1
|
Wadood SA, Nie J, Song Y, Li C, Rogers KM, Khan WA, Khan A, Xiao J, Liu H, Yuan Y. Authentication of edible herbal materials and food products using mass spectrometry based metabolites and inorganic constituents. Food Chem 2025; 463:141424. [PMID: 39348765 DOI: 10.1016/j.foodchem.2024.141424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Medicinal food homologous (MFH) substances not only provide nutrition but also serve as a traditional means to overcome many health issues. Authentication of these products verifies their efficacity and assures consumers of a genuine product. In this review paper, we focus the determination of MFH authenticity including geographical identification and adulteration detection using mass spectrometry (liquid and gas chromatography) based metabolites and inorganic constituents (muti-elements and stable isotopes). The application of these techniques to determine product identification characteristics combined with chemometrics are discussed, along with the limitations of these techniques. Multi-elements, stable isotopes, and metabolite analysis are shown to provide an effective combination of techniques to resolve the origin of various MFH products. Most organic compounds from MFH products are identified using chromatographic separation techniques (HPLC, GC) combined with different detection methods. Chemometric analysis of organic and inorganic fingerprints offers a robust method to detect and classify mislabeled and suspected fraudulent samples of different MFH products.
Collapse
Affiliation(s)
- Syed Abdul Wadood
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China; Department of Food Science, University of Home Economics Lahore, Pakistan
| | - Jing Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Yan Song
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Chunlin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Karyne M Rogers
- Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China; National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Wahab Ali Khan
- Department of Food Science, University of Home Economics Lahore, Pakistan
| | - Abbas Khan
- Department of Food Science, University of Home Economics Lahore, Pakistan
| | - Jianbo Xiao
- Departement of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, 36310 Vigo, Spain..
| | - Hongyan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
| | - Yuwei Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China.
| |
Collapse
|
2
|
Huo LC, Liu NY, Wang CJ, Luo Y, Liu JX. Lonicera japonica protects Pelodiscus sinensis by inhibiting the biofilm formation of Aeromonas hydrophila. Appl Microbiol Biotechnol 2024; 108:67. [PMID: 38183487 DOI: 10.1007/s00253-023-12910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 01/08/2024]
Abstract
Aquaculture has suffered significant financial losses as a result of the infection of zoonotic Aeromonas hydrophila, which has a high level of resistance to classic antibiotics. In this study, we isolated an A. hydrophila strain B3 from diseased soft-shelled turtle (Pelodiscus sinensis), which is one of the most commercially significant freshwater farmed reptiles in East Asia, and found that A. hydrophila was its dominant pathogen. To better understand the inhibition effect and action mechanism of Chinese herbs on A. hydrophila, we conducted Chinese herbs screening and found that Lonicera japonica had a significant antibacterial effect on A. hydrophila B3. Experimental therapeutics of L. japonica on soft-shelled turtle showed that the supplement of 1% L. japonica to diet could significantly upregulate the immunity-related gene expression of soft-shelled turtle and protect soft-shelled turtle against A. hydrophila infection. Histopathological section results validated the protective effect of L. japonica. As the major effective component of L. japonica, chlorogenic acid demonstrated significant inhibitory effect on the growth of A. hydrophila with MIC at 6.4 mg/mL. The in vitro assay suggested that chlorogenic acid could inhibit the hemolysin/protease production and biofilm formation of A. hydrophila and significantly decrease the expression of quorum sensing, biofilm formation, and hemolysin-related genes in A. hydrophila. Our results showed that the Chinese herb L. japonica would be a promising candidate for the treatment of A. hydrophila infections in aquaculture, and it not only improves the immune response of aquatic animals but also inhibits the virulence factor (such as biofilm formation) expression of A. hydrophila. KEY POINTS: • A. hydrophila was the dominant pathogen of the diseased soft-shelled turtle. • L. japonica can protect soft-shelled turtle against A. hydrophila infection. • Chlorogenic acid inhibits the growth and biofilm formation of A. hydrophila.
Collapse
Affiliation(s)
- Li-Chao Huo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Nai-Yu Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chao-Jie Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yi Luo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
3
|
Ouyang H, Xie Y, Du A, Dong S, Zhou S, Lu B, Wang Z, Ji L. Chlorogenic acid ameliorates non-proliferative diabetic retinopathy via alleviating retinal inflammation through targeting TNFR1 in retinal endothelial cells. Int Immunopharmacol 2024; 141:112929. [PMID: 39153307 DOI: 10.1016/j.intimp.2024.112929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
As a prominent complication of diabetes mellitus (DM) affecting microvasculature, diabetic retinopathy (DR) originates from blood-retinal barrier (BRB) damage. Natural polyphenolic compound chlorogenic acid (CGA) has already been reported to alleviate DR. This study delves into the concrete mechanism of the CGA-supplied protection against DR and elucidates its key target in retinal endothelial cells. DM in mice was induced using streptozotocin (STZ). CGA mitigated BRB dysfunction, leukocytes adhesion and the formation of acellular vessels in vivo. CGA suppressed retinal inflammation and the release of tumor necrosis factor-α (TNFα) by inhibiting nuclear factor kappa-B (NFκB). Furthermore, CGA reduced the TNFα-initiated adhesion of peripheral blood mononuclear cell (PBMC) to human retinal endothelial cell (HREC). CGA obviously decreased the TNFα-upregulated expression of vascular cell adhesion molecule-1 (VCAM1) and intercellular adhesion molecule-1 (ICAM1), and abrogated the TNFα-induced NFκB activation in HRECs. All these phenomena were reversed by overexpressing type 1 TNF receptor (TNFR1) in HRECs. The CGA-provided improvement on leukocytes adhesion and retinal inflammation was disappeared in mice injected with an endothelial-specific TNFR1 overexpression adeno-associated virus (AAV). CGA reduced the interaction between TNFα and TNFR1 through binding to TNFR1 in retinal endothelial cells. In summary, excepting reducing TNFα expression via inhibiting retinal inflammation, CGA also reduced the adhesion of leukocytes to retinal vessels through decreasing VCAM1 and ICAM1 expression via blocking the TNFα-initiated NFκB activation by targeting TNFR1 in retinal endothelial cells. All of those mitigated retinal inflammation, ultimately alleviating BRB breakdown in DR.
Collapse
MESH Headings
- Animals
- Diabetic Retinopathy/drug therapy
- Diabetic Retinopathy/metabolism
- Diabetic Retinopathy/immunology
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Chlorogenic Acid/pharmacology
- Chlorogenic Acid/therapeutic use
- Humans
- Tumor Necrosis Factor-alpha/metabolism
- Mice, Inbred C57BL
- Male
- NF-kappa B/metabolism
- Mice
- Retina/drug effects
- Retina/pathology
- Retina/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Intercellular Adhesion Molecule-1/metabolism
- Vascular Cell Adhesion Molecule-1/metabolism
- Cell Adhesion/drug effects
- Blood-Retinal Barrier/drug effects
- Blood-Retinal Barrier/metabolism
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Cells, Cultured
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
Collapse
Affiliation(s)
- Hao Ouyang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yumin Xie
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ao Du
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shiyuan Dong
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Siyan Zhou
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Zhang J, Liu H, Xu W, Wan X, Zhu K. Comparative analysis of chloroplast genome of Lonicera japonica cv. Damaohua. Open Life Sci 2024; 19:20220984. [PMID: 39533983 PMCID: PMC11554557 DOI: 10.1515/biol-2022-0984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Lonicera japonica is a well-known medicinal plant, and the Damaohua cultivar is one of the oldest known honeysuckle cultivars in China. The 155,151 bp chloroplast genome of this cultivar was obtained through Illumina sequencing. The genome includes a pair of inverted repeats (IRa and IRb; 23,789 bp each), a large single-copy region (88,924 bp), and a small single-copy (SSC) region (18,649 bp). In total, 127 unique genes were identified: 80 protein-coding, 39 tRNA, and 8 rRNA genes. Only ycf3 contained two introns. Eighty-nine large repetitive sequences and 54 simple sequence repeats were detected. Fifty potential RNA editing sites were predicted. Adaptive evolution analysis revealed that infA, matK, petB, petD, rbcL, rpl16, rpl2, rps3, ycf1, and ycf2 were positively selected, possibly reflecting the specific environmental adaptations of this cultivar. Sequence alignment and analysis revealed several candidate fragments for Lonicera species identification, such as the intergenic regions rpoB-petN, rbcL-accD, and psaA-ycf3. The IR region boundary and phylogenetic analysis revealed that the L. japonica cv. Damaohua chloroplast genome was most closely related to the L. japonica genome, but there were five distinct differences between the two. There are four sites with high variability between L. japonica and L. japonica cv. Damaohua with nucleotide variability (Pi) greater than 0.002, including rps2-rpoC2, atpB-rbcL, ycf1, and ycf1-trnN GUU. The differences between L. japonica and L. japonica cv. Damaohua were further confirmed by the single nucleotide polymorphism sites between these two species. Therefore, this study revealed that the chloroplast genome can serve as a universal super barcode for plant identification, which can identify differences and help distinguish Lonicera japonica from related species. An understanding of Lonicera japonica cv. Damaohua chloroplast genomics and a comparative analysis of Lonicera species will provide a scientific basis for breeding, species identification, systematic evolution analysis, and chloroplast genetic engineering research on medicinal honeysuckle plants.
Collapse
Affiliation(s)
- Jiaqiang Zhang
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Huichun Liu
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Wenting Xu
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Xiao Wan
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Kaiyuan Zhu
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| |
Collapse
|
5
|
Zhu Y, Wu B, Xia S, Zheng G, Cheng J, Huang S, Xiong Q, Chen J, Li H, Hirao H, He Y, Chen J. Toward separation and purification of chlorogenic acid from Lonicerae Japonicae Flo (honeysuckle) using melamine–formaldehyde aerogel: A green and efficient approach. CHEMICAL ENGINEERING JOURNAL 2024; 500:157455. [DOI: 10.1016/j.cej.2024.157455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
|
6
|
Cheng H, Wang X, Yao J, Yang C, Liu J. Mitophagy and Ferroptosis in Sepsis-Induced ALI/ARDS: Molecular Mechanisms, Interactions and Therapeutic Prospects of Medicinal Plants. J Inflamm Res 2024; 17:7819-7835. [PMID: 39494205 PMCID: PMC11531397 DOI: 10.2147/jir.s488655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
Sepsis is a common critical illness characterized by high mortality rates and a significant disease burden. In the context of sepsis-induced organ dysfunction, the lungs are among the initial organs affected, which may progress to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Recent studies have highlighted the crucial roles of mitophagy and ferroptosis in the development and progression of sepsis-induced ALI/ARDS. Identifying key convergence points in these processes may provide valuable insights for the treatment of this condition. In recent years, certain herbs and their bioactive compounds have demonstrated unique benefits in managing sepsis-induced ALI/ARDS by modulating mitophagy or ferroptosis. This review summary the mechanisms of mitophagy and ferroptosis, explores their interactions, and emphasizes their regulatory roles in the progression of sepsis-induced ALI/ARDS. Additionally, it offers a novel perspective on treatment strategies by summarizing various herbs and their bioactive compounds relevant to this condition.
Collapse
Affiliation(s)
- Huixin Cheng
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Xuehan Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Juyi Yao
- Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, People’s Republic of China
| | - Chunbo Yang
- Department of Critical Medicine Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Jian Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
- Department of Intensive Care Unit, Gansu Provincial Maternity and Child Health Hospital/Gansu Provincial General Hospital, Lan Zhou, Gansu Province, People’s Republic of China
| |
Collapse
|
7
|
Gao S, Shan Y, Wang Y, Wang W, Li J, Tan H. Polysaccharides from Lonicera japonica Thunb.: Extraction, purification, structural features and biological activities-A review. Int J Biol Macromol 2024; 281:136472. [PMID: 39414197 DOI: 10.1016/j.ijbiomac.2024.136472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Lonicera japonica Thunb.,commonly referred to as Caprifolium japonicum (Thunb.) Dum. Cours.,is a perennial herb classified under the caprifoliaceae family. It is utilized worldwide as a medicinal plant and also serves as food source and an ornamental plant. Lonicera japonica Thunb. polysaccharides (LJP) constitute one of its primary components, demonstrating a wide range of biological activities including anti-inflammatory, antioxidant, immunomodulatory, anti-Alzheimer's, anti-diabetic, and anti-cancer effects. This paper reviews and summarizes recent research advancements on the extraction, purification, structural characteristics, and biological activities of LJP, offering a valuable foundation and up-to-date insights for the continued development and application of LJP in pharmaceutical and functional food sectors.
