1
|
Zhou Y, Gu X, Xu J, Zhao Y, Fan S, Zhu N, Meng Q, Dai S, Zhu B, Yuan X. Fungal diversity and network analysis in rhizosphere soil of Atractylodes macrocephala across different cultivation regions. Sci Rep 2025; 15:19889. [PMID: 40481133 PMCID: PMC12144200 DOI: 10.1038/s41598-025-96810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/31/2025] [Indexed: 06/11/2025] Open
Abstract
This study investigated the impact of rhizosphere fungi on the quality of Atractylodes macrocephala in China by analyzing the physical and chemical properties, enzyme activities, and community structures of soil samples from four distinct regions: Pan'an (PA), Bozhou (BZ), Zhoukou (ZK), and Anguo (AG). The results indicated that both biomass and active components of A. macrocephala were significantly higher in authentic production areas compared to emerging ones. The rhizosphere soil network in PA, identified as an authentic production area, exhibited the most complex structure, with pH levels significantly negatively correlated with 12 major fungal genera. Notably, fungi such as Rozellomycota, Mortierella, and Basidiomycota were linked to the quality of A. macrocephala through their roles in organic matter decomposition. Additionally, Saitozyma was found to be a central component of the rhizosphere fungal community, with a relative abundance of 2.19%, markedly higher than in emerging production areas (< 0.1%). These findings provide critical insights into the factors affecting A. macrocephala quality across different regions, offering valuable guidance for the sustainable cultivation of this essential medicinal plant in China.
Collapse
Affiliation(s)
- Yanguang Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianchen Gu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingyan Xu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yujin Zhao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sen Fan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Na Zhu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingling Meng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shijie Dai
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Yuan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
2
|
Kewang L, Wei Y, Meiye L, Tianyong H, Baohui C. The inhibitory effects of modified HSJZ decoction on NSCLC by regulating regulatory T cells via downregulation of EZH2 and PI3K/AKT pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119802. [PMID: 40245962 DOI: 10.1016/j.jep.2025.119802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/29/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
ETHNOPHARMACOLOGY REVELANCE Huangqi Si Jun Zi decoction (HSJZ), a modified traditional Chinese medicine formula, is known to enhance immunity. However, its immunomodulatory effects in non-small cell lung cancer (NSCLC) remain poorly understood. AIM OF STUDY This study aimed to investigate the anti-tumor potential of HSJZ in NSCLC and elucidate its mechanisms of action. MATERIAL AND METHODS In vitro studies assessed HSJZ cytotoxicity in 4 tumor cell lines and its ability to activate immune cells from NSCLC patients, followed by evaluating the cytotoxicity of these activated immune cells against NSCLC cell lines. An orthotopic lung cancer model in mice evaluated in vivo anti-tumor activity. Flow cytometry, immunohistochemistry, and Western blot analysis were conducted to analyze immune cell populations, cytokine production, and protein expression levels, including Tregs, CD8+ T cells, EZH2, and PI3K/AKT signaling pathways. RESULTS While HSJZ alone exhibited no direct cytotoxicity on NSCLC cells in vitro, it significantly enhanced immune cell-mediated killing when co-cultured with patient-derived peripheral blood mononuclear cells (PBMCs), accompanied with increased IFN-γ and TNF-α production. In vivo, HSJZ (1 g/kg) treatment in a murine orthotopic lung cancer model resulted in a 54.2 % reduction in tumor burden, as assessed by IVIS spectrum imaging. Mechanistically, HSJZ suppressed regulatory T cells (Tregs) both in vivo and in vitro, as demonstrated by decreased Treg frequency and downregulation of phosphorylated PI3K/AKT signaling in mice bearing Lewis tumor. Moreover, HSJZ significantly inhibited the expression of EZH2, an epigenetic regulator crucial for Treg differentiation. CONCLUSION These findings provide compelling evidence that HSJZ exerts anti-tumor effects in NSCLC by modulating the immune microenvironment, particularly through the inhibition of Tregs activity, as assessed by in vitro co-culture system, in vivo mouse orthotopic Lewis cancer model, immunohistochemistry, etc. Our results support the potential clinical application of HSJZ as an adjunct therapy for NSCLC patients.
