1
|
Li Q, Huang H, Fan R, Ye Q, Hu Y, Wu Z, Zhang C, Wang Y. Chromosome-level genome assembly of the tetraploid medicinal and natural dye plant Persicaria tinctoria. Sci Data 2024; 11:1440. [PMID: 39730378 DOI: 10.1038/s41597-024-04317-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/17/2024] [Indexed: 12/29/2024] Open
Abstract
Persicaria tinctoria (2n = 40) is an important traditional medicinal plant and natural dye source within the genus Persicaria. P. tinctoria has been utilized for its antibacterial, antiviral, anti-inflammatory, and tumor treatment properties. Additionally, it has served as a natural blue dye for thousands of years worldwide, and continues to be used in countries such as China and Japan. Here, we assembled a tetraploid chromosome-scale genome of P. tinctoria, organized into two subgenomes: subgenome A, which contains 10 pseudochromosomes with a genome size of 888.67 Mb and a scaffold N50 of 90.56 Mb, and subgenome B, which also comprises 10 pseudochromosomes with a genome size of 771.58 Mb and a scaffold N50 of 76.84 Mb. Repeat sequences constitute 77.9% of the genome. A total of 76,742 high-confidence protein-coding genes were annotated, with 94.28% of these genes assigned functional annotations. This high-quality genome assembly of P. tinctoria will provide valuable genomic resources for studying the biosynthesis and evolution of indigoids in indigo plants, as well as for further research on the Polygonaceae family.
Collapse
Affiliation(s)
- Qing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Germplasm Bank of Wild species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Huang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ruyan Fan
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qiannan Ye
- Germplasm Bank of Wild species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanting Hu
- Germplasm Bank of Wild species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhenzhen Wu
- Germplasm Bank of Wild species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengjun Zhang
- Germplasm Bank of Wild species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Yuhua Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
2
|
Hirata K, Yamada Y, Hamamoto Y, Tsunoda K, Muramatsu H, Horie S, Sukawa Y, Naganuma M, Nakagawa T, Kanai T. Prospective feasibility study of indigo naturalis ointment for chemotherapy-induced oral mucositis. BMJ Support Palliat Care 2024; 13:e1001-e1007. [PMID: 34649840 PMCID: PMC10850637 DOI: 10.1136/bmjspcare-2021-003199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/28/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Indigo naturalis, a herbal medicine effective against ulcerative colitis, exhibits anti-inflammatory effects and induces interleukin-22-mediated antimicrobial peptide production. Anti-inflammatory activity and the prevention of secondary infection are essential for the management of chemotherapy-induced oral mucositis (CIOM); therefore, we developed an indigo naturalis ointment to be administered topically for CIOM and evaluated its feasibility. METHODS We performed a single-centre, open-label, prospective feasibility study from March 2017 to December 2018. The key eligibility criteria for the subjects were as follows: (1) receiving chemotherapy for a malignant tumour; (2) grade 1 or 2 CIOM and (3) receiving continuous oral care. The treatment protocol comprised topical indigo naturalis ointment application three times a day for 7 days. The primary endpoint assessed was feasibility. The secondary endpoints assessed were the changes in oral findings, oral cavity pain and safety. RESULTS Nineteen patients with CIOM were enrolled. The average feasibility (the proportion of prescribed applications that were carried out) observed in this study was 94.7%±8.9% (95% CI 90.5% to 99.0%), which was higher than the expected feasibility. The revised oral assessment guide scores of the mucous membrane domain and total scores were significantly improved. All patients reported a reduction in oral cavity pain, with a median pain resolution duration of 6 days. No serious adverse events were observed. CONCLUSIONS The indigo naturalis ointment was feasible, and showed the potential for efficacy and safety. Larger randomised controlled trials are needed to further assess the efficacy and safety of indigo naturalis compared with a placebo. TRIAL REGISTRATION NUMBER UMIN000024271.
Collapse
Affiliation(s)
- Kenro Hirata
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuka Yamada
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasuo Hamamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuyuki Tsunoda
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Tokyo, Japan
| | | | - Sara Horie
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yasutaka Sukawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Naganuma
- The Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Osaka, Japan
| | - Taneaki Nakagawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Fan A, Hou BL, Tang Z, Wang T, Zhang D, Liang Y, Wang Z. Liquid Chromatography-Tandem Mass Spectrometry-Based Metabolomics Analysis of Indigo Naturalis Treatment of Ulcerative Colitis in Mice. J Med Food 2023; 26:877-889. [PMID: 38010862 DOI: 10.1089/jmf.2023.k.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ulcerative colitis (UC), often known as UC, is an inflammatory disease of the intestines that has frequent and long-lasting flare-ups. It is unknown precisely how the traditional Chinese drug Indigo Naturalis (IN) heals inflammatory bowel disease, despite its long-standing use in China and Japan. Finding new metabolite biomarkers linked to UC could improve our understanding of the disease, speed up the diagnostic process, and provide insight into how certain drugs work to treat the condition. Our work is designed to use a metabolomic method to analyze potential alterations in endogenous substances and their impact on metabolic pathways in a mouse model of UC. To determine which biomarkers and metabolisms are more frequently connected with IN's effects on UC, liquid chromatography-tandem mass spectrometry analysis of the serum metabolomics of UC mice and normal mice was performed. The outcomes demonstrated that IN boosted the health of UC mice and reduced the severity of their metabolic dysfunction. In the UC model, it was also found that IN changed the way 17 biomarkers and 3 metabolisms functioned.
Collapse
Affiliation(s)
- Anqi Fan
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Bao-Long Hou
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Zhishu Tang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Ting Wang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Dongbo Zhang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Yanni Liang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Zheng Wang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
| |
Collapse
|
4
|
Saleh MA, Shabaan AA, May M, Ali YM. Topical application of indigo-plant leaves extract enhances healing of skin lesion in an excision wound model in rats. J Appl Biomed 2022; 20:124-129. [PMID: 36708717 DOI: 10.32725/jab.2022.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES This study aims to evaluate the pharmacological role of indigo extract in accelerating the wound healing in a rat model. METHODS Female Sprague-Dawley rats were anesthetized with ketamine (30 mg/kg, i.p.) and the full thickness of the marked skin was then cut carefully and wounds were left undressed. Indigo extract (5%) in PBS was applied topically twice daily until healing was complete. A control group of rats was treated with povidone-iodide (Betadine®). Rats treated with phosphate buffer saline were used as a negative control group. The rate of wound healing was assessed daily. Histopathological examination of skin sections were qualitatively assessed by independent evaluators. The inflammatory and apoptotic markers were assessed in skin tissue homogenates using ELISA. RESULTS Histopathology data showed that applying indigo to skin wounds enhanced the healing process, resulting in a significant decrease in dermal inflammation in comparison to untreated rats. Topical application of indigo significantly increased antioxidant enzyme activities with reduced malondialdehyde (MDA) levels in wound tissues. The levels of matrix metalloproteases-2 and -9 were significantly lower with an accompanied increase in the level of TGF-β1 in skin tissues from rats treated with indigo compared to the control group treated with PBS. CONCLUSIONS The antioxidant and anti-inflammatory properties of indigo leaf extract accelerate the healing of skin injuries.
Collapse
Affiliation(s)
- Mohamed A Saleh
- University of Sharjah, College of Medicine, Department of Clinical Sciences, Sharjah, The United Arab Emirates.,Mansoura University, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura, Egypt
| | - Ahmed A Shabaan
- Mansoura University, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura, Egypt.,Delta University for Science and Technology, Faculty of Pharmacy, Department of Pharmacology and Biochemistry, Gamasa City, Egypt
| | - Michel May
- AIZOME, JM Mark Inc., Chicago, USA & Munich, Germany
| | - Youssif M Ali
- University of Cambridge, School of Biological Sciences, Department of Veterinary Medicine, Cambridge, United Kingdom
| |
Collapse
|
5
|
Kutlu Z, Halici Z, Gedikli S, Diyarbakir B, Civelek MS. A Lead Target Molecule for Excisional Wound Healing: Trypthantrin Compound. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e127665. [PMID: 36945339 PMCID: PMC10024809 DOI: 10.5812/ijpr-127665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
Abstract
Objectives We aimed to evaluate the impact of the tryptanthrin (TRP) compound, with antimicrobial and anti-inflammatory effects, on the excisional wound (EW) model. In an EW model in mice, we tried to explain the possible effect of TRP through vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) that contribute significantly to wound healing. Methods A total of 90 BALB-C female mice aged 6 - 8 weeks were used in the present study. Animals were randomly divided into five groups. After creating the EW model, three different doses (1, 2.5, 5 mg/kg) of TRP compound were applied topically for 14 days, and wound closure rates were measured on days 0, 3, and 7. Vascular endothelial growth factor and MMP-9 were evaluated on days 3, 7, and 14 on wound explants and on day 14 on serum samples by enzyme-linked immunosorbent assay. Histopathological analysis was performed on wound explants. Results After the EW model creation, significant healing of the wound areas was observed in the groups for which TRP was applied, especially on the third day. Moreover, in groups that received the third dose of TRP, the wound closure rate was 94%. It was found that the wound areas were closed due to the increase in TRP dose. In line with wound healing, VEGF and MMP-9 levels gradually rose on the third and seventh days and decreased on the 14th day. Conclusions Tryptanthrin compound usage on the EW model increased wound healing and did not leave a scar after 14 days.
Collapse
Affiliation(s)
- Zerrin Kutlu
- Department of Biochemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
- Corresponding Author: Department of Biochemistry, Faculty of Pharmacy, Atatürk University, P.O. Box: 25240, Erzurum, Turkey.
| | - Zekai Halici
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Turkey
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| | - Semin Gedikli
- Faculty of Veterinary, Department of Histology and Embryology, Ataturk University, Erzurum, Turkey
| | - Busra Diyarbakir
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Turkey
| | - Maide Sena Civelek
- Department of Biochemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| |
Collapse
|
6
|
Cui H, Xie W, Hua Z, Cao L, Xiong Z, Tang Y, Yuan Z. Recent Advancements in Natural Plant Colorants Used for Hair Dye Applications: A Review. Molecules 2022; 27:8062. [PMID: 36432162 PMCID: PMC9692289 DOI: 10.3390/molecules27228062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
There is an on-going demand in recent years for safer and "greener" hair coloring agents with the global consumer awareness of the adverse effects of synthetic hair dyes. The belief in sustainability and health benefits has focused the attention of the scientific community towards natural colorants that serve to replace their synthetic toxic counterparts. This review article encompasses the historical applications of a vast array of natural plant hair dyes and summarizes the possible coloration mechanisms (direct dyeing and mordant dyeing). Current information on phytochemicals (quinones, tannins, flavonoids, indigo, curcuminoids and carotenoids) used for hair dyeing are summarized, including their botanical sources, color chemistry and biological/toxicological activities. A particular focus is given on research into new natural hair dye sources along with eco-friendly, robust and cost-effective technologies for their processing and applications, such as the synthetic biology approach for colorant production, encapsulation techniques for stabilization and the development of inorganic nanocarriers. In addition, innovative in vitro approaches for the toxicological assessments of natural hair dye cosmetics are highlighted.
