1
|
Pajuelo E, Flores-Duarte NJ, Navarro-Torre S, Rodríguez-Llorente ID, Mateos-Naranjo E, Redondo-Gómez S, Carrasco López JA. Culturomics and Circular Agronomy: Two Sides of the Same Coin for the Design of a Tailored Biofertilizer for the Semi-Halophyte Mesembryanthemum crystallinum. PLANTS (BASEL, SWITZERLAND) 2023; 12:2545. [PMID: 37447105 DOI: 10.3390/plants12132545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
According to the EU, the global consumption of biomass, fossil fuels, metals, and minerals is expected to double by 2050, while waste will increase by 70%. In this context, the Circular Economy Action Plan (CEAP) intends to integrate development and sustainability. In this regard, tailored biofertilizers based on plant growth-promoting bacteria (PGPB) can improve plant yield with fewer inputs. In our project, an autochthonous halophyte of the Andalusian marshes, namely Mesembryanthemum crystallinum, was selected for its interest as a source of pharmaceuticals and nutraceuticals. The aim of this work was to use a culturomics approach for the isolation of specific PGPB and endophytes able to promote plant growth and, eventually, modulate the metabolome of the plant. For this purpose, a specific culture medium based on M. crystallinum biomass, called Mesem Agar (MA), was elaborated. Bacteria of three compartments (rhizosphere soil, root endophytes, and shoot endophytes) were isolated on standard tryptone soy agar (TSA) and MA in order to obtain two independent collections. A higher number of bacteria were isolated on TSA than in MA (47 vs. 37). All the bacteria were identified, and although some of them were isolated in both media (Pseudomonas, Bacillus, Priestia, Rosellomorea, etc.), either medium allowed the isolation of specific members of the M. crystallinum microbiome such as Leclercia, Curtobacterium, Pantoea, Lysinibacillus, Mesobacillus, Glutamicibacter, etc. Plant growth-promoting properties and extracellular degrading activities of all the strains were determined, and distinct patterns were found in both media. The three best bacteria of each collection were selected in order to produce two different consortia, whose effects on seed germination, root colonization, plant growth and physiology, and metabolomics were analyzed. Additionally, the results of the plant metabolome revealed a differential accumulation of several primary and secondary metabolites with pharmaceutical properties. Overall, the results demonstrated the feasibility of using "low cost media" based on plant biomass to carry out a culturomics approach in order to isolate the most suitable bacteria for biofertilizers. In this way, a circular model is established in which bacteria help plants to grow, and, in turn, a medium based on plant wastes supports bacterial growth at low prices, which is the reason why this approach can be considered within the model of "circular agronomy".
Collapse
Affiliation(s)
- Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Noris J Flores-Duarte
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Salvadora Navarro-Torre
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Ignacio D Rodríguez-Llorente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, c/Profesor García González, s/n., 41012 Sevilla, Spain
| | - Susana Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, c/Profesor García González, s/n., 41012 Sevilla, Spain
| | - José A Carrasco López
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| |
Collapse
|
2
|
Hormesis: wound healing and fibroblasts. Pharmacol Res 2022; 184:106449. [PMID: 36113746 DOI: 10.1016/j.phrs.2022.106449] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022]
Abstract
Hormetic dose responses are reported here to occur commonly in the dermal wound healing process, with the particular focus on cell viability, proliferation, migration and collagen deposition of human and murine fibroblasts with in vitro studies. Hormetic responses were induced by a wide range of substances, including endogenous agents, pharmaceutical preparations, plant-derived extracts including many well-known dietary supplements, as well as physical stressor agents such as low-level laser treatments. Detailed mechanistic studies have identified common signaling pathways and their cross-pathway communications that mediate the hormetic dose responses. These findings complement and extend a similar comprehensive assessment concerning the occurrence of hormetic dose responses in keratinocytes. These findings demonstrate the generality of the hormetic dose response for key wound healing endpoints, suggesting that the hormesis concept has a fundamental role in wound healing, with respect to guiding strategies for experimental evaluation as well as therapeutic applications.