Collapse
MESH Headings
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Animals
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Proto-Oncogene Proteins c-akt/metabolism
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Down-Regulation/drug effects
- Signal Transduction/drug effects
- Phosphatidylinositol 3-Kinases/metabolism
- Mice
- Cell Line, Tumor
- Male
- Antineoplastic Agents, Phytogenic/pharmacology
- Female
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Luo Kewang
- People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Ye Wei
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Li Meiye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hu Tianyong
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research Institute, China
| | - Cheng Baohui
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research Institute, China.
| |
Collapse
|
3
|
Yang P, Qin LL, Yu M, Zou ZM. Rhizome of Atractylodes macrocephala alleviates spleen-deficiency constipation in rats by modulating gut microbiota and bile acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119884. [PMID: 40288662 DOI: 10.1016/j.jep.2025.119884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The rhizome of Atractylodes macrocephala, called Atractylodes macrocephala Rhizome (AMR), is one of the commonly used traditional Chinese medicines for alleviating constipation induced by spleen-deficiency. However, the specific mechanism responsible for promoting defecation and gastrointestinal transit by AMR remains unclear. AIM OF THE STUDY To reveal the spleen-invigorating and laxative effects of AMR in spleen-deficiency constipated rats, as well as to explore the underlying mechanism. MATERIALS AND METHODS The rat model of spleen-deficiency constipation was established through the induced diarrhea, along with irregular exercise and a low-fiber diet pattern. The effects of AMR were then evaluated based on spleen-deficiency and constipation phenotypes. Additionally, an integrated approach combining 16S rRNA gene sequencing with untargeted/targeted metabolomics using ultra performance liquid chromatography-mass spectrometry (UPLC-MS) was employed to elucidate the potential mechanism of AMR in treating spleen-deficiency constipation. RESULTS The results indicated that AMR, at the dose of 4.32 g crude drug/kg, significantly improved the general characteristics, digestion-absorption function, colonic pathological morphology and levels of neurotransmitters in spleen-deficiency constipated rats. AMR also effectively ameliorated the disturbance in gut microbiota induced by spleen-deficiency constipation, particularly that microbiota associated with constipated phenotypes and bile acid metabolism, including Firmicutes, Bacteroides, norank_f__Erysipelotrichaceae and norank_f__Muribaculaceae. Additionally, plasma and fecal metabolomics revealed that the development of spleen-deficiency constipation was primarily due to perturbed bile acid biosynthesis and metabolism, with AMR prominently ameliorating the abnormal levels of 17 bile acids. Furthermore, Western blot analysis confirmed that AMR regulated the abnormal expression of Takeda G protein-coupled receptor 5 (TGR5), a receptor involved in bile acid metabolism. CONCLUSIONS Our findings provide important insights into the mechanism underlying spleen-deficiency constipation, suggesting that AMR may be a promising candidate for the prevention and treatment of constipation induced by spleen-deficiency.
Collapse
Affiliation(s)
- Peng Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China.
| | - Ling-Ling Qin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China.
| | - Meng Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China.
| | - Zhong-Mei Zou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China.