Collapse
Affiliation(s)
- Hongyan Cui
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Wenjing Xie
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Zhongjie Hua
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Lihua Cao
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ziyi Xiong
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ying Tang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Zhang Q, Xie J, Li G, Wang F, Lin J, Yang M, Du A, Zhang D, Han L. Psoriasis treatment using Indigo Naturalis: Progress and strategy. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115522. [PMID: 35872288 DOI: 10.1016/j.jep.2022.115522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In recent years, there are increasing that the number of patients with psoriasis day by day, and it has become a common disease endangering public health. However, there is no specific cure for psoriasis or control of recurrence. Therefore, it's necessity to seek alternative and efficient therapy, such as Traditional Chinese Medicine (TCM). As a TCM and effective medicine for the treatment of psoriasis, Indigo Naturalis (Baphicacanthus Cusia (Nees) Bremek.) has the effect of clearing heat, detoxifying blood, eliminating spots, reducing fire and calming panic, and it is used in many classical prescriptions for the treatment of psoriasis. AIM OF REVIEW To review the latest progress and strategies of Indigo Naturalis in the treatment of psoriasis. This manuscript mainly clarifies the traditional medicinal applications, the mechanism of action and application strategies of Indigo Naturalis, and its preparations in the treatment of psoriasis. MATERIALS AND METHODS Detailed information on Indigo Naturalis was collected from various online databases (PubMed, GeenMedical, Web of Science, Google Scholar, China National Knowledge Infrastructure Database, and National Intellectual Property Administration). RESULTS This manuscript reviews a great deal of information about how Indigo Naturalis can treat psoriasis through immune cells, signal pathways and disease-related mediators. The mechanism of cymbididae is expounded from the aspects of regulating keratinocyte proliferation and differentiation, regulating inflammatory infiltration of cellular immune system and improving microvascular dilation and hyperplasia in skin lesions. CONCLUSION The action mechanisms of Indigo Naturalis on psoriasis reflect the characteristics of multiple components, multiple targets, and multiple pathways of Traditional Chinese medicine. However, some pharmacological and clinical research methods are improper, so that the results are difficult to explain at present. Therefore, further in-depth research is needed to provide knowledge in a wider range of areas to confirm the great therapeutic potential of Indigo Naturalis.
Collapse
Affiliation(s)
- Qianhui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Gefei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Fang Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China
| | - Junzhi Lin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China
| | - Aiai Du
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
8
|
Núñez-Navarro N, Salazar Muñoz J, Castillo F, Ramírez-Sarmiento CA, Poblete-Castro I, Zacconi FC, Parra LP. Discovery of New Phenylacetone Monooxygenase Variants for the Development of Substituted Indigoids through Biocatalysis. Int J Mol Sci 2022; 23:ijms232012544. [PMID: 36293414 PMCID: PMC9604523 DOI: 10.3390/ijms232012544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Indigoids are natural pigments obtained from plants by ancient cultures. Romans used them mainly as dyes, whereas Asian cultures applied these compounds as treatment agents for several diseases. In the modern era, the chemical industry has made it possible to identify and develop synthetic routes to obtain them from petroleum derivatives. However, these processes require high temperatures and pressures and large amounts of solvents, acids, and alkali agents. Thus, enzyme engineering and the development of bacteria as whole-cell biocatalysts emerges as a promising green alternative to avoid the use of these hazardous materials and consequently prevent toxic waste generation. In this research, we obtained two novel variants of phenylacetone monooxygenase (PAMO) by iterative saturation mutagenesis. Heterologous expression of these two enzymes, called PAMOHPCD and PAMOHPED, in E. coli was serendipitously found to produce indigoids. These interesting results encourage us to characterize the thermal stability and enzyme kinetics of these new variants and to evaluate indigo and indirubin production in a whole-cell system by HPLC. The highest yields were obtained with PAMOHPCD supplemented with L-tryptophan, producing ~3000 mg/L indigo and ~130.0 mg/L indirubin. Additionally, both enzymes could oxidize and produce several indigo derivatives from substituted indoles, with PAMOHPCD being able to produce the well-known Tyrian purple. Our results indicate that the PAMO variants described herein have potential application in the textile, pharmaceutics, and semiconductors industries, prompting the use of environmentally friendly strategies to obtain a diverse variety of indigoids.
Collapse
Affiliation(s)
- Nicolás Núñez-Navarro
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Javier Salazar Muñoz
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| | - Francisco Castillo
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Department of Chemical and Bioprocess Engineering, Universidad de Santiago de Chile (USACH), Santiago 8350709, Chile
| | - Flavia C. Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
- Correspondence: (F.C.Z.); (L.P.P.)
| | - Loreto P. Parra
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (F.C.Z.); (L.P.P.)
| |
Collapse
|
9
|
Mizobuti DS, da Rocha GL, da Silva HNM, Covatti C, de Lourenço CC, Pereira ECL, Salvador MJ, Minatel E. Antioxidant effects of bis-indole alkaloid indigo and related signaling pathways in the experimental model of Duchenne muscular dystrophy. Cell Stress Chaperones 2022; 27:417-429. [PMID: 35687225 PMCID: PMC9346048 DOI: 10.1007/s12192-022-01282-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/09/2022] [Accepted: 05/29/2022] [Indexed: 01/03/2023] Open
Abstract
Indigo is a bis-indolic alkaloid that has antioxidant and anti-inflammatory effects reported in literature and is a promissory compound for treating chronic inflammatory diseases. This fact prompted to investigate the effects of this alkaloid in the experimental model of Duchenne muscular dystrophy. The main aim of this study was to evaluate the potential role of the indigo on oxidative stress and related signaling pathways in primary skeletal muscle cell cultures and in the diaphragm muscle from mdx mice. The MTT and Neutral Red assays showed no indigo dose-dependent toxicities in mdx muscle cells at concentrations analyzed (3.12, 6.25, 12.50, and 25.00 μg/mL). Antioxidant effect of indigo, in mdx muscle cells and diaphragm muscle, was demonstrated by reduction in 4-HNE content, H2O2 levels, DHE reaction, and lipofuscin granules. A significant decrease in the inflammatory process was identified by a reduction on TNF and NF-κB levels, on inflammatory area, and on macrophage infiltration in the dystrophic sample, after indigo treatment. Upregulation of PGC-1α and SIRT1 in dystrophic muscle cells treated with indigo was also observed. These results suggest the potential of indigo as a therapeutic agent for muscular dystrophy, through their action anti-inflammatory, antioxidant, and modulator of SIRT1/PGC-1α pathway.
Collapse
Affiliation(s)
- Daniela Sayuri Mizobuti
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Guilherme Luiz da Rocha
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Heloina Nathalliê Mariano da Silva
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Caroline Covatti
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Caroline Caramano de Lourenço
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Elaine Cristina Leite Pereira
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
- Faculdade de Ceilândia, Universidade de Brasília (UnB), Brasília, Distrito Federal, 72220-275, Brazil
| | - Marcos José Salvador
- Instituto de Biologia, Departamento de Biologia Vegetal, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Elaine Minatel
- Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil.
| |
Collapse
|
10
|
Tsou WH, Heinrich M, Booker A. Chinese and western herbal medicines for the topical treatment of psoriasis – A critical review of efficacy and safety. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Wong LW, Goh CBS, Tan JBL. A Systemic Review for Ethnopharmacological Studies on Isatis indigotica Fortune: Bioactive Compounds and their Therapeutic Insights. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:161-207. [PMID: 35139772 DOI: 10.1142/s0192415x22500069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Isatis indigotica Fortune is a biennial Chinese woad of the Cruciferae family. It is primarily cultivated in China, where it was a staple in indigo dye manufacture till the end of the 17th century. Today, I. indigotica is used primarily as a therapeutic herb in traditional Chinese medicine (TCM). The medicinal use of the plant is separated into its leaves (Da-Qing-Ye) and roots (Ban-Lan-Gen), whereas its aerial components can be processed into a dried bluish-spruce powder (Qing-Dai), following dehydration for long-term preservation. Over the past several decades, I. indigotica has been generally utilized for its heat-clearing effects and bodily detoxification in TCM, attributed to the presence of several classes of bioactive compounds, including organic acids, alkaloids, terpenoids, and flavonoids, as well as lignans, anthraquinones, glucosides, glucosinolates, sphingolipids, tetrapyrroles, and polysaccharides. This paper aims to delineate I. indigotica from its closely-related species (Isatis tinctoria and Isatis glauca) while highlighting the ethnomedicinal uses of I. indigotica from the perspectives of modern and traditional medicine. A systematic search of PubMed, Embase, PMC, Web of Science, and Google Scholar databases was done for articles on all aspects of the plant, emphasizing those analyzing the bioactivity of constituents of the plant. The various key bioactive compounds of I. indigotica that have been found to exhibit anti-inflammatory, antimicrobial, anticancer, and anti-allergic properties, along with the protective effects against neuronal injury and bone fracture, will be discussed. Collectively, the review hopes to draw attention to the therapeutic potential of I. indigotica not only as a TCM, but also as a potential source of bioactive compounds for disease management and treatment.
Collapse
Affiliation(s)
- Li Wen Wong
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| | - Calvin Bok Sun Goh
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| |
Collapse
|
12
|
Indigo Pulverata Levis (Chung-Dae, Persicaria tinctoria) Alleviates Atopic Dermatitis-like Inflammatory Responses In Vivo and In Vitro. Int J Mol Sci 2022; 23:ijms23010553. [PMID: 35008979 PMCID: PMC8745452 DOI: 10.3390/ijms23010553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/31/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease associated with a type 2 T helper cell (Th2) immune response. The IndigoPulverata Levis extract (CHD) is used in traditional Southeast Asian medicine; however, its beneficial effects on AD remain uninvestigated. Therefore, we investigated the therapeutic effects of CHD in 2,4-dinitrochlorobenzene (DNCB)-induced BALB/c mice and tumor necrosis factor (TNF)-α- and interferon gamma (IFN)-γ-stimulated HaCaT cells. We evaluated immune cell infiltration, skin thickness, and the serum IgE and TNF-α levels in DNCB-induced AD mice. Moreover, we measured the expression levels of pro-inflammatory cytokines, mitogen-activated protein kinase (MAPK), and the nuclear factor-kappa B (NF-κB) in the mice dorsal skin. We also studied the effect of CHD on the translocation of NF-κB p65 and inflammatory chemokines in HaCaT cells. Our in vivo results revealed that CHD reduced the dermis and epidermis thicknesses and inhibited immune cell infiltration. Furthermore, it suppressed the proinflammatory cytokine expression and MAPK and NF-κB phosphorylations in the skin tissue and decreased serum IgE and TNF-α levels. In vitro results indicated that CHD downregulated inflammatory chemokines and blocked NF-κB p65 translocation. Thus, we deduced that CHD is a potential drug candidate for AD treatment.
Collapse
|
13
|
Cheng WJ, Chiang CC, Lin CY, Chen YL, Leu YL, Sie JY, Chen WL, Hsu CY, Kuo JJ, Hwang TL. Astragalus mongholicus Bunge Water Extract Exhibits Anti-inflammatory Effects in Human Neutrophils and Alleviates Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice. Front Pharmacol 2021; 12:762829. [PMID: 34955833 PMCID: PMC8707293 DOI: 10.3389/fphar.2021.762829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are the primary immune cells in innate immunity, which are related to various inflammatory diseases. Astragalus mongholicus Bunge is a Chinese medicinal herb used to treat various oxidative stress-related inflammatory diseases. However, there are limited studies that elucidate the effects of Astragalus mongholicus Bunge in human neutrophils. In this study, we used isolated human neutrophils activated by various stimulants to investigate the anti-inflammatory effects of Astragalus mongholicus Bunge water extract (AWE). Cell-free assays were used to examine free radicals scavenging capabilities on superoxide anion, reactive oxygen species (ROS), and nitrogen-centered radicals. Imiquimod (IMQ) induced psoriasis-like skin inflammation mouse model was used for investigating anti-psoriatic effects. We found that AWE inhibited superoxide anion production, ROS generation, and elastase release in human neutrophils, which exhibiting a direct anti-neutrophil effect. Moreover, AWE exerted a ROS scavenging ability in the 2,2’-Azobis (2-amidinopropane) dihydrochloride assay, but not superoxide anion in the xanthine/xanthine oxidase assay, suggesting that AWE exhibited anti-oxidation and anti-inflammatory capabilities by both scavenging ROS and by directly inhibiting neutrophil activation. AWE also reduced CD11b expression and adhesion to endothelial cells in activated human neutrophils. Meanwhile, in mice with psoriasis-like skin inflammation, administration of topical AWE reduced both the affected area and the severity index score. It inhibited neutrophil infiltration, myeloperoxidase release, ROS-induced damage, and skin proliferation. In summary, AWE exhibited direct anti-inflammatory effects by inhibiting neutrophil activation and anti-psoriatic effects in mice with IMQ-induced psoriasis-like skin inflammation. Therefore, AWE could potentially be a pharmaceutical Chinese herbal medicine to inhibit neutrophilic inflammation for anti-psoriasis.