Collapse
Affiliation(s)
- Shiyong Gao
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin 150076, China
| | - Yanmin Shan
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin 150076, China
| | - Yue Wang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin 150076, China
| | - Weiya Wang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin 150076, China
| | - Jianwen Li
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin 150076, China
| | - Huixin Tan
- Department of pharmacy, Fourth Affiliated Hospital of Harbin Medicine University, Harbin 150001, China.
| |
Collapse
|
8
|
Wu Q, Zhao D, Leng Y, Chen C, Xiao K, Wu Z, Chen F. Identification of the Hypoglycemic Active Components of Lonicera japonica Thunb. and Lonicera hypoglauca Miq. by UPLC-Q-TOF-MS. Molecules 2024; 29:4848. [PMID: 39459215 PMCID: PMC11510595 DOI: 10.3390/molecules29204848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Lonicera japonica Thunb. and Lonicera hypoglauca are famous Chinese medicines used for hyperglycemia; however, the specific compounds that contributed to the hypoglycemic activity and mechanism are still unknown. In this study, the antidiabetic activity of L. japonica buds and L. hypoglauca buds, roots, stems, and leaves extracts was primarily evaluated, and the L. japonica buds and L. hypoglauca buds, roots, and stems extracts displayed significant hypoglycemic activity, especially for the buds of L. hypoglauca. A total of 72 high-level compounds, including 9 iridoid glycosides, 12 flavonoids, 34 organic acids, and 17 saponins, were identified by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) combined with the fragmentation pathways of standards from different parts of L. japonica and L. hypoglauca extracts. Among them, 19 metabolites, including 13 saponins, were reported for the first time from both medicines. Seven high-content compounds identified from L. hypoglauca buds extract were further evaluated for hypoglycemic activity. The result indicated that neochlorogenic acid, chlorogenic acid, isochlorogenic acid A, isochlorogenic acid B, and isochlorogenic acid C displayed significant antidiabetic activity, especially for isochlorogenic acid A and isochlorogenic acid C, which demonstrated that the five chlorogenic-acid-type compounds were the active ingredients of hypoglycemic activity for L. japonica and L. hypoglauca. The potential mechanism of hypoglycemic activity for isochlorogenic acid A and isochlorogenic acid C was inhibiting the intestinal α-glucosidase activity to block the supply of glucose. This study was the first to clarify the hypoglycemic active ingredients and potential mechanism of L. japonica and L. hypoglauca, providing new insights for the comprehensive utilization of both resources and the development of hypoglycemic drugs.
Collapse
Affiliation(s)
- Qinxuan Wu
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, The “Double-First Class” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China; (Q.W.); (D.Z.); (C.C.); (K.X.); (Z.W.)
| | - Di Zhao
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, The “Double-First Class” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China; (Q.W.); (D.Z.); (C.C.); (K.X.); (Z.W.)
| | - Ying Leng
- Hunan Pharmaceutical Development and investment Group Co., Ltd., Changsha 410219, China;
| | - Canhui Chen
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, The “Double-First Class” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China; (Q.W.); (D.Z.); (C.C.); (K.X.); (Z.W.)
| | - Kunyu Xiao
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, The “Double-First Class” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China; (Q.W.); (D.Z.); (C.C.); (K.X.); (Z.W.)
| | - Zhaoquan Wu
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, The “Double-First Class” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China; (Q.W.); (D.Z.); (C.C.); (K.X.); (Z.W.)
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, The “Double-First Class” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China; (Q.W.); (D.Z.); (C.C.); (K.X.); (Z.W.)
| |
Collapse
|
9
|
Chen Y, Shan L, Zheng W, Chen J, Deng L, Tian X, Xie R, Yang Y, Zhang L, Yang B. Global lysine succinylation analysis unveils post-translational regulation effect on phenylpropanoid metabolism remodeling during Lonicera japonica flower development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108978. [PMID: 39084169 DOI: 10.1016/j.plaphy.2024.108978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Lonicera japonica plays a significant role in traditional Chinese medicine and as a food source, making it a focus of studies on protein succinylation and its potential role in regulating secondary metabolism during flower development. This study aimed to clarify the regulatory mechanism of protein succinylation on phenylpropanoid-related phenotypic changes by conducting a global lysine succinylation proteomic analysis across different flowering stages. A total of 586 lysine succinylated peptides in 303 proteins were identified during early and late floral stages. Functional enrichment analysis revealed that succinylated proteins primarily participated in the tricarboxylic acid (TCA) cycle, amino acid metabolism, and secondary metabolism. The abundance of succinylated aspartate transaminase (AT), 4-coumarate-CoA ligase (4CL), and phenylalanine N-hydroxylase (CYP79A2) in phenylpropanoid metabolism varied during flower development. In vitro experiments demonstrated that succinylation increased AT activity while inhibited 4CL activity. Decreased levels of total flavonoids and phenolic acids indicated significant alterations in phenylpropanoid metabolism during later floral stages. These results suggest that succinylation of TCA cycle proteins not only influences flower development but also, together with AT-4CL-CYP79A2 co-succinylation, redirects phenylpropanoid metabolism during flower development in L. japonica.
Collapse
Affiliation(s)
- Yao Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Luhuizi Shan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenxi Zheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jie Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Linfang Deng
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Xu Tian
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruili Xie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yunhong Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
10
|
Xu Q, Jiang D, Zhou N, Kang Y, Li M, Yang C, Liu X, Mi J, Hua G, Ren G, Liu C. Community structure of soil microorganisms and endophytes of honeysuckle at different ecological niche specificities. BMC Microbiol 2024; 24:367. [PMID: 39342140 PMCID: PMC11438390 DOI: 10.1186/s12866-024-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The plant microbiome is one of the key determinants of healthy plant growth. However, the complexity of microbial diversity in plant microenvironments in different regions, especially the relationship between subsurface and aboveground microorganisms, is not fully understood. The present study investigated the diversity of soil microorganisms in different regions and the diversity of microorganisms within different ecological niches, and compared soil microorganisms and endophytic microorganisms. METHODS 16 S and ITS sequencing was used to sequence the soil and endophytes microbiome of honeysuckle. Alpha diversity analysis and principal component analysis (PCoA) were used to study the soil and endophyte microbial communities, and the function of endophyte bacteria and fungi was predicted based on the PICRUST2 process and FUNGuild. RESULTS In total, there were 382 common bacterial genera and 139 common fungal genera in the soil of different producing areas of honeysuckle. There were 398 common bacterial genera and 157 common fungal genera in rhizosphere soil. More beneficial bacteria were enriched in rhizosphere soil. Endophytic bacteria were classified into 34 phyla and 770 genera. Endophytic fungi were classified into 11 phyla and 581 genera, among which there were significant differences in the dominant genera of roots, stems, leaves, and flowers, as well as in community diversity and richness. Endophytic fungal functions were mainly dominated by genes related to saprophytes, functional genes that could fight microorganisms were also found in KEGG secondary functional genes. CONCLUSION More beneficial bacteria were enriched in rhizosphere soil of honeysuckle, and the microbial network of the rhizosphere is more complex than that of the soil. Among the tissues of honeysuckle, the flowers have the richest diversity of endophytes. The endogenous dominant core bacteria in each part of honeysuckle plant have a high degree of overlap with the dominant bacteria in soil. Functional prediction suggested that some dominant core bacteria have antibacterial effects, providing a reference for further exploring the strains with antibacterial function of honeysuckle. Understanding the interaction between honeysuckle and microorganisms lays a foundation for the study of growth promotion, quality improvement, and disease and pests control of honeysuckle from the perspective of microorganisms.
Collapse
Affiliation(s)
- Qingyi Xu
- Beijing University of Chinese Medicine, Beijing, China
| | - Dan Jiang
- Beijing University of Chinese Medicine, Beijing, China
| | - Na Zhou
- Beijing University of Chinese Medicine, Beijing, China
| | - Yingquan Kang
- Beijing University of Chinese Medicine, Beijing, China
| | - Meng Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Chuchu Yang
- Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiu Mi
- University of Tibetan Medicine, Lasa, China
| | - Guodong Hua
- Beijing University of Chinese Medicine, Beijing, China
| | - Guangxi Ren
- Beijing University of Chinese Medicine, Beijing, China.
| | - Chunsheng Liu
- Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
11
|
Feng Y, Huang S, Zhu S, Gao B. Antibacterial Activity and Mechanism of Taxillμs chinensis (DC.) Danser and Its Active Ingredients. Int J Mol Sci 2024; 25:10246. [PMID: 39408577 PMCID: PMC11477399 DOI: 10.3390/ijms251910246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Taxillμs chinensis (DC.) Danser is a traditional Chinese herbal medicine. It has not been reported regarding antibacterial active ingredients and mechanisms of action. However, the Chinese patent medicine Yinhua Miyanling Tablets containing Taxillμs chinensis has an obvious anti-infective effect in our patent. Therefore, we speculate that Taxillμs chinensis may have antibacterial activity. The purpose of this paper is to study the antibacterial effect and mechanism of Taxillμs chinensis and find active compounds with antibacterial activity and a mechanism. We studied the antibacterial effect and mechanism of Taxillμs chinensis extract. The compounds in the ethyl acetate extract of Taxillμs chinensis were preliminarily identified by UPLC-Q-Orbitrap and analyzed by mass spectrometry. Above all, the antibacterial effect and antibacterial mechanism of the active components of Taxillμs chinensis were determined. Finally, we found, for the first time, that Taxillμs chinensis has a good antibacterial effect and ethyl acetate extract has the best effect. In addition, we found, for the first time, that it has an active component, 4-indolecarbaldehyde, and the component has a good broad-spectrum antibacterial effect. Above all, the active chemical 4-indolecarbaldehyde of Taxillμs chinensis can destroy the bacterial structure, make it unable to maintain normal morphology, and significantly increase the number of deaths. In short, Taxillμs chinensis has an antibacterial effect, and one of its main antibacterial components is 4-indolecarbaldehyde. The antibacterial mechanism of Taxillμs chinensis and 4-indolecarbaldehyde is related to the change in bacterial membrane permeability.
Collapse
Affiliation(s)
- Yanjing Feng
- School of Life Sciences, Jilin University, Changchun 130012, China; (Y.F.); (S.H.); (S.Z.)
| | - Silu Huang
- School of Life Sciences, Jilin University, Changchun 130012, China; (Y.F.); (S.H.); (S.Z.)
| | - Shengying Zhu
- School of Life Sciences, Jilin University, Changchun 130012, China; (Y.F.); (S.H.); (S.Z.)
| | - Bo Gao
- School of Life Sciences, Jilin University, Changchun 130012, China; (Y.F.); (S.H.); (S.Z.)
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| |
Collapse
|
12
|
Xiong L, Liu Y, Wang Y, Zhao H, Song X, Fan W, Zhang L, Zhang Y. The protective effect of Lonicera japonica Thunb. against lipopolysaccharide-induced acute lung injury in mice: Modulation of inflammation, oxidative stress, and ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118333. [PMID: 38750986 DOI: 10.1016/j.jep.2024.118333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Various components of Lonicera japonica Thunb. (LJT) exhibit pharmacological activities, including anti-inflammatory and antioxidant effects. Nevertheless, the relationship between LJT and ferroptosis remains largely unexplored. AIM OF THE STUDY The purpose of this research was to look into the role of LJT in regulating LPS-induced ferroptosis in ALI and to compare the effects of different parts of LJT. MATERIALS AND METHODS We established a mice ALI model by treating with LPS. Administered mice with different doses of Lonicerae Japonicae Flos (LJF), Lonicera Japonica Leaves (LJL) and Lonicerae Caulis (LRC) extracts, respectively. The levels of IL-6, IL-1β, TNF-α, IL-4, IL-10, and PGE2 in bronchoalveolar lavage fluid (BALF) were measured using enzyme-linked immunosorbent assay. Furthermore, the concentrations of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS), and total ferrous ions (Fe2+) in lung tissues were evaluated. Hematoxylin and eosin staining was conducted to examine the morphological structure of lung tissues. Transmission electron microscopy was used to investigate the ultrastructural morphology of mitochondria. Furthermore, the effects of LJT were evaluated via immunohistochemical staining, western blotting, and quantitative real-time polymerase chain reaction analyses. Finally, employing molecular docking and molecular dynamics research techniques, we aimed to identify crucial components in LJT that might inhibit ferroptosis by targeting nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase 4 (GPX4). RESULTS We observed that pretreatment with LJT significantly mitigated LPS-induced lung injury and suppressed ferroptosis. This was supported by reduced accumulation of pro-inflammatory cytokines, ROS, MDA, and Fe2+, along with increased levels of anti-inflammatory cytokines, SOD, GSH, Nrf2, and GPX4 in the lung tissues of ALI mice. Luteolin-7-O-rutinoside, apigenin-7-O-rutinoside, and amentoflavone in LJT exhibit excellent docking effects with key targets of ferroptosis, Nrf2 and GPX4. CONCLUSIONS Pretreatment with LJT may alleviate LPS-induced ALI, possibly by suppressing ferroptosis. Our initial results indicate that LJT activates the Nrf2/GPX4 axis, providing protection against ferroptosis in ALI. This finding offers a promising therapeutic candidate for ALI treatment.
Collapse
Affiliation(s)
- Lewen Xiong
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yan Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yang Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hongwei Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaochen Song
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenjing Fan
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Longfei Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yongqing Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
13
|
Bian Y, Xiang C, Xu Y, Zhu R, Qin S, Zhang Z. A Diboronic Acid-Based Fluorescent Sensor Array for Rapid Identification of Lonicerae Japonicae Flos and Lonicerae Flos. Molecules 2024; 29:4374. [PMID: 39339369 PMCID: PMC11433768 DOI: 10.3390/molecules29184374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Lonicerae japonicae flos (LJF) and Lonicerae flos (LF) are traditional Chinese herbs that are commonly used and widely known for their medicinal properties and edibility. Although they may have a similar appearance and vary slightly in chemical composition, their effectiveness as medicine and their use in clinical settings vary significantly, making them unsuitable for substitution. In this study, a novel 2 × 3 six-channel fluorescent sensor array is proposed that uses machine learning algorithms in combination with the indicator displacement assay (IDA) method to quickly identify LJF and LF. This array comprises two coumarin-based fluorescent indicators (ES and MS) and three diboronic acid-substituted 4,4'-bipyridinium cation quenchers (Q1-Q3), forming six dynamic complexes (C1-C6). When these complexes react with the ortho-dihydroxy groups of phenolic acid compounds in LJF and LF, they release different fluorescent indicators, which in turn causes distinct fluorescence recovery. By optimizing eight machine learning algorithms, the model achieved 100% and 98.21% accuracy rates in the testing set and the cross-validation predictions, respectively, in distinguishing between LJF and LF using Linear Discriminant Analysis (LDA). The integration of machine learning with this fluorescent sensor array shows great potential in analyzing and detecting foods and pharmaceuticals that contain polyphenols.