| |
Collapse
|
4
|
Li HH, Liu X, Wang YP, Xu X, Zhu L, Zhang W, Ren K. Atractylenolide I Inhibits Nicotine-Induced Macrophage Pyroptosis and Alleviates Atherogenesis by Suppressing the TLR4/ROS/TXNIP/NLRP3 Pathway. Metabolites 2025; 15:329. [PMID: 40422906 DOI: 10.3390/metabo15050329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/04/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
Background/Objectives: Studies have shown that Atractylenolide I (AT-I) can exert anti-inflammatory and anti-oxidative effects, protecting against the development of various kinds of cardiovascular diseases. However, whether AT-I prevents nicotine-induced atherogenesis is unknown. This study was designed to explore the effects of AT-I on nicotine-induced macrophage pyroptosis and the progression of atherosclerosis. Methods: RT-qPCR and Western blot were used to detect the mRNA and protein levels of TXNIP and pyroptosis-related factors in THP-1-derived macrophages. ELISA was used to detect the secretion of pro-inflammatory cytokines. Hoechst/PI double-staining assay was used to assess plasma membrane integrity. The ROS assay kit, LDH release assay kit, and caspase-1 activity assay kit were used to detect ROS production, LDH release, and caspase-1 activity. Oil Red O, HE, and Masson staining were used to evaluate lipid accumulation, lesion size, and plaque stability in HFD-fed apoE-/- mice. Results: AT-I treatment significantly decreased pyroptosis-related factors expression, disrupted plasma membrane integrity, and down-regulated pro-inflammatory cytokines secretion, thereby inhibiting nicotine-induced pyroptosis of THP-1-derived macrophages. In addition, AT-I decreased ROS production and the expression of TLR4 and TXNIP. Lentivirus overexpression of TLR4 or TXNIP, or pre-treatment with ROS agonist, mainly reversed the anti-pyroptotic effects of AT-I in nicotine-treated THP-1-derived macrophages. Additionally, administering AT-I to HFD-fed apoE-/- mice markedly decreased nicotine-induced up-regulation of pyroptosis-related proteins in the aortas. Enzymatic methods and ELISA assay suggested that AT-I improved dyslipidemia and inflammation in vivo. Oil Red O, HE, and Masson staining showed that AT-I alleviated lipid accumulation, decreased plaque size, and increased plaque stability. Conclusions: Taken together, AT-I can be regarded as a potential phytomedicine that protects against macrophage pyroptosis and atherosclerosis triggered by nicotine.
Collapse
Affiliation(s)
- Huan-Huan Li
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xian Liu
- College of Nursing, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yu-Ping Wang
- College of Nursing, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xi Xu
- College of Nursing, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Lin Zhu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Bioactive Natural Products, Hefei 230012, China
| | - Wei Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Bioactive Natural Products, Hefei 230012, China
| | - Kun Ren
- College of Nursing, Anhui University of Chinese Medicine, Hefei 230012, China
- Laboratory of Geriatric Nursing and Health, Anhui University of Traditional Chinese Medicine, Hefei 230012, China
| |
Collapse
|
5
|
Yang F, Luo G, Liu MN, Liu P, Wu D, Chen HL, Li S, Yang SJ, Dong L. Network pharmacology and experimental validation to investigate the mechanism of action of Zhilong Huoxue Tongyu capsule in the prevention and treatment of diabetic cardiomyopathy. PLoS One 2025; 20:e0323745. [PMID: 40373162 DOI: 10.1371/journal.pone.0323745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/12/2025] [Indexed: 05/17/2025] Open
Abstract
BACKGROUND Diabetes cardiomyopathy (DCM) is a prevalent complication of diabetes, characterized by a multifaceted pathogenesis. Zhilong Huoxue Tongyu Capsule (ZL), a traditional Chinese medicine, is extensively employed for the treatment of cardiovascular diseases. Thus, this study aimed to comprehensively explore the mechanism of action of ZL on DCM. METHOD Network pharmacology approaches were applied to predict the potential pathways and targets of ZL on DCM. Then, a DCM model mouse was constructed and divided into a control group, DCM group, DCM + ZL group, SB203580 group, and DCM + R group. The DCM + ZL group was administered 6.24g/kg/d ZL via gavage, the SB203580 group was given 1 mg/kg/d SB203580 (p38MAPK inhibitor) via intraperitoneal injection, the DCM + R group received 4 mg/kg/d rosiglitazone via gavage, and the control group and DCM group were given equal volume of physiological saline by gavage. The intervention period lasted for 6 weeks to verify these key targets. RESULT Network pharmacology analyses identified 45 active ingredients in ZL linked to 719 potential targets, forming an herbal compound-target network. Screening of databases revealed 1032 DCM-related targets, with MAPK14, TNF, FOS, AKT1, and IL-10 emerging as key hub genes from PPI network analysis. Additionally, enrichment analysis indicated that the candidate targets were enriched in response to the MAPK signaling pathway. Finally, in vivo studies in DCM mice demonstrated that ZL significantly mitigated myocardial fibrosis and down-regulated the expression of p-P38MAPK, TNF-α, α-SMA, and Collagen-I proteins in myocardial tissue. CONCLUSION Our results collectively indicated that ZL can effectively ameliorate diabetes cardiomyopathy, possibly by modulating the P38MAPK signaling pathway.