Collapse
Affiliation(s)
- Wei-Jen Cheng
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Chao Chiang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Puxin Fengze Chinese Medicine Clinic, Taoyuan, Taiwan
| | - Cheng-Yu Lin
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Li Chen
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jia-Yu Sie
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Ling Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Yuan Hsu
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jong-Jen Kuo
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Traditional Chinese Medicine, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
14
|
Zhuang SY, Tang YX, Chen XL, Wu YD, Wu AX. Copper-Catalyzed Oxidative C(sp 3)-H/C(sp 3)-H Cross-Coupling Reaction of 3-Methylbenzo[ c]isoxazoles with Methyl Ketones: Access to Indigoid Analogues. J Org Chem 2021; 86:17101-17109. [PMID: 34739234 DOI: 10.1021/acs.joc.1c02204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A copper-catalyzed oxidative C(sp3)-H/C(sp3)-H cross-coupling reaction of methyl ketones and 3-methylbenzo[c]isoxazoles has been developed for the direct synthesis of 3-oxoindolin-2-ylidene derivatives. This process involves an intermolecular nucleophilic addition/ring-opening/aza-Michael addition cascade, providing indigoid analogues with high atom economy and as single isomers exclusively under mild conditions.
Collapse
Affiliation(s)
- Shi-Yi Zhuang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yong-Xing Tang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiang-Long Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
15
|
Nour OA, Ghoniem HA, Nader MA, Suddek GM. Impact of protocatechuic acid on high fat diet-induced metabolic syndrome sequelae in rats. Eur J Pharmacol 2021; 907:174257. [PMID: 34129881 DOI: 10.1016/j.ejphar.2021.174257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 01/03/2023]
Abstract
The study aimed to assess the possible protective impact of protocatechuic acid (PCA) on high fat diet (HFD)-induced metabolic syndrome (Mets) sequelae in rats. Forty-two male Sprague-Dawley (SD) rats were randomly grouped as follows: CTR group; PCA group; HFD group; HFD-PCA group and HFD-MET group. Rats were fed on standard diet or HFD for 14 weeks. HFD-fed rats exhibited significant decreases in food intake and adiponectin (ADP) level; yet, body weight and anthropometrical parameters were significantly increased. Moreover, insulin sensitivity was impaired as indicated by significant elevation in glucose AUC during oral glucose tolerance test (OGTT), fasting serum glucose, fasting serum insulin and homeostasis model assessment of insulin resistance (HOMA-IR) index. Furthermore, chronic HFD feeding elicited significant increases in serum lipid profile and free fatty acids (FFAs) with concomitant hepatic steatosis. Additionally, serum C-reactive protein (CRP), interleukin 1b (Il-1b) and monocyte chemoattractant protein 1(MCP-1) levels were increased. Also, HFD-fed rats exhibited an increase in MDA level, while superoxide dismutase (SOD) and glutathione (GSH) activities were decreased. Moreover, the insulin-signaling pathway was markedly impaired in soleus muscles as indicated by a decrease in insulin-induced AKT phosphorylation. Histopathologically, adipose tissues showed significant increase in adipocyte size. Also, flow cytometry analysis of adipose tissue confirmed a significant increase in the percentage of number of CD68+ cells. PCA administration succeeded to attenuate HFD-induced obesity, insulin resistance, oxidative stress and inflammation. In conclusion, PCA administration could protect against HFD-induced Mets, possibly via its hypoglycemic, insulin-sensitizing, anti-oxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Omnia A Nour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Hamdy A Ghoniem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
16
|
Korinek M, Hsieh PS, Chen YL, Hsieh PW, Chang SH, Wu YH, Hwang TL. Randialic acid B and tomentosolic acid block formyl peptide receptor 1 in human neutrophils and attenuate psoriasis-like inflammation in vivo. Biochem Pharmacol 2021; 190:114596. [PMID: 33964283 DOI: 10.1016/j.bcp.2021.114596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Psoriasis is a long-lasting inflammatory skin disease lacking proper cure. Dysregulated activation of neutrophils is a major pathogenic factor in psoriasis. Formyl peptide receptor 1 (FPR1) triggers neutrophil activation in response to bacteria- or mitochondria-derived N-formyl peptides, but its significance in neutrophilic psoriasis remains unknown. In this study, we discovered two derivatives of ursolic acid, 3β-hydroxyurs-12,18-dien-28-oic acid (randialic acid B, RAB) and 3β-hydroxyurs-12,19-dien-28-oic acid (tomentosolic acid, TA), as FPR1 inhibitors in human neutrophils with ability to suppress psoriatic symptoms in mice. Both RAB and TA, triterpenoids of traditional medicinal plant Ilex kaushue, selectively inhibited reactive oxygen species production, elastase release, and CD11b expression in human neutrophils activated by FPR1, but not non-FPR1 agonists. Importantly, RAB and TA inhibited the binding of N-formyl peptide to FPR1 in human neutrophils, neutrophil-like THP-1 cells, and hFPR1-transfected HEK293 cells, indicating FPR1 antagonism. Moreover, in assays induced by various concentrations of FPR1 agonist, both RAB and TA acted competitively for its binding to the FPR1 receptor. The FPR1-downstream signaling such as Ca2+ mobilisation and activation of Akt and MAPKs was also competitively inhibited. In addition, imiquimod-induced psoriasis-like symptoms, including epidermal hyperplasia, desquamation with scaling, neutrophil skin infiltration, and transepidermal water loss were significantly reduced by both RAB and TA. The results illustrate a possible role of human neutrophils FPR1 receptor in psoriasis-like inflammation. Accordingly, triterpenoids RAB and TA represent novel FPR1 antagonists and exhibit therapeutic potential for treating neutrophilic inflammatory skin diseases.
Collapse
Affiliation(s)
- Michal Korinek
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Pei-Shan Hsieh
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Li Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
| | - Pei-Wen Hsieh
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Shih-Hsin Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
| | - Yi-Hsiu Wu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| |
Collapse
|
17
|
Tsuji H, Kondo M, Odani W, Takino T, Takeda R, Sakai T. Treatment with indigo plant (Polygonum tinctorium Lour) improves serum lipid profiles in Wistar rats fed a high-fat diet. THE JOURNAL OF MEDICAL INVESTIGATION 2021; 67:158-162. [PMID: 32378600 DOI: 10.2152/jmi.67.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We investigated the effects of Polygonum tinctorium Lour (PTL), a plant commonly known as indigo, on biological parameters in an animal model of high-fat diet-induced obesity. Wistar rats fed a high-fat diet and treated with PTL showed lower serum levels of triglycerides and total cholesterol levels and a higher serum levels of HDL cholesterol than those in Wistar rats fed a high-fat diet without PTL treatment. The weight of mesenteric fat in PTL-treated rats was decreased compared to that in control rats not treated with PTL. In addition, energy metabolic rate in the dark period, but not in the light period, in PTL-treated rats was higher than that in control rats. Although a significant difference was not observed, body weight in PTL-treated rats tended to be decreased compared to that in control rats. The results show that PTL improves serum lipid profiles in Wistar rats with high-fat diet-induced obesity. J. Med. Invest. 67 : 158-162, February, 2020.
Collapse
Affiliation(s)
- Hiroko Tsuji
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan.,Faculity of Human Life Science, Shikoku University, Oujin-cho 123-1, Tokushima 771-1192, Japan
| | - Maki Kondo
- Faculity of Human Life Science, Shikoku University, Oujin-cho 123-1, Tokushima 771-1192, Japan
| | - Wataru Odani
- Faculity of Human Life Science, Shikoku University, Oujin-cho 123-1, Tokushima 771-1192, Japan
| | - Tasuku Takino
- Faculity of Human Life Science, Shikoku University, Oujin-cho 123-1, Tokushima 771-1192, Japan
| | - Risako Takeda
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan.,Faculity of Human Life Science, Shikoku University, Oujin-cho 123-1, Tokushima 771-1192, Japan
| | - Tohru Sakai
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
18
|
Sun Q, Leng J, Tang L, Wang L, Fu C. A Comprehensive Review of the Chemistry, Pharmacokinetics, Pharmacology, Clinical Applications, Adverse Events, and Quality Control of Indigo Naturalis. Front Pharmacol 2021; 12:664022. [PMID: 34135755 PMCID: PMC8200773 DOI: 10.3389/fphar.2021.664022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/10/2021] [Indexed: 01/09/2023] Open
Abstract
Indigo naturalis (IN), which is derived from indigo plants such as Strobilanthes cusia (Nees) Kuntze, Persicaria tinctoria (Aiton) Spach, and Isatis tinctoria L., has been traditionally used in the treatment of hemoptysis, epistaxis, chest pain, aphtha, and infantile convulsion in China for thousands of years. Clinical trials have shown that the curative effect of IN for psoriasis and ulcerative colitis (UC) is remarkable. A total of sixty-three compounds, including indole alkaloids, terpenoids, organic acids, steroids, and nucleosides, have been isolated from IN, of which indole alkaloids are the most important. Indirubin, isolated from IN, was used as a new agent to treat leukemia in China in the 1970s. Indirubin is also an active ingredient in the treatment of psoriasis. Pharmacological studies have confirmed that IN has inhibitory effects on inflammation, tumors, bacteria, and psoriasis. Indigo, indirubin, tryptanthrin, isorhamnetin, indigodole A, and indigodole C are responsible for these activities. This review provides up-to-date and comprehensive information on IN with regard to its chemistry, pharmacokinetics, pharmacology, clinical applications, adverse events, and quality control. This review may also serve a reference for further research on IN.
