1
|
She CY, Deng YX, Wu QY, Li J. Comparative pharmacokinetic investigation on crocetin in hyperlipidemia and normal rats after oral administration. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6037-6050. [PMID: 38386043 DOI: 10.1007/s00210-024-03012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Crocetin as one of the main components of saffron possesses a lot of pharmacological effects, especially the beneficial effects in the treatment of hyperlipidemia. However, the pharmacokinetics of crocetin in the pathological state of hyperlipidemia has not been reported. In present study, the pharmacokinetics of crocetin in hyperlipidemia rats after oral administration of crocetin was investigated and the possible mechanisms for the pharmacokinetics were explored. High-fat diet was used to induce hyperlipidemia in rats. The pharmacokinetics of crocetin was investigated in hyperlipidemia and normal rats after oral and intravenous administration of crocetin, and the possible mechanisms of the pharmacokinetic changes were investigated in terms of metabolism and absorption using in vitro incubation with liver microsomes and the everted gut sac method, respectively. Results indicated that the AUCs of crocetin in hyperlipidemia rats after oral administration of crocetin were remarkably decreased when compared with those in normal rats. Moreover, crocetin was also metabolized more rapidly in the liver microsomes of hyperlipidemia rats and intestinal absorption of crocetin was significantly reduced in hyperlipidemia rats. It suggested that the remarkably decreased AUCs of crocetin in hyperlipidemia rats might partly result from the result of faster metabolic elimination and reduced absorption of crocetin in the hyperlipidemia pathological state. And the present investigations conducted on rats demonstrate that further investigations into the kinetics of crocetin in humans with hyperlipidemia are necessary in order to ensure an adequate dosage in this indication.
Collapse
Affiliation(s)
- Cheng-Ye She
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, 410013, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, Changsha, 410081, China
- Department of Pharmaceutical Science, Medical College of Hunan Normal University, Changsha, 410013, China
| | - Yuan-Xiong Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, 410013, China.
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, Changsha, 410081, China.
- Department of Pharmaceutical Science, Medical College of Hunan Normal University, Changsha, 410013, China.
| | - Qin-Yu Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, 410013, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, Changsha, 410081, China
- Department of Pharmaceutical Science, Medical College of Hunan Normal University, Changsha, 410013, China
| | - Jing Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, 410013, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, Changsha, 410081, China
- Department of Pharmaceutical Science, Medical College of Hunan Normal University, Changsha, 410013, China
| |
Collapse
|
2
|
Li SY, Xu DQ, Chen YY, Fu RJ, Tang YP. Several major herb pairs containing Coptidis rhizoma: a review of key traditional uses, constituents and compatibility effects. Front Pharmacol 2024; 15:1399460. [PMID: 38983920 PMCID: PMC11231094 DOI: 10.3389/fphar.2024.1399460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
Herb compatibility is the soul of traditional Chinese Medicine prescriptions. Coptidis rhizoma (CR) (Coptis chinensis Franch., Coptis deltoidea C.Y.Cheng et Hsiao, or Coptis teeta Wall.; family Ranunculaceae), is a well-known herb. The bitter and cold nature of CR can irritate the spleen and stomach, and certain ingredients in CR may trigger allergic reactions. Herb combinations can help alleviate the side effects caused by CR. Through data analysis and literature research, there are many herbs combined with CR have a high frequency, but only a few are currently used as formulae in clinical practice. The results showed that these six herb pairs are usually widely studied or used as prescriptions in the clinic. This paper describes the six herb pairs from the key traditional uses, changes in bioactive constituents, and compatibility effects, especially with Euodiae fructus (family Rutaceae), Scutellariae radix (family Lamiaceae), Magnoliae Officinalis cortex (family Magnoliaceae), Glycyrrhizae radix et rhizoma (family Fabaceae), Ginseng radix et rhizoma (family Araliaceae), and Aucklandiae radix (family Asteraceae), and found that herbs are more effective when used in combination. Therefore, it is feasible to establish some methods to study herb pairs comprehensively from different perspectives. This paper aims to provide the latest and most comprehensive information on the six herb pairs and summarize the pattern of CR compatibility effects. It aims to attract more attention, and further experimental studies will be conducted to investigate and evaluate the effects of herb pairs containing CR. These data can also provide valuable references for researchers and also provide more possibilities for future applications in clinical practice and new drug development.
Collapse
Affiliation(s)
- Shi-Yu Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- Wuxi Institute of Integrated Chinese and Western Medicine, and Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| |
Collapse
|
3
|
Yu X, Cai B, Yu L, Li N, Wu C, Hu Z, Tang D, Chen R, Qiu C. Wogonoside Ameliorates Airway Inflammation and Mucus Hypersecretion via NF-κB/STAT6 Signaling in Ovalbumin-Induced Murine Acute Asthma. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7033-7042. [PMID: 38507725 DOI: 10.1021/acs.jafc.3c04082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Asthma is recognized as a chronic respiratory illness characterized by airway inflammation and airway hyperresponsiveness. Wogonoside, a flavonoid glycoside, is reported to significantly alleviate the inflammation response and oxidative stress. Herein, this study aimed to investigate the therapeutic effect and underlying mechanism of wogonoside on airway inflammation and mucus hypersecretion in a murine asthma model and in human bronchial epithelial cells (16HBE). BALB/c mice were sensitized and challenged with ovalbumin (OVA). Pulmonary function and the number of cells in the bronchoalveolar lavage fluid (BALF) were examined. Pathological changes in lung tissue in each group were evaluated via hematoxylin and eosin and periodic acid-Schiff staining, and changes in levels of cytokines in BALF and of immunoglobulin E in serum were determined via an enzyme-linked immunosorbent assay. The expression of relevant genes in lung tissue was analyzed via real-time PCR. Western blotting and immunofluorescence were employed to detect the expression of relevant proteins in lung tissue and 16HBE cells. Treatment with 10 and 20 mg/kg wogonoside significantly attenuated the OVA-induced increase of inflammatory cell infiltration, mucus secretion, and goblet cell percentage and improved pulmonary function. Wogonoside treatment reduced the level of T-helper 2 cytokines including interleukin (IL)-4, IL-5, and IL-13 in BALF and of IgE in serum and decreased the mRNA levels of cytokines (IL-4, IL-5, IL-6, IL-13, and IL-1β and tumor necrosis factor-α), chemokines (CCL-2, CCL-11, and CCL-24), and mucoproteins (MUC5AC, MUC5B, and GOB5) in lung tissues. The expression of MUC5AC and the phosphorylation of STAT6 and NF-κB p65 in lung tissues and 16HBE cells were significantly downregulated after wogonoside treatment. Thus, wogonoside treatment may effectively decrease airway inflammation, airway remodeling, and mucus hypersecretion via blocking NF-κB/STAT6 activation.
Collapse
Affiliation(s)
- Xiu Yu
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, South University of Science and Technology, Shenzhen 518020, China
| | - Bicheng Cai
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, South University of Science and Technology, Shenzhen 518020, China
| | - Li Yu
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, South University of Science and Technology, Shenzhen 518020, China
| | - Nan Li
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, South University of Science and Technology, Shenzhen 518020, China
| | - Chujie Wu
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, South University of Science and Technology, Shenzhen 518020, China
| | - Zhiquan Hu
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, South University of Science and Technology, Shenzhen 518020, China
| | - Dong Tang
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, South University of Science and Technology, Shenzhen 518020, China
| | - Rongchang Chen
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, South University of Science and Technology, Shenzhen 518020, China
| | - Chen Qiu
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, South University of Science and Technology, Shenzhen 518020, China
| |
Collapse
|
4
|
Zhang Y, Miao R, Ma K, Zhang Y, Fang X, Wei J, Yin R, Zhao J, Tian J. Effects and Mechanistic Role of Mulberry Leaves in Treating Diabetes and its Complications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1711-1749. [PMID: 37646143 DOI: 10.1142/s0192415x23500775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Diabetes mellitus (DM) has become a surge burden worldwide owing to its high prevalence and range of associated complications such as coronary artery disease, blindness, stroke, and renal failure. Accordingly, the treatment and management of DM have become a research hotspot. Mulberry leaves (Morus alba L.) have been used in Traditional Chinese Medicine for a long time, with the first record of its use published in Shennong Bencao Jing (Shennong's Classic of Materia Medica). Mulberry leaves (MLs) are considered highly valuable medicinal food homologs that contain polysaccharides, flavonoids, alkaloids, and other bioactive substances. Modern pharmacological studies have shown that MLs have multiple bioactive effects, including hypolipidemic, hypoglycemic, antioxidation, and anti-inflammatory properties, with the ability to protect islet [Formula: see text]-cells, alleviate insulin resistance, and regulate intestinal flora. However, the pharmacological mechanisms of MLs in DM have not been fully elucidated. In this review, we summarize the botanical characterization, traditional use, chemical constituents, pharmacokinetics, and toxicology of MLs, and highlight the mechanisms involved in treating DM and its complications. This review can provide a valuable reference for the further development and utilization of MLs in the prevention and treatment of DM.