Collapse
Affiliation(s)
- Fang Yang
- National Traditional Chinese Medicine Clinical Research Base and Cardiology department of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Gang Luo
- National Traditional Chinese Medicine Clinical Research Base and Cardiology department of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Meng-Nan Liu
- National Traditional Chinese Medicine Clinical Research Base and Cardiology department of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Ping Liu
- National Traditional Chinese Medicine Clinical Research Base and Cardiology department of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Dan Wu
- National Traditional Chinese Medicine Clinical Research Base and Cardiology department of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Hao-Ling Chen
- National Traditional Chinese Medicine Clinical Research Base and Cardiology department of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Shan Li
- National Traditional Chinese Medicine Clinical Research Base and Cardiology department of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Si-Jin Yang
- National Traditional Chinese Medicine Clinical Research Base and Cardiology department of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Li Dong
- National Traditional Chinese Medicine Clinical Research Base and Cardiology department of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Guirong C, Lili H, Guifang D, Weiqi L, Xiongbo G, Fan X, Zhenyu N, Jinbin S, Gang C, Lina Z, Wenfeng G, Qun D, Yanwu L. Qingre Huayu Jianpi decoction suppresses colorectal tumorigenesis by inhibiting cancer stem cells and cancer-associated fibroblasts. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119722. [PMID: 40220938 DOI: 10.1016/j.jep.2025.119722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Heat-clearing, stasis-dissolving, and spleen-fortifying constitute a fundamental treatment strategy in Traditional Chinese medicine (TCM) for intestinal neoplasm management. Qingre Huayu Jianpi decoction (QHJ) has good prevention and treatment effects on colitis-associated colon cancer (CAC) and sporadic colorectal carcinoma subtypes in clinical application, but its multi-target mechanism of action against intestinal tumors requires elucidation through integrative pharmacology approaches. AIM OF THE STUDY To evaluate the preventive and therapeutic effects of Qingre Huayu Jianpi decoction (QHJ) on colon cancer, particularly focusing on its impact on colon cancer stem cell (CSC) proliferation and cancer-associated fibroblast (CAF) activation. METHODS An azoxymethane (AOM) and dextran sulfate sodium (DSS)-induced colorectal cancer (CRC) mouse model was used to assess the effects of QHJ on tumor count, pathological morphology, and collagen deposition in the colon. Gut organoids and fibroblasts isolated from CRC patient tissues were cultured to explore the effect of QHJ. Then, a PDOX (patient-derived organoids-based xenograft) experiment was performed to evaluate the inhibitory effect of QHJ on xenograft tumorigenesis in nude mice. Immunohistochemistry, immunofluorescence, and Western blot analyses were employed to detect the expression levels of markers such as Ki67, CD44, FAP, α-SMA, COL1A1, COL3A1, FN, LN, and proteins associated with the Wnt signaling pathway. RESULTS We found that QHJ significantly suppressed the number and volume of tumors in CRC mice, lowered pathological scores, and decreased collagen deposition in affected mucosal regions. QHJ treatment inhibited the viability of colon cancer organoids from CRC patients and HCT116 cells in vitro and can inhibit CAF activation and migration. Protein analysis indicated upregulation of RNF43 and downregulation of ZNRF3 and β-Catenin after QHJ treatment, alongside reductions in Ki67, CD44, α-SMA, COL1A1, Collagen Ⅳ, FN, and LN expression levels. QHJ reduces the number of cancer cells in the tumors of nude mice transplanted subcutaneously with human colon cancer organoids and CAFs. CONCLUSION This study demonstrates that QHJ inhibits cancer cell proliferation, cancer-associated fibroblast activation, and extracellular matrix collagen deposition in the tumor microenvironment of colon cancer. The comprehensive therapeutic advantages of QHJ in the prevention and treatment of colorectal cancer were revealed.