Collapse
|
3
|
Madrigal-Santillán E, Portillo-Reyes J, Madrigal-Bujaidar E, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Izquierdo-Vega J, Delgado-Olivares L, Vargas-Mendoza N, Álvarez-González I, Morales-González Á, Morales-González JA. Opuntia spp. in Human Health: A Comprehensive Summary on Its Pharmacological, Therapeutic and Preventive Properties. Part 2. PLANTS 2022; 11:plants11182333. [PMID: 36145735 PMCID: PMC9505094 DOI: 10.3390/plants11182333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
Plants of the genus Opuntia spp are widely distributed in Africa, Asia, Australia and America. Specifically, Mexico has the largest number of wild species; mainly O. streptacantha, O. hyptiacantha, O. albicarpa, O. megacantha and O. ficus-indica. The latter being the most cultivated and domesticated species. Its main bioactive compounds include pigments (carotenoids, betalains and betacyanins), vitamins, flavonoids (isorhamnetin, kaempferol, quercetin) and phenolic compounds. Together, they favor the different plant parts and are considered phytochemically important and associated with control, progression and prevention of some chronic and infectious diseases. Part 1 collected information on its preventive actions against atherosclerotic cardiovascular diseases, diabetes and obesity, hepatoprotection, effects on human infertility and chemopreventive capacity. Now, this second review (Part 2), compiles the data from published research (in vitro, in vivo, and clinical studies) on its neuroprotective, anti-inflammatory, antiulcerative, antimicrobial, antiviral potential and in the treatment of skin wounds. The aim of both reviews is to provide scientific evidences of its beneficial properties and to encourage health professionals and researchers to expand studies on the pharmacological and therapeutic effects of Opuntia spp.
Collapse
Affiliation(s)
- Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
- Correspondence: (E.M.-S.); (J.A.M.-G.); Tel.: +52-55-5729-6300 (ext. 62753) (E.M.-S.)
| | - Jacqueline Portillo-Reyes
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico
| | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Jeannett A. Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Julieta Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Luis Delgado-Olivares
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Nancy Vargas-Mendoza
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico
| | - José A. Morales-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
- Correspondence: (E.M.-S.); (J.A.M.-G.); Tel.: +52-55-5729-6300 (ext. 62753) (E.M.-S.)
| |
Collapse
|
4
|
Abd-Elhakim YM, Al-Sagheer AA. Opuntia spp. Benefits in Chronic Diseases. OPUNTIA SPP.: CHEMISTRY, BIOACTIVITY AND INDUSTRIAL APPLICATIONS 2021:423-455. [DOI: 10.1007/978-3-030-78444-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
5
|
Halophyte Common Ice Plants: A Future Solution to Arable Land Salinization. SUSTAINABILITY 2019. [DOI: 10.3390/su11216076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The problems associated with the salinization of soils and water bodies and the increasing competition for scarce freshwater resources are increasing. Current attempts to adapt to these conditions through sustainable agriculture involves searching for new highly salt-tolerant crops, and wild species that have potential as saline crops are particularly suitable. The common ice plant (Mesembryanthemum crystallinum L.) is an edible halophyte member of the Aizoaceae family, which switches from C3 photosynthesis to crassulacean acid metabolism (CAM) when exposed to salinity or water stress. The aim of this review was to examine the potential of using the ice plant in both the wild and as a crop, and to describe its ecology and morphology, environmental and agronomic requirements, and physiology. The antioxidant properties and mineral composition of the ice plant are also beneficial to human health and have been extensively examined.