Collapse
Affiliation(s)
- Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Kaile Ma
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun 130117, P. R. China
| | - Ruiyang Yin
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Jingxue Zhao
- Development Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| |
Collapse
|
5
|
Wang Y, Jia M, Gao Y, Zhao B. Multiplex Quantitative Analysis of 9 Compounds of Scutellaria baicalensis Georgi in the Plasma of Respiratory Syncytial Virus-Infected Mice Based on HPLC-MS/MS and Pharmacodynamic Effect Correlation Analysis. Molecules 2023; 28:6001. [PMID: 37630252 PMCID: PMC10460054 DOI: 10.3390/molecules28166001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
According to traditional Chinese medicine, Scutellaria baicalensis Georgi possesses the therapeutic properties of heat-clearing, dampness-drying, diarrhea alleviation, and detoxification, making it a clinically used remedy for respiratory infections. The objective of this study was to investigate the changes in constituent content, pharmacodynamic effects, and material basis of Scutellaria baicalensis Georgi in the plasma of mice infected with respiratory syncytial virus (RSV). The results showed that a sensitive and efficient high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) method was established in this study. Multiple quantitative analyses of Baicalein, Apigenin-7-glucuronide, Baicalin, Oroxylin A 7-O-beta-d-glucuronide, Wogonoside, Norwogonin, Wogonin, Chrysin, and Oroxylin A in mouse plasma revealed a bimodal absorption phenomenon within the time frame of 0.167 h to 6 h post-administration, with the exception of chrysin. Following 6 h of administration, the concentrations of 9 components continued to decrease until they became undetectable. In comparison to the model group, all administered groups exhibited significant reductions in lung index and viral load, with their lung index repair rate and viral suppression rate aligning with the blood concentration-time curve. Finally, through the application of the gray correlation analysis method, we identified Baicalein, Baicalin, Oroxylin A 7-O-beta-d-glucuronide, Wogonoside, Norwogonin, and Wogonin as potential pharmacodynamic material bases of Scutellaria baicalensis Georgi against RSV infection.
Collapse
Affiliation(s)
| | | | - Yan Gao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.W.); (M.J.)
| | - Bonian Zhao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.W.); (M.J.)
| |
Collapse
|
6
|
Corinthian Currants Supplementation Restores Serum Polar Phenolic Compounds, Reduces IL-1beta, and Exerts Beneficial Effects on Gut Microbiota in the Streptozotocin-Induced Type-1 Diabetic Rat. Metabolites 2023; 13:metabo13030415. [PMID: 36984855 PMCID: PMC10051135 DOI: 10.3390/metabo13030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The present study aimed at investigating the possible benefits of a dietary intervention with Corinthian currants, a rich source of phenolic compounds, on type 1 diabetes (T1D) using the animal model of the streptozotocin-(STZ)-induced diabetic rat. Male Wistar rats were randomly assigned into four groups: control animals, which received a control diet (CD) or a diet supplemented with 10% w/w Corinthian currants (CCD), and diabetic animals, which received a control diet (DCD) or a currant diet (DCCD) for 4 weeks. Plasma biochemical parameters, insulin, polar phenolic compounds, and inflammatory factors were determined. Microbiota populations in tissue and intestinal fluid of the caecum, as well as fecal microbiota populations and short-chain fatty acids (SCFAs), were measured. Fecal microbiota was further analyzed by 16S rRNA sequencing. The results of the study showed that a Corinthian currant-supplemented diet restored serum polar phenolic compounds and decreased interleukin-1b (IL-1b) (p < 0.05) both in control and diabetic animals. Increased caecal lactobacilli counts (p < 0.05) and maintenance of enterococci levels within normal range were observed in the intestinal fluid of the DCCD group (p < 0.05 compared to DCD). Higher acetic acid levels were detected in the feces of diabetic rats that received the currant diet compared to the animals that received the control diet (p < 0.05). Corinthian currant could serve as a beneficial dietary component in the condition of T1D based on the results coming from the animal model of the STZ-induced T1D rat.
Collapse
|
7
|
Zu Y, Liu Y, Lan L, Zhu C, Zhang C, Liu D. Consecutive baicalin treatment relieves its accumulation in rats with intrahepatic cholestasis by increasing MRP2 expression. Heliyon 2023; 9:e12689. [PMID: 36647350 PMCID: PMC9840109 DOI: 10.1016/j.heliyon.2022.e12689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
Baicalin, an important flavonoid isolated from Scutellaria baicalensis Georgi, is a Chinese herb widely used in clinical practice. We previously reported the in vivo accumulation of baicalin in rats with intrahepatic cholestasis (IHC) after a single dose. However, the effects of the long-term administration of baicalin on its pharmacokinetics are unknown. Thus, we investigated the disposition of baicalin in normal rats and those with IHC after single and multiple consecutive administrations. In addition, we further investigated the effect of baicalin on multidrug resistance protein 2 (MRP2) in vivo to explore the underlying mechanism. In our study, the liquid chromatography-mass spectrometry (LC-MS) method established to determine baicalin concentrations in rat blood was simple, specific, and with linearity (R2 = 0.9980) in the range of 1.01-506.00 μg/mL. The relative standard deviations (RSD) for intra-day and inter-day precision were not more than 10.55%, and the intra-day and inter-day accuracies were 94.94%-109.13%. The recovery rate and stability were in line with the requirements of the quantitative analysis of biological samples as stated in the Chinese Pharmacopoeia (2020 Edition). Compared with that in normal rats, the Cmax and t1/2 increased significantly in EE-induced rats with IHC, whereas the clearance (CL) decreased after a single administration of baicalin. However, the area under the curve decreased, CL increased, and the t1/2 was shortened after the continuous administration of baicalin in the IHC rat model compared with the single administration of baicalin, and the pharmacokinetic characteristics were similar to those in normal rats. Moreover, MRP2 expression increased in rats with IHC with the continuous administration of baicalin. Continuous baicalin intervention could effectively reduce its accumulation in rats with IHC, and the mechanism may be attributed to its enhancement of MRP2 expression.
Collapse
|
8
|
Chen Y, Peng M, Li W, Zhao M, Cao X, Li C, Zhang H, Yang M, Liang L, Yue Y, Xia T, Zhong R, Wang Y, Shu Z. Inhibition of inflammasome activation via sphingolipid pathway in acute lung injury by Huanglian Jiedu decoction: An integrative pharmacology approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154469. [PMID: 36202056 DOI: 10.1016/j.phymed.2022.154469] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/21/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is a serious health issue which causes significant morbidity and mortality. Inflammation is an important factor in the pathogenesis of ALI. Even though ALI has been successfully managed using a traditiomal Chinese medicine (TCM), Huanglian Jiedu Decoction (HLD), its mechanism of action remains unknown. PURPOSE This study explored the therapeutic potential of HLD in lipopolysaccharide (LPS)-induced ALI rats by utilizing integrative pharmacology. METHODS Here, the therapeutic efficacy of HLD was evaluated using lung wet/dry weight ratio (W/D), myeloperoxide (MPO) activity, and levels of tumor necrosis factor (TNF-α), interleukin (IL)-1β and IL-6. Network pharmacology predictd the active components of HLD in ALI. Lung tissues were subjected to perform Hematoxylin-eosin (H&E) staining, metabolomics, and transcriptomics. The acid ceramidase (ASAH1) inhibitor, carmofur, was employedto suppress the sphingolipid signaling pathway. RESULTS HLD reduced pulmonary edema and vascular permeability, and suppressed the levels of TNF-α, IL-6, and IL-1β in lung tissue, Bronchoalveolar lavage fluid (BALF), and serum. Network pharmacology combined with transcriptomics and metabolomics showed that sphingolipid signaling was the main regulatory pathway for HLD to ameliorate ALI, as confirmed by immunohistochemical analysis. Then, we reverse verified that the sphingolipid signaling pathway was the main pathway involed in ALI. Finally, berberine, baicalein, obacunone, and geniposide were docked with acid ceramidase to further explore the mechanisms of interaction between the compound and protein. CONCLUSION HLD does have a better therapeutic effect on ALI, and its molecular mechanism is better elucidated from the whole, which is to balance lipid metabolism, energy metabolism and amino acid metabolism, and inhibit NLRP3 inflammasome activation by regulating the sphingolipid pathway. Therefore, HLD and its active components can be used to develop new therapies for ALI and provide a new model for exploring complex TCM systems for treating ALI.