Collapse
Affiliation(s)
- Quan Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Jing Leng
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Ling Tang
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Lijuan Wang
- Department of Pathology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Chaomei Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Majnooni MB, Fakhri S, Bahrami G, Naseri M, Farzaei MH, Echeverría J. Alkaloids as Potential Phytochemicals against SARS-CoV-2: Approaches to the Associated Pivotal Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6632623. [PMID: 34104202 PMCID: PMC8159655 DOI: 10.1155/2021/6632623] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
Since its inception, the coronavirus disease 2019 (COVID-19) pandemic has infected millions of people around the world. Therefore, it is necessary to find effective treatments against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), as it is the viral source of COVID-19. Alkaloids are one of the most widespread plant-derived natural compounds with prominent antiviral effects. Accordingly, these phytochemicals have been promising candidates towards discovering effective treatments for COVID-19. Alkaloids have shown potential anti-SARS-CoV activities via inhibiting pathogenesis-associated targets of the Coronaviridae family that are required for the virus life cycle. In the current study, the chemistry, plant sources, and antiviral effects of alkaloids, as well as their anti-SARS-CoV-2 effect with related mechanisms, are reviewed towards discovering an effective treatment against COVID-19.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Bahrami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Naseri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
20
|
Yazdanpanah MJ, Vahabi-Amlashi S, Pishgouy M, Imani M, Banihashemi M, Mohammadpoor AH, Khajedaluee M, Bahrami-Taghanaki H, Azizi H. Comparing the topical preparations of Indigo naturalis from Chinese and Iranian origin in the treatment of plaque-type psoriasis: A preliminary randomized double-blind pilot study. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2021.101310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Yu H, Li TN, Ran Q, Huang QW, Wang J. Strobilanthes cusia (Nees) Kuntze, a multifunctional traditional Chinese medicinal plant, and its herbal medicines: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113325. [PMID: 32889034 DOI: 10.1016/j.jep.2020.113325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Strobilanthes cusia (Nees) Kuntze (SCK, Malan), a traditional Chinese medicinal plant, has long applied to detoxification, defervescence, detumescence and antiphlogosis. "Southern Banlangen" (Rhizoma et Radix Baphicacanthis Cusiae, RRBC), root and rhizome of SCK, is widely used for treatment of many epidemic diseases. Malanye (Southern Daqingye), stem and leaf of SCK, is an antipyretic-alexipharmic drug frequently-used in southern China. Qingdai (Indigo Naturalis, IN), a processed product of SCK, is always applied to dermatoses in the folk. AIM OF THE REVIEW In order to elucidate the historical uses, recent advances and pharmaceutical prospects of SCK, we summarized roundly in aspects of history, processing method, chemical constitution, quality control, pharmacological activity and toxicity. Some deficiencies in current studies and research directions in the future are also discussed. This is the first comprehensive review of SCK and its herbal medicines, which may be of some help for further research. METHODOLOGY Comprehensive analysis was conducted on the basis of academic papers, pharmaceutical monographs, ancient medicinal works, and drug standards of China. All available information on SCK and its herbal medicines was collected by using the keywords such as "Strobilanthes cusia", "Southern Banlangen", "indirubin", "tryptanthrin" through different electronic databases including NCBI Pubmed, Google Scholar, Chinese National Knowledge Infrastructure and so on. Pharmacopoeia of China and some ancient works were obtained from National Digital Library of China. RESULT Medicinal uses of SCK were already described by famous ancient researchers. Because of vague description, plant species in some works cannot be confirmed. Literature demonstrated that multiple components including total 36 alkaloids and 35 glycosides, the main bioactive components of SCK, were found in SCK and its herbal medicines. Modern studies indicated that SCK and some of its components had multiple pharmacological effects including resistance to cancer, remission of inflammation, suppression of microorganisms, relief of dermatoses, and so on. However, studies on pharmacology, pharmacokinetics, and quality control are still not enough. CONCLUSION A number of reports suggested that SCK and its processed medicines could be promising drug candidates for multiple diseases especially promyelocytic leukemia, ulcerative colitis (UC) and psoriasis. However, bioactive activities of most components, especially glycosides should still be explored further. It is crucial to elucidate the in-depth molecular mechanisms, and pharmacokinetic characteristics of main components in those herbal medicines. Moreover, to ensure the effectiveness of clinical medication, future studies should undoubtedly give the priority to clarifying the effective compositions of SCK, and then a measurement standard of those indicators should be protocolled to establish a comprehensive quality evaluation mode.
Collapse
Affiliation(s)
- Han Yu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, China.
| | - Ting-Na Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, China.
| | - Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, China.
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, China.
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, China.
| |
Collapse
|
22
|
Obafemi CA, Adegbite OB, Fadare OA, Iwalewa EO, Omisore NO, Sanusi K, Yilmaz Y, Ceylan Ü. Tryptanthrin from microwave-assisted reduction of isatin using solid-state-supported sodium borohydride: DFT calculations, molecular docking and evaluation of its analgesic and anti-inflammatory activity. Heliyon 2021; 7:e05756. [PMID: 33437886 PMCID: PMC7788106 DOI: 10.1016/j.heliyon.2020.e05756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/27/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Tryptanthrin is a potent natural alkaloid with good in vitro pharmacological properties. Herein, we report the synthesis of the compound via a new method involving the reduction of isatin with solid-state-supported sodium borohydride under microwave irradiation. The title compound has been tested for its analgesic and anti-inflammatory activity. The results showed that tryptanthrin dose dependently inhibits oedema and pain formation in all the models used. The agent also exhibited significant higher effects in its anti-inflammatory and analgesic activities better than positive drugs (aspirin and indomethacin) being currently used in the treatment and in the management of acute and chronic forms of pain and inflammatory disorders. The inhibitory potential of the compound was investigated by molecular docking using the software AutoDock Vina. The docking results were used to better rationalize the action and prediction of the binding affinity of tryptanthrin. Density Functional Theory (DFT) calculations at the B3LYP/6-311++G (2df, 2pd) level of theory showed that compared to ascorbic acid, tryptanthrin shows higher antioxidant activity which may be improved upon by functionalizing the aromatic core to enhance its solubility in polar solvents. The calculated electronic and thermodynamic properties obtained for tryptanthrin compete well with the standard ascorbic acid.
Collapse
Affiliation(s)
- Craig A Obafemi
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Oluwaseun B Adegbite
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Olatomide A Fadare
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Ezekiel O Iwalewa
- Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan; Nigeria
| | - Nusrat O Omisore
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Kayode Sanusi
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Yusuf Yilmaz
- NT Vocational School, Gaziantep University, 27310, Gaziantep, Turkey
| | - Ümit Ceylan
- Department of Medical Services and Techniques, Vocational High School Health Services, Giresun University, 28100, Giresun, Turkey
| |
Collapse
|
23
|
Qi-Yue Y, Ting Z, Ya-Nan H, Sheng-Jie H, Xuan D, Li H, Chun-Guang X. From natural dye to herbal medicine: a systematic review of chemical constituents, pharmacological effects and clinical applications of indigo naturalis. Chin Med 2020; 15:127. [PMID: 33317592 PMCID: PMC7734464 DOI: 10.1186/s13020-020-00406-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
Background Indigo naturalis is a blue dye in ancient, as well as an extensive used traditional Chinese medicine. It has a wide spectrum of pharmacological properties and can be used to treat numerous ailments such as leukemia, psoriasis, and ulcerative colitis. This article aims to expand our understanding of indigo naturalis in terms of its chemical constituents, pharmacological action and clinical applications. Methods We searched PubMed, web of science, CNKI, Google academic, Elsevier and other databases with the key words of “Indigo naturalis”, and reviewed and sorted out the modern research of indigo naturalis based on our research results. Results We outlined the traditional manufacturing process, chemical composition and quality control of indigo naturalis, systematically reviewed traditional applictions, pharmacological activities and mechanism of indigo naturalis, and summarized its clinical trials about treatment of psoriasis, leukemia and ulcerative colitis. Conclusions Indigo naturalis has a variety of pharmacological activities, such as anti-inflammatory, antioxidant, antibacterial, antiviral, immunomodulatory and so on. It has very good clinical effect on psoriasis, leukemia and ulcerative colitis. However, it should be noted that long-term use of indigo naturalis may produce some reversible adverse reactions. In summarize, indigo naturalis is an extremely important drug with great value and potential.![]()
Collapse
Affiliation(s)
- Yang Qi-Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Chengdu, 610075, People's Republic of China
| | - Zhang Ting
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - He Ya-Nan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Huang Sheng-Jie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Deng Xuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Han Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China. .,Chengdu University of Traditional Chinese Medicine, No. 1188 Liutai Avenue, Chengdu, 611137, China.
| | - Xie Chun-Guang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Chengdu, 610075, People's Republic of China.
| |
Collapse
|
24
|
Prasad Singh N, Nagarkatti M, Nagarkatti P. From Suppressor T cells to Regulatory T cells: How the Journey That Began with the Discovery of the Toxic Effects of TCDD Led to Better Understanding of the Role of AhR in Immunoregulation. Int J Mol Sci 2020; 21:E7849. [PMID: 33105907 PMCID: PMC7660163 DOI: 10.3390/ijms21217849] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) was identified in the early 1970s as a receptor for the ubiquitous environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin), which is a member of halogenated aromatic hydrocarbons (HAHs). TCDD was found to be highly toxic to the immune system, causing thymic involution and suppression of a variety of T and B cell responses. The fact that environmental chemicals cause immunosuppression led to the emergence of a new field, immunotoxicology. While studies carried out in early 1980s demonstrated that TCDD induces suppressor T cells that attenuate the immune response to antigens, further studies on these cells were abandoned due to a lack of specific markers to identify such cells. Thus, it was not until 2001 when FoxP3 was identified as a master regulator of Regulatory T cells (Tregs) that the effect of AhR activation on immunoregulation was rekindled. The more recent research on AhR has led to the emergence of AhR as not only an environmental sensor but also as a key regulator of immune response, especially the differentiation of Tregs vs. Th17 cells, by a variety of endogenous, microbial, dietary, and environmental ligands. This review not only discusses how the role of AhR emerged from it being an environmental sensor to become a key immunoregulator, but also confers the identification of new AhR ligands, which are providing novel insights into the mechanisms of Treg vs. Th17 differentiation. Lastly, we discuss how AhR ligands can trigger epigenetic pathways, which may provide new opportunities to regulate inflammation and treat autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA; (N.P.S.); (M.N.)
| |
Collapse
|
25
|
Li HJ, Wu NL, Pu CM, Hsiao CY, Chang DC, Hung CF. Chrysin alleviates imiquimod-induced psoriasis-like skin inflammation and reduces the release of CCL20 and antimicrobial peptides. Sci Rep 2020; 10:2932. [PMID: 32076123 PMCID: PMC7031269 DOI: 10.1038/s41598-020-60050-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/05/2020] [Indexed: 11/09/2022] Open
Abstract
Psoriasis is a common non-contagious chronic inflammatory skin lesion, with frequent recurrence. It mainly occurs due to aberrant regulation of the immune system leading to abnormal proliferation of skin cells. However, the pathogenic mechanisms of psoriasis are not fully understood. Although most of the current therapies are mostly efficient, the side effects can result in therapy stop, which makes the effectiveness of treatment strategies limited. Therefore, it is urgent and necessary to develop novel therapeutics. Here, we investigated the efficacy of chrysin, a plant flavonoid, which we previously reported to possess strong antioxidant and anti-inflammatory effects, against psoriasis-like inflammation. Our results revealed that chrysin significantly attenuated imiquimod-induced psoriasis-like skin lesions in mice, and improved imiquimod-induced disruption of skin barrier. Moreover, the TNF-α, IL-17A, and IL-22-induced phosphorylation of MAPK and JAK-STAT pathways, and activation of the NF-κB pathway were also attenuated by chrysin pretreatment of epidermal keratinocytes. Most importantly, chrysin reduced TNF-α-, IL-17A-, and IL-22-induced CCL20 and antimicrobial peptide release from epidermal keratinocytes. Thus, our findings indicate that chrysin may have therapeutic potential against inflammatory skin diseases. Our study provides a basis for further investigating chrysin as a novel pharmacologic agent and contributes to the academic advancement in the field of Chinese herbal medicine.
Collapse
Affiliation(s)
- Hsin-Ju Li
- School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Nan-Lin Wu
- Department of Medicine, Mackay Medical College, New Taipei City, 25245, Taiwan
- Department of Dermatology, Mackay Memorial Hospital, Taipei, 10449, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, 25245, Taiwan
| | - Chi-Ming Pu
- Division of Plastic Surgery, Department of Surgery, Cathay General Hospital, Taipei, 10630, Taiwan
| | - Chien-Yu Hsiao
- Department of Nutrition and Health Sciences, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
| | - Der-Chen Chang
- Department of Mathematics and Statistics and Department of Computer Science, Georgetown University, Washington, DC, 20057, USA
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan.
- Ph.D. Program in Pharmaceutical Biotechnology, Fu Jen University, New Taipei City, 24205, Taiwan.
- MS Program in Transdisciplinary Long Term Care, Fu-Jen Catholic University, New Taipei City, 24205, Taiwan.