Collapse
|
6
|
Fares MM, Shirzaei Sani E, Portillo Lara R, Oliveira RB, Khademhosseini A, Annabi N. Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering. Biomater Sci 2018; 6:2938-2950. [PMID: 30246835 PMCID: PMC11110880 DOI: 10.1039/c8bm00474a] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The design of new hydrogel-based biomaterials with tunable physical and biological properties is essential for the advancement of applications related to tissue engineering and regenerative medicine. For instance, interpenetrating polymer network (IPN) and semi-IPN hydrogels have been widely explored to engineer functional tissues due to their characteristic microstructural and mechanical properties. Here, we engineered IPN and semi-IPN hydrogels comprised of a tough pectin grafted polycaprolactone (pectin-g-PCL) component to provide mechanical stability, and a highly cytocompatible gelatin methacryloyl (GelMA) component to support cellular growth and proliferation. IPN hydrogels were formed by calcium ion (Ca2+)-crosslinking of pectin-g-PCL chains, followed by photocrosslinking of the GelMA precursor. Conversely, semi-IPN networks were formed by photocrosslinking of the pectin-g-PCL and GelMA mixture, in the absence of Ca2+ crosslinking. IPN and semi-IPN hydrogels synthesized with varying ratios of pectin-g-PCL to GelMA, with and without Ca2+-crosslinking, exhibited a broad range of mechanical properties. For semi-IPN hydrogels, the aggregation of microcrystalline cores led to formation of hydrogels with compressive moduli ranging from 3.1 to 10.4 kPa. For IPN hydrogels, the mechanistic optimization of pectin-g-PCL, GelMA, and Ca2+ concentrations resulted in hydrogels with comparatively higher compressive modulus, in the range of 39 kPa-5029 kPa. Our results also showed that IPN hydrogels were cytocompatible in vitro and could support the growth of three-dimensionally (3D) encapsulated MC3T3-E1 preosteoblasts in vitro. The simplicity, technical feasibility, low cost, tunable mechanical properties, and cytocompatibility of the engineered semi-IPN and IPN hydrogels highlight their potential for different tissue engineering and biomedical applications.
Collapse
Affiliation(s)
- Mohammad M Fares
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Lünnemann L, Ludriksone L, Schario M, Sawatzky S, Stroux A, Blume-Peytavi U, Garcia Bartels N. Noninvasive monitoring of plant-based formulations on skin barrier properties in infants with dry skin and risk for atopic dermatitis. Int J Womens Dermatol 2018; 4:95-101. [PMID: 29872684 PMCID: PMC5986260 DOI: 10.1016/j.ijwd.2017.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/01/2022] Open
Abstract
Background Dry skin and the associated impaired epidermal barrier function are postulated to constitute a major element in the development of atopic dermatitis. Objective The aim of this study was to evaluate the effect of two plant-based formulations on the epidermal barrier function in a defined cohort of infants with a predisposition for atopic dermatitis. Methods Over a period of 16 weeks, 25 infants who were ages 3 to 12 months and had an atopic predisposition and dry skin received two emollients that contained pressed juice of the ice plant. The infants received both cream and lotion on the forearm, only cream on the face, and only lotion on the leg. Stratum corneum hydration (SCH), transepidermal water loss (TEWL), skin surface pH, and sebum were assessed on the infants’ forehead, leg, and forearm. The Scoring Atopic Dermatitis (SCORAD) index was used for the clinical assessment. Results SCH significantly increased in all body regions that were assessed. The forearm and leg revealed stable levels of pH and TEWL, but a decline in pH (week 16) and TEWL (week 4) was noted on the forehead. At week 16, sebum levels were lower on the forehead compared with those at baseline. SCORAD scores improved significantly during the study. Conclusion A daily application of both emollients was associated with increased SCH levels and a stable course of TEWL, pH, and sebum on the forehead except for the forehead when compared with the forearm and leg. Clinically, improved SCORAD scores were noted.