Collapse
Affiliation(s)
- Ying Chen
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingming Peng
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wei Li
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mantong Zhao
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xia Cao
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chuanqiu Li
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Han Zhang
- School of Pharmacy, Jiamusi University, Jiamusi 154000, China
| | - Mengru Yang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lanyuan Liang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yiming Yue
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianyi Xia
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Renxing Zhong
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Wang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zunpeng Shu
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Ke X, Ma H, Yang J, Qiu M, Wang J, Han L, Zhang D. New strategies for identifying and masking the bitter taste in traditional herbal medicines: The example of Huanglian Jiedu Decoction. Front Pharmacol 2022; 13:843821. [PMID: 36060004 PMCID: PMC9431955 DOI: 10.3389/fphar.2022.843821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Suppressing the bitter taste of traditional Chinese medicine (TCM) largely has been a major clinical challenge due to complex and diverse metabolites and high dispersion of bitter metabolites in liquid preparations. In this work, we developed a novel strategy for recognizing bitter substances, hiding their bitter taste, and elucidated the mechanism of flavor masking in TCM. Huanglian Jie-Du Decoction (HLJDD) with an intense bitter taste was studied as a typical case. UHPLC-MS/MS was used to analyze the chemical components in HLJDD, whereas the bitter substances were identified by pharmacophores. Additionally, the screening results of the pharmacophores were further validated by using experimental assays. The mask formula of HLJDD was effectively screened under the condition of clear bitter substances. Subsequently, computational chemistry, molecular docking, and infrared characterization (IR) techniques were then used to explicate the mechanism of flavor masking. Consequently, neotame, γ-CD, and mPEG2000-PLLA2000 significantly reduced the bitterness of HLJDD. Specifically, mPEG2000-PLLA2000 increased the colloid proportion in the decoction system and minimized the distribution of bitter components in the real solution. Sweetener neotame suppressed the perception of bitter taste and inhibited bitter taste receptor activation to eventually reduce the bitter taste. The γ-CD included in the decoction bound the hydrophobic groups of the bitter metabolites in real solution and “packed” all or part of the bitter metabolites into the “cavity”. We established a novel approach for screening bitter substances in TCM by integrating virtual screening and experimental assays. Based on this strategy, the bitter taste masking of TCM was performed from three different aspects, namely, changing the drug phase state, component distribution, and interfering with bitter taste signal transduction. Collectively, the methods achieved a significant effect on bitter taste suppression and taste masking. Our findings will provide a novel strategy for masking the taste of TCM liquid preparation/decoction, which will in return help in improving the clinical efficacy of TCM.
Collapse
Affiliation(s)
- Xiumei Ke
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- *Correspondence: Xiumei Ke, ; Jianwei Wang, ; Li Han, ; Dingkun Zhang,
| | - Hongyan Ma
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junxuan Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Min Qiu
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianwei Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- *Correspondence: Xiumei Ke, ; Jianwei Wang, ; Li Han, ; Dingkun Zhang,
| | - Li Han
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiumei Ke, ; Jianwei Wang, ; Li Han, ; Dingkun Zhang,
| | - Dingkun Zhang
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiumei Ke, ; Jianwei Wang, ; Li Han, ; Dingkun Zhang,
| |
Collapse
|
10
|
Wang Y, Hu T, Wei J, Yin X, Gao Z, Li H. Inhibitory activities of flavonoids from Scutellaria baicalensis Georgi on amyloid aggregation related to type 2 diabetes and the possible structural requirements for polyphenol in inhibiting the nucleation phase of hIAPP aggregation. Int J Biol Macromol 2022; 215:531-540. [PMID: 35724902 DOI: 10.1016/j.ijbiomac.2022.06.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 11/05/2022]
Abstract
Human islet amyloid polypeptide (hIAPP)-mediated cytotoxicity is identified as a potential target for developing new anti-diabetic molecules. Herein, we investigated the effect of the major bioactive compounds of Scutellaria baicalensis Georgi (S. baicalensis), including baicalein, baicalin, wogonin and oroxylin A, on hIAPP aggregation. We found that all of these compounds inhibited hIAPP fibril formation in a dose-dependent manner. But baicalein and baicalin, especially baicalein are more effective than wogonin and oroxylin A in stabilizing hIAPP monomers and eliminating toxic hIAPP assembly, suggesting that flavonoids with ortho-hydroxyl group on the A-ring exhibited higher anti-hIAPP nucleation potential than those without this structure. This stimulated our interest in further studying the possible structure-activity relationship between polyphenol and hIAPP aggregation inhibition. Our results demonstrated that flavonoids with ortho-hydroxyl group on the B-ring are also more effective against hIAPP nucleation than those without this structure. These results suggest that the ortho-hydroxybenzene structure is a key structural feature required for polyphenols to effectively inhibit hIAPP nucleation. This was further confirmed by the effect of polyphenoland phenols in inhibiting hIAPP nucleation. The conclusion that pyrogallol-type polyphenols are potential lead inhibitors may provide a valuable structural template for the further development of polyphenol-based inhibitor of amyloid peptides.
Collapse
Affiliation(s)
- Ying Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Ting Hu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Jingjing Wei
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Xiaoying Yin
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| |
Collapse
|
11
|
[Wogonoside alleviates high glucose-induced dysfunction of retinal microvascular endothelial cells and diabetic retinopathy in rats by up-regulating SIRT1]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:463-472. [PMID: 35527482 PMCID: PMC9085582 DOI: 10.12122/j.issn.1673-4254.2022.04.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To investigate the effects of wogonoside on high glucose-induced dysfunction of human retinal microvascular endothelial cells (hRMECs) and streptozotocin (STZ)-induced diabetic retinopathy in rats and explore the underlying molecular mechanism. METHODS HRMECs in routine culture were treated with 25 mmol/L mannitol or exposed to high glucose (30 mmol/L glucose) and treatment with 10, 20, 30, 40 μmol/L wogonoside. CCK-8 assay and Transwell assay were used to examine cell proliferation and migration, and the changes in tube formation and monolayer cell membrane permeability were tested. ROS, NO and GSH-ST kits were used to evaluate oxidative stress levels in the cells. The expressions of IL-1β and IL-6 in the cells were examined with qRT-PCR and ELISA, and the protein expressions of VEGF, HIF-1α and SIRT1 were detected using Western blotting. We also tested the effect of wogonoside on retinal injury and expressions of HIF-1α, ROS, VEGF, TNF-α, IL-1β, IL-6 and SIRT1 proteins in rat models of STZ-induced diabetic retinopathy. RESULTS High glucose exposure caused abnormal proliferation and migration, promoted angiogenesis, increased membrane permeability (P < 0.05), and induced inflammation and oxidative stress in hRMECs (P < 0.05). Wogonoside treatment concentration-dependently inhibited high glucose-induced changes in hRMECs. High glucose exposure significantly lowered the expression of SIRT1 in hRMECs, which was partially reversed by wogonoside (30 μmol/L) treatment; interference of SIRT1 obviously attenuated the inhibitory effects of wogonoside against high glucose-induced changes in proliferation, migration, angiogenesis, membrane permeability, inflammation and oxidative stress in hRMECs. In rat models of STZ-induced diabetic retinopathy, wogonoside effectively suppressed retinal thickening (P < 0.05), alleviated STZ-induced retinal injury, and increased the expression of SIRT1 in the retinal tissues (P < 0.001). CONCLUSION Wogonoside alleviates retinal damage caused by diabetic retinopathy by up-regulating SIRT1 expression.
Collapse
|
12
|
Molecular mechanisms of Huanglian jiedu decoction on ulcerative colitis based on network pharmacology and molecular docking. Sci Rep 2022; 12:5526. [PMID: 35365737 PMCID: PMC8972650 DOI: 10.1038/s41598-022-09559-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Huanglian jiedu decoction (HLJDD) is a heat-clearing and detoxifying agent composed of four kinds of Chinese herbal medicine. Previous studies have shown that HLJDD can improve the inflammatory response of ulcerative colitis (UC) and maintain intestinal barrier function. However, its molecular mechanism is not completely clear. In this study, we verified the bioactive components (BCI) and potential targets of HLJDD in the treatment of UC using network pharmacology and molecular docking, and constructed the pharmacological network and PPI network. Then the core genes were enriched by GO and KEGG. Finally, the bioactive components were docked with the key targets to verify the binding ability between them. A total of 54 active components related to UC were identified. Ten genes are very important to the PPI network. Functional analysis showed that these target genes were mainly involved in the regulation of cell response to different stimuli, IL-17 signal pathway and TNF signal pathway. The results of molecular docking showed that the active components of HLJDD had a good binding ability with the Hub gene. This study systematically elucidates the “multi-component, multi-target, multi-pathway” mechanism of anti-UC with HLJDD for the first time, suggesting that HLJDD or its active components may be candidate drugs for the treatment of ulcerative colitis.