Collapse
Affiliation(s)
- Ying Bian
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China; (Y.B.); (C.X.)
| | - Chenqing Xiang
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China; (Y.B.); (C.X.)
| | - Yi Xu
- Xianning Public Inspection and Testing Center, Xianning 437100, China; (Y.X.); (R.Z.)
| | - Rongping Zhu
- Xianning Public Inspection and Testing Center, Xianning 437100, China; (Y.X.); (R.Z.)
| | - Shuanglin Qin
- Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Zhijun Zhang
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China; (Y.B.); (C.X.)
| |
Collapse
|
14
|
Ma P, Yuan L, Jia S, Zhou Z, Xu D, Huang S, Meng F, Zhang Z, Nan Y. Lonicerae Japonicae Flos with the homology of medicine and food: a review of active ingredients, anticancer mechanisms, pharmacokinetics, quality control, toxicity and applications. Front Oncol 2024; 14:1446328. [PMID: 39314630 PMCID: PMC11417411 DOI: 10.3389/fonc.2024.1446328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Lonicerae Japonicae Flos (LJF, called Jinyinhua in China), comes from the dried flower buds or flowers to be opened of Lonicera japonica Thunb. in the Lonicera family. It has a long history of medicinal use and has a wide range of application prospects. As modern research advances, an increasing number of scientific experiments have demonstrated the anticancer potential of LJF. However, there is a notable absence of systematic reports detailing the anti-tumor effects of LJF. This review integrates the principles of Traditional Chinese Medicine (TCM) with contemporary pharmacological techniques, drawing upon literature from authoritative databases such as PubMed, CNKI, and WanFang to conduct a comprehensive study of LJF. Notably, a total of 507 compounds have been isolated and characterized from the plant to date, which include volatile oils, organic acids, flavonoids, iridoids, triterpenes and triterpenoid saponins. Pharmacological studies have demonstrated that LJF extract, along with components such as chlorogenic acid, luteolin, rutin, luteoloside, hyperoside and isochlorogenic acid, exhibits potential anticancer activities. Consequently, we have conducted a comprehensive review and summary of the mechanisms of action and clinical applications of these components. Furthermore, we have detailed the pharmacokinetics, quality control, and toxicity of LJF, while also discussing its prospective applications in the fields of biomedicine and preventive healthcare. It is hoped that these studies will provide valuable reference for the clinical research, development, and application of LJF.
Collapse
Affiliation(s)
- Ping Ma
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shumin Jia
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ziying Zhou
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Duojie Xu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Fandi Meng
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhe Zhang
- Department of Chinese Medical Gastrointestinal, China-Japan Friendship Hospital, Beijing, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
15
|
Cheng J, Guo F, Wang L, Li Z, Zhou C, Wang H, Liang W, Jiang X, Chen Y, Dong P. Evaluating the impact of ecological factors on the quality and habitat distribution of Lonicera japonica Flos using HPLC and the MaxEnt model. FRONTIERS IN PLANT SCIENCE 2024; 15:1397939. [PMID: 39166244 PMCID: PMC11333331 DOI: 10.3389/fpls.2024.1397939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024]
Abstract
Introduction The quality of traditional Chinese medicine is based on the content of their secondary metabolites, which vary with habitat adaptation and ecological factors. This study focuses on Lonicera japonica Flos (LJF), a key traditional herbal medicine, and aims to evaluate how ecological factors impact its quality. Methods We developed a new evaluation method combining high-performance liquid chromatography (HPLC) fingerprinting technology and MaxEnt models to assess the effects of ecological factors on LJF quality. The MaxEnt model was used to predict suitable habitats for current and future scenarios, while HPLC was employed to analyze the contents of key compounds. We also used ArcGIS for spatial analysis to create a quality zoning map. Results The analysis identified 21 common chromatographic peaks, with significant variations in the contents of Hyperoside, Rutin, Chlorogenic acid, Cynaroside, and Isochlorogenic acid A across different habitats. Key environmental variables influencing LJF distribution were identified, including temperature, precipitation, and elevation. The current suitable habitats primarily include regions south of the Yangtze River. Under future climate scenarios, suitable areas are expected to shift, with notable expansions in southern Gansu, southeastern Tibet, and southern Liaoning. The spatial distribution maps revealed that high-quality LJF is predominantly found in central and southern Hebei, northern Henan, central Shandong, central Sichuan, southern Guangdong, and Taiwan. Discussion The study indicates that suitable growth areas can promote the accumulation of certain secondary metabolites in plants, as the accumulation of these metabolites varies. The results underscore the necessity of optimizing quality based on cultivation practices. The integration of HPLC fingerprinting technology and the MaxEnt model provides valuable insights for the conservation and cultivation of herbal resources, offering a new perspective on evaluating the impact of ecological factors on the quality of traditional Chinese medicines.
Collapse
Affiliation(s)
- Jiali Cheng
- College of Agronomy, College of Life Science and Technology, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Key Lab of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Fengxia Guo
- College of Agronomy, College of Life Science and Technology, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Key Lab of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Liyang Wang
- College of Agronomy, College of Life Science and Technology, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Key Lab of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Zhigang Li
- Longxi County Agricultural Technology Extension Center, Dingxi, Gansu, China
| | - Chunyan Zhou
- School of Economics and Management, Hexi University, Zhangye, China
| | - Hongyan Wang
- College of Agronomy, College of Life Science and Technology, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Key Lab of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Wei Liang
- College of Agronomy, College of Life Science and Technology, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Key Lab of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Xiaofeng Jiang
- Dryland Agriculture Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Yuan Chen
- College of Agronomy, College of Life Science and Technology, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Key Lab of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Pengbin Dong
- College of Agronomy, College of Life Science and Technology, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Key Lab of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
16
|
Hsieh HL, Yu MC, Chang YC, Wu YH, Huang KH, Tsai MM. Lonicera japonica Thunb. Ethanol Extract Exerts a Protective Effect on Normal Human Gastric Epithelial Cells by Modulating the Activity of Tumor-Necrosis-Factor-α-Induced Inflammatory Cyclooxygenase 2/Prostaglandin E2 and Matrix Metalloproteinase 9. Curr Issues Mol Biol 2024; 46:7303-7323. [PMID: 39057074 PMCID: PMC11276375 DOI: 10.3390/cimb46070433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Gastric inflammation-related disorders are commonly observed digestive system illnesses characterized by the activation of proinflammatory cytokines, particularly tumor necrosis factor-α (TNF-α). This results in the induction of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PEG2) and matrix metallopeptidase-9 (MMP-9). These factors contribute to the pathogenesis of gastric inflammation disorders. We examined the preventive effects of Lonicera japonica Thunb. ethanol extract (Lj-EtOH) on gastric inflammation induced by TNF-α in normal human gastric mucosa epithelial cells (GES-1). The GES-1 cell line was used to establish a model that simulated the overexpression of COX-2/PGE2 and MMP-9 proteins induced by TNF-α to examine the anti-inflammatory properties of Lj extracts. The results indicated that Lj-EtOH exhibits significant inhibitory effects on COX-2/PEG2 and MMP-9 activity, attenuates cell migration, and provides protection against TNF-α-induced gastric inflammation. The protective effects of Lj-EtOH are associated with the modulation of COX-2/PEG2 and MMP-9 through the activation of TNFR-ERK 1/2 signaling pathways as well as the involvement of c-Fos and nuclear factor kappa B (NF-κB) signaling pathways. Based on our findings, Lj-EtOH exhibits a preventive effect on human gastric epithelial cells. Consequently, it may represent a novel treatment for the management of gastric inflammation.
Collapse
Affiliation(s)
- Hsi-Lung Hsieh
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; (H.-L.H.); (Y.-C.C.); (Y.-H.W.)
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Chemical Engineering, R&D Center of Biochemical Engineering Technology, Ming Chi University of Technology, New Taipei City 301, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, New Taipei Municipal TuCheng Hospital, New Taipei 236, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yu-Chia Chang
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; (H.-L.H.); (Y.-C.C.); (Y.-H.W.)
| | - Yi-Hsuan Wu
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; (H.-L.H.); (Y.-C.C.); (Y.-H.W.)
| | - Kuo-Hsiung Huang
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan;
- Department of Laboratory Medicine, Section of Clinical Serology and Immunology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Ming Tsai
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; (H.-L.H.); (Y.-C.C.); (Y.-H.W.)
- Department of General Surgery, New Taipei Municipal TuCheng Hospital, New Taipei 236, Taiwan;
- Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan;
| |
Collapse
|
17
|
Chen J, Xu W, Liu Y, Liang X, Chen Y, Liang J, Cao J, Lu B, Sun C, Wang Y. Lonicera japonica Thunb. and its characteristic component chlorogenic acid alleviated experimental colitis by promoting Lactobacillus and fecal short‐chain fatty acids production. FOOD FRONTIERS 2024; 5:1583-1602. [DOI: 10.1002/fft2.412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
AbstractUlcerative colitis is intricately linked to intestinal oxidative stress and dysbiosis of the gut microbiota. Lonicera japonica Thunb. (LJ) is a traditional edible and medical flower in China, and chlorogenic acid (CGA) is one of its characteristic components. However, it remains unclear whether gut microbiota plays a role in the therapeutic effects of LJ and GCA on colitis. Here, we first observed that oral administration of LJ and CGA for 3 weeks dramatically promoted the growth of Lactobacillus and fecal short‐chain fatty acids (SCFAs) production in healthy mice. Subsequently, the alleviating effects of LJ and CGA on colitis were explored with a dextran sulfate sodium‐induced colitis mice model. The intervention of LJ and CGA notably alleviated inflammation, intestinal barrier impairment, and oxidative stress in colitis and led to a significant elevation in Lactobacillus and fecal SCFAs. Eventually, the key role of gut microbiota and their metabolites on the therapeutic effects was validated by performing fecal microbiota transplantation and sterile fecal suspensions transplantation from LJ and CGA‐treated healthy mice to colitis mice. Our findings demonstrated that consumption of LJ and CGA could benefit the host both in healthy condition and colitis. The beneficial effects were attributed to the improvement of the endogenous antioxidant system and promotion of the probiotic Lactobacillus and SCFAs production. Our study highlighted the great potential of LJ and CGA to be consumed as functional foods and provided novel mechanisms by which they alleviated colitis.
Collapse
Affiliation(s)
- Jiebiao Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
| | - Wanhua Xu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
| | - Yang Liu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
- Shandong (Linyi) Institute of Modern Agriculture Zhejiang University Linyi Shandong People's Republic of China
| | - Xiao Liang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
| | - Yunyi Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
| | - Jiaojiao Liang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
- Hainan Institute of Zhejiang University, Zhejiang University Sanya Hainan People's Republic of China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro‐Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro‐Products Storage and Preservation of Ministry of Agriculture and Rural Affairs Zhejiang University Hangzhou People's Republic of China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
- Hainan Institute of Zhejiang University, Zhejiang University Sanya Hainan People's Republic of China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
- Shandong (Linyi) Institute of Modern Agriculture Zhejiang University Linyi Shandong People's Republic of China
| |
Collapse
|
18
|
Li H, Ke J, Wang X, Xu B, Li Q, Wu Z, Wang Y, Lin B. Randomised controlled trial of Jiandu granule in preventing chemoradiotherapy-induced oral mucositis. Oral Dis 2024; 30:3117-3125. [PMID: 37731218 DOI: 10.1111/odi.14745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/04/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE This clinical trial aimed to evaluate the efficacy and safety of Jiandu granule, a Chinese herbal medicine formula, for preventing oral mucositis in patients with nasopharyngeal carcinoma undergoing concurrent chemoradiotherapy. MATERIALS AND METHODS A single-centre, open-label, randomised controlled trial was conducted, enrolling 138 patients with locally advanced nasopharyngeal carcinoma. Patients were randomly allocated to either the experimental group (n = 69) or the control group (n = 69). Both groups received concurrent chemoradiotherapy and standard care for oral mucositis, with the experimental group additionally receiving Jiandu granule intervention. The primary outcome was the incidence of severe oral mucositis (grade III to IV). RESULTS In the full-analysis set, severe oral mucositis occurred in 14 of 69 (20.3%) patients in the experimental group and 31 of 69 (44.9%) patients in the control group (absolute risk reduction: 24.6%; relative risk reduction: 54.8%; p = 0.002; number needed to treat: 4). Jiandu granule was associated with mild/moderate gastrointestinal reactions, with an overall incidence of 5.9%. CONCLUSION Jiandu granule reduced the incidence of severe oral mucositis in nasopharyngeal carcinoma patients during concurrent chemoradiotherapy and had an acceptable safety profile.