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
26
|
Chiang CC, Cheng WJ, Lin CY, Lai KH, Ju SC, Lee C, Yang SH, Hwang TL. Kan-Lu-Hsiao-Tu-Tan, a traditional Chinese medicine formula, inhibits human neutrophil activation and ameliorates imiquimod-induced psoriasis-like skin inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112246. [PMID: 31539577 DOI: 10.1016/j.jep.2019.112246] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kan-Lu-Hsiao-Tu-Tan (KLHTT) is a popular traditional Chinese medicine for treating various inflammatory diseases. AIM OF THE STUDY The aim of the present study was to investigate the anti-inflammatory effects of KLHTT on human neutrophils and its therapeutic potential in treating imiquimod (IMQ)-induced psoriasis-like skin inflammation. MATERIALS AND METHODS Spectrophotometry, flow cytometry, and microscopy with immunohistochemical staining were used to evaluate superoxide anion generation, elastase release, CD11b expression, adhesion, and neutrophil extracellular trap (NET) formation in activated human neutrophils. Reactive oxygen species (ROS) and reactive nitrogen species in cell-free systems were measured using a multi-well fluorometer or a spectrophotometer. A psoriasis-like skin inflammation was induced in mice using the IMQ cream. RESULTS KLHTT suppressed superoxide anion generation, ROS production, CD11b expression, and adhesion in activated human neutrophils. In contrast, KLHTT failed to alter elastase release in activated human neutrophils. Additionally, KLHTT had an ROS-scavenging effect in the AAPH assay, but it did not scavenge superoxide anions directly in the xanthine/xanthine oxidase assay. Protein kinase C (PKC)-induced NET formation most commonly occurs through ROS-dependent mechanisms. KLHTT significantly inhibited phorbol 12-myristate 13-acetate, a PKC activator, inducing NET formation. Furthermore, topical KLHTT treatment reduced the area affected by psoriasis area and severity index (PASI) score and ameliorated neutrophil infiltration in IMQ-induced psoriasis-like skin inflammation in mice. CONCLUSIONS Our data show that KLHTT has anti-neutrophilic inflammatory effects in inhibiting ROS generation and cell adhesion. KLHTT also mitigated NET formation, mainly via an ROS-dependent pathway. In addition, KLHTT reduced neutrophil infiltration and improved the severity of IMQ-induced psoriasis-like skin inflammation in mice. Therefore, KLHTT may prove to be a safe and effective psoriasis therapy in the future.
Collapse
Affiliation(s)
- Chih-Chao Chiang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Supervisory Board, Taoyuan Chinese Medicine Association, Taoyuan, 338, Taiwan; Puxin Fengze Chinese Medicine Clinic, Taoyuan, 326, Taiwan.
| | - Wei-Jen Cheng
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Cheng-Yu Lin
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Kuei-Hung Lai
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan.
| | - Seanson-Chance Ju
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Chuan Lee
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Sien-Hung Yang
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243, Taiwan.
| |
Collapse
|
27
|
Yasuda G, Ito H, Kurokawa H, Terasaki M, Suzuki H, Mizokami Y, Matsui H. The preventive effect of Qing Dai on bisphosphonate-induced gastric cellular injuries. J Clin Biochem Nutr 2019; 64:45-51. [PMID: 30705511 PMCID: PMC6348412 DOI: 10.3164/jcbn.17-108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/26/2018] [Indexed: 11/22/2022] Open
Abstract
The Chinese herbal medicine Qing Dai has been traditionally used for the treatment of various inflammatory diseases. We previously reported that reactive oxygen species play an important role in bisphosphonate-induced gastrointestinal injuries and that Qing Dai improved ulcerative colitis by scavenging reactive oxygen species. In this study, we investigated whether Qing Dai prevented bisphosphonate-induced gastric cellular injuries. Risedronate (a bisphosphonate) was added to rat gastric mucosal cells. Risedronate-induced cellular injury, cellular lipid peroxidation, mitochondrial membrane potential, and reactive oxygen species production in rat gastric mucosal cells were examined via viable cell counting, specific fluorescent indicators, and electron spin resonance. Pretreatment with Qing Dai attenuated the fluorescence intensity of diphenyl-1-pyrenylphosphine and MitoSox as well as the signal intensities of electron spin resonance. Cell viability improved from 20% to 80% by pretreatment with Qing Dai. Thus, Qing Dai prevented this injury by suppressing mitochondrial reactive oxygen species production, which is the main cause of cellular lipid peroxidation. Qing Dai also maintained mitochondrial potential, reducing reactive oxygen species production. We conclude that Qing Dai has protective effects on bisphosphonate-induced gastrointestinal injury and thus has the potential for clinical application.
Collapse
Affiliation(s)
- Go Yasuda
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiromu Ito
- Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Hiromi Kurokawa
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masahiko Terasaki
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hideo Suzuki
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuji Mizokami
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hirofumi Matsui
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
28
|
Wang Z, Wu X, Wang CL, Wang L, Sun C, Zhang DB, Liu JL, Liang YN, Tang DX, Tang ZS. Tryptanthrin Protects Mice against Dextran Sulfate Sodium-Induced Colitis through Inhibition of TNF-α/NF-κB and IL-6/STAT3 Pathways. Molecules 2018; 23:molecules23051062. [PMID: 29724065 PMCID: PMC6099556 DOI: 10.3390/molecules23051062] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a notable health problem and may considerably affect the quality of human life. Previously, the protective roles of tryptanthrin (TRYP) against dextran sulfate sodium (DSS) induced colitis has been proved, but the concrete mechanism remained elusive. It has been suggested that TRYP could diminish the weight loss and improve the health conditions of mice with DSS induced colitis. Hematoxylin and eosin staining revealed that TRYP could improve the histopathological structure of the colon tissue. Two signaling pathways (TNF-α/NF-κBp65 and IL-6/STAT3) were investigated using immunochemistry and western blot. The detected concentrations of the two cytokines TNF-α and IL-6 showed that their levels decreased after TRYP treatment of the colitis. The protein expression level of NF-κBp65 in cytoplasm increased after TRYP treatment of the induced colitis. However, the protein level of NF-κBp65 in the nucleus decreased after administration of TRYP. The expression level of IκBα, the inhibitory protein of NF-κBp65, was tested and the results suggested that TRYP could inhibit the degradation of IκBα. The phosphorylation level of STAT3 was inhibited by TRYP and the expression level of STAT3 and p-STAT3 decreased after administration of TRYP. We conclude that TRYP improves the health condition of mice with DSS induced colitis by regulating the TNF-α/NF-κBp65 and IL-6/STAT3 signaling pathways via inhibiting the degradation of IκBα and the phosphorylation of STAT3.
Collapse
Affiliation(s)
- Zheng Wang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, China.
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xianyang 712083, China.
- Shaanxi Rheumatism and Tumor Center of TCM Engineering Technology Research, Shaanxi University of Chinese Medicine, Xianyang 712083, China.
| | - Xue Wu
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xianyang 712083, China.
| | - Cui-Ling Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China.
| | - Li Wang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, China.
| | - Chen Sun
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, China.
| | - Dong-Bo Zhang
- Shaanxi Rheumatism and Tumor Center of TCM Engineering Technology Research, Shaanxi University of Chinese Medicine, Xianyang 712083, China.
| | - Jian-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China.
| | - Yan-Ni Liang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, China.
| | - Dong-Xin Tang
- Guizhou Province Hospital of Traditional Chinese Medicine, Guiyang University of Chinese Medicine, Guiyang 550002, China.
| | - Zhi-Shu Tang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712083, China.
| |
Collapse
|
29
|
Li HJ, Wu NL, Lee GA, Hung CF. The Therapeutic Potential and Molecular Mechanism of Isoflavone Extract against Psoriasis. Sci Rep 2018; 8:6335. [PMID: 29679037 PMCID: PMC5910427 DOI: 10.1038/s41598-018-24726-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/26/2018] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a common inflammatory disease. It affects 1-3% of the population worldwide and is associated with increasing medical costs every year. Typical psoriatic skin lesions are reddish, thick, scaly plaques that can occur on multiple skin sites all over the body. Topical application of imiquimod (IMQ), a toll-like receptor (TLR)7 agonist and potent immune system activator, can induce and exacerbate psoriasis. Previous studies have demonstrated that isoflavone extract has an antioxidant effect which may help decrease inflammation and inflammatory pain. Through in vivo studies in mice, we found that the topical application to the shaved back and right ear of mice of isoflavone extract prior to IMQ treatment significantly decreased trans-epidermal water loss (TEWL), erythema, blood flow speed, and ear thickness, while it increased surface skin hydration, and attenuated epidermal hyperplasia and inflammatory cell infiltration. Through in vitro experiments, we found that isoflavone extract can reduce IL-22, IL-17A, and TNF-α-induced MAPK, NF-κB, and JAK-STAT activation in normal human epidermal keratinocytes. At the mRNA level, we determined that isoflavone extract attenuated the increased response of the TNF-α-, IL-17A-, and IL-22- related pathways. These results indicate that isoflavone extract has great potential as an anti-psoriatic agent and in the treatment of other inflammatory skin diseases.
Collapse
Affiliation(s)
- Hsin-Ju Li
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Nan-Lin Wu
- Department of Medicine, Mackay Medical College, New Taipei City, 25245, Taiwan
- Department of Dermatology, Mackay Memorial Hospital, Taipei, 10449, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, 25245, Taiwan
| | - Gon-Ann Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan.
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City, 24205, Taiwan.
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
30
|
Lee S, Kim DC, Baek HY, Lee KD, Kim YC, Oh H. Anti-neuroinflammatory effects of tryptanthrin from Polygonum tinctorium Lour. in lipopolysaccharide-stimulated BV2 microglial cells. Arch Pharm Res 2018. [DOI: 10.1007/s12272-018-1020-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
31
|
Naganuma M, Sugimoto S, Mitsuyama K, Kobayashi T, Yoshimura N, Ohi H, Tanaka S, Andoh A, Ohmiya N, Saigusa K, Yamamoto T, Morohoshi Y, Ichikawa H, Matsuoka K, Hisamatsu T, Watanabe K, Mizuno S, Suda W, Hattori M, Fukuda S, Hirayama A, Abe T, Watanabe M, Hibi T, Suzuki Y, Kanai T. Efficacy of Indigo Naturalis in a Multicenter Randomized Controlled Trial of Patients With Ulcerative Colitis. Gastroenterology 2018; 154:935-947. [PMID: 29174928 DOI: 10.1053/j.gastro.2017.11.024] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/27/2017] [Accepted: 11/17/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Indigo naturalis (IN) is a traditional Chinese medicine that contains ligands for the aryl hydrocarbon receptor and promotes regeneration of the mucosa by inducing production of interleukin 22. IN might induce mucosal healing in patients with ulcerative colitis (UC). We performed a randomized controlled trial to investigate the safety and efficacy of IN in patients with UC. METHODS We performed a multicenter, double-blind trial evaluating the safety of 86 patients in Japan with active UC (Mayo scores of 6 or more), enrolled from March 30 through December 27, 2016. Patients were randomly assigned to groups and given a daily dose of 0.5, 1.0, or 2.0 g IN or placebo (1:1:1:1 ratio) for 8 weeks. The primary endpoint was the rate of clinical response at week 8, defined as a 3-point decrease in the Mayo score and a decrease of at least 30% from baseline, with a decrease of at least 1 point for the rectal bleeding subscore or absolute rectal bleeding score of 0-1. The main secondary endpoint was the rate of clinical remission at week 8, defined as a Mayo score or ≤2 and no subscores with a value >1. Mucosal healing was also assessed at week 8. RESULTS The trial was terminated because of an external reason: a report of pulmonary arterial hypertension in a patient who used self-purchased IN for 6 months. In the intent-to-treat analysis, we observed a significant, dose-dependent linear trend in proportions of patients with clinical responses (13.6% with a clinical response to placebo; 69.6% to 0.5 g IN; 75.0% to 1.0 g IN; and 81.0% to 2.0 g IN) (Cochran-Armitage trend test P < .0001 compared with placebo). Proportions of patients in clinical remission at week 8 were significantly higher in the 1.0 g IN group (55.0%, P = .0004) and the 2.0 g IN group (38.1%, (P = .0093) than in the placebo group (4.5%). Proportions of patients with mucosal healing were 13.6% in the placebo group, 56.5% in the 0.5 g IN group, 60.0% in the 1.0 g IN group, and 47.6% in the 2.0 g IN group (P = .0278 compared with placebo). Although mild liver dysfunction was observed in 10 patients who received IN, no serious adverse events were observed. CONCLUSIONS In a randomized, placebo-controlled trial, we found 8 weeks of IN (0.5-2.0 g per day) to be effective in inducing a clinical response in patients with UC. However, IN should not yet be used because of the potential for adverse effects, including pulmonary arterial hypertension. Clinical Trials Registry no: UMIN000021439 (http://www.umin.ac.jp/ctr/).
