditional Chinese Medicine, Provincial Hospital affiliated with Shandong University, Jinan 250021, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Korean red ginseng attenuates hepatic lipid accumulation via AMPK activation in human hepatoma cells. Food Sci Biotechnol 2010. [DOI: 10.1007/s10068-010-0028-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|