Collapse
Affiliation(s)
- Huakang Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianlong Ke
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyan Wang
- The Traditional Chinese Medicine Hospital of Longquanyi, Chengdu, China
| | - Bo Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziliang Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Wang
- Sichuan Cancer Hospital, Chengdu, China
| | - Bing Lin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Rahmati M, Eghbali S, Mokaber-Esfahani M, Taleghani A. Volatile oil constituents, antioxidant and antibacterial activities of Lonicera caprifolium L. in different areas of Iran. Nat Prod Res 2024:1-7. [PMID: 38907660 DOI: 10.1080/14786419.2024.2369229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
The genus of Lonicera is the largest genus of Caprifoliaceae family. This study revealed the composition, antioxidant, and antibacterial actions of essential oils of Lonicera caprifolium L. in different areas of Iran; Qom, Mashhad, Shiraz. Gas chromatography-mass spectrometry examination was applied to recognise the oil conformation. The essential oils of Qom included a high number of monoterpenes, with linalool as the significant constituent. In the essential oil of Mashhad, the main elements were methyl linoleate. The essential oil of Shiraz displayed a similar profile, including a large quantity of fatty acid, with methyl palmitate as the main component. The antioxidant activity was assessed via the DPPH exam, and the antimicrobial action was verified using the broth microdilution procedure. The essential oils of Qom revealed the maximum antimicrobial and antioxidant actions between the three regions, ascribed to its high concentration of monoterpenes and phenolic composites. Moreover, principal component analysis (PCA) and heat map successfully revealed the variation and correlation between metabolites of the three oils. These conclusions highlight the potential of L. caprifolium as natural foundations of antimicrobial and antioxidant representatives, with investigation required to reveal their therapeutic requests.
Collapse
Affiliation(s)
- Mohammad Rahmati
- Department of Chemistry, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Samira Eghbali
- Department of Pharmacognosy and Traditional Pharmacy, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Mokaber-Esfahani
- Department of Chemistry, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Akram Taleghani
- Department of Chemistry, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| |
Collapse
|
20
|
Zeng Q, Cheng Z, Li L, Yang Y, Peng Y, Zhou X, Zhang D, Hu X, Liu C, Chen X. Quantitative analysis of the quality constituents of Lonicera japonica Thunberg based on Raman spectroscopy. Food Chem 2024; 443:138513. [PMID: 38277933 DOI: 10.1016/j.foodchem.2024.138513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Quantitative analysis of the quality constituents of Lonicera japonica (Jinyinhua [JYH]) using a feasible method provides important information on its evaluation and applications. Limitations of sample pretreatment, experimental site, and analysis time should be considered when identifying new methods. In response to these considerations, Raman spectroscopy combined with deep learning was used to establish a quantitative analysis model to determine the quality of JYH. Chlorogenic acid and total flavonoids were identified as analysis targets via network pharmacology. High performance liquid chromatograph and ultraviolet spectroscopy were used to construct standard curves for quantitative analysis. Raman spectra of JYH extracts (1200) were collected. Subsequently, models were built using partial least squares regression, Support Vector Machine, Back Propagation Neural Network, and One-dimensional Convolutional Neural Network (1D-CNN). Among these, the 1D-CNN model showed superior prediction capability and had higher accuracy (R2 = 0.971), and lower root mean square error, indicating its suitability for rapid quantitative analysis.
Collapse
Affiliation(s)
- Qi Zeng
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China; Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 510555, China
| | - Zhaoyang Cheng
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
| | - Li Li
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yuhang Yang
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yangyao Peng
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xianzhen Zhou
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
| | - Dongjie Zhang
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China; Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 510555, China
| | - Xiaojia Hu
- Shanghai Nature's Sunshine Health Products Co. Ltd, Shanghai 200040, China
| | - Chunyu Liu
- Zests Biotechnology Co. Ltd, Suzhou City 215143, China
| | - Xueli Chen
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China; Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 510555, China.
| |
Collapse
|
21
|
Wang W, Pan Y, Lin Y, Zhao J, Liu M, Wang G, Li S. Network pharmacology combined with an experimental validation study to reveal the effect and mechanism of Lonicera japonica Thunb. extracts against immunomodulation. J Food Sci 2024; 89:3829-3846. [PMID: 38745368 DOI: 10.1111/1750-3841.17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
Lonicera japonica Thunb. (LJT) is known for its valuable medicinal properties that highlight its potential application in the pharmaceutical and health food industry. We predict that LJT polyphenols by network pharmacology may be involved in immunomodulation, and the study of LJT polyphenols regulating immunity is still insufficient; therefore, we experimentally found that LJT enhances immunity by promoting the proliferation and phagocytic activity of RAW246.7 cells. A model of an immunosuppressed mouse was constructed using cyclophosphamide-induced, and LJT was extracted for the intervention. We found that LJT restored immune homeostasis in immune deficiency mice by inhibiting the abnormal apoptosis in lymphocytes, enhancing natural killer cell cytotoxicity, promoting T lymphocyte proliferation, and increasing the CD4+ and CD8+ T lymphocytes in quantity. Moreover, LJT treatment modulates immunity by significantly downregulating lipopolysaccharide-induced inflammation and oxidative stress levels. We verified the immunomodulatory function of LJT through both cell and animal experiments. The combination of potential-protein interactions and molecular docking later revealed that LJT polyphenols were associated with immunomodulatory effects on MAPK1; together, LJT intervention significantly modulates the immune, with the activation of MAPK1 as the underlying mechanism of action, which provided evidence for the utilization of LJT as a nutraceutical in immune function.
Collapse
Affiliation(s)
- Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Yunan Pan
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Yucheng Lin
- Shanghai JAKA Biotech Co., Ltd., Shanghai, People's Republic of China
| | - Junjie Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Meimei Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Guangyu Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Shanshan Li
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Bhuia MS, Chowdhury R, Ara I, Mamun M, Rouf R, Khan MA, Uddin SJ, Shakil MAK, Habtemariam S, Ferdous J, Calina D, Sharifi-Rad J, Islam MT. Bioactivities of morroniside: A comprehensive review of pharmacological properties and molecular mechanisms. Fitoterapia 2024; 175:105896. [PMID: 38471574 DOI: 10.1016/j.fitote.2024.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Morroniside (MOR) is an iridoid glycoside and the main active principle of the medicinal plant, Cornus officinalis Sieb. This phytochemical is associated with numerous health benefits due to its antioxidant properties. The primary objective of the present study was to assess the pharmacological effects and underlying mechanisms of MOR, utilizing published data obtained from literature databases. Data collection involved accessing various sources, including PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings demonstrate that MOR can be utilized for the treatment of several diseases and disorders, as numerous studies have revealed its significant therapeutic activities. These activities encompass anti-inflammatory, antidiabetic, lipid-lowering capability, anticancer, trichogenic, hepatoprotective, gastroprotective, osteoprotective, renoprotective, and cardioprotective effects. MOR has also shown promising benefits against various neurological ailments, including Alzheimer's disease, Parkinson's disease, spinal cord injury, cerebral ischemia, and neuropathic pain. Considering these therapeutic features, MOR holds promise as a lead compound for the treatment of various ailments and disorders. However, further comprehensive preclinical and clinical trials are required to establish MOR as an effective and reliable therapeutic agent.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Iffat Ara
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Mamun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Muahmmad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | - Md Abdul Kader Shakil
- Research Center, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
23
|
Han M, Li J, Wu Y, Tang Z. Potential immune-related therapeutic mechanisms of multiple traditional Chinese medicines on type 2 diabetic nephropathy based on bioinformatics, network pharmacology and molecular docking. Int Immunopharmacol 2024; 133:112044. [PMID: 38648716 DOI: 10.1016/j.intimp.2024.112044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND The prevalence of type 2 diabetic nephropathy (T2DN) ranges from 20 % to 40 % among individuals with type 2 diabetes. Multiple immune pathways play a pivotal role in the pathogenesis of T2DN. This study aimed to investigate the immunomodulatory effects of active ingredients derived from 14 traditional Chinese medicines (TCMs) on T2DN. METHODS By removing batch effect on the GSE30528 and GSE96804 datasets, we employed a combination of weighted gene co-expression network analysis, least absolute shrinkage and selection operator analysis, protein-protein interaction network analysis, and the CIBERSORT algorithm to identify the active ingredients of TCMs as well as potential hub biomarkers associated with immune cells. Functional analysis was conducted using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and gene set variation analysis (GSVA). Additionally, molecular docking was employed to evaluate interactions between active ingredients and potential immunotherapy targets. RESULTS A total of 638 differentially expressed genes (DEGs) were identified in this study, comprising 5 hub genes along with 4 potential biomarkers. Notably, CXCR1, CXCR2, and FOS exhibit significant associations with immune cells while displaying robust or favorable affinities towards the active ingredients kaempferol, quercetin, and luteolin. Furthermore, functional analysis unveiled intricate involvement of DEGs, hub genes and potential biomarkers in pathways closely linked to immunity and diabetes. CONCLUSION The potential hub biomarkers and immunotherapy targets associated with immune cells of T2DN comprise CXCR1, CXCR2, and FOS. Furthermore, kaempferol, quercetin, and luteolin demonstrate potential immunomodulatory effects in modulating T2DN through the regulation of CXCR1, CXCR2, and FOS expression.
Collapse
MESH Headings
- Diabetic Nephropathies/drug therapy
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/immunology
- Humans
- Molecular Docking Simulation
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/genetics
- Drugs, Chinese Herbal/therapeutic use
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Medicine, Chinese Traditional
- Computational Biology
- Network Pharmacology
- Protein Interaction Maps
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/metabolism
- Receptors, Interleukin-8A/genetics
- Receptors, Interleukin-8A/metabolism
- Gene Regulatory Networks/drug effects
Collapse
Affiliation(s)
- Mingzheng Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiale Li
- Department of Blood Transfusion, Yuexi Hospital of the Sixth Affiliated Hospital, Sun Yat-sen University (Xinyi People's Hospital), Xinyi, China
| | - Yijin Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
24
|
Yalkun I, Wan H, Ye L, Yu L, He Y, Li C, Wan H. Qualitative and Quantitative Analysis of Chemical Components in Yinhua Pinggan Granule with High-Performance Liquid Chromatography Coupled with Q-Exactive Mass Spectrometry. Molecules 2024; 29:2300. [PMID: 38792164 PMCID: PMC11124461 DOI: 10.3390/molecules29102300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Yinhua Pinggan Granule (YPG) is an approved compounded traditional Chinese medicine (TCM) prescription for the treatment of cold, cough, viral pneumonia, and related diseases. Due to its complicated chemical composition, the material basis of YPG has not been systematically investigated. In this study, an analytical method based on high-performance liquid chromatography (HPLC) coupled with Q-Exactive mass spectrometry was established. Together with the help of a self-built compound database and Compound Discoverer software 3.1, the chemical components in YPG were tentatively identified. Subsequently, six main components in YPG were quantitatively characterized with a high-performance liquid chromatography-diode array detector (HPLC-DAD) method. As a result, 380 components were annotated, including 19 alkaloids, 8 organic acids, 36 phenolic acids, 27 other phenols, 114 flavonoids, 75 flavonoid glycoside, 72 terpenes, 11 anthraquinones, and 18 other compounds. Six main components, namely, chlorogenic acid, puerarin, 3'-methoxypuerarin, polydatin, glycyrrhizic acid, and emodin, were quantified simultaneously. The calibration curves of all six analytes showed good linearity (R2 > 0.9990) within the test ranges. The precision, repeatability, stability, and recovery values were all in acceptable ranges. In addition, the total phenol content and DPPH scavenging activity of YPG were also determined. The systematic elucidation of the chemical components in YPG in this study may provide clear chemical information for the quality control and pharmacological research of YPG and related TCM compounded prescriptions.
Collapse
Affiliation(s)
| | | | | | | | | | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
25
|
Zang Z, Li L, Yang M, Zhang H, Naeem A, Wu Z, Zheng Q, Song Y, Tao L, Wan Z, Zhang Y, Leng J, Liao Z, Guan Y. Study on the ameliorative effect of honeysuckle on DSS-induced ulcerative colitis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117776. [PMID: 38307354 DOI: 10.1016/j.jep.2024.117776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Honeysuckle, first documented in the Miscellaneous Records of Famous Physicians, is known for its ability to expel toxin and cool blood to stop diarrhea. Modern pharmacological research has shown that honeysuckle has anti-inflammatory, antibacterial, antioxidant, and immune-regulating effects and is widely used in clinical practice. However, the effect of honeysuckle on ulcerative colitis (UC) is still not fully understood, which presents challenges for quality control, research and development. AIM OF THE STUDY This study aimed to determine the anti-inflammatory properties and mechanism of action of aqueous extracts of honeysuckle in the treatment of ulcerative colitis. MATERIALS AND METHODS The dextran sodium sulfate (DSS) induced-ulcerative colitis mouse model was established, and the mice were divided into five groups: the control group, the model group, and the low, medium, and high dose honeysuckle treatment groups. RESULTS All dose groups of honeysuckle were found to significantly reduce IL-6 and TNF-α levels and regulate DSS-induced mRNA levels of CLDN4, COX-2, IL-6, INOS, MUC-2, occludin and NLRP3. The high-dose group displayed the most effective inhibition, and a differentially expressed mRNA detection indicated abnormal mRNA expression. The 16sRNA sequencing revealed that the honeysuckle was able to significantly upregulate the abundance of beneficial bacteria and downregulate the abundance of harmful bacteria. The study of short-chain fatty acids revealed that the levels of acetic, propionic, isobutyric, valeric and isovaleric acids were significantly increased after administering honeysuckle at medium and high doses. CONCLUSION Honeysuckle reduces the production of pro-inflammatory cytokines, increases the content of short-chain fatty acids and restores the intestinal ecological balance, resulting in better therapeutic effects.