Collapse
Affiliation(s)
- L Lünnemann
- Dermatologic Practice Mahlow, Berlin, Germany
| | - L Ludriksone
- Clinical Research Center for Hair and Skin Science, Department for Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - M Schario
- Clinical Research Center for Hair and Skin Science, Department for Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - S Sawatzky
- Clinical Research Center for Hair and Skin Science, Department for Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - A Stroux
- Clinical Research Center for Hair and Skin Science, Department for Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Medical Statistics and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - U Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department for Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - N Garcia Bartels
- Clinical Research Center for Hair and Skin Science, Department for Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Immunomodulatory effects of ethanol extract of germinated ice plant (Mesembryanthemum crystallinum). Lab Anim Res 2017; 33:32-39. [PMID: 28400837 PMCID: PMC5385280 DOI: 10.5625/lar.2017.33.1.32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/10/2017] [Accepted: 03/16/2017] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study was to investigate the immunomodulatory activity of ice plant (Mesembryanthemum crystallinum) extract (IPE) in vitro and in vivo. Raji (a human B cell line) and Jurkat (a human T cell line) cells were treated with various doses of IPE and cell proliferation was measured by WST assay. Results showed that IPE promoted the proliferation of both Raji and Jurkat cells in a dose-dependent manner. IPE also enhanced IL-6 and TNF-α production in macrophages in the presence of lipopolysaccharide (LPS), although IPE alone did not induce cytokine production. Moreover, IPE treatment upregulated iNOS gene expression in macrophages in a time- and dose-dependent manner and led to the production of nitric oxide in macrophages in the presence of IFNγ. In vivo studies revealed that oral administration of IPE for 2 weeks increased the differentiation of CD4+, CD8+, and CD19+ cells in splenocytes. These findings suggested that IPE has immunomodulatory effects and could be developed as an immunomodulatory supplement.
Collapse
|
9
|
Zahid A, Despres J, Benard M, Nguema-Ona E, Leprince J, Vaudry D, Rihouey C, Vicré-Gibouin M, Driouich A, Follet-Gueye ML. Arabinogalactan Proteins From Baobab and Acacia Seeds Influence Innate Immunity of Human Keratinocytes In Vitro. J Cell Physiol 2017; 232:2558-2568. [PMID: 27736003 DOI: 10.1002/jcp.25646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 10/10/2016] [Indexed: 12/23/2022]
Abstract
Plant derived arabinogalactan proteins (AGP) were repeatedly confirmed as immunologically as well as dermatologically active compounds. However, little is currently known regarding their potential activity toward skin innate immunity. Here, we extracted and purified AGP from acacia (Acacia senegal) and baobab (Adansonia digitata) seeds to investigate their biological effects on the HaCaT keratinocyte cell line in an in vitro system. While AGP from both sources did not exhibit any cytotoxic effect, AGP from acacia seeds enhanced cell viability. Moreover, real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that AGP extracted from both species induced a substantial overexpression of hBD-2, TLR-5, and IL1-α genes. These data suggest that plant AGP, already known to control plant defensive processes, could also modulate skin innate immune responses. J. Cell. Physiol. 232: 2558-2568, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abderrakib Zahid
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Normandie Université, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Végétal, Agronomie, Sol, et Innovation (VASI), GDR CNRS 3711 COSM'ACTIFS, Mont-Saint-Aignan, France
| | - Julie Despres
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Normandie Université, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Végétal, Agronomie, Sol, et Innovation (VASI), GDR CNRS 3711 COSM'ACTIFS, Mont-Saint-Aignan, France.,BioEurope, Groupe SOLABIA, Anet, France
| | - Magalie Benard
- Cell Imaging Platform (PRIMACEN-IRIB), Normandie Université, UNIROUEN, Mont-Saint-Aignan, France
| | - Eric Nguema-Ona
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Normandie Université, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Végétal, Agronomie, Sol, et Innovation (VASI), GDR CNRS 3711 COSM'ACTIFS, Mont-Saint-Aignan, France
| | - Jerome Leprince
- Cell Imaging Platform (PRIMACEN-IRIB), Normandie Université, UNIROUEN, Mont-Saint-Aignan, France.,Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine INSERM U982, IRIB, Normandie Université, UNIROUEN, Mont-Saint-Aignan, France