Collapse
Affiliation(s)
- Makoto Naganuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shinya Sugimoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Mitsuyama
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Taku Kobayashi
- Center for Advanced IBD Research and Treatment, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
| | - Naoki Yoshimura
- Department of Internal Medicine, Division of IBD, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Hidehisa Ohi
- Department of Gastroenterology, Imamura Hospital, Kagoshima, Japan
| | - Shinji Tanaka
- Department of Endoscopy and Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Naoki Ohmiya
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Keiichiro Saigusa
- Department of Medicine, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| | | | - Yuichi Morohoshi
- Department of Medicine, Yokohama Municipal Citizen's Hospital, Yokohama, Japan
| | - Hitoshi Ichikawa
- Department of Gastroenterology, Tokai University Hachioji Hospital, Hachioji, Japan
| | - Katsuyoshi Matsuoka
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadakazu Hisamatsu
- The Third Department of Internal Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Kenji Watanabe
- Division of Gastroenterology, Osaka City General Hospital, Osaka, Japan; Department of Intestinal Inflammation Research, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shinta Mizuno
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Wataru Suda
- Department of Immunology, Keio University School of Medicine, Tokyo, Japan; Laboratory of Metagenomics, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Masahira Hattori
- Laboratory of Metagenomics, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan; Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Takayuki Abe
- Department of Preventive Medicine and Public Health, Biostatistics Unit at Clinical and Translational Research Center, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
| | - Yasuo Suzuki
- Department of Gastroenterology, Department of Internal Medicine, Toho University Sakura Medical Center, Sakura, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
32
|
Sekhon S, Koo J. Indirubin: a novel topical agent in the treatment of psoriasis. Br J Dermatol 2018; 178:21. [DOI: 10.1111/bjd.16074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S. Sekhon
- Department of Dermatology University of California San Francisco CA U.S.A
| | - J. Koo
- Department of Dermatology University of California San Francisco CA U.S.A
| |
Collapse
|
33
|
Cheng HM, Wu YC, Wang Q, Song M, Wu J, Chen D, Li K, Wadman E, Kao ST, Li TC, Leon F, Hayden K, Brodmerkel C, Chris Huang C. Clinical efficacy and IL-17 targeting mechanism of Indigo naturalis as a topical agent in moderate psoriasis. Altern Ther Health Med 2017; 17:439. [PMID: 28865459 PMCID: PMC5581407 DOI: 10.1186/s12906-017-1947-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022]
Abstract
Background Indigo naturalis is a Traditional Chinese Medicine (TCM) ingredient long-recognized as a therapy for several inflammatory conditions, including psoriasis. However, its mechanism is unknown due to lack of knowledge about the responsible chemical entity. We took a different approach to this challenge by investigating the molecular profile of Indigo naturalis treatment and impacted pathways. Methods A randomized, double-blind, placebo-controlled clinical study was conducted using Indigo naturalis as topical monotherapy to treat moderate plaque psoriasis in a Chinese cohort (n = 24). Patients were treated with Indigo naturalis ointment (n = 16) or matched placebo (n = 8) twice daily for 8 weeks, with 1 week of follow-up. Results At week 8, significant improvements in Psoriasis Area and Severity Index (PASI) scores from baseline were observed in Indigo naturalis-treated patients (56.3% had 75% improvement [PASI 75] response) compared with placebo (0.0%). A gene expression signature of moderate psoriasis was established from baseline skin biopsies, which included the up-regulation of the interleukin (IL)-17 pathway as a key component; Indigo naturalis treatment resulted in most of these signature genes returning toward normal, including down-regulation of the IL-17 pathway. Using an in vitro keratinocyte assay, an IL-17-inhibitory effect was observed for tryptanthrin, a component of Indigo naturalis. Conclusions This study demonstrated the clinical efficacy of Indigo naturalis in moderate psoriasis, and exemplified a novel experimental medicine approach to understand TCM targeting mechanisms. Trial registration NCT01901705. Electronic supplementary material The online version of this article (10.1186/s12906-017-1947-1) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Farahnik B, Sharma D, Alban J, Sivamani RK. Topical Botanical Agents for the Treatment of Psoriasis: A Systematic Review. Am J Clin Dermatol 2017; 18:451-468. [PMID: 28289986 DOI: 10.1007/s40257-017-0266-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Patients with psoriasis often enquire about the use of numerous botanical therapeutics. It is important for dermatologists to be aware of the current evidence regarding these agents. METHODS We conducted a systematic literature search using the PubMed, MEDLINE, and EMBASE databases for controlled and uncontrolled clinical trials that assessed the use of topical botanical therapeutics for psoriasis. The search included the following keywords: 'psoriasis' and 'plant' or 'herbal' or 'botanical'. We also reviewed citations within articles to identify additional relevant sources. We then further refined the results by route of administration and the topical botanical agents are reviewed herein. RESULTS A total of 27 controlled and uncontrolled clinical trials addressing the use of topical botanical agents for psoriasis were assessed in this review. We found that the most highly studied and most efficacious topical botanical therapeutics were Mahonia aquifolium, indigo naturalis, aloe vera, and, to a lesser degree, capsaicin. The most commonly reported adverse effects were local skin irritation, erythema, pruritus, burning, and pain. However, the overall evidence for these therapeutics remains limited in quantity and quality. CONCLUSION The literature addresses a large number of studies in regard to botanicals for the treatment of psoriasis. While most agents appear to be safe, further research is necessary before topical botanical agents can be consistently recommended to patients.
Collapse
Affiliation(s)
| | - Divya Sharma
- Department of Medicine, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Joseph Alban
- Alban Acupuncture and Herbs, New York, NY, USA
- Dermveda Inc., Sacramento, CA, USA
| | - Raja K Sivamani
- Department of Dermatology, School of Medicine, University of California, Davis, 3301 C Street, Suite #1400, Sacramento, CA, 95816, USA.
| |
Collapse
|
35
|
Adachi S, Hoshi N, Inoue J, Yasutomi E, Otsuka T, Dhakhwa R, Wang Z, Koo Y, Takamatsu T, Matsumura Y, Yamairi H, Watanabe D, Ooi M, Tanahashi T, Nishiumi S, Yoshida M, Azuma T. Indigo Naturalis Ameliorates Oxazolone-Induced Dermatitis but Aggravates Colitis by Changing the Composition of Gut Microflora. Int Arch Allergy Immunol 2017; 173:23-33. [PMID: 28482341 DOI: 10.1159/000471923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/23/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Indigo naturalis (IND) is an herbal medicine that has been used as an anti-inflammatory agent to treat diseases including dermatitis and inflammatory bowel disease in China. However, the mechanism by which IND exerts its immunomodulatory effect is not well understood. METHODS A murine model of dermatitis and inflammatory bowel disease, both induced by oxazolone (OXA), was treated with IND. The severity of dermatitis was evaluated based on ear thickness measurements and histological scoring. The severity of colitis was evaluated by measuring body weight, histological scoring, and endoscopic scoring. The expression of inflammatory cytokines in ear and colon tissue was evaluated using real-time PCR. 16S rRNA DNA sequencing of feces from OXA-induced colitis mice was performed before and after IND treatment. The effects of IND on OXA-induced colitis were also evaluated after depleting the gut flora with antibiotics to test whether alteration of the gut flora by IND influenced the course of intestinal inflammation in this model. RESULTS IND treatment ameliorated OXA dermatitis with a reduction in IL-4 and eosinophil recruitment. However, OXA colitis was significantly aggravated in spite of a reduction in intestinal IL-13, a pivotal cytokine in the induction of the colitis. It was found that IND dramatically altered the gut flora and IND no longer exacerbated colitis when colitis was induced after gut flora depletion. CONCLUSIONS Our data suggest that IND could modify the inflammatory immune response in multiple ways, either directly (i.e., modification of the allergic immune cell activity) or indirectly (i.e., alteration of commensal compositions).
Collapse
Affiliation(s)
- Soichiro Adachi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhao X, He X, Zhong X. Anti-inflammatory and in-vitro antibacterial activities of Traditional Chinese Medicine Formula Qingdaisan. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:503. [PMID: 27919254 PMCID: PMC5139090 DOI: 10.1186/s12906-016-1475-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 11/09/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Qingdaisan (Formulated Indigo powder, QDS) are widely used for treatment of aphtha, sore throat and bleeding gums in China. The aim of the study is to evaluate the anti-inflammatory, antibacterial and dental ulcer therapeutic effects of QDS. METHODS Dimethylbenzene-induced ear edema test and cotton pellet-induced granuloma test were used to evaluate anti-inflammatory activities of QDS on acute and chronic inflammatory. The healing time and local pathologic changes were used to assess the therapeutic effects of QDS on dental ulcer. The antibacterial activities of each component and the whole formulation of QDS were determined by agar well diffusion assay. High-dose and low-dose QDS were tested in this experiment and Gui Lin Watermelon Frost Powder (GLWFP) was used as positive control. RESULTS Oral treatment with QDS significantly accelerated the healing of ulcerative lesions induced by phenol injury. The dental ulcers of high-dose QDS group were all healed within 6 days. It was shorter than those of low-dose QDS group and GLWFP group. Less quantity of inflammatory cells and plenty fibroblasts were observed in pathological section of QDS groups. QDS also exhibited significant anti-inflammatory activity both in acute and chronic animal models. Although some of the components exhibited antibacterial activities, the whole formulation of QDS didn't show any significant antibacterial activity in vitro. CONCLUSION The study showed that QDS has obviously anti-inflammatory activity for both acute and chronic inflammatory, also has a remarkable effect for healing dental ulcer caused by phenol. QDS didn't have antibacterial activity to selected strains in vitro.
Collapse
Affiliation(s)
- Xinghua Zhao
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, No. 2596 Lekai South Street, Baoding, Hebei 071000 People’s Republic of China
- Institute of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, No. 2596 Lekai South Street, Baoding, Hebei 071000 People’s Republic of China
| | - Xin He
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, No. 2596 Lekai South Street, Baoding, Hebei 071000 People’s Republic of China
| | - Xiuhui Zhong
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, No. 2596 Lekai South Street, Baoding, Hebei 071000 People’s Republic of China
- Institute of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, No. 2596 Lekai South Street, Baoding, Hebei 071000 People’s Republic of China
| |
Collapse
|
37
|
Sugimoto S, Naganuma M, Kanai T. Indole compounds may be promising medicines for ulcerative colitis. J Gastroenterol 2016; 51:853-61. [PMID: 27160749 DOI: 10.1007/s00535-016-1220-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/25/2016] [Indexed: 02/07/2023]
Abstract
Indole compounds are extracted from indigo plants and have been used as blue or purple dyes for hundreds of years. In traditional Chinese medicine, herbal agents in combination with Qing-Dai (also known as indigo naturalis) have been used to treat patients with ulcerative colitis (UC) and to remedy inflammatory conditions. Recent studies have noted that indole compounds can be biosynthesized from tryptophan metabolites produced by various enzymes derived from intestinal microbiota. In addition to their action on indole compounds, the intestinal microbiota produce various tryptophan metabolites that mediate critical functions through distinct pathways and enzymes. Furthermore, some indole compounds, such as indigo and indirubin, act as ligands for the aryl hydrocarbon receptor. This signaling pathway stimulates mucosal type 3 innate lymphoid cells to produce interleukin-22, which induces antimicrobial peptide and tight junction molecule production, suggesting a role for indole compounds during the mucosal healing process. Thus, indole compounds may represent a novel treatment strategy for UC patients. In this review, we describe the origin and function of this indole compound-containing Chinese herb, as well as the drug development of indole compounds.