Collapse
Affiliation(s)
- Zhengzhong Zang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Liqin Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Hua Zhang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Yonggui Song
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Ling Tao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Zhiyan Wan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Yuwei Zhang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Jinglv Leng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Zhenggen Liao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China.
| | - Yongmei Guan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China.
| |
Collapse
|
26
|
Lin YL, Wu YHS, Chao MY, Yang DJ, Liu CW, Tseng JK, Chen YC. An alleviative effect of Lonicerae japonicae flos water extract against liver fibrogenesis in vitro and in vivo. ENVIRONMENTAL TOXICOLOGY 2024; 39:2881-2892. [PMID: 38294203 DOI: 10.1002/tox.24154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Lonicerae japonicae (L. japonicae) flos is a medical and food homology herb. This study investigated the phenolic acid and flavonoid contents in L. japonicae flos water extract solution (LJWES) and the preventive effects of LJWES against liver fibrogenesis via FL83B cells and rats. LJWES contains many polyphenols, such as chlorogenic acid, morin, and epicatechin. LJWES increased cell viability and decreased cytotoxicity in thioacetamide (TAA)-treated FL83B cells (75 mM) (p < .05). LJWES decreased (p < .05) gene expressions of Tnf-α, Tnfr1, Bax, and cytochrome c but upregulated Bcl-2 and Bcl-xl in TAA-treated cells; meanwhile, increased protein levels of P53, cleaved caspase 3, and cleaved caspase 9 in TAA treated cells were downregulated (p < .05) by LJWES supplementation. In vivo, results indicated that TAA treatment increased serum liver damage indices (alanine aminotransferase [ALT] and alkaline phosphatase [ALP]) and cytokines (interleukin-6 and transforming growth factor-β1) levels and impaired liver antioxidant capacities (increased thiobarbituric acid reactive substance value but decreased catalase/glutathione peroxidase activities) in rats (p < .05) while LJWES supplementation amended (p < .05) them. Liver fibrosis scores, collagen deposition, and alpha-smooth muscle actin deposition in TAA-treated rats were also decreased by LJWES supplementation (p < .05). To sum up, LJWES could be a potential hepatoprotective agent against liver fibrogenesis by enhancing antioxidant ability, downregulating inflammation in livers, and reducing apoptosis in hepatocytes.
Collapse
Affiliation(s)
- Yi-Ling Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Undergraduate and Graduate Programs of Nutrition Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yi-Hsieng Samuel Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Yuan Chao
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Deng-Jye Yang
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Wei Liu
- Department of Smart and Quality Agriculture, MingDao University, Changhua, Taiwan
| | - Jung-Kai Tseng
- Department of Optometry, Asia University, Taichung, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Master Program in Global Agriculture Technology and Genomic Science, International College, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
27
|
Zhang M, Zhang J, Xiao Q, Li Y, Jiang S. Reduction of flavonoid content in honeysuckle via Erysiphe lonicerae-mediated inhibition of three essential genes in flavonoid biosynthesis pathways. FRONTIERS IN PLANT SCIENCE 2024; 15:1381368. [PMID: 38689843 PMCID: PMC11059088 DOI: 10.3389/fpls.2024.1381368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
Honeysuckle, valued for its wide-ranging uses in medicine, cuisine, and aesthetics, faces a significant challenge in cultivation due to powdery mildew, primarily caused by the Erysiphe lonicerae pathogen. The interaction between honeysuckle and E. lonicerae, especially concerning disease progression, remains insufficiently understood. Our study, conducted in three different locations, found that honeysuckle naturally infected with E. lonicerae showed notable decreases in total flavonoid content, with reductions of 34.7%, 53.5%, and 53.8% observed in each respective site. Controlled experiments supported these findings, indicating that artificial inoculation with E. lonicerae led to a 20.9% reduction in flavonoid levels over 21 days, worsening to a 54.8% decrease by day 42. Additionally, there was a significant drop in the plant's total antioxidant capacity, reaching an 81.7% reduction 56 days after inoculation. Metabolomic analysis also revealed substantial reductions in essential medicinal components such as chlorogenic acid, luteolin, quercetin, isoquercetin, and rutin. Investigating gene expression revealed a marked decrease in the relative expression of the LjPAL1 gene, starting as early as day 7 post-inoculation and falling to a minimal level (fold change = 0.29) by day 35. This trend was mirrored by a consistent reduction in phenylalanine ammonia-lyase activity in honeysuckle through the entire process, which decreased by 72.3% by day 56. Further analysis showed significant and sustained repression of downstream genes LjFNHO1 and LjFNGT1, closely linked to LjPAL1. We identified the mechanism by which E. lonicerae inhibits this pathway and suggest that E. lonicerae may strategically weaken the honeysuckle's disease resistance by targeting key biosynthetic pathways, thereby facilitating further pathogen invasion. Based on our findings, we recommend two primary strategies: first, monitoring medicinal constituent levels in honeysuckle from E. lonicerae-affected areas to ensure its therapeutic effectiveness; and second, emphasizing early prevention and control measures against honeysuckle powdery mildew due to the persistent decline in crucial active compounds.
Collapse
Affiliation(s)
- Mian Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiaoqiao Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yulong Li
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Shanshan Jiang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
28
|
Lin Z, Li LY, Chen L, Jin C, Li Y, Yang L, Li CZ, Qi CY, Gan YY, Zhang JR, Wang P, Ni LB, Wang GF. Lonicerin promotes wound healing in diabetic rats by enhancing blood vessel regeneration through Sirt1-mediated autophagy. Acta Pharmacol Sin 2024; 45:815-830. [PMID: 38066346 PMCID: PMC10943091 DOI: 10.1038/s41401-023-01193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/08/2023] [Indexed: 03/17/2024] Open
Abstract
Among the numerous complications of diabetes mellitus, diabetic wounds seriously affect patients' quality of life and result in considerable psychological distress. Promoting blood vessel regeneration in wounds is a crucial step in wound healing. Lonicerin (LCR), a bioactive compound found in plants of the Lonicera japonica species and other honeysuckle plants, exhibits anti-inflammatory and antioxidant activities, and it recently has been found to alleviate ulcerative colitis by enhancing autophagy. In this study we investigated the efficacy of LCR in treatment of diabetic wounds and the underlying mechanisms. By comparing the single-cell transcriptomic data from healing and non-healing states in diabetic foot ulcers (DFU) of 5 patients, we found that autophagy and SIRT signaling activation played a crucial role in mitigating inflammation and oxidative stress, and promoting cell survival in wound healing processes. In TBHP-treated human umbilical vein endothelial cells (HUVECs), we showed that LCR alleviated cell apoptosis, and enhanced the cell viability, migration and angiogenesis. Furthermore, we demonstrated that LCR treatment dose-dependently promoted autophagy in TBHP-treated HUVECs by upregulating Sirt1 expression, and exerted its anti-apoptotic effect through the Sirt1-autophagy axis. Knockdown of Sirt1 significantly decreased the level of autophagy, and mitigated the anti-apoptotic effect of LCR. In a STZ-induced diabetic rat model, administration of LCR significantly promoted wound healing, which was significantly attenuated by Sirt1 knockdown. This study highlights the potential of LCR as a therapeutic agent for the treatment of diabetic wounds and provides insights into the molecular mechanisms underlying its effects.
Collapse
Affiliation(s)
- Zhen Lin
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21210, USA
| | - Lu-Yao Li
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Lu Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Chen Jin
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325702, China
| | - Yue Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Lan Yang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Chang-Zhou Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Cai-Yu Qi
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Yu-Yang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Jia-Rui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Piao Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Li-Bin Ni
- Department of Orthopaedic Surgery, Zhejiang Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, 310014, China.
| | - Gao-Feng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China.
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21210, USA.
| |
Collapse
|
29
|
Chan KT, Wu HY, Tin WY, But PPH, Cheung SCH, Shaw PC. Ethnopharmacology of five flowers herbal tea, a popular traditional beverage in Hong Kong and South China. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2024; 20:36. [PMID: 38491512 PMCID: PMC10943788 DOI: 10.1186/s13002-024-00674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND It has been a long-standing tradition of using herbal tea for preventive and therapeutic healthcare in Hong Kong and South China and Five Flowers Tea is one of the most popular herbal teas. Based on the principle of traditional Chinese medicine, the pharmacological functions are to clear heat and dispel dampness in the body. Heat and dampness are thought to contribute to a range of health problems, especially during the hot and humid season in South China and Hong Kong. The most prevalent herbs in the formula contain bioactive compounds including flavonoids, alkaloids and terpenoids, which have a wide range of pharmacological properties including anti-inflammation, antivirus, antidiarrhoea, antibacteria, and antioxidation. However, with the composition varies widely, the ethnopharmacological benefits described may not be delivered uniformly. This study is to provide a comprehensive analysis on the composition of the Five Flowers Tea sold in Hong Kong and investigate the rationale behind the selection of herbs used in the formula. This study also provides information on the variation and quality of the Five Flowers Tea in the market. METHODS Thirty-three Five Flowers Tea samples were collected from various locations in Hong Kong. The size, texture, colour and organoleptic properties were documented. Macroscopic and molecular authentication methods were employed to identify the individual components. RESULTS Macroscopic identification revealed there were 23 herbs belonging to 18 plant families. The most prevalent herb was Bombax ceiba L., followed by Chrysanthemum morifolium. Ten adulterants and the existence of insect Lasioderma serricorne were confirmed by DNA barcoding techniques. CONCLUSION This study employed a comprehensive approach to authenticate the herbs in Five Flowers Tea samples collected from various locations in Hong Kong. Macroscopic and molecular methods were used to identify the herbs and adulterants. The findings revealed the varied composition in Five Flowers Tea and the occurrence of adulterants in some samples. This shows that quality assurance of Five Flowers Tea is essential for the effective use of this popular folk medicine.
Collapse
Affiliation(s)
- Kwun-Tin Chan
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hoi-Yan Wu
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wing-Yee Tin
- Institute of Future Cities, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Paul Pui-Hay But
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | - Pang-Chui Shaw
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
30
|
Zhang M, Xiao Q, Li Y, Tian Y, Zheng J, Zhang J. Exploration of exogenous chlorogenic acid as a potential plant stimulant: enhancing physiochemical properties in Lonicera japonica. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:453-466. [PMID: 38633274 PMCID: PMC11018593 DOI: 10.1007/s12298-024-01435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/05/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
In this study, we applied exogenous chlorogenic acid (CGA) to Lonicera japonica (L. japonica) leaves via foliar sprays every Monday, Wednesday, and Friday for a period of 12 months. Our continuous monitoring over this period revealed a consistent increase in flavonoid levels from the second to the tenth month following the commencement of CGA treatment. This was accompanied by a notable upregulation in the expression of four secondary metabolite-related enzyme genes: LjPAL1, LjPAL2, LjPAL3, and LjISY1. Concurrently, there was a significant enhancement in the total activity of the enzyme phenylalanine ammonia-lyase. The total antioxidant capacity of the plants also showed a marked increase from the third to the seventh month post-treatment initiation, subsequently stabilizing. This increase was also reflected in the elevated activities of key antioxidant enzymes: peroxidase, polyphenol oxidase, and superoxide dismutase. Furthermore, the treatment notably enhanced various indicators of nutrient growth, such as total protein content, total sugar content, and leaf area. Notably, the relative expression of LjTF1, a kind of BZIP transcription factor gene known for its extensive regulatory effects, showed a significant and sustained increase after the start of exogenous CGA treatment. Subsequent metabolomic analysis revealed significant changes in L. japonica metabolites. Specifically, 172 differentially expressed metabolites (DEMs) showed a notable increase (Fold > 1), predominantly in pathways related to nutrient metabolism such as carbohydrate, amino acid, and energy metabolism. Notably, some of the highly expressed DEMs (Fold > 4) are key antioxidants and medicinal components in L. japonica. The experimental findings were in alignment with the metabolomics analysis, indicating that exogenous CGA can act as a stimulant for L. japonica. It promotes the significant accumulation of certain secondary metabolites, enhances nutritive growth, and boosts the plant's total antioxidant capacity. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01435-8.