Collapse
|
13
|
Bai H, Jiang W, Wang X, Hu N, Liu L, Li X, Xie Y, Wang S. Component changes of mulberry leaf tea processed with honey and its application to in vitro and in vivo models of diabetes. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1840-1852. [PMID: 34266375 DOI: 10.1080/19440049.2021.1953709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Honey is a traditional food additive that can be used to preserve food, increase the flavour of food, and enhance the effect of some functional foods. Mulberry leaf is a popular tea, and it is also an anti-diabetic medicinal material. In the traditional processing of mulberry leaf tea, honey is a commonly used additive. This study used ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to measure the changes in the contents of 11 components of mulberry leaves before and after processing using honey as an additive. We analysed the absorption and elimination characteristics of mulberry leaves before and after processing in diabetes in vivo models, and then compared the effect of mulberry leaves before and after processing in resisting hyperglycaemia and hyperlipidaemia damage in in vitro models. The results showed that honey, as an additive, not only improves the dissolution of mulberry leaves, but in diabetes models also increases the utilisation of some components. In an in vitro model, honey mulberry leaves could significantly reduce the apoptosis of vascular endothelial cells. This demonstrated that the traditional processing method using honey as an additive could promote the anti-diabetic effect of mulberry tea. So far, this is the first research report on the quality and role of honey as an additive in mulberry leaf processing.Abbreviations: ML: mulberry leaves; HML: honey mulberry leaves; QC: quality control; HQC: high quality control sample; LLOQ: lower limit of quantification; LQC: low-quality control sample; MQC: medium-quality control sample; MRM: multiple reaction monitoring; STZ: streptozotocin.
Collapse
Affiliation(s)
- Huixin Bai
- Department of Life Science and Medicine, Northwest University, Xi'an, China
| | - Wei Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Xufang Wang
- Department of Life Science and Medicine, Northwest University, Xi'an, China
| | - Na Hu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Linna Liu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Xi Li
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yanhua Xie
- Department of Life Science and Medicine, Northwest University, Xi'an, China.,Department of Traditional Chinese Medicine and Natural Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Siwang Wang
- Department of Life Science and Medicine, Northwest University, Xi'an, China.,Department of Traditional Chinese Medicine and Natural Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, China
| |
Collapse
|
14
|
Zhang ZT, Huang GX, He WJ, Gu WT, Wang X, Chen ZQ, Bi FJ, Zhang LY, Wang SM, Tang D. Rapid screening of neuroprotective components from Huang-Lian-Jie-Du Decoction by living cell biospecific extraction coupled with HPLC-Q-Orbitrap-HRMS/MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1176:122764. [PMID: 34052562 DOI: 10.1016/j.jchromb.2021.122764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 01/01/2023]
Abstract
Huang-Lian-Jie-Du Decoction (HLJDD), a well-known traditional Chinese formulation, has been proved to exert neuroprotective effects, however, the bioactive components in HLJDD still remain to be elucidated. In the present study, a rapid and effective method involving live cell biospecific extraction and HPLC-Q-Orbitrap HRMS/MS was utilized to rapidly screen and identify the neuroprotective compounds from the HLJDD crude extract directly. Firstly, sixteen principal components in HLJDD crude extract were identified by HPLC-Q-Orbitrap HRMS/MS analysis. After co-incubation with PC12 cells, which have been validated as the key target cells for neurodegenerative diseases, seven compounds of them were demonstrated to exhibit binding affinity to the target cells. Furthermore, three representative compounds named baicalin, wogonoside, and berberine were subsequently verified to exert cytoprotective effects on PC12 cells injured by hydrogen peroxide via inhibiting oxidative stress and cell apoptosis, indicating that these screened compounds may possess a potential for the treatment of neurodegenerative diseases and were responsible, in part at least, for the neuroprotective beneficial effects of HLJDD. Taken together, our study provides evidence that live cell biospecific extraction coupled with LC-HRMS/MS technique is an efficient method for rapid screening potential bioactive components in traditional Chinese medicines.
Collapse
Affiliation(s)
- Zhi-Tong Zhang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guang-Xiao Huang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wen-Jiao He
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wen-Ting Gu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xue Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhi-Quan Chen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Fu-Jun Bi
- NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine) of Guangzhou Institute For Drug Control, Guangzhou 510160, China
| | - Lu-Yong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
15
|
He M, Yu P, Hu Y, Zhang J, He M, Nie C, Chu X. Erythrocyte-Membrane-Enveloped Biomineralized Metal-Organic Framework Nanoparticles Enable Intravenous Glucose-Responsive Insulin Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19648-19659. [PMID: 33890785 DOI: 10.1021/acsami.1c01943] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A "closed-loop" insulin delivery system that can mimic the dynamic and glucose-responsive insulin secretion as islet β-cells is desirable for the therapy of type 1 and advanced type 2 diabetes mellitus (T1DM and T2DM). Herein, we introduced a kind of "core-shell"-structured glucose-responsive nanoplatform to achieve intravenous "smart" insulin delivery. A finely controlled one-pot biomimetic mineralization method was utilized to coencapsulate insulin, glucose oxidase (GOx), and catalase (CAT) into the ZIF-8 nanoparticles (NPs) to construct the "inner core", where an efficient enzyme cascade system (GOx/CAT group) served as an optimized glucose-responsive module that could rapidly catalyze glucose to yield gluconic acid to lower the local pH and effectively consume the harmful byproduct hydrogen peroxide (H2O2), inducing the collapse of pH-sensitive ZIF-8 NPs to release insulin. The erythrocyte membrane, a sort of natural biological derived lipid bilayer membrane which has intrinsic biocompatibility, was enveloped onto the surface of the "inner core" as the "outer shell" to protect them from elimination by the immune system, thus making the NPs intravenously injectable and could stably maintain a long-term existence in blood circulation. The in vitro and in vivo results indicate that our well-designed nanoplatform possesses an excellent glucose-responsive property and can maintain the blood glucose levels of the streptozocin (STZ)-induced type 1 diabetic mice at the normoglycemic state for up to 24 h after being intravenously administrated, confirming an intravenous insulin delivery strategy to overcome the deficits of conventional daily multiple subcutaneous insulin administration and offering a potential candidate for long-term T1DM treatment.
Collapse
Affiliation(s)
- Mengyun He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Pei Yu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yanlei Hu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Juan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Manman He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Cunpeng Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
16
|
MEN LH, PI ZF, HU MX, LIU S, LIU ZQ, SONG FR, CHEN X, LIU ZY. Serum Metabolomics Coupled with Network Pharmacology Strategy to Explore Therapeutic Effects of Scutellaria Baicalensis Georgi on Diabetic Nephropathy. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(20)60075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Li N, Lv T, Pan J, Liu C, Sun J, Lan Y, Wang A, Li Y, Wang Y, Lu Y. Comparative Tissue Distribution of 6 Major Polyphenolic Compounds in Normal and Myocardial Ischemia Model Rats After Oral Administration of the Polygonum orientale L. Extract. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20929447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A simple, rapid, and selective ultra-performance liquid chromatography-mass spectrometry (MS)/MS method was established to investigate tissue distribution of 6 polyphenolic compounds of Polygonum orientale L. extract in normal and myocardial ischemia (MI) model rat tissues, including isoorientin, orientin, vitexin, quercitrin, astragalin, and protocatechuic acid. An Agilent Eclipse Plus C18 column was used. The mobile phase consisted of acetonitrile and water, both with 0.1% formic acid. Quantification was performed in negative ion multiple reaction monitoring mode. All the analysts had good linearity with r ≥ 0.9912. Accuracy ranged from 12.49% to −13.98% for the 6 compounds; within-day variation (precision) was ≤9.98% and interday precision was ≤11.88%. Extraction recovery of the analysts ranged from 80.55% to 99.92%; the matrix was 81.00%–98.73%. The analyst preparations were stable throughout. The 6 compounds were rapidly distributed in various tissues after oral administration, without accumulation over 12 hours. Compared with normal rats, distributions of 6 compounds in the heart, liver, spleen, lung, kidney, brain, stomach, and intestine in MI model rats were different from those in the normal group. The study provides an insight for further research of P. orientale L.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
- School of Pharmacy, Guizhou Medical University, China, Guiyang
| | - Ting Lv
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
- School of Pharmacy, Guizhou Medical University, China, Guiyang
| | - Jie Pan
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Chunhua Liu
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yanyu Lan
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Aimin Wang
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Yonglin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yuan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
18
|
Qi Y, Zhang Q, Zhu H. Huang-Lian Jie-Du decoction: a review on phytochemical, pharmacological and pharmacokinetic investigations. Chin Med 2019; 14:57. [PMID: 31867052 PMCID: PMC6918586 DOI: 10.1186/s13020-019-0277-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Huang-Lian Jie-Du decoction (HLJDD), a famous traditional Chinese prescription constituted by Rhizoma Coptidis, Radix Scutellariae, Cortex Phellodendri and Fructus Gradeniae, has notable characteristics of dissipating heat and detoxification, interfering with tumors, hepatic diseases, metabolic disorders, inflammatory or allergic processes, cerebral diseases and microbial infections. Based on the wide clinical applications, accumulating investigations about HLJDD focused on several aspects: (1) chemical analysis to explore the underlying substrates responsible for the therapeutic effects; (2) further determination of pharmacological actions and the possible mechanisms of the whole prescription and of those representative ingredients to provide scientific evidence for traditional clinical applications and to demonstrate the intriguing molecular targets for specific pathological processes; (3) pharmacokinetic feature studies of single or all components of HLJDD to reveal the chemical basis and synergistic actions contributing to the pharmacological and clinically therapeutic effects. In this review, we summarized the main achievements of phytochemical, pharmacological and pharmacokinetic profiles of HLJDD and its herbal or pharmacologically active chemicals, as well as our understanding which further reveals the significance of HLJDD clinically.