Collapse
Affiliation(s)
- Chen Guirong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Huang Lili
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Deng Guifang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Lu Weiqi
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Guo Xiongbo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | - Xiao Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Niu Zhenyu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Song Jinbin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Chen Gang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 117004, China.
| | - Zhao Lina
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Guo Wenfeng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 501405, China.
| | - Du Qun
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Li Yanwu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
7
|
Wang XD, Su XQ, Gao H. Association of Sijunzi decoction plus chemotherapy with gastrointestinal function and serum markers in patients after gastric carcinoma surgery. World J Gastrointest Surg 2025; 17:100800. [PMID: 40291867 PMCID: PMC12019030 DOI: 10.4240/wjgs.v17.i4.100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The deleterious effects of surgical trauma and subsequent postoperative complications pose significant challenges to the smooth recovery of patients after gastric cancer (GC) resection despite the substantial curative benefits provided by surgical interventions for GC. Hence, the investigation of more optimal and efficacious treatment approaches has become an urgent necessity in the medical community. AIM To investigate the association of Sijunzi decoction plus chemotherapy with the gastrointestinal function and serum markers of patients after GC surgery. METHODS This study included patients who underwent GC surgery from June 2022 to February 2024. The control group included 45 patients who received chemotherapy (oxaliplatin + calcium folinate + 5-fluorouracil), whereas the research group consisted of 54 patients who received Sijunzi decoction therapy in addition to the treatment administered in the control group. Comparative analyses were conducted from the following perspectives: Gastrointestinal function (defecation time, intestinal gas discharge time, and hospitalization time), serum markers [carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 125, and CA199], nutritional indicators [total protein (TP) and transferrin (TRF), traditional Chinese medicine (TCM) syndrome score, and grades III-IV adverse events (gastrointestinal reactions, renal/liver function impairment, and myelosuppression). RESULTS The two groups demonstrated similar defecation time (P > 0.05), but the intestinal gas discharge time and hospitalization time were significantly shortened in the research group (P < 0.05). Further, the research group exhibited significant CEA, CA125, and CA199 reductions after treatment, which were lower compared to the control group, as well as notable increases in TP and TRF that were statistically higher than the control group (all P < 0.05). Furthermore, the research group demonstrated an evident decrease in TCM syndrome scores in areas, such as poor appetite, epigastric distension and pain, fatigue and weakness (P < 0.01), and abdominal distension after eating, which are notably lower than those in the control group (P < 0.01), with a comparable incidence of grades III-IV adverse events (P > 0.05). CONCLUSION Our research results indicate that Sijunzi decoction plus chemotherapy exerts a good rehabilitation-promoting effect on gastrointestinal function in patients after GC surgery and significantly downregulates abnormally increased CEA, CA125, and CA199 levels.