Collapse
Affiliation(s)
- Mian Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025 China
| | - Qiaoqiao Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025 China
| | - Yulong Li
- College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Yuan Tian
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025 China
| | - Jincheng Zheng
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025 China
| | - Jie Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025 China
| |
Collapse
|
31
|
Qin DE, Liang W, Yu Y, Whelan EC, Yuan X, Wang ZL, Wu XW, Cao ZR, Hua SY, Yin L, Shi L, Liang T. Modified Simiaowan prevents and treats gouty arthritis via the Nrf2/NLRP3 inflammasome signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116906. [PMID: 37442492 DOI: 10.1016/j.jep.2023.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Modified Simiaowan (MSM) is a six-herb formula that has been shown to be effective in gouty arthritis (GA) has been proven, but its regulatory mechanism has not been fully elucidated. AIM OF THE STUDY To investigate the therapeutic effects and mechanism of MSM on gouty arthritis. MATERIALS AND METHODS Mouse J774A.1 macrophages were induced with Lipopolysaccharide (LPS) and then stimulated with Adenosine 5'-triphosphate (ATP) or Nigericin (Nig.) in presence or absence of MSM. Expression of key indicators of pro-inflammatory cytokines and the NLRP3 inflammasome signaling pathway were investigated by western blot, ELISA and qRT-PCR. Fluorescence staining and flow cytometry were performed to detect intracellular reactive oxygen species (ROS) production. Another study, the anti-inflammatory and antioxidant activities of MSM were evaluated in rats with monosodium urate (MSU) -induced gouty arthritis using ELISA, hematoxylin-eosin staining (HE) staining, immunohistochemistry, and oxidative stress kits to measure relevant inflammatory markers and oxidative stress-related biomarkers. RESULTS ELISA and qRT-PCR results demonstrated that MSM effectively reduced the secretion and the mRNA expression levels of pro-inflammatory cytokines. Western blot results indicated that MSM can suppress the expression of NLRP3, an inflamasomes-related protein. In addition, MSM regulated the transition from M1 to M2 macrophages and upregulated the protein expression of Nrf2 and HO-1. The flow cytometry results and the fluorescence staining result were consistent with hypothesis that a large amount of ROS could be effectively cleared by MSM. However, the anti-inflammatory effect of MSM was attenuated after the use of ML385. In vivo experiments demonstrated that joint swelling was significantly attenuated and knee neutrophil infiltration was alleviated in rats given MSM. SOD and GSH-px levels were elevated significantly, while COX-2 and MDA levels decreased. The immunohistochemical results suggested that MSM could effectively inhibit the activation of the NLRP3 inflammasome and the regulation of macrophage polarization in rat synovial tissue, and remarkably enhance the expression of Nrf2 and HO-1. CONCLUSION MSM has potent anti-inflammatory and antioxidant effects on MSU-induced gouty arthritis. MSM alleviates GA through Nrf2/HO-1/ROS/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Dong-Er Qin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wei Liang
- Department of Traditional Chinese Medicine, Air Force Hospital, Eastern Theater of the Chinese People's Liberation Army, Nanjing, 210002, Jiangsu, China.
| | - Yun Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Eoin Christopher Whelan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6303, USA.
| | - Xin Yuan
- Nanjing Hospital of Traditional Chinese Medicine, Nanjing, 210001, China.
| | - Zhang-Lian Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiao-Wei Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zi-Rui Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Sheng-Yi Hua
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| | - Lian Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Le Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Tao Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
32
|
Chi Y, Shi L, Lu S, Cui H, Zha W, Shan L, Shen Y. Inhibitory effect of Lonicera japonica-derived exosomal miR2911 on human papilloma virus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116969. [PMID: 37516391 DOI: 10.1016/j.jep.2023.116969] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lonicera japonica Thunb. has been used as a traditional medicinal herb in China for thousands of years for its heat-clearing and detoxification effects. In recent years, experimental and clinical studies have shown that some Lonicera japonica-containing Chinese medicine prescriptions have been used to treat intraepithelia neoplasia caused by human papilloma virus (HPV) infection. However, its bioactive molecules and mechanism of action have not been fully explored. AIM OF THE STUDY In this study, Lonicera japonica-derived exosomes was extracted and exosomal miR2911 was identified. Bioinformatic analysis indicated that miR2911 potentially binds to the sequence of HPV. The mechanism of miR2911 action on HPV and the effect of exosomal miR2911 on HPV-induced cervical cancer cells were investigated. METHODS The potential targets of miR2911 on the HPV sequence were predicted and confirmed by using RNAhybrid and dual-luciferase reporter assays. Lonicera japonica exosomes were characterized by transmission electronic microscopy and zeta sizer analysis. RT-qPCR was used to measure miR2911 concentration in various tissues and exosomes. Synthetic miR2911 and GFP-E6/E7 plasmids were transfected into HEK293T cells to examine the effect of miR2911 on E6/E7 gene expression. The effects of miR2911 on endogenous E6/E7 mRNA and protein levels were detected in HPV16/18-positive cervical cancer cells by RT-qPCR and Western blotting. The proliferation and apoptosis of CaSki, SiHa and HeLa cells by the treatment of miR2911 or miR2911-containing exosomes were examined by CCK8, colony formation and flow cytometry assays. RESULTS MiR2911 is found to be enriched in various Lonicera japonica tissues, and is stably present in Lonicera japonica-derived exosomes. It is observed that MiR2911 directly binds to E6 and E7 oncogenes of HPV16/18, leading to the suppression of their protein expression. In addition, the endogenous E6/E7 mRNA and protein levels were significantly decreased by using miR2911 treatment in HPV16/18-positive cervical cancer cells. Furthermore, both miR2911 and miR2911-containing exosomes inhibited cell proliferation of SiHa, CaSki and HeLa cells, meanwhile inducing the cell apoptosis through E6/E7-p53/Caspase3 axis. CONCLUSION Our findings indicate that miR2911, an active component present in Lonicera japonica exosomes, inhibits proliferation and induces apoptosis of cervical cancer cells by targeting the E6/E7 genes of HPV16/18. Thus, Lonicera japonica-derived exosomal miR2911 has implications for the development of novel therapeutic strategies for the treatment of HPV-associated cervical cancers.
Collapse
Affiliation(s)
- Yuhao Chi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, PR China; School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, PR China.
| | - Lei Shi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, PR China; Xinxiang Engineering Technology Research Center of Tumor-Targeted Drug Development, Xinxiang Medical University, Xinxiang, 453003, PR China.
| | - Shun Lu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, PR China.
| | - Hongqian Cui
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, PR China.
| | - Wenjing Zha
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, PR China.
| | - Linlin Shan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, PR China.
| | - Yuan Shen
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, PR China; School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, PR China.
| |
Collapse
|
33
|
Lu Y, Zhao D, Liu M, Cao G, Liu C, Yin S, Song R, Ma J, Sun R, Wu Z, Liu J, Wang Y. Gongying-Jiedu-Xiji recipe promotes the healing of venous ulcers by inhibiting ferroptosis via the CoQ-FSP1 axis. Front Pharmacol 2023; 14:1291099. [PMID: 38161691 PMCID: PMC10755008 DOI: 10.3389/fphar.2023.1291099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
Objective: Gongying-Jiedu-Xiji recipe (DDL, batch number Z01080175) reduces body temperature, detoxifies, activates the blood circulation, reduces swelling, and dispels decay and pus. The aim of this study was to investigate the mechanism of action by which DDL functions in the treatment of venous ulcers (VUs). Methods: Normal tissues as well as VU tissues before and after DDL treatment were collected from nine VU patients in the hospital with ethical approval. These three tissues were subjected to Prussian blue iron staining, immunoblotting, immunohistochemistry, immunofluorescence, and quantitative real-time PCR to detect the expression of ferroptosis suppressor protein 1 (FSP1), coenzyme Q (CoQ), 4-hydroxynonenal (4-HNE), and glutathione peroxidase 4 (GPX4). After successful validation of the heme-induced human foreskin fibroblast (HFF) ferroptosis model, lyophilized DDL powder was added to the cells, and the cells were subjected to viability assays, immunoblotting, flow cytometry, glutathione (GSH) and malonaldehyde (MDA) assays, electron microscopy and qPCR assays. Results: Ferroptosis in VU tissues was stronger than that in normal tissues, and ferroptosis in VU tissues after DDL treatment was weaker than that before treatment. Inhibition of CoQ and FSP1 and transfection of FSP1 influenced the effects of DDL. Conclusion: Our results suggest that DDL may promote healing by attenuating ferroptosis in VUs and that DDL may promote VU healing by modulating the CoQ-FSP1 axis.
Collapse
Affiliation(s)
- Yongpan Lu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Dejie Zhao
- Department of Vascular Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ming Liu
- Department of Vascular Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqi Cao
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Chunyan Liu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Siyuan Yin
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Ru Song
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jiaxu Ma
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Rui Sun
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zhenjie Wu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jian Liu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yibing Wang
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
34
|
Zhou Y, Li QX, Liao ZZ, Liu Y, Ouyang Y, Jiang WJ, Tang MT, Hu JF, Zhang W. Anti-inflammatory effect and component analysis of Chaihu Qingwen granules. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116763. [PMID: 37315646 DOI: 10.1016/j.jep.2023.116763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As prevalent acute respiratory condition in clinical practice, acute lung injury has a quick start and severe symptoms which can harm patients physically. Chaihu Qingwen granules (CHQW) is a classic formula for the treatment of respiratory diseases. Clinical observation shows that CHQW has good efficacy in treating colds, coughs, and fevers. AIM OF THE STUDY The aim of this study was to investigate the anti-inflammatory effect of CHQW on lipopolysaccharide (LPS)-induced acute lung injury (ALI) model in rats and to explore its potential mechanism, as well as to clarify its substance composition. MATERIALS AND METHODS Male SD rats were randomly divided into the blank group, the model group, the ibuprofen group, the Lianhua Qingwen capsule group and the CHQW group (2, 4 and 8 g/kg, respectively). The LPS-induced acute lung injury (ALI) model in rats was established after pre-administration. The histopathological changes in the lung and the levels of inflammatory factors in bronchoalveolar lavage fluid (BALF) and serum of ALI rats were observed. The inflammation-related proteins toll-like receptor 4 (TLR4), inhibitory kappa B alpha (IκBα), phospho-IκBα (p-IκBα), nuclear-factor-kappa B (NF-κB), and NLR family pyrin domain containing 3(NLRP3) expression levels were measured by western blotting analysis and immunohistochemical analysis. The chemical composition of CHQW was identified by liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-Q-TOF-MS). RESULTS CHQW significantly ameliorated lung tissue pathological injury in LPS-induced ALI rats and decreased the release of inflammatory cytokines (interleukin-1β, interleukin-17 and tumor necrosis factor-α) in BALF and serum. In addition, CHQW decreased the expression of TLR4, p-IκBα and NF-κB proteins, increased the level of IκBα, regulated the TLR4/NF-κB signaling pathway, and inhibited the activation of NLRP3. The chemical components of CHQW were analyzed by LC-Q-TOF-MS, and a total of 48 components were identified by combining information from the literature, mainly flavonoids, organic acids, lignans, iridoids and phenylethanoid glycosides. CONCLUSION The results of this study showed that the pretreatment of CHQW had a strong protective effect on LPS-induced ALI in rats, reducing lung tissue lesions and decreasing inflammatory cytokines released in BALF and serum. The protective mechanism of CHQW may be related to the inhibition of the TLR4/NF-κB signaling pathway and NLRP3 activation. The main active ingredients of CHQW are flavonoids, organic acids, lignans, iridoids and phenylethanoid glycosides.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Qing-Xian Li
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Zheng-Zheng Liao
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yang Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ying Ouyang
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Wen-Jing Jiang
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Meng-Ting Tang
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Jin-Fang Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Wei Zhang
- Department of Respiratory, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
35
|
Zou Q, Chen Y, Qin H, Tang R, Han T, Guo Z, Zhao J, Xu D. The role and mechanism of TCM in the prevention and treatment of infectious diseases. Front Microbiol 2023; 14:1286364. [PMID: 38033575 PMCID: PMC10682724 DOI: 10.3389/fmicb.2023.1286364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
The constant presence of infectious diseases poses an everlasting threat to the entire world. In recent years, there has been an increased attention toward the application of traditional Chinese medicine (TCM) in the treatment of emerging infectious diseases, as it has played a significant role. The aim of this article is to provide a concise overview of the roles and mechanisms of TCM in treating infectious diseases. TCM possesses the ability to modulate relevant factors, impede signaling pathways, and inhibit microbial growth, thereby exhibiting potent antiviral, antibacterial, and anti-inflammatory effects that demonstrate remarkable efficacy against viral and bacterial infections. This article concludes that the comprehensive regulatory features of Chinese herbal medicines, with their various components, targets, and pathways, result in synergistic effects. The significance of Chinese herbal medicines in the context of infectious diseases should not be underestimated; however, it is crucial to also acknowledge their underutilization. This paper presents constructive suggestions regarding the challenges and opportunities faced by Chinese medicines. Particularly, it emphasizes the effectiveness and characteristics of Chinese medicines in the treatment of infectious diseases, specifying how these medicines' active substances can be utilized to target infectious diseases. This perspective is advantageous in facilitating researchers' pharmacological studies on Chinese medicines, focusing on the specific points of action. The mechanism of action of Chinese herbal medicines in the treatment of infectious diseases is comprehensively elucidated in this paper, providing compelling evidence for the superior treatment of infectious diseases through Chinese medicine. This information is favorable for advancing the development of TCM and its potential applications in the field of infectious diseases.
Collapse
Affiliation(s)
- Qifei Zou
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yitong Chen
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huanxin Qin
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Rui Tang
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Taojian Han
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ziyi Guo
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Delin Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
36
|
Yin X, Xiang Y, Huang F, Chen Y, Ding H, Du J, Chen X, Wang X, Wei X, Cai Y, Gao W, Guo D, Alolga RN, Kan X, Zhang B, Alejo‐Jacuinde G, Li P, Tran LP, Herrera‐Estrella L, Lu X, Qi L. Comparative genomics of the medicinal plants Lonicera macranthoides and L. japonica provides insight into genus genome evolution and hederagenin-based saponin biosynthesis. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2209-2223. [PMID: 37449344 PMCID: PMC10579715 DOI: 10.1111/pbi.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/29/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Lonicera macranthoides (LM) and L. japonica (LJ) are medicinal plants widely used in treating viral diseases, such as COVID-19. Although the two species are morphologically similar, their secondary metabolite profiles are significantly different. Here, metabolomics analysis showed that LM contained ~86.01 mg/g hederagenin-based saponins, 2000-fold higher than LJ. To gain molecular insights into its secondary metabolite production, a chromosome-level genome of LM was constructed, comprising 9 pseudo-chromosomes with 40 097 protein-encoding genes. Genome evolution analysis showed that LM and LJ were diverged 1.30-2.27 million years ago (MYA). The two plant species experienced a common whole-genome duplication event that occurred ∼53.9-55.2 MYA before speciation. Genes involved in hederagenin-based saponin biosynthesis were arranged in clusters on the chromosomes of LM and they were more highly expressed in LM than in LJ. Among them, oleanolic acid synthase (OAS) and UDP-glycosyltransferase 73 (UGT73) families were much more highly expressed in LM than in LJ. Specifically, LmOAS1 was identified to effectively catalyse the C-28 oxidation of β-Amyrin to form oleanolic acid, the precursor of hederagenin-based saponin. LmUGT73P1 was identified to catalyse cauloside A to produce α-hederin. We further identified the key amino acid residues of LmOAS1 and LmUGT73P1 for their enzymatic activities. Additionally, comparing with collinear genes in LJ, LmOAS1 and LmUGT73P1 had an interesting phenomenon of 'neighbourhood replication' in LM genome. Collectively, the genomic resource and candidate genes reported here set the foundation to fully reveal the genome evolution of the Lonicera genus and hederagenin-based saponin biosynthetic pathway.