Collapse
Affiliation(s)
- Yiyu Qi
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qichun Zhang
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China.,4Department of Pharmacology, Pharmacy College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huaxu Zhu
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
19
|
Ancuceanu R, Dinu M, Dinu-Pirvu C, Anuţa V, Negulescu V. Pharmacokinetics of B-Ring Unsubstituted Flavones. Pharmaceutics 2019; 11:E370. [PMID: 31374885 PMCID: PMC6723510 DOI: 10.3390/pharmaceutics11080370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
B-ring unsubstituted flavones (of which the most widely known are chrysin, baicalein, wogonin, and oroxylin A) are 2-phenylchromen-4-one molecules of which the B-ring is devoid of any hydroxy, methoxy, or other substituent. They may be found naturally in a number of herbal products used for therapeutic purposes, and several have been designed by researchers and obtained in the laboratory. They have generated interest in the scientific community for their potential use in a variety of pathologies, and understanding their pharmacokinetics is important for a grasp of their optimal use. Based on a comprehensive survey of the relevant literature, this paper examines their absorption (with deglycosylation as a preliminary step) and their fate in the body, from metabolism to excretion. Differences among species (inter-individual) and within the same species (intra-individual) variability have been examined based on the available data, and finally, knowledge gaps and directions of future research are discussed.
Collapse
Affiliation(s)
- Robert Ancuceanu
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihaela Dinu
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Cristina Dinu-Pirvu
- Department of Physical Chemistry and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest 020956, Romania
| | - Valentina Anuţa
- Department of Physical Chemistry and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest 020956, Romania
| | - Vlad Negulescu
- Department of Toxicology, Clinical Pharmacology and Psychopharmacology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
20
|
Simultaneous Determination of Seven Active Components in Rat Plasma by UHPLC-MS/MS and Application to a Quantitative Study after Oral Administration of Huang-Lian Jie-Du Decoction in High Fat-Induced Atherosclerosis Rats. Int J Anal Chem 2019; 2019:5628160. [PMID: 31354826 PMCID: PMC6633874 DOI: 10.1155/2019/5628160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/23/2019] [Accepted: 06/10/2019] [Indexed: 11/18/2022] Open
Abstract
Huang-Lian Jie-Du decoction (HLJDD) has been used to treat cardiovascular and cerebrovascular disease for many years in China. Currently, the determination of effect components in HLJDD is focusing either on the formula or on the extract, while quantification of that in biological samples is scarce, especially simultaneous determination of multicomponent. In this paper, a rapid, specific, and sensitive ultra-high performance liquid chromatography-tandem mass spectrometry method was developed and fully validated for the simultaneous determination of seven main active constituents, i.e., baicalin, baicalein, wogonoside, wogonin, berberine, palmatine, jatrorrhizine in rat plasma. The method was also successfully applied to a quantitative study after oral administration of HLJDD at different doses of 1.5, 3, and 6 g/kg body weight to high fat-induced atherosclerosis rats. The analytes were detected by ESI source and multiple reactions monitoring (MRM) using positive scanning mode. The blood was collected from the abdominal aorta of rats at predetermined time and preprepared with icariin and tetrahydropalmatine as internal standards (IS). Sample preparation was achieved by protein precipitation (PPT). The validation parameters (linearity, sensitivity, intra-/interday precision and accuracy, extraction recovery, and matrix effect) were within acceptable ranges, and biological extracts were stable during the entire storing and preparing process. And the result of determination of HLJDD-containing plasma, baicalin, baicalein, wogonoside, and wogonin could be highly detected in a dose-dependent manner while berberine, jatrorrhizine, and palmatine were determined in a very low level and in a dose-independent mode. Thus, the established method was sensitive enough and successfully applied to the determination of seven effective components in plasma taken from 24 high fat-induced atherosclerosis rats after oral administration of three dosages of HLJDD.
Collapse
|
21
|
Huang T, Liu Y, Zhang C. Pharmacokinetics and Bioavailability Enhancement of Baicalin: A Review. Eur J Drug Metab Pharmacokinet 2019; 44:159-168. [PMID: 30209794 DOI: 10.1007/s13318-018-0509-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Baicalin is one of the major bioactive components of Scutellaria radix, a Chinese herb that has been used since ancient times. Baicalin has various pharmacological activities, including antitumor, antimicrobial, and antioxidant, and has wide clinical applications. Baicalin displays a distinct pharmacokinetic profile including gastrointestinal hydrolysis, enterohepatic recycling, carrier-mediated transport, and complicated metabolism. The in vivo disposition of baicalin is affected by combinations of other herbs and baicalin can interact with other co-administered drugs due to competition between metabolic enzymes and protein binding. Furthermore, baicalin exhibits altered pharmacokinetic properties under different pathological conditions. Due to its low bioavailability, emerging novel baicalin preparations including nano/micro-scale baicalin delivery systems show better absorption and higher bioavailability in preclinical studies, and show promise for future clinical applications. Thus, this current review offers a comprehensive report on the pharmacokinetic behavior of baicalin and strategies to improve its bioavailability.
Collapse
Affiliation(s)
- Ting Huang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanan Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
22
|
Zhang L, Liu X, Yang H, Zhao R, Liu C, Zhang R, Zhang Q. Comparative pharmacokinetic study on phenolic acids and flavonoids in spinal cord injury rats plasma by UPLC-MS/MS after single and combined oral administration of danshen and huangqin extract. J Pharm Biomed Anal 2019; 172:103-112. [PMID: 31029799 DOI: 10.1016/j.jpba.2019.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/01/2023]
Abstract
Chinese medicinal herbs danshen and huangqin have attracted attention in spinal cord injury (SCI) treatment. Purpose of this study was to investigate and compare the pharmacokinetic characteristics of 4 phenolic acids and 4 flavonoids in SCI rat plasma after orally administrate danshen, huangqin and combined extract of these two herbs (CDH). Thus, a rapid and sensitive ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for simultaneously quantitative determination of tanshinol, protocatechualdehyde, protocatechuic acid, salvianolic acid A, baicalein, baicalin, wogonin and wogonoside. After inducing a contusion injury by a weight-drop device, SCI rats were orally administrated a single dose (12.5 g/kg) of danshen, huangqin and CDH extracts, respectively. Then, blood samples at different time points were collected and analyzed. In CDH group, Cmax and AUC of tanshinol, protocatechualdehyde and protocatechuic acid significantly declined, while those of salvianolic acid A enhanced. These changes were beneficial for danshen to treat SCI. As for flavonoids, double peaks were observed in huangqin group, while this phenomenon disappeared in CDH group. Concomitantly, Cmax and AUC declined after administrated CDH. These alterations were due to influence of danshen active constituents on absorption and transportation process of flavonoids. Therefore, danshen and huangqin significantly influenced pharmacokinetic profile and parameters of each other, thus exert synergistic therapeutic effect in SCI treatment.