| | - David Vaudry
- Cell Imaging Platform (PRIMACEN-IRIB), Normandie Université, UNIROUEN, Mont-Saint-Aignan, France.,Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine INSERM U982, IRIB, Normandie Université, UNIROUEN, Mont-Saint-Aignan, France
| | - Christophe Rihouey
- Unite Mixte de Recherche 6270 CNRS-Laboratory "Polymères, Biopolymères, Surfaces", Normandie Université, UNIROUEN, Mont-Saint-Aignan, France
| | - Maité Vicré-Gibouin
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Normandie Université, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Végétal, Agronomie, Sol, et Innovation (VASI), GDR CNRS 3711 COSM'ACTIFS, Mont-Saint-Aignan, France
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Normandie Université, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Végétal, Agronomie, Sol, et Innovation (VASI), GDR CNRS 3711 COSM'ACTIFS, Mont-Saint-Aignan, France.,Cell Imaging Platform (PRIMACEN-IRIB), Normandie Université, UNIROUEN, Mont-Saint-Aignan, France
| | - Marie-Laure Follet-Gueye
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Normandie Université, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), Végétal, Agronomie, Sol, et Innovation (VASI), GDR CNRS 3711 COSM'ACTIFS, Mont-Saint-Aignan, France.,Cell Imaging Platform (PRIMACEN-IRIB), Normandie Université, UNIROUEN, Mont-Saint-Aignan, France
| |
Collapse
|
10
|
del Socorro Santos Díaz M, Barba de la Rosa AP, Héliès-Toussaint C, Guéraud F, Nègre-Salvayre A. Opuntia spp.: Characterization and Benefits in Chronic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8634249. [PMID: 28491239 PMCID: PMC5401751 DOI: 10.1155/2017/8634249] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/14/2017] [Indexed: 12/31/2022]
Abstract
Opuntia species have been used for centuries as food resources and in traditional folk medicine for their nutritional properties and their benefit in chronic diseases, particularly diabetes, obesity, cardiovascular diseases, and cancer. These plants are largely distributed in America, Africa, and the Mediterranean basin. Opuntia spp. have great economic potential because they grow in arid and desert areas, and O. ficus-indica, the domesticated O. species, is used as a nutritional and pharmaceutical agent in various dietary and value-added products. Though differences in the phytochemical composition exist between wild and domesticated (O. ficus-indica) Opuntia spp., all Opuntia vegetatives (pear, roots, cladodes, seeds, and juice) exhibit beneficial properties mainly resulting from their high content in antioxidants (flavonoids, ascorbate), pigments (carotenoids, betalains), and phenolic acids. Other phytochemical components (biopeptides, soluble fibers) have been characterized and contribute to the medicinal properties of Opuntia spp. The biological properties of Opuntia spp. have been investigated on cellular and animal models and in clinical trials in humans, allowing characterization and clarification of the protective effect of Opuntia-enriched diets in chronic diseases. This review is an update on the phytochemical composition and biological properties of Opuntia spp. and their potential interest in medicine.
Collapse
Affiliation(s)
| | | | - Cécile Héliès-Toussaint
- Toxalim (Research Center in Food Toxicology), INRA, ENVT, INP-Purpan, UPS, Toulouse, France
- University of Toulouse, Toulouse, France
| | - Françoise Guéraud
- Toxalim (Research Center in Food Toxicology), INRA, ENVT, INP-Purpan, UPS, Toulouse, France
- University of Toulouse, Toulouse, France
| | | |
Collapse
|
11
|
Kang HR, Lee YA, Kim YH, Lee DG, Kim BJ, Kim KJ, Kim BG, Oh MG, Han CK, Lee S, Ryu BY. Petasites japonicus Stimulates the Proliferation of Mouse Spermatogonial Stem Cells. PLoS One 2015. [PMID: 26207817 PMCID: PMC4514868 DOI: 10.1371/journal.pone.0133077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Oriental natural plants have been used as medical herbs for the treatment of various diseases for over 2,000 years. In this study, we evaluated the effect of several natural plants on the preservation of male fertility by assessing the ability of plant extracts to stimulate spermatogonial stem cell (SSC) proliferation by using a serum-free culture method. In vitro assays showed that Petasites japonicus extracts, especially the butanol fraction, have a significant effect on germ cells proliferation including SSCs. The activity of SSCs cultured in the presence of the Petasites japonicus butanol fraction was confirmed by normal colony formation and spermatogenesis following germ cell transplantation of the treated SSCs. Our findings could lead to the discovery of novel factors that activate SSCs and could be useful for the development of technologies for the prevention of male infertility.