Collapse
Affiliation(s)
- Xiaojian Yin
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and Agroecology, Chinese Academy of SciencesChangchunChina
| | - Yaping Xiang
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Feng‐Qing Huang
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Yahui Chen
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Hengwu Ding
- The Institute of Bioinformatics, College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Jinfa Du
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Xiaojie Chen
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Xiaoxiao Wang
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Xinru Wei
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Yuan‐Yuan Cai
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Wen Gao
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Dongshu Guo
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural ScienceNanjingChina
| | - Raphael N. Alolga
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Baolong Zhang
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural ScienceNanjingChina
| | - Gerardo Alejo‐Jacuinde
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech UniversityLubbockTXUSA
| | - Ping Li
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Lam‐Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech UniversityLubbockTXUSA
| | - Luis Herrera‐Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech UniversityLubbockTXUSA
- Laboratorio Nacional de Genomica/ Unidad de Genómica Avanzada del Centro de Investigación y de Estudios Avanzados del IPNIrapuatoMexico
| | - Xu Lu
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Lian‐Wen Qi
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
37
|
Cao YX, Ji P, Wu FL, Dong JQ, Li CC, Ma T, Yang HC, Wei YM, Hua YL. Lonicerae Japonicae Caulis: a review of its research progress of active metabolites and pharmacological effects. Front Pharmacol 2023; 14:1277283. [PMID: 37954842 PMCID: PMC10635453 DOI: 10.3389/fphar.2023.1277283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Lonicerae Japonicae Caulis is the aboveground stem part of the Lonicera Japonica Thunb, which belongs to the medicine food homology species in China. It has the effects of clearing away heat, toxic material, dredging wind and unblocking collaterals. Modern research shows that it contains various active metabolites and a wide range of pharmacological effects, which is of great research and clinical application value. It mainly contains organic acids, volatile oils, flavonoids, triterpenes, triterpene saponins and other active metabolites. Its pharmacological effects mainly include anti-inflammatory, antibacterial, antitumor, antioxidant, and repairing bone and soft tissue. Based on the literature reports in recent years, the active metabolites, pharmacological effects and mechanisms of Lonicerae Japonicae Caulis were sorted out and summarized. It lays a foundation for explaining the efficacy material basis and application value of Lonicerae Japonicae Caulis. It aims to provide a reference for the in-depth research, development and utilization of Lonicerae Japonicae Caulis.
Collapse
Affiliation(s)
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | | | | | | | | | | | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | | |
Collapse
|
38
|
Dao Y, Yu J, Yang M, Han J, Fan C, Pang X. DNA Metabarcoding Reveals the Fungal Community on the Surface of Lonicerae Japonicae Flos, an Edible and Medicinal Herb. Int J Mol Sci 2023; 24:15081. [PMID: 37894762 PMCID: PMC10606453 DOI: 10.3390/ijms242015081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Lonicerae Japonicae Flos (LJF) has been globally applied as an herbal medicine and tea. A number of reports recently revealed fungal and mycotoxin contamination in medicinal herbs. It is essential to analyze the fungal community in LJF to provide an early warning for supervision. In this study, the fungal community in LJF samples was identified through DNA metabarcoding. A total of 18 LJF samples were collected and divided based on the collection areas and processing methods. The results indicated that Ascomycota was the dominant phylum. At the genus level, Rhizopus was the most abundant, followed by Erysiphe and Fusarium. Ten pathogenic fungi were detected among the 41 identified species. Moreover, Rhizopus, Fusarium, and Aspergillus had lower relative abundances in LJF samples under oven drying than under other processing methods. This work is expected to provide comprehensive knowledge of the fungal community in LJF and a theoretical reference for enhanced processing methods in practical manufacturing.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaohui Pang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (Y.D.); (J.Y.); (M.Y.); (J.H.); (C.F.)
| |
Collapse
|
39
|
Xue JC, Yuan S, Hou XT, Meng H, Liu BH, Cheng WW, Zhao M, Li HB, Guo XF, Di C, Li MJ, Zhang QG. Natural products modulate NLRP3 in ulcerative colitis. Front Pharmacol 2023; 14:1265825. [PMID: 37849728 PMCID: PMC10577194 DOI: 10.3389/fphar.2023.1265825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
Ulcerative colitis (UC) is a clinically common, progressive, devastating, chronic inflammatory disease of the intestine that is recurrent and difficult to treat. Nod-like receptor protein 3 (NLRP3) is a protein complex composed of multiple proteins whose formation activates cysteine aspartate protease-1 (caspase-1) to induce the maturation and secretion of inflammatory mediators such as interleukin (IL)-1β and IL-18, promoting the development of inflammatory responses. Recent studies have shown that NLRP3 is associated with UC susceptibility, and that it maintains a stable intestinal environment by responding to a wide range of pathogenic microorganisms. The mainstay of treatment for UC is to control inflammation and relieve symptoms. Despite a certain curative effect, there are problems such as easy recurrence after drug withdrawal and many side effects associated with long-term medication. NLRP3 serves as a core link in the inflammatory response. If the relationship between NLRP3 and gut microbes and inflammation-associated factors can be analyzed concerning its related inflammatory signaling pathways, its expression status as well as specific mechanism in the course of IBD can be elucidated and further considered for clinical diagnosis and treatment of IBD, it is expected that the development of lead compounds targeting the NLRP3 inflammasome can be developed for the treatment of IBD. Research into the prevention and treatment of UC, which has become a hotbed of research in recent years, has shown that natural products are rich in therapeutic means, and multi-targets, with fewer adverse effects. Natural products have shown promise in treating UC in numerous basic and clinical trials over the past few years. This paper describes the regulatory role of the NLRP3 inflammasome in UC and the mechanism of recent natural products targeting NLRP3 against UC, which provides a reference for the clinical treatment of this disease.
Collapse
Affiliation(s)
- Jia-Chen Xue
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, Jilin, China
| | - Shuo Yuan
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Bao-Hong Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Wen-Wen Cheng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Ming Zhao
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Hong-Ben Li
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xue-Fen Guo
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Chang Di
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Min-Jie Li
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Qing-Gao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, Jilin, China
| |
Collapse
|
40
|
Wu Z, Gou R, Sha L, Yu C, Meng L, Jin Z. Effects of Luteolin-7-O-Glucoside on Intestinal Microbiota Dysbiosis and Drug Resistance Transmission Caused by Raoultella ornithinolytica B1645-1: Modulating the Composition of Intestinal Microbiota and Promoting the Transfer of blaNDM-1 Gene from Genus Enterococcus to Lactobacillus in Mice. Microorganisms 2023; 11:2477. [PMID: 37894135 PMCID: PMC10609467 DOI: 10.3390/microorganisms11102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Raoultella ornithinolytica is an Enterobacteriaceae bacterium that can infect both humans and animals, while luteolin-7-O-glucoside (IOG) is a flavonoid that has broad effects on the intestinal microbiota of healthy animals. However, current studies lack sufficient data on intestinal microbiota dysbiosis and drug resistance transmission caused by R. ornithinolytica and the possible role of IOG. In this study, BALB/c mice were infected with R. ornithinolytica carrying blaNDM-1 gene and treated with IOG (3 mg/kg·d and 6 mg/kg·d) to analyze the diversity of intestinal microbiota and the transfer of blaNDM-1 between bacteria. The findings indicated that R. ornithinolytica B1645-1 exhibited a significant ability to enhance the Firmicutes/Bacteroidota ratio and increase the relative abundance of Lactobacillus and Bacillus after 48 h, where as 6 mg/kg·d IOG had an opposite effect. Moreover, R. ornithinolytica B1645-1 facilitated the emergence of drug-resistant bacteria and promoted blaNDM-1 gene transfer in Enterococcus, Escherichia, Klebsiella, Acinetobacter, Bacillus, Brevibacterium, and Lactobacillus. Enterococcus was the predominant genus at 48 h. Surprisingly, 6 mg/kg·d IOG significantly inhibited the production of drug-resistant bacteria and promoted blaNDM-1 gene transfer from Enterococcus to Lactobacillus at 144 h. However, the role of Lactobacillus as a recipient for drug-resistant genes should be of more concern.
Collapse
Affiliation(s)
- Zhaomeng Wu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; (Z.W.); (R.G.); (L.S.); (C.Y.)
| | - Ronghui Gou
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; (Z.W.); (R.G.); (L.S.); (C.Y.)
| | - Longhua Sha
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; (Z.W.); (R.G.); (L.S.); (C.Y.)
| | - Chunfang Yu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; (Z.W.); (R.G.); (L.S.); (C.Y.)
| | - Lixue Meng
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; (Z.W.); (R.G.); (L.S.); (C.Y.)
| | - Zhixiong Jin
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; (Z.W.); (R.G.); (L.S.); (C.Y.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
41
|
Ran Z, Ding W, Yu H, Zhang L, Fang L, Guo L, Zhou J. Combinatorial transcriptomics and metabolomics analysis reveals the effects of the harvesting stages on the accumulation of phenylpropanoid metabolites in Lonicera japonica. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:808-820. [PMID: 37607828 DOI: 10.1071/fp23033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023]
Abstract
The flower buds of Lonicera japonica are widely used for its high medicinal value. It is reported that the accumulation of phenylpropanoids in the buds of L. japonica is affected by the stage at which it is harvested. However, the changes of active components and the underlying mechanisms in flower buds at different harvesting stages have not been reported. Integrative analyses of transcriptomics and metabolomics was used to explore the underlying mechanism of harvesting stages (green bud, GB; and white bud, WB) on the phenylpropanoids metabolites accumulation in L. japonica . The result showed that 3735 differentially expressed genes were identified, and the genes related to glycolysis/gluconeogenesis and phenylalanine biosynthesis pathway were significantly upregulated in GB stage. A total of 510 differential metabolites were identified in GB stage. Among them, 14 phenylpropanoids were changed during the GB and WB, seven of which increased in GB, including caffeic acid, sauchinone, coniferin, secoisolariciresinol diglucoside, scopolin, methyl cinnamate, chlorogenic acid, 7-hydroxycoumarin, while others such as sibiricose A6, coumarin, eleutheroside E decreased. Further correlation analysis showed that the unigenes for CSE, CAD, bg1, ADH, ALDH, DLAT and ENO significantly correlated with the 10 phenylpropanoid. The above results would provide basic data for the selection of harvesting stages in the production of L. japonica .
Collapse
Affiliation(s)
- Zhifang Ran
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; and School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Weina Ding
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hongxia Yu
- Weihai (Wendeng) Authentic Ginseng Industry Development Co. Ltd., Wendeng 264407, China
| | - Li Zhang
- Shandong Zhongping Pharmaceutical Industry, Linyi 273399, China
| | - Lei Fang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Lanping Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jie Zhou
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| |
Collapse
|
42
|
Liu K, Jin Y, Gu L, Li M, Wang P, Yin G, Wang S, Wang T, Wang L, Wang B. Classification and Authentication of Lonicerae Japonicae Flos and Lonicerae Flos by Using 1H-NMR Spectroscopy and Chemical Pattern Recognition Analysis. Molecules 2023; 28:6860. [PMID: 37836702 PMCID: PMC10574709 DOI: 10.3390/molecules28196860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Lonicerae japonicae flos and Lonicerae flos are increasingly widely used in food and traditional medicine products around the world. Due to their high demand and similar appearance, they are often used in a confused or adulterated way; therefore, a rapid and comprehensive analytical method is highly required. In this case, the comparative analysis of a total of 100 samples with different species, growth modes, and processing methods was carried out by nuclear magnetic resonance (1H-NMR) spectroscopy and chemical pattern recognition analysis. The obtained 1H-NMR spectrums were employed by principal component analysis (PCA), partial least-squares discriminant analysis (PLS-DA), orthogonal partial least-squares discriminant analysis (OPLS-DA), and linear discriminant analysis (LDA). Specifically, after the dimensionality reduction of data, linear discriminant analysis (LDA) exhibited good classification abilities for the species, growth modes, and processing methods. It is worth noting that the sample prediction accuracy from the testing set and the cross-validation predictions of the LDA models were higher than 95.65% and 98.1%, respectively. In addition, the results showed that macranthoidin A, macranthoidin B, and dipsacoside B could be considered as the main differential components of Lonicerae japonicae flos and Lonicerae Flos, while secoxyloganin, secologanoside, and sweroside could be responsible for distinguishing cultivated and wild Lonicerae japonicae Flos. Accordingly, 1H-NMR spectroscopy combined with chemical pattern recognition gives a comprehensive overview and provides new insight into the quality control and evaluation of Lonicerae japonicae flos.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lijun Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (K.L.); (Y.J.); (L.G.); (M.L.); (P.W.); (G.Y.); (S.W.); (T.W.)
| | - Bing Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (K.L.); (Y.J.); (L.G.); (M.L.); (P.W.); (G.Y.); (S.W.); (T.W.)
| |
Collapse
|
43
|
Yang X, Qian H, Meng J, Jiang H, Yuan T, Yang S, Luo Y, Bao N, Zhao J, Wang D. Lonicerin alleviates the progression of experimental rheumatoid arthritis by downregulating M1 macrophages through the NF-κB signaling pathway. Phytother Res 2023; 37:3939-3950. [PMID: 37114508 DOI: 10.1002/ptr.7853] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/20/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
The present study aimed to evaluate anti-rheumatoid arthritis (RA) effect of Lonicerin (LON), a safe compound with anti-inflammatory and immunomodulatory properties. Nevertheless, the exact role of LON in RA remains elusive. In this test, the anti-RA effect of LON was evaluated in collagen-induced arthritis (CIA) mouse model. Relevant parameters were measured during the experiment; ankle tissue and serum were collected at the end of the experiment for radiology, histopathology, and inflammation analysis. ELISA, qRT-PCR, immunofluorescence, and western blot were used to explore the effect of LON on the polarization of macrophages and related signal pathways. It was discovered that LON treatment attenuated the disease progression of CIA mice with lower paw swelling, clinical score, mobility, and inflammatory response. LON treatment significantly decreased M1 marker levels in CIA mice and LPS/IFN-γ-induced RAW264.7 cells, while slightly increasing M2 marker levels in CIA mice and IL-4-induced RAW264.7 cells. Mechanistically, LON attenuated the activation of the NF-κB signaling pathway, which contributes to M1 macrophage polarization and inflammasome activation. In addition, LON inhibited NLRP3 inflammasome activation in M1 macrophages, thereby reducing inflammation by inhibiting IL-1β and IL-18 release. These results indicated that LON might exert anti-RA effects by regulating the polarization of M1/M2 macrophage, especially by inhibiting macrophage polarization toward M1.