Collapse
Affiliation(s)
- Lixin Zhang
- Department of Pharmacy, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Xifang Liu
- Department of Chinese Medicine orthopaedic, Hong Hui Hospital, Xi'an Jiaotong University, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, China
| | - Rui Zhao
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, China
| | - Ciucui Liu
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, China
| | - Rui Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, China
| | - Qian Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, China.
| |
Collapse
|
23
|
Chen W, Li J, Sun Z, Wu C, Ma J, Wang J, Liu S, Han X. Comparative pharmacokinetics of six coumarins in normal and breast cancer bone-metastatic mice after oral administration of Wenshen Zhuanggu Formula. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:36-44. [PMID: 29803570 DOI: 10.1016/j.jep.2018.05.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/08/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wenshen Zhuanggu Formula (WSZG) is a traditional Chinese medicine (TCM) prescription used in clinics for adjuvant treatment of breast cancer bone metastases in Longhua Hospital in China. WSZG has been reported to decrease the risk of bone metastases and alleviate the severity of bone lesions in a breast cancer xenograft model. AIM OF THE STUDY The present study aimed at investigating the pharmacokinetic behaviors of six coumarins in normal and breast cancer bone-metastatic mice following oral administration of WSZG extract. MATERIALS AND METHODS A bone-metastatic mouse model was established by intracardiac injection of MDA-MB-231BO breast cancer cells, and WSZG extract (1.60 g/kg) was given orally to the model and normal mice for 4 weeks. Then, the blood pharmacokinetic parameters of six bioactive components from WSZG (psoralen, isopsoralen, bergapten, xanthotoxin, osthole, and imperatorin) were analyzed by liquid chromatography tandem mass spectrometry. RESULTS There were significant differences in pharmacokinetic behaviors between normal and pathological states. Compared with normal mice, the model mice showed significantly increased AUC0-t and AUC0-∞ of the bioactive compounds (P < 0.05) and significantly decreased total blood clearance (CLZ/F) (P < 0.05). CONCLUSIONS The different pharmacokinetic behaviors might be partly ascribed to intestinal functional disorders and imbalance of gastrointestinal microbiota under the morbid state. The findings provide some valuable information to evaluate the clinical efficacy and safety of this TCM formula.
Collapse
Affiliation(s)
- Weiling Chen
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Jiajia Li
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Zhenping Sun
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Chunyu Wu
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Jiao Ma
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Jianyi Wang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Sheng Liu
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
24
|
Wu H, Dai A, Chen X, Yang X, Li X, Huang C, Jiang K, Deng G. Leonurine ameliorates the inflammatory responses in lipopolysaccharide-induced endometritis. Int Immunopharmacol 2018; 61:156-161. [DOI: 10.1016/j.intimp.2018.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/09/2018] [Accepted: 06/01/2018] [Indexed: 01/06/2023]
|
25
|
Yang SQ, Chen YD, Li H, Hui X, Gao WY. Geniposide and Gentiopicroside Suppress Hepatic Gluconeogenesis via Regulation of AKT-FOXO1 Pathway. Arch Med Res 2018; 49:314-322. [DOI: 10.1016/j.arcmed.2018.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/26/2018] [Accepted: 10/15/2018] [Indexed: 10/27/2022]
|
26
|
Upregulation of UDP-Glucuronosyltransferases 1a1 and 1a7 Are Involved in Altered Puerarin Pharmacokinetics in Type II Diabetic Rats. Molecules 2018; 23:molecules23061487. [PMID: 29925761 PMCID: PMC6099598 DOI: 10.3390/molecules23061487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/17/2018] [Accepted: 06/17/2018] [Indexed: 01/01/2023] Open
Abstract
Puerarin is an isoflavonoid extracted from Pueraria lobata roots, and displays a broad range of pharmacological activities, including antidiabetic activity. However, information about the pharmacokinetics of puerarin in diabetics is scarce. This study was conducted to investigate the difference in pharmacokinetic effects of puerarin in normal rats and rats with diabetes mellitus (DM), and the mechanism involved. DM was induced by a combined high-fat diet (HFD) and streptozotocin (STZ) injection. Plasma concentrations of puerarin in DM, HFD, and control rats were determined after intravenous (20 mg/kg) and oral administration (500 mg/kg) of puerarin, and pharmacokinetic parameters were estimated. The messenger RNA (mRNA) and protein expression levels of Ugt1a1 and Ugt1a7 in rat livers and intestines were measured using qRT-PCR and western blot, respectively. The area under the concentration–time curve and the clearance of puerarin in the DM rats statistically differed from those in the control rats (p <0.05) with both administration routes. The hepatic and intestinal gene and protein expressions of Ugt1a1 and Ugt1a7 were significantly increased in the DM rats (p <0.05). Therefore, the metabolic changes in diabetes could alter the pharmacokinetics of puerarin. This change could be caused by upregulated uridine diphosphate (UDP)-glucuronosyltransferase activity, which may enhance puerarin clearance, and alter its therapeutic effects.
Collapse
|
27
|
Chen N, Guo CE, Chen H, Chen J, Bi X, Li H, Zhu H, Ma P, Zhang Y, Lin H. Simultaneous determination of six coptis alkaloids in urine and feces by LC-MS/MS and its application to excretion kinetics and the compatibility mechanism of Jiao-Tai-Wan in insomniac rats. Biomed Chromatogr 2018; 32:e4248. [DOI: 10.1002/bmc.4248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 03/04/2018] [Accepted: 03/09/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Ning Chen
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing China
| | - Chang-e Guo
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing China
| | - Hongying Chen
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing China
| | - Jianhua Chen
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing China
| | - Xinning Bi
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing China
| | - Hongpin Li
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing China
| | - Hongyu Zhu
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing China
| | - Pengkai Ma
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing China
| | - Yujie Zhang
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing China
| | - Hongying Lin
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing China
| |
Collapse
|
28
|
Chen Q, Liu M, Yu H, Li J, Wang S, Zhang Y, Qiu F, Wang T. Scutellaria baicalensis regulates FFA metabolism to ameliorate NAFLD through the AMPK-mediated SREBP signaling pathway. J Nat Med 2018. [DOI: 10.1007/s11418-018-1199-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Effects of Huanglian Jiedu Decoration in Rat Gingivitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8249013. [PMID: 29576800 PMCID: PMC5822758 DOI: 10.1155/2018/8249013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 11/17/2022]
Abstract
Gingivitis is an inflammatory disease that affects gingival tissues through a microbe-immune interaction. Huanglian Jiedu decoction (HLJD) is used traditionally for clearing and detoxifying in China, which had been reported to possess many pharmacological effects. Rat gingival inflammation model was established by lipopolysaccharide (LPS) injection for 3 consecutive days, and HLJD was given by gavage before LPS injection. After 3 days rats were sacrificed and tissue samples were evaluated. Serum cytokine levels such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunoabsorbent assay (ELISA). Oxidative stress related molecules such as total antioxidant capacity (T-AOC), malondialdehyde (MDA), and reactive oxygen species (ROS) were determined. Expression of AMP-activated protein kinase (AMPK) and extracellular signal-regulated kinases 1/2 (ERK1/2) signaling pathway were inspected by western blotting. Histological changes of gingival tissues were tested with hematoxylin-eosin (HE) staining. HLJD significantly decreased serum levels of IL-6 and TNF-α, suppressed generation of MDA and ROS, and enhanced T-AOC creation. Moreover, HLJD inhibited expressions of AMPK and ERK1/2. The inflammation severity of gingival tissue by HE staining was severe in model group but relieved in HLJD group obviously. HLJD exhibited protective effects against gingival damage through suppressing inflammation reaction and elevating antioxidation power.
Collapse
|
30
|
Xu R, Qi J, Zhan RJ, Zhou GS, Hao B, Ma J, Wei X, Xu AJ, Zhang J. Comparative pharmacokinetics of four active components on normal and diabetic rats after oral administration of Gandi capsules. RSC Adv 2018; 8:6620-6628. [PMID: 35540372 PMCID: PMC9078286 DOI: 10.1039/c7ra11420f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/26/2018] [Accepted: 01/23/2018] [Indexed: 11/21/2022] Open
Abstract
The Gandi capsule, a famous traditional Chinese medicine (TCM), is a hospital preparation that has been widely used in China for decades for the treatment of diabetes.