Collapse
Affiliation(s)
- Hye-Ryun Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Yong-An Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Yong-Hee Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Dong Gu Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong, Republic of Korea
| | - Bang-Jin Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Ki-Jung Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Byung-Gak Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Van Andel Institute, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Myeong-Geun Oh
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Chan Kyu Han
- Korea Food Research Institute, Sungnam, Republic of Korea
| | - Sanghyun Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
- * E-mail:
| |
Collapse
|
12
|
Berraaouan A, Ziyyat A, Mekhfi H, Legssyer A, Sindic M, Aziz M, Bnouham M. Evaluation of antidiabetic properties of cactus pear seed oil in rats. PHARMACEUTICAL BIOLOGY 2014; 52:1286-1290. [PMID: 25026333 DOI: 10.3109/13880209.2014.890230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Cactus pear (Opuntia ficus-indica (L.) Mill. (Cactaceae)) is a medicinal plant widely used to treat diabetes. OBJECTIVE This work investigates the hypoglycemic and antihyperglycemic effect of cactus pear seed oil (CPSO), its mechanism of action, and any toxic effects. MATERIALS AND METHODS The hypoglycemic effect of CPSO was evaluated in groups of six healthy Wistar rats given 1 or 2 ml kg(-1) orally and compared with groups receiving glibenclamide (2 mg kg(-1)) or water. Glycemia was determined after 30, 60, 120, 240, and 360 min. The antihyperglycemic effect of CPSO was determined in healthy rats and in streptozotocin-induced diabetic rats (STZ); normal rats received 0.8 ml kg(-1) CPSO, while diabetic rats received 1 ml kg(-1) CPSO, their controls received water or 2 mg kg(-1) glibenclamide. For the antihyperglycemic effect evaluation, all the animals were fasted for 16 h before treatment and received glucose orally at 1 g kg(-1) 30 min after treatment; blood was taken after 30, 90, 150, and 210 min. Intestinal glucose absorption was estimated in rat jejunum perfused with a solution containing 5.55 mmol l(-1) glucose. Acute toxicity was determined in albino mice that received oral or intraperitoneal doses of 1, 3, or 5 ml kg(-1) CPSO. RESULTS CPSO (p.o.) decreased postprandial hyperglycemia (60 min after glucose loading), 40.33% and 16.01%, in healthy and STZ-diabetic glucose-loaded rats, respectively. CPSO, also, significantly decreased intestinal glucose absorption by 25.42%. No adverse effects were seen in mice administered CPSO at up to 5 ml kg(-1). CONCLUSION CPSO is antihyperglycemic. The effect can be explained partly by inhibition of intestinal glucose absorption.