Collapse
Affiliation(s)
- Shinya Sugimoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Makoto Naganuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
38
|
Kang SJ, Lee EK, Han CH, Lee BH, Lee YJ, Ku SK. Inhibitory effects of Persicariae Rhizoma aqueous extracts on experimental periodontitis and alveolar bone loss in Sprague-Dawley rats. Exp Ther Med 2016; 12:1563-1571. [PMID: 27588077 DOI: 10.3892/etm.2016.3499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/14/2016] [Indexed: 12/17/2022] Open
Abstract
Persicariae Rhizoma (PR) is the dried stem parts of Persicaria tinctoria H. Gross (Polygonaceae), and has been traditionally used as anti-inflammatory and detoxifying agent. In the present study, the effects of PR aqueous extracts on ligation-induced experimental periodontitis (EPD) and associated alveolar bone loss in rats were examined. Following the induction of EPD in rats, PR extracts were orally administered once a day for 10 days, and the changes and gains in body weight, alveolar bone loss and total aerobic bacterial counts of buccal gingiva were observed with histopathological analysis. In addition, anti-inflammatory effects were evaluated by monitoring myeloperoxidase (MPO) activities, and interleukin (IL)-1β and tumor necrosis factor (TNF)-α contents, and anti-oxidant effects were investigated by measuring inducible nitric oxide synthase (iNOS) activities and malondialdehyde (MDA) levels. Bacterial proliferation, periodontitis and associated alveolar bone loss induced by ligature placement were significantly and dose-dependently inhibited by the treatment with PR extracts. The inhibitory effects of 200 mg/kg PR were similar to those of 5 mg/kg indomethacin on ligation-induced periodontitis and associated alveolar bone losses in this study. The results suggest that PR effectively inhibits ligature placement-induced periodontitis and alveolar bone loss in rats via antibacterial, antioxidative and anti-inflammatory activities.
Collapse
Affiliation(s)
- Su Jin Kang
- The Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea; Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - Eun Kyung Lee
- The Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea; Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - Chang Hyun Han
- Department of Medical History and Literature, Korean Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Bong Hyo Lee
- The Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea; Department of Acupuncture, Moxibustion and Acupoint, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - Young Joon Lee
- The Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea; Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - Sae Kwang Ku
- The Medical Research Center for Globalization of Herbal Formulation, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea; Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| |
Collapse
|
39
|
LEE WONHO, CHOI SEONGHUN, KANG SUJIN, SONG CHANGHYUN, PARK SOOJIN, LEE YOUNGJOON, KU SAEKWANG. Genotoxicity testing of Persicariae Rhizoma ( Persicaria tinctoria H. Gross) aqueous extracts. Exp Ther Med 2016; 12:123-134. [PMID: 27347027 PMCID: PMC4906793 DOI: 10.3892/etm.2016.3273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/05/2016] [Indexed: 12/27/2022] Open
Abstract
Persicariae Rhizoma (PR) has been used as an anti-inflammatory and detoxification agent in Korea, and contains the biologically active dyes purple indirubin and blue indigo. Despite synthetic indigo showing genotoxic potential, thorough studies have not been carried out on the genotoxicity of PR. The potential genotoxicity of an aqueous extract of PR containing indigo (0.043%) and indirubin (0.009%) was evaluated using a standard battery of tests for safety assessment. The PR extract did not induce any genotoxic effects under the conditions of this study. The results of a reverse mutation assay in four Salmonella typhimurium strains and one Escherichia coli strain indicated that PR extract did not increase the frequency of revertant colonies in any strain, regardless of whether S9 mix was present or not. The PR extract also did not increase chromosomal aberrations in the presence or absence of S9 mix. Although slight signs of diarrhea were restrictedly detected in the mice treated with 2,000 mg/kg PR extract, no noteworthy changes in the frequency of micronucleated polychromatic erythrocytes were observed at doses ≤2,000 mg/kg in a bone marrow micronucleus test. These results indicate the potential safety of the PR extract, particularly if it is consumed in small amounts compared with the quantities used in the genotoxicity tests.
Collapse
Affiliation(s)
- WON HO LEE
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - SEONG HUN CHOI
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - SU JIN KANG
- Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - CHANG HYUN SONG
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - SOO JIN PARK
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - YOUNG JOON LEE
- Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - SAE KWANG KU
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| |
Collapse
|
40
|
Chang HN, Huang ST, Yeh YC, Wang HS, Wang TH, Wu YH, Pang JHS. Indigo naturalis and its component tryptanthrin exert anti-angiogenic effect by arresting cell cycle and inhibiting Akt and FAK signaling in human vascular endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:474-81. [PMID: 26341616 DOI: 10.1016/j.jep.2015.08.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Indigo naturalis has been used to treat inflammatory diseases and dermatosis, including psoriasis, since thousands of years in China. It has been proven effective in our previous clinical studies on treating psoriasis, but the active component and the mechanism of how indigo naturalis working still needs to be clarified. Since the dysregulated angiogenesis is known to play an important role in the pathogenesis of psoriasis, the anti-angiogenic effect of indigo naturalis and tryptanthrin, a pure component of indigo naturalis, was investigated. MATERIALS AND METHODS The in vivo angiogenesis was studied by chick chorioallantoic membrane assay. The in vitro studies were performed using human vascular endothelial cells. Cell viability was determined by MTT assay. Cell cycle distribution was revealed by flow cytometry. The cellular messenger (m)RNA or protein expression level was analyzed by real-time RT-PCR or Western blot, respectively. Transwell filter migration assay and matrix gel-induced tube formation method were applied to examine the angiogenic potential. RESULTS Indigo naturalis significantly inhibited the in vivo vascular endothelial growth factor (VEGF)-induced angiogenesis, as well as tryptanthrin. In vitro studies confirmed that indigo naturalis and tryptanthrin reduced the number of viable vascular endothelial cells. Tryptanthrin resulted in a cell cycle arrest and dose-dependently decreased the expressions of cyclin A, cyclin B, cyclin dependent kinase(CDK) 1 and 2, but not cyclin D and cyclin E, at both the mRNA and protein levels. The migration and tube formation of vascular endothelial cells were significantly inhibited by tryptanthrin in a dose-dependent manner. Result also showed that tryptanthrin could reduce the phosphorylated levels of both protein kinase B (PKB or Akt) and focal adhesion kinase (FAK). CONCLUSIONS All together, these results demonstrated the anti-angiogenic effect of tryptanthrin, the acting component of indigo naturalis and revealed the underlying mechanism by inhibiting the cell cycle progression, cell migration and tube formation, likely mediated through blocking the Akt and FAK pathways.
Collapse
Affiliation(s)
- Hsin-Ning Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, ROC; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan, ROC
| | - Sheng-Teng Huang
- Department of Chinese Medicine, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Taiwan, ROC
| | - Yuan-Chieh Yeh
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan, ROC
| | - Hsin-Shih Wang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, ROC; Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Tao-Yuan, Taiwan, ROC
| | - Tzu-Hao Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Tao-Yuan, Taiwan, ROC; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan, ROC
| | - Yi-Hong Wu
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan, ROC
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, ROC.
| |
Collapse
|
41
|
Kamal A, Reddy BS, Sridevi B, Ravikumar A, Venkateswarlu A, Sravanthi G, Sridevi JP, Yogeeswari P, Sriram D. Synthesis and biological evaluation of phaitanthrin congeners as anti-mycobacterial agents. Bioorg Med Chem Lett 2015; 25:3867-72. [DOI: 10.1016/j.bmcl.2015.07.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/13/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022]
|
42
|
Saito R, Tamura M, Matsui H, Nagano Y, Suzuki H, Kaneko T, Mizokami Y, Hyodo I. Qing Dai attenuates nonsteroidal anti-inflammatory drug-induced mitochondrial reactive oxygen species in gastrointestinal epithelial cells. J Clin Biochem Nutr 2014; 56:8-14. [PMID: 25678747 PMCID: PMC4306662 DOI: 10.3164/jcbn.14-59] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 04/30/2014] [Indexed: 01/06/2023] Open
Abstract
Treatments with nonsteroidal anti-inflammatory drugs (NSAIDs) have increased the number of patients with gastrointestinal complications. Qing Dai has been traditionally used in Chinese herbal medicine for various inflammatory diseases such as ulcerative colitis. We previously reported that Qing Dai suppressed inflammations by scavenging reactive oxygen species (ROS) in ulcerative colitis patients. Thus, Qing Dai can attenuate the production of ROS, which play an important role in NSAID-induced gastrointestinal injuries. In this study, we aimed to elucidate whether Qing Dai decreased mitochondrial ROS production in NSAID-treated gastrointestinal cells by examining cellular injury, mitochondrial membrane potentials, and ROS production with specific fluorescent indicators. We also performed electron paramagnetic resonance measurement in isolated mitochondria with a spin-trapping reagent (CYPMPO or DMPO). Treatments with indomethacin and aspirin induced cellular injury and mitochondrial impairment in the gastrointestinal cells. Under these conditions, mitochondrial alterations were observed on electron microscopy. Qing Dai prevented these complications by suppressing ROS production in gastrointestinal cells. These results indicate that Qing Dai attenuated the ROS production from the NSAID-induced mitochondrial alteration in the gastrointestinal epithelial cells. Qing Dai treatment may be considered effective for the prevention NSAID-induced gastrointestinal injury.
Collapse
Affiliation(s)
- Rie Saito
- Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Masato Tamura
- Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hirofumi Matsui
- Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yumiko Nagano
- Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hideo Suzuki
- Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tsuyoshi Kaneko
- Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yuji Mizokami
- Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Ichinosuke Hyodo
- Faculty of Medicine, University of Tsukuba, 1-1-1 Ten-nohdai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
43
|
Lin YK, See LC, Huang YH, Chang YC, Tsou TC, Lin TY, Lin NL. Efficacy and safety of Indigo naturalis extract in oil (Lindioil) in treating nail psoriasis: a randomized, observer-blind, vehicle-controlled trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1015-1020. [PMID: 24680615 DOI: 10.1016/j.phymed.2014.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/20/2014] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
Treating nail psoriasis is notoriously difficult and lacks standardized therapeutic regimens. Indigo naturalis has been demonstrated to be safe and effective in treating skin psoriasis. This trial was conducted to evaluate the efficacy and safety of refined indigo naturalis extract in oil (Lindioil) in treating nail psoriasis. Thirty-one outpatients with symmetrically comparable psoriatic nails were enrolled. Lindioil (experimental group) or olive oil (control group) was applied topically to the same subjects' two bilaterally symmetrical psoriatic nails twice daily for the first 12 weeks and then subjects applied Lindioil to both hands for 12 additional weeks. Outcomes were measured using Nail Psoriasis Severity Index (NAPSI) for five nails on one hand and for the single most severely affected nail from either hand. The results show a reduction of NAPSI scores for the 12-week treatment for the Lindioil group (49.8% for one hand and 59.3% for single nail) was superior to the reduction in the scores for the control group (22.9%, 16.3%, respectively). There were no adverse events during the 24 weeks of treatment. This trial demonstrates that Lindioil is a novel, safe and effective therapy for treating nail psoriasis.