Collapse
Affiliation(s)
- Renjie Xu
- Department of Pharmacy
- Xinhua Hospital
- Shanghai 200092
- China
| | - Jia Qi
- Department of Pharmacy
- Xinhua Hospital
- Shanghai 200092
- China
| | - Ruan-Juan Zhan
- Department of Pharmacy
- The First Affiliated Hospital
- Wenzhou Medical University
- Wenzhou
- China
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210023
- China
| | - Bin Hao
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Jing Ma
- Department of Pharmacy
- Xinhua Hospital
- Shanghai 200092
- China
| | - Xin Wei
- Department of Pharmacy
- Xinhua Hospital
- Shanghai 200092
- China
| | - A.-Jing Xu
- Department of Pharmacy
- Xinhua Hospital
- Shanghai 200092
- China
| | - Jian Zhang
- Department of Pharmacy
- Xinhua Hospital
- Shanghai 200092
- China
| |
Collapse
|
31
|
Yang TM, Liu YX, Fu HY, Lan W, Su HB, Tang HB, Yin QB, Li HD, Wang LP, Wu HL. Pharmacokinetic Analysis of Four Bioactive Iridoid and Secoiridoid Glycoside Components of Radix Gentianae Macrophyllae and Their Synergistic Excretion by HPLC-DAD Combined with Second-Order Calibration. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:445-459. [PMID: 29177644 PMCID: PMC5709251 DOI: 10.1007/s13659-017-0145-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
An HPLC-DAD method combined with second-order calibration based on the alternating trilinear decomposition (ATLD) algorithm with the aid of region selection was developed to simultaneously and quantitatively characterize the synergistic relationships and cumulative excretion of the four bioactive ingredients of Radix Gentianae Macrophyllae in vivo. Although the analytes spectra substantially overlapped with that of the biological matrix, the overlapping profiles between analytes and co-eluting interferences can be successfully separated and accurately quantified by the ATLD method on the basis of the strength of region selection. The proposed approach not only determined the content change but also revealed the synergistic relationships and the cumulative excretion in vivo of the four ingredients in urine and feces samples collected at different excretion time intervals. In addition, several statistical parameters were employed to evaluate the accuracy and precision of the method. Quantitative results were confirmed by HPLC-mass spectrometry. Satisfactory results indicated that the proposed approach can be utilized to investigate the pharmacokinetics of Radix Gentianae Macrophyllae excretion in vivo.
Collapse
Affiliation(s)
- Tian-Ming Yang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Yang-Xi Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Hai-Yan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China.
| | - Wei Lan
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Han-Bo Su
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - He-Bin Tang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Qiao-Bo Yin
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - He-Dong Li
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Li-Ping Wang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Hai-Long Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
32
|
Cao H, Tuo L, Tuo Y, Xia Z, Fu R, Liu Y, Quan Y, Liu J, Yu Z, Xiang M. Immune and Metabolic Regulation Mechanism of Dangguiliuhuang Decoction against Insulin Resistance and Hepatic Steatosis. Front Pharmacol 2017; 8:445. [PMID: 28736524 PMCID: PMC5500616 DOI: 10.3389/fphar.2017.00445] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022] Open
Abstract
Dangguiliuhuang decoction (DGLHD) is a traditional Chinese medicine (TCM) formula, which mainly consists of angelica, radix rehmanniae, radix rehmanniae praeparata, scutellaria baicalensis, coptis chinensis, astragalus membranaceus, and golden cypress, and used for the treatment of diabetes and some autoimmune diseases. In this study, we explored the potential mechanism of DGLHD against insulin resistance and fatty liver in vivo and in vitro. Our data revealed that DGLHD normalized glucose and insulin level, increased the expression of adiponectin, diminished fat accumulation and lipogenesis, and promoted glucose uptake. Metabolomic analysis also demonstrated that DGLHD decreased isoleucine, adenosine, and cholesterol, increased glutamine levels in liver and visceral adipose tissue (VAT) of ob/ob mice. Importantly, DGLHD promoted the shift of pro-inflammatory to anti-inflammatory cytokines, suppressed T lymphocytes proliferation, and enhanced regulatory T cells (Tregs) differentiation. DGLHD also inhibited dendritic cells (DCs) maturation, attenuated DCs-stimulated T cells proliferation and secretion of IL-12p70 cytokine from DCs, and promoted the interaction of DCs with Tregs. Further studies indicated that the changed PI3K/Akt signaling pathway and elevated PPAR-γ expression were not only observed with the ameliorated glucose and lipid metabolism in adipocytes and hepatocytes, but also exhibited in DCs and T cells by DGLHD. Collectively, our results suggest that DGLHD exerts anti-insulin resistant and antisteatotic effects by improving abnormal immune and metabolic homeostasis. And DGLHD may be a novel approach to the treatment of obesity-related insulin resistance and hepatic steatosis.
Collapse
Affiliation(s)
- Hui Cao
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Lingling Tuo
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Yali Tuo
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Ziyun Xia
- Department of Pharmacy, China Pharmaceutical UniversityNanjing, China
| | - Rong Fu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Yang Liu
- Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province, School of Life Science, Wuchang University of TechnologyWuhan, China
| | - Yihong Quan
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Jue Liu
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Zhihong Yu
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
33
|
Online microdialysis-ultra performance liquid chromatography–mass spectrometry method for comparative pharmacokinetic investigation on iridoids from Gardenia jasminoides Ellis in rats with different progressions of type 2 diabetic complications. J Pharm Biomed Anal 2017; 140:146-154. [DOI: 10.1016/j.jpba.2017.03.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 01/15/2023]
|
34
|
Xing S, Wang M, Peng Y, Li X. Effects of Intestinal Microecology on Metabolism and Pharmacokinetics of Oral Wogonoside and Baicalin. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Baicalin and wogonoside are two of the most abundant flavonoid glycosides in the root of Scutellaria baicalensis Georgi, which is a widely used peroral herbal medicine with anticancer, antiviral, antibacterial and anti-inflammatory properties. In the present study, the effects of intestinal microecology on the metabolism and pharmacokinetics of orally administered baicalin and wogonoside were investigated by UPLC-QTOF/MS measurement of the difference in metabolites between normal and antibiotic-pretreated rats. In the antibiotic-pretreated rats, the plasma concentration-time profile and pharmacokinetic parameters of the two flavonoid glycosides and their relevant aglycone forms were significantly changed compared with those in normal rats. Further, hydrolysis and glucuronidated metabolites were not detected in the cecum contents and urine samples from antibiotic-pretreated rats. These results suggested that intestinal microbiota may play a key role in the pharmacokinetics and metabolism of peroral baicalin and wogonoside. According to our findings, it is recommended that the root of S. baicalensis should not be co-administered with antibiotics in clinical use.
Collapse
Affiliation(s)
- Shihua Xing
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Mengyue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
35
|
Simultaneous quantification method for comparative pharmacokinetics studies of two major metabolites from geniposide and genipin by online mircrodialysis-UPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1041-1042:11-18. [PMID: 27992786 DOI: 10.1016/j.jchromb.2016.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 01/17/2023]
Abstract
Genipin-1-o-glucuronic acid and genipin-monosulfate are two major metabolites from geniposide and genipin. Based on diabetic rat model, we developed a simultaneous quantification method to investigate their comparative pharmacokinetics by online mircrodialysis-ultra performance liquid chromatography-mass spectrometry (MD-UPLC-MS/MS) without their standard compounds. Online microdialysis sampling could avoid unexpected contamination or degradation of the analytes during the storage and transfer steps. Combined with good sensitivity, selectivity and selectivity of UPLC-MS/MS, online MD-UPLC-MS/MS method could real-timely monitor metabolites in rat blood for quantitative analysis. Our research found that AUC0→t of genipin-1-o-glucuronic acid and genipin-monosulfate in blood of diabetic group were 17.68 and 7.58 times than those in normal group, respectively, and AUC0→t of genipin-1-o-glucuronic acid was 2.28 times than that of genipin-monosulfate in blood of diabetic group, which revealed the effect of diabetes on the pharmacokinetic properties of the two metabolites. This study not only provides an approach for pharmacokinetic studies for various metabolites from herb medicines, but also can predict druggability of their bioactive metabolites. The insight obtained should facilitate drug development and toxicity research.