Collapse
Affiliation(s)
- Xiaojiang Yang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hong Qian
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Jia Meng
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hui Jiang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Tao Yuan
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Shaoqiang Yang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yibin Luo
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Ninrong Bao
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jianning Zhao
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
- Department of Orthopedics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Dongsheng Wang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
44
|
Li Y, Liu B, Yang J, Sun J, Ran J, Liang X, Li Y. Characterization of polysaccharide from Lonicera japonica Thunb leaves and its application in nano-emulsion. Front Nutr 2023; 10:1248611. [PMID: 37621736 PMCID: PMC10445041 DOI: 10.3389/fnut.2023.1248611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
The polysaccharides in honeysuckle leaves (PHL) were separated and characterized for the first time. The nano-emulsion stabilized by PHL and whey protein isolate (WPI) were also fabricated based on the ultrasonic method. The results indicated that PHL was mainly composed of glucose (47.40 mol%), galactose (19.21 mol%) and arabinose (20.21 mol%) with the weight-average molecular weight of 137.97 ± 4.31 kDa. The emulsifier concentration, WPI-to-PHL ratio, ultrasound power and ultrasound time had significant influence on the droplet size of PHL-WPI nano-emulsion. The optimal preparation conditions were determined as following: emulsifier concentration, 1.7%; WPI/PHL ratio, 3:1; ultrasonic power, 700 W; ultrasonic time, 7 min. Under the above conditions, the median diameter of the obtained nano-emulsion was 317.70 ± 5.26 nm, close to the predicted value of 320.20 nm. The protective effect of PHL-WPI emulsion on β-carotene against UV irradiation was superior to that of WPI emulsion. Our results can provide reference for the development of honeysuckle leaves.
Collapse
Affiliation(s)
- Yongchao Li
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, China
- Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, China
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Jing Yang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, China
- Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, China
| | - Junliang Sun
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Junjian Ran
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Xinhong Liang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Yinglin Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
45
|
Ji C, Xiao L, Wang X, Hua MZ, Wu Y, Wang Y, Wu Z, He X, Xu D, Zheng W, Lu X. Simultaneous Determination of 147 Pesticide Residues in Traditional Chinese Medicines by GC-MS/MS. ACS OMEGA 2023; 8:28663-28673. [PMID: 37576667 PMCID: PMC10413466 DOI: 10.1021/acsomega.3c03178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023]
Abstract
Determination of pesticide residues remains a challenge in traditional Chinese medicines in which complex compounds may interfere with analysis signals. This study reports the development of a simple, effective, and high-throughput method combining gas chromatography-tandem mass spectrometry (GC-MS/MS) with either QuEChERS or solid phase extraction (SPE) to determine 147 pesticide residues in traditional Chinese medicines simultaneously. In SPE, the mixture of n-hexane and ethyl acetate (1:1, v/v) was selected to extract 147 pesticides in honeysuckle, and the extracted pesticides were determined by GC-MS/MS. The limits of detection for all pesticides were within 0.01-0.05 mg/kg. The recoveries were within 70-120% and the relative standard deviations were below 20% for over 90% pesticides. The coefficients of determination were up to 0.999 for the linearity between MS signals and different concentrations of pesticides (20-200 ng/mL). The analytical performance was confirmed in determining pesticide residues in dried tangerine peel. SPE achieved comparable recoveries for all pesticides compared to the QuEChERS method.
Collapse
Affiliation(s)
- Chao Ji
- Laboratory
for Quality Control and Traceability of Food and Agricultural Products, Tianjin Normal University, Tianjin 300387, China
| | - Li Xiao
- Department
of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Xingyu Wang
- Laboratory
for Quality Control and Traceability of Food and Agricultural Products, Tianjin Normal University, Tianjin 300387, China
| | - Marti Z. Hua
- Department
of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Yifeng Wu
- Xiamen
Customs Technology Center, Xiamen, Fujian 361026, China
| | - Yifan Wang
- Xiamen
Customs Technology Center, Xiamen, Fujian 361026, China
| | - Zhiqiang Wu
- Laboratory
for Quality Control and Traceability of Food and Agricultural Products, Tianjin Normal University, Tianjin 300387, China
| | - Xiahong He
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan, National Engineering Research Center for Applied Technology
of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- Key
Laboratory for Forest Resources Conservation and Utilization in the
Southwest Mountains of China, Ministry of Education, Southwest Landscape
Architecture Engineering Research Center of National Forestry and
Grassland Administration, Southwest Forestry
University, Kunming, Yunnan 650224, China
| | - Dunming Xu
- Xiamen
Customs Technology Center, Xiamen, Fujian 361026, China
| | - Wenjie Zheng
- Laboratory
for Quality Control and Traceability of Food and Agricultural Products, Tianjin Normal University, Tianjin 300387, China
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan, National Engineering Research Center for Applied Technology
of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- Key
Laboratory for Forest Resources Conservation and Utilization in the
Southwest Mountains of China, Ministry of Education, Southwest Landscape
Architecture Engineering Research Center of National Forestry and
Grassland Administration, Southwest Forestry
University, Kunming, Yunnan 650224, China
| | - Xiaonan Lu
- Department
of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
46
|
Lin Y, Qi X, Wan Y, Chen Z, Fang H, Liang C. Genome-wide analysis of the MADS-box gene family in Lonicera japonica and a proposed floral organ identity model. BMC Genomics 2023; 24:447. [PMID: 37553575 PMCID: PMC10408238 DOI: 10.1186/s12864-023-09509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Lonicera japonica Thunb. is widely used in traditional Chinese medicine. Medicinal L. japonica mainly consists of dried flower buds and partially opened flowers, thus flowers are an important quality indicator. MADS-box genes encode transcription factors that regulate flower development. However, little is known about these genes in L. japonica. RESULTS In this study, 48 MADS-box genes were identified in L. japonica, including 20 Type-I genes (8 Mα, 2 Mβ, and 10 Mγ) and 28 Type-II genes (26 MIKCc and 2 MIKC*). The Type-I and Type-II genes differed significantly in gene structure, conserved domains, protein structure, chromosomal distribution, phylogenesis, and expression pattern. Type-I genes had a simpler gene structure, lacked the K domain, had low protein structure conservation, were tandemly distributed on the chromosomes, had more frequent lineage-specific duplications, and were expressed at low levels. In contrast, Type-II genes had a more complex gene structure; contained conserved M, I, K, and C domains; had highly conserved protein structure; and were expressed at high levels throughout the flowering period. Eleven floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in L. japonica. By integrating expression pattern and protein interaction data for these genes, we developed a possible model for floral organ identity determination. CONCLUSION This study genome-widely identified and characterized the MADS-box gene family in L. japonica. Eleven floral homeotic MADS-box genes were identified and a possible model for floral organ identity determination was also developed. This study contributes to our understanding of the MADS-box gene family and its possible involvement in floral organ development in L. japonica.
Collapse
Affiliation(s)
- Yi Lin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yan Wan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zequn Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Hailing Fang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China.
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
47
|
Wang M, Li YC, Meng FB, Wang Q, Wang ZW, Liu DY. Effect of honeysuckle leaf extract on the physicochemical properties of carboxymethyl konjac glucomannan/konjac glucomannan/gelatin composite edible film. Food Chem X 2023; 18:100675. [PMID: 37122553 PMCID: PMC10130771 DOI: 10.1016/j.fochx.2023.100675] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Honeysuckle leaves are rich in bioactive ingredients, but often considered as agro-wastes. In this study, honeysuckle leaf extract (HLE) was added to the carboxymethyl konjac glucomannan/konjac glucomannan/gelatin composite edible film (CMKH). Compared to films without HLE addition (CMK), the water vapor barrier properties of CMKH slightly decreased, but the transmittance of the CMKH films in UV region (200-400 nm) as low as zero. The elongation at break of CMKH film was 1.39 ∼ 1.5 fold higher than those of CMK films. The DPPH and ABTS scavenging activity of CMKH-Ⅱ was 85.75% and 90.93%, respectively, which is similar to the equivalent content of Vc. The inhibition rate of CMKH-Ⅰ and CMKH-Ⅱ against Escherichia coli and Listeria monocytogenes were close to 90%, and the inhibition rate against Staphylococcus aureus were up to 96%. The results emphasized that the composite film containing 25% (v/v) HLE has potential application value in food preservation.
Collapse
Affiliation(s)
- Meng Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610218, PR China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610218, PR China
- Corresponding author at: College of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Road, Chengdu, China.
| | - Qiao Wang
- Sichuan Institute of Food Inspection, Chengdu 610097, PR China
| | - Zheng-Wu Wang
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610218, PR China
| | - Da-Yu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| |
Collapse
|
48
|
Sun W, Zhu J, Qin G, Huang Y, Cheng S, Chen Z, Zhang Y, Shu Y, Zeng X, Guo R. Lonicera japonica polysaccharides alleviate D-galactose-induced oxidative stress and restore gut microbiota in ICR mice. Int J Biol Macromol 2023:125517. [PMID: 37353132 DOI: 10.1016/j.ijbiomac.2023.125517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Lonicera japonica polysaccharides (LJPs) exhibit anti-aging effect in nematodes. Here, we further studied the function of LJPs on aging-related disorders in D-galactose (D-gal)-induced ICR mice. Four groups of mice including the control group, the D-gal-treated group, the intervening groups with low and high dose of LJPs (50 and 100 mg/kg/day) were raised for 8 weeks. The results showed that intragastric administration with LJPs improved the organ indexes of D-gal-treated mice. Moreover, LJPs improved the activity of superoxide dismutase (SOD), catalase (CAT) as well as glutathione peroxidase (GSH-Px) and decreasing the malondialdehyde (MDA) level in serum, liver and brain. Meanwhile, LJPs restored the content of acetylcholinesterase (AChE) in the brain. Further, LJPs reversed the liver tissue damages in aging mice. Mechanistically, LJPs alleviate oxidative stress at least partially through regulating Nrf2 signaling. Additionally, LJPs restored the gut microbiota composition of D-gal-treated mice by adjusting the Firmicutes/Bacteroidetes ratio at the phylum level and upregulating the relative abundances of Lactobacillaceae and Bifidobacteriacesa. Notably, the KEGG pathways involved in hazardous substances degradation and flavone and flavonol biosynthesis were significantly enhanced by LJPs treatment. Overall, our study uncovers the role of LJPs in modulating oxidative stress and gut microbiota in the D-gal-induced aging mice.
Collapse
Affiliation(s)
- Wenwen Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiahao Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guanyu Qin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yujie Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Siying Cheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhengzhi Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yeyang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yifan Shu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Renpeng Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
49
|
Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S, Wang P, Wang H, Bi H. Potential herb‒drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B 2023; 13:S2211-3835(23)00203-4. [PMID: 37360014 PMCID: PMC10239737 DOI: 10.1016/j.apsb.2023.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
50
|
Zhang W, Huang Q, Kang Y, Li H, Tan G. Which Factors Influence Healthy Aging? A Lesson from the Longevity Village of Bama in China. Aging Dis 2023; 14:825-839. [PMID: 37191421 PMCID: PMC10187713 DOI: 10.14336/ad.2022.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
A growing aging population is associated with increasing incidences of aging-related diseases and socioeconomic burdens. Hence, research into healthy longevity and aging is urgently needed. Longevity is an important phenomenon in healthy aging. The present review summarizes the characteristics of longevity in the elderly population in Bama, China, where the proportion of centenarians is 5.7-fold greater than the international standard. We examined the impact of genetic and environmental factors on longevity from multiple perspectives. We proposed that the phenomenon of longevity in this region is of high value for future investigations in healthy aging and aging-related disease and may provide guidance for fostering the establishment and maintenance of a healthy aging society.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China.
| | - Qingyun Huang
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China.
| | - Yongxin Kang
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China.
| | - Hao Li
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China.
| | - Guohe Tan
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Nanning, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China.
| |
Collapse
|