Collapse
Affiliation(s)
- Yin-Ku Lin
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Taiwan; School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Lai-Chu See
- Biostatistics Consultation Center, Department of Public Health, and Biostatistics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Huei Huang
- Department of Dermatology, Chang Gung Memorial Hospital at Taipei, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Ching Chang
- Department of Dermatology, Chang Gung Memorial Hospital at Taipei, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Teng-Cheng Tsou
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Taiwan
| | - Tung-Yi Lin
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Taiwan
| | - Na-Ling Lin
- Biostatistics Consultation Center, Department of Public Health, and Biostatistics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
44
|
Zhang N, Hua Y, Wang C, Sun Y, Wang Z, Liu Z, Liu J. Distribution study of tryptanthrin in rat tissues by HPLC and its relationship with meridian tropism of indigo naturalis in traditional Chinese medicine. Biomed Chromatogr 2014; 28:1701-6. [DOI: 10.1002/bmc.3203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/20/2014] [Accepted: 03/11/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Ning Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science; Northwest University; 229 Taibai Road Xi'an 710069 People's Republic of China
| | - Ying Hua
- Department of Pharmacy Shaanxi Provincial Cancer Hospital; Xi'an 710061 People's Republic of China
| | - Cuiling Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science; Northwest University; 229 Taibai Road Xi'an 710069 People's Republic of China
| | - Yanni Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science; Northwest University; 229 Taibai Road Xi'an 710069 People's Republic of China
| | - Zheng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science; Northwest University; 229 Taibai Road Xi'an 710069 People's Republic of China
| | - Zhulan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science; Northwest University; 229 Taibai Road Xi'an 710069 People's Republic of China
| | - Jianli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science; Northwest University; 229 Taibai Road Xi'an 710069 People's Republic of China
| |
Collapse
|
45
|
Liao X, Zhou X, Mak NK, Leung KN. Tryptanthrin inhibits angiogenesis by targeting the VEGFR2-mediated ERK1/2 signalling pathway. PLoS One 2013; 8:e82294. [PMID: 24358167 PMCID: PMC3864955 DOI: 10.1371/journal.pone.0082294] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022] Open
Abstract
Angiogenesis is a key step for tumour growth and metastasis, and anti-angiogenesis has been proposed as an important strategy for cancer therapy. Tryptanthrin is a weakly basic alkaloid isolated from the dried roots of medicinal indigo plants and has been shown to possess anti-tumour activities on various cancer cell types. This study aims to investigate the in vitro and in vivo anti-angiogenic activities of tryptanthrin and to unravel its underlying molecular action mechanisms. Our results show that tryptanthrin inhibited the in vitro proliferation, migration, and tube formation of the human microvascular endothelial cells (HMEC-1) in a concentration-dependent manner and significantly suppressed angiogenesis in Matrigel plugs in mice. Mechanistic studies indicated that tryptanthrin reduced the expression of several pro-angiogenic factors (Ang-1, PDGFB and MMP2). Tryptanthrin was also found to suppress the VEGFR2-mediated ERK1/2 signalling pathway in HMEC-1 cells and molecular docking simulation indicated that tryptanthrin could bound to the ATP-binding site of VEGFR2. Collectively, the present study demonstrated that tryptanthrin exhibited both in vitro and in vivo anti-angiogenic activities by targeting the VEGFR2-mediated ERK1/2 signalling pathway and might have therapeutic potential for the treatment of angiogenesis-related diseases.
Collapse
Affiliation(s)
- Xuemei Liao
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, HKSAR, China
| | - Xuelin Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, HKSAR, China
| | - Nai-ki Mak
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, HKSAR, China
| | - Kwok-nam Leung
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, HKSAR, China
- * E-mail:
| |
Collapse
|
46
|
A survey of chinese medicinal herbal treatment for chemotherapy-induced oral mucositis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:284959. [PMID: 24285975 PMCID: PMC3830834 DOI: 10.1155/2013/284959] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/21/2013] [Indexed: 02/07/2023]
Abstract
Oral mucositis is one of the common side effects of chemotherapy treatment with potentially severe implications. Despite several treatment approaches by conventional and complementary western medicine, the therapeutic outcome is often not satisfactory. Traditional Chinese Medicine (TCM) offers empirical herbal formulas for the treatment of oral ulceration which are used in adaptation to chemotherapy-induced mucositis. While standard concepts for TCM treatment do not exist and acceptance by conventional oncologists is still low, we conducted a review to examine the evidence of Chinese herbal treatment in oral mucositis. Eighteen relevant studies on 4 single herbs, 2 combinations of 2 herbs, and 11 multiherbal prescriptions involving 3 or more compounds were included. Corresponding molecular mechanisms were investigated. The knowledge about detailed herbal mechanisms, especially in multi-herbal prescriptions is still limited. The quality of clinical trials needs further improvement. Meta-analysis on the existent database is not possible but molecular findings on Chinese medicinal herbs indicate that further research is still promising for the treatment of chemotherapy-induced oral mucositis.
Collapse
|
47
|
Suzuki H, Kaneko T, Mizokami Y, Narasaka T, Endo S, Matsui H, Yanaka A, Hirayama A, Hyodo I. Therapeutic efficacy of the Qing Dai in patients with intractable ulcerative colitis. World J Gastroenterol 2013; 19:2718-2722. [PMID: 23674882 PMCID: PMC3645393 DOI: 10.3748/wjg.v19.i17.2718] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease that may become intractable when treated with conventional medications such as aminosalicylates, corticosteroids, and azathioprine. The herbal medicine Qing Dai has traditionally been used in Chinese medicine to treat UC patients, but there is a lack of published data on the efficacy of Qing Dai in UC treatment. We report several cases of patients with intractable UC who take Qing Dai in a retrospective observational study. Furthermore, we explore the mechanisms of action of Qing Dai. Nine patients with active UC who received conventional medications but wished to receive Qing Dai as an alternative medication were included in our analysis. The UC severity level was determined based on the clinical activity index (CAI). Additionally, 5 of the 9 patients were endoscopically evaluated according to the Matts grading system. Each patient received 2 g/d of Qing Dai orally and continued taking other medications for UC as prescribed. Electron spin resonance was applied to explore the mechanisms of action of Qing Dai. After 4 mo of treatment with Qing Dai, the CAI score decreased from 8.3 ± 2.4 to 2.4 ± 3.4 (mean ± SD; P < 0.001). Similarly, the endoscopic Matts grade decreased from 3.4 ± 0.5 to 2.2 ± 0.8 (P = 0.02). Six of 7 patients who were on prednisolone upon enrollment in the study were able to discontinue this corticosteroid. Electron spin resonance revealed that Qing Dai possesses strong hydroxyl radical scavenging activity. Qing Dai showed significant clinical and endoscopic efficacy in patients who failed to respond to conventional medications. Scavenging of hydroxyl radicals appears to be a potential mechanism through which Qing Dai acts, but the significance of the scavenging ability of Qing Dai with respect to the anti-inflammatory effect in UC patients warrants further investigation.
Collapse
|
48
|
Liao X, Leung KN. Tryptanthrin induces growth inhibition and neuronal differentiation in the human neuroblastoma LA-N-1 cells. Chem Biol Interact 2013; 203:512-21. [PMID: 23500671 DOI: 10.1016/j.cbi.2013.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/20/2013] [Accepted: 03/02/2013] [Indexed: 11/25/2022]
Abstract
Neuroblastoma is one of the most common extracranial solid cancers found in young children. The prognosis of neuroblastoma patients in advanced stages having N-myc amplification remains poor despite intensive multimodal therapy. Agents that trigger neuroblastoma cells to undergo cellular differentiation and thereby stop proliferation have attracted considerable interest as an alternative therapy. Tryptanthrin (12-dihydro-6,12-dioxoindolo-(2,1-b)-quinazoline) is a weakly basic alkaloid isolated from the dried roots of medicinal indigo plants known as Banlangen. It has been shown to possess various biological activities, such as anti-microbial, anti-inflammatory and anti-tumor activities. However, its effects and mechanism(s) of action on human neuroblastoma cells remain poorly understood. Therefore, the objective of this study is to investigate the effects of tryptanthrin on the growth and differentiation of human neuroblastoma LA-N-1 cells with N-myc amplification. Our results show that tryptanthrin inhibited the growth of the human neuroblastoma cells in a dose- and time-dependent manner. Mechanistic studies indicated that tryptanthrin induced cell cycle arrest of the human neuroblastoma LA-N-1 cells at the G0/G1 phase. Tryptanthrin also induced neuronal differentiation of LA-N-1 cells, as assessed by morphological criteria, enhancement of acetylcholine esterase activity and up-regulation of various differentiation markers. Moreover, tryptanthrin treatment led to the significant reduction of N-myc expression in LA-N-1 cells while siRNA directed against N-myc induced morphological differentiation of LA-N-1 cells. These results, when taken together, suggest that tryptanthrin suppressed the growth and induced neuronal differentiation in the human neuroblastoma LA-N-1 cells and might be exploited as a potential therapeutic candidate for the treatment of high-risk neuroblastomas with N-myc-amplification.
Collapse
Affiliation(s)
- Xuemei Liao
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, HKSAR, China
| | | |
Collapse
|
49
|
Lin YK, Chen HW, Leu YL, Yang YL, Fang Y, Su Pang JH, Hwang TL. Indigo naturalis upregulates claudin-1 expression in human keratinocytes and psoriatic lesions. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:614-620. [PMID: 23220199 DOI: 10.1016/j.jep.2012.11.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/02/2012] [Accepted: 11/25/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Indigo naturalis is used in traditional Chinese medicine to treat various dermatoses. Our previous clinical studies showed that indigo naturalis is an effective treatment for psoriasis. Herein, the capabilities of indigo naturalis extract and its derivatives to increase claudin-1 expression and tight junction (TJ) function in human keratinocytes and psoriatic lesions were further studied. MATERIALS AND METHODS Claudin-1 expression in psoriatic plaques with or without indigo naturalis treatment was analyzed by immunohistochemical methods. In primary human keratinocytes, the expression of claudin-1 was analyzed by fluorescent immunostaining, a real-time RT-PCR, and Western blot analysis. The effect of indigo naturalis on TJs was evaluated by measuring the transepithelial electrical resistance (TEER) and paracellular tracer flux. RESULTS The indigo naturalis extract upregulated mRNA and protein expressions of claudin-1 and function of TJs in primary human keratinocytes in concentration-dependent manners. Its main components, indirubin, indigo, and tryptanthrin, exerted synergistic effects on upregulating TJ functions in primary human keratinocytes. In addition, indigo naturalis increased the activity of protein kinase C (PKC), and a known potent PKC inhibitor, Ro318220, attenuated the indigo naturalis-induced claudin-1 expression. Significantly, restoration of claudin-1 was observed in healed psoriatic lesions after indigo naturalis treatment. CONCLUSIONS Indigo naturalis upregulates claudin-1 expression and restores TJ function in keratinocytes. Our data also suggest that indirubin, indigo, and tryptanthrin have a synergistic effect on TJ function.
Collapse
Affiliation(s)
- Yin-Ku Lin
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | | | | | | | | | | | | |
Collapse
|
50
|
Liang CY, Lin TY, Lin YK. Successful treatment of pediatric nail psoriasis with periodic pustular eruption using topical indigo naturalis oil extract. Pediatr Dermatol 2013; 30:117-9. [PMID: 22471655 DOI: 10.1111/j.1525-1470.2012.01721.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Psoriasis of the nail greatly affects quality of life because of the difficulty in achieving long-lasting remission. Pustular psoriasis of the nail apparatus is characterized by the formation of sterile pustules, starting on one or two fingers or less often on the toes, and spontaneous improvement has rarely been observed. This case presents a girl with refractory nail psoriasis accompanied by periodic pustular eruption that responded well to topical treatment with indigo naturalis oil extract drops, achieving a remission of longer than 1 year.
Collapse
Affiliation(s)
- Chung-Yu Liang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | | | | |
Collapse
|