Collapse
Affiliation(s)
- Ali Berraaouan
- Laboratory of Physiology and Ethnopharmacology, Mohamed 1st University , Oujda , Morocco and
| | | | | | | | | | | | | |
Collapse
|
13
|
Lee BH, Lee CC, Wu SC. Ice plant (Mesembryanthemum crystallinum) improves hyperglycaemia and memory impairments in a Wistar rat model of streptozotocin-induced diabetes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:2266-2273. [PMID: 24374864 DOI: 10.1002/jsfa.6552] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/20/2013] [Accepted: 12/24/2013] [Indexed: 06/03/2023]
Abstract
BACKGROUND Ice plant (Mesembryanthemum crystallinum) has been used as an anti-diabetic agent in Japan because it contains d-pinitol. The efficacy of ice plant in the regulation of blood glucose is unclear at present. Recently, memory impairment and development of Alzheimer's disease found in diabetic patients are thought to be caused by high blood glucose. The mechanism by which ice plant protects against the impairment of memory and learning abilities caused by high blood glucose remains unclear. The aim of this study was to evaluate the protection of ice plant water extracts (IPE) and D-pinitol against memory impairments in a Wistar rat model of streptozotocin (STZ)-induced diabetes. We hypothesised that IPE and D-pinitol could suppress blood glucose and elevate insulin sensitivity in these rats. RESULTS For memory evaluation, IPE and D-pinitol also improved the passive avoidance task and the working memory task. In addition, inhibition of acetylcholinesterase activity in hippocampus and cortex was found in this rat model administered IPE or D-pinitol. IPE and D-pinitol also markedly elevated superoxide dismutase activity against oxidative stress and reduced malondialdehyde production in hippocampus and cortex of the rats. CONCLUSION These findings indicated that IPE and D-pinitol possess beneficial effects for neural protection and memory ability in a rat model of diabetes.
Collapse
Affiliation(s)
- Bao-Hong Lee
- Department of Food Science, National Chiayi University, Chiayi City, Taiwan, ROC
| | | | | |
Collapse
|
14
|
Schario M, Lünnemann L, Stroux A, Reisshauer A, Zuberbier T, Blume-Peytavi U, Garcia Bartels N. Children with dry skin and atopic predisposition: daily use of emollients in a participant-blinded, randomized, prospective trial. Skin Pharmacol Physiol 2014; 27:208. [PMID: 24714097 DOI: 10.1159/000360546] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 02/04/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Dry skin reflects a skin barrier defect which can lead to atopic dermatitis. Little is known about the distinct effects of emollient use in children with dry skin and atopic predisposition. OBJECTIVES We investigated the effects of daily application of pressed ice plant juice (PIPJ)-based emollients and petrolatum-based emollients. METHODS Children aged 2-6 years with dry skin and atopic predisposition were randomized into 2 groups: group 1 received emollients containing PIPJ and natural lipids, while group 2 received petrolatum-based emollients. Skin condition and biophysical properties of the skin barrier were assessed at inclusion and weeks 4, 12 and 16. RESULTS Skin condition improved significantly in all children. Comparing the groups, children treated with emollients containing PIPJ showed significantly higher stratum corneum hydration values and significantly lower transepidermal water loss values at week 16 on the forearm and forehead. A significant decrease in skin pH was noted in group 2 on the forearm and forehead; group 1 showed a stable course. CONCLUSION Early intervention with emollients in children with dry skin condition and atopic predisposition may improve their skin condition during daily emollient application. PIPJ-based formulations may be helpful to maintain skin barrier integrity.
Collapse
Affiliation(s)
- Marianne Schario
- Department of Dermatology and Allergy, Clinical Research Center for Hair and Skin Science, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Abd El-Gawad AM, Shehata HS. Ecology and development of Mesembryanthemum crystallinum L. in the Deltaic Mediterranean coast of Egypt. EGYPTIAN JOURNAL OF BASIC AND APPLIED SCIENCES 2014; 1:29-37. [DOI: 10.1016/j.ejbas.2014.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/24/2014] [Accepted: 02/28/2014] [Indexed: 09/02/2023]
Affiliation(s)
| | - Hanaa S. Shehata
- Botany Department, Faculty of Science, Zagazig University, Al-Sharqia, Egypt
| |
Collapse
|
16
|
Cho DW, Kim DE, Lee DH, Jung KH, Hurh BS, Kwon OW, Kim SY. Metabolite profiling of enzymatically hydrolyzed and fermented forms of Opuntia ficus-indica and their effect on UVB-induced skin photoaging. Arch Pharm Res 2014; 37:1159-68. [DOI: 10.1007/s12272-013-0320-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
|