Collapse
|
36
|
Yim S, You BH, Chae HS, Chin YW, Kim H, Choi HS, Choi YH. Multidrug and toxin extrusion protein 1-mediated interaction of metformin and Scutellariae radix in rats. Xenobiotica 2016; 47:998-1007. [DOI: 10.1080/00498254.2016.1257836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Sreymom Yim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea,
| | - Byoung Hoon You
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea,
| | - Hee-Sung Chae
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea,
| | - Young-Won Chin
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea,
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk-University IIsan Oriental Hospital, Goyang-si, Gyeonggi-do, Republic of Korea, and
| | - Han Seok Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea,
| |
Collapse
|
37
|
Baicalin attenuates lipopolysaccharide induced inflammation and apoptosis of cow mammary epithelial cells by regulating NF-κB and HSP72. Int Immunopharmacol 2016; 40:139-145. [PMID: 27588914 DOI: 10.1016/j.intimp.2016.08.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 01/06/2023]
Abstract
Baicalin is the main ingredient of traditional Chinese herbal medicine, Scutellaria baicalensis, which has been widely used clinically as an anti-inflammatory agent. However, molecular mechanism of action of this drug is not yet clear. In the present study, the protective mechanism of baicalin against lipopolysaccharide (LPS) induced inflammatory injury in cow mammary epithelial cells (CMECs) was explored. For this purpose, in vitro cultured CMECs were treated with baicalin (10μg/mL) and LPS (10μg/mL) for 24 and 12h, respectively, and the cell viability was measured by using cell counting kit-8 (CCK-8). The results revealed that LPS induced inflammatory responses, as p-p65/p65 and p-IκBα/IκBα ratios and TNF-α and IL-1β production was increased in the CMECs. Both Bcl-2/Bax ratio and cell viability were decreased and caspase-3 cleaved following LPS treatment, indicating apoptosis of CMECs. Moreover, both LPS and baicalin increased HSP72 expression of the CMECs. However, cellular inflammatory responses and apoptosis were significantly reduced in baicalin treated CMECs. In conclusion, baicalin ameliorated inflammation and apoptosis of the CMECs induced by LPS via inhibiting NF-κB activation and up regulation of HSP72.
Collapse
|
38
|
Comparative investigation on the pharmacokinetics of geniposide in type 2 diabetic and normal rats after oral administration of Fructus Gradeniae extract. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:180-186. [PMID: 27561185 DOI: 10.1016/j.jchromb.2016.08.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 02/01/2023]
Abstract
Fructus Gradeniae, the fruit of Gardenia jasminoides Ellis, was used alone or in combination with other herb medicines in the treatment of type 2 diabetes mellitus in China for a long time. In present investigation, the HPLC method for the determination of geniposide in rat plasma was developed and validated, and the pharmacokinetics of geniposide in type 2 diabetic rats after oral administration of Fructus Gradeniae extract or pure was studied. The results showed that the pharmacokinetic profile (especially the area under the plasma concentration-time curve, AUC) of geniposide in type 2 diabetic rats after orally administered with Fructus Gradeniae extract or pure geniposide was remarkably different from that in normal rats. The results indicated that the increased AUC of geniposide in type 2 diabetic rats did not result from the effects of other components contained in Fructus Gradeniae. It could be speculated that the increased AUC of geniposide might result from the pathological state of type 2 diabetes mellitus which resulted in the pharmacokinetic alterations of geniposide.
Collapse
|
39
|
Ren W, Zuo R, Wang YN, Wang HJ, Yang J, Xin SK, Han LY, Zhao HY, Han SY, Gao B, Hu H, Hu YJ, Bian BL, Si N. Pharmacokinetic-Pharmacodynamic Analysis on Inflammation Rat Model after Oral Administration of Huang Lian Jie Du Decoction. PLoS One 2016; 11:e0156256. [PMID: 27280291 PMCID: PMC4900566 DOI: 10.1371/journal.pone.0156256] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 05/06/2016] [Indexed: 12/15/2022] Open
Abstract
Huang-Lian-Jie-Du Decoction (HLJDD) is a classical Traditional Chinese Medicine (TCM) formula with heat-dissipating and detoxifying effects. It is used to treat inflammation-associated diseases. However, no systematic pharmacokinetic (PK) and pharmacodynamic (PD) data concerning the activity of HLJDD under inflammatory conditions is available to date. In the present study, the concentration-time profiles and the hepatic clearance rates (HCR) of 41 major components in rat plasma in response to the oral administration of a clinical dose of HLJDD were investigated by LC-QqQ-MS using a dynamic multiple reaction monitoring (DMRM) method. Additionally, the levels of 7 cytokines (CKs) in the plasma and the body temperature of rats were analyzed. Furthermore, a PK-PD model was established to describe the time course of the hemodynamic and anti-inflammatory effects of HLJDD. As one of the three major active constituents in HLJDD, iridoids were absorbed and eliminated more easily and quickly than alkaloids and flavonoids. Compared with the normal controls, the flavonoids, alkaloids and iridoids in inflamed rats exhibited consistently changing trends of PK behaviors, such as higher bioavailability, slower elimination, delays in reaching the maximum concentration (Tmax) and longer substantivity. The HCR of iridoids was different from that of alkaloids and flavonoids in inflamed rats. Furthermore, excellent pharmacodynamic effects of HLJDD were observed in inflamed rats. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, IL-10, and macrophage inflammatory protein-2 (MIP-2) and body temperature significantly decreased after the administration of HLJDD. Based on PK-PD modeling with the three-phase synchronous characterization of time-concentration-effect, flavonoids exhibited one mechanism of action in the anti-inflammatory process, while iridoids and alkaloids showed another mechanism of action. Taken together, the results demonstrated that HLJDD may restrain inflammation synergistically via its major constituents (alkaloids, flavonoids and iridoids). A correlation between the exposure concentration of different types of compounds and their anti-inflammatory effects in the body was shown. This study provides a comprehensive understanding of the anti-inflammatory activity of HLJDD.
Collapse
Affiliation(s)
- Wei Ren
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Capital Medical University, Beijing 100069, China
| | - Ran Zuo
- Li Kang Hospital, Beijing 102609, People’s Republic of China
| | - Yao-Nan Wang
- Capital Medical University, Beijing 100069, China
| | - Hong-Jie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jian Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shao-Kun Xin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Capital Medical University, Beijing 100069, China
| | - Ling-Yu Han
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hai-Yu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- * E-mail: (HYZ); (NS)
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and WesternMedicine, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, PR China
| | - Bo Gao
- Anhui Jinchan Biochemistry Company Ltd., Huaibei 235000, China
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Bao-Lin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- * E-mail: (HYZ); (NS)
| |
Collapse
|
40
|
Wang Q, Wen R, Lin Q, Wang N, Lu P, Zhu X. Wogonoside Shows Antifibrotic Effects in an Experimental Regression Model of Hepatic Fibrosis. Dig Dis Sci 2015; 60:3329-39. [PMID: 26130019 DOI: 10.1007/s10620-015-3751-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/06/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUD Wogonoside (WO), a flavonoid extracted from Huangqin, plays multiple physiological roles. However, it has remained elusive how WO regulates hepatic fibrogenesis until now. AIM The purpose of the study was to investigate the potential protective effects of WO against liver fibrosis induced by carbon tetrachloride (CCl4). METHODS In this study, male rats were randomly allocated into four groups: a control group, the CCl4 group, the CCl4 and WO (4 mg/kg) group, and CCl4 and WO (8 mg/kg) group. Hepatic fibrosis was induced by subcutaneous injection of CCl4 twice a week for a continuous 6-week period. Then the rats were intragastrically administrated with WO daily for 4 weeks before being killed. RESULTS As expected, histopathological assessment, Masson trichrome staining, and Sirius red staining demonstrated that WO drastically ameliorated the hepatic fibrosis caused by CCl4. WO significantly attenuated the CCl4-induced upregulations of liver indices including alanine aminotransferase, aspartate aminotransferase, tumor necrosis factor-α, interleukin-1β, IL-6, hexadecenoic acid and laminin in serum, as well as hydroxyproline, malondialdehyde and phosphatidylinositol 3-kinase (PI3K)/protein Kinase B(Akt)/mechanistic target of rapamycin (mTOR)/nuclear factor-kappa B signalings in liver. Meanwhile, WO also effectively recovered the depletions of superoxide dismutase, glutathione and IL-10. Furthermore, we evaluated the effects of WO on the alpha smooth muscle actin, type I collagen expressions, and PI3K/Akt/ mTOR/ribosomal protein S6 kinase 70 kDa (p70S6K) signaling in transforming growth factor (TGF-β) stimulated hepatic stellate cell-T6 cells. CONCLUSIONS These results suggested that WO had significant protective effects against liver fibrosis induced by CCl4.
Collapse
Affiliation(s)
- Qichao Wang
- Translational Center for Stem Cell Research, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, 200065, China
| | - Rui Wen
- Department of Resources Science of Traditional Chinese Medicines, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Qinghua Lin
- Department of Natural Medicinal Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Na Wang
- Translational Center for Stem Cell Research, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, 200065, China
| | - Ping Lu
- Translational Center for Stem Cell Research, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xianmin Zhu
- Translational Center for Stem Cell Research, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|