Collapse
Affiliation(s)
- Xiao-Dong Wang
- Department of Oncology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning Province, China
| | - Xiao-Qing Su
- Department of Traditional Chinese Medicine, Tawan Community Health Service Center, Shenyang 110032, Liaoning Province, China
| | - Hong Gao
- Department of Oncology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning Province, China
| |
Collapse
|
8
|
Lu B, Pan S, He J, Li B, Cao N, Fu X, Liu W, Huang Y, Tian Y, Xu D, Li W. Protective effects of polysaccharide of Atractylodes macrocephala Koidz and Jiawei Si-jun-zi Decoction on gut health and immune function in cyclophosphamide-treated chicks. Poult Sci 2025; 104:105160. [PMID: 40267565 DOI: 10.1016/j.psj.2025.105160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/08/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025] Open
Abstract
The gut serves not only as digestive but also as critical immune organ, playing a vital role in maintaining the growth performance and immune function of poultry. Atractylodes macrocephala Koidz (AMK) is known for its antioxidant, anti-inflammatory and immunomodulatory properties. This study utilized a Cyclophosphamide (CTX)-induced gut injury model to explore the effects of Polysaccharide of Atractylodes macrocephala Koidz (PAMK) and the Jiawei Si-jun-zi Decoction (JSD) on alleviating gut injury and modulating immune function. The experimental results demonstrated that CTX significantly reduced the average daily gain (ADG) and antioxidant capacity of broiler chicks, disrupted intestinal barrier function, and induced gut microbiota dysbiosis. However, supplementation with PAMK and JSD significantly improved ADG, enhanced antioxidant enzyme activity, alleviated oxidative stress, and upregulated the expression of barrier-related genes such as ZO-1 and Occludin. Additionally, PAMK and JSD significantly increased anti-inflammatory cytokines, including IL-10 and TGF-β, improved gut microbiota diversity, enriched beneficial microbial populations, and restored the microbiota balance disrupted by CTX. These findings suggest that PAMK and JSD effectively mitigate CTX-induced intestinal injury by regulating the antioxidant system, strengthening intestinal barrier function, and restoring gut microbiota structure. This study provides a scientific basis for the development of safe and effective feed additives and proposes a novel strategy to reduce antibiotic use in poultry farming.
Collapse
Affiliation(s)
- Baili Lu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Shirou Pan
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiayu He
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Bingxin Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Nan Cao
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xinliang Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenjun Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Danning Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wanyan Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
9
|
Yang F, Yan Q, Wang Y, Li Q, Wang J, Zeng X, Pi Y, Zhang M, Wei L. AMP1-1 alleviates bone loss in weightless rats by reducing peripheral 5-HT content via the microbiota-gut-bone axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156447. [PMID: 39923429 DOI: 10.1016/j.phymed.2025.156447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Weightlessness-induced bone loss (WIBL) refers to the reduction of bone mass and the decline of bone resistance to load in a weightless environment. However, current treatment strategies aimed at increasing bone mass are associated with various limitations and side effects, highlighting the urgent need for safer and more effective therapeutic options to address WIBL. PURPOSE We aimed to further explore the potential mechanism of the anti-WIBL effect of Atractylodes macrocephalon polysaccharide1-1(AMP1-1). To find a better way to treat WIBL and provide new insights for the development of therapeutic drugs for this condition. METHODS Firstly, the anti-weightlessness bone loss of AMP1-1 was verified by micro-computed tomography (Micro-CT), three-point mechanical bending test and Western Blot (WB). Subsequently, the intestinal barrier was examined using histopathology, immunohistochemistry (IHC), and WB. Finally, validation experiments were performed using fecal microbiota transplantation (FMT). After FMT, 16S rDNA sequencing was used to analyze the gut microbiota composition in the rat feces. RESULTS AMP1-1 was able to inhibit WIBL by enhancing bone mass, improving toughness, and increasing osteogenic activity. Meanwhile, AMP1-1 reduced peripheral 5-HT content by restoring enterochromaffin cell function through gut microbiota regulation and tight junction repair. FMT of rat fecal microbiota after gavage of AMP1-1 into tail suspension rats still has the effects of regulating gut microbiota, repairing intestinal barrier and reducing bone loss. CONCLUSION Our results demonstrate that AMP1-1 exerts a protective effect against WIBL in rats, potentially by modulating 5-HT content and 5-HT-related metabolism in bone tissue through microbiota-gut-bone axis. This study is the first to elucidate the mechanism of AMP1-1 in mitigating WIBL through the perspective of the microbiota-gut-bone axis. Moreover, this research integrates plant extract research with the issue of bone loss induced by microgravity (aerospace medicine), thereby opening new avenues for natural drug research.
Collapse
Affiliation(s)
- Fan Yang
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Qiuxin Yan
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Yunhao Wang
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Qiao Li
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Jinpeng Wang
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Xiangyin Zeng
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Yaning Pi
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Manrui Zhang
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Lijun Wei
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China.
| |
Collapse
|
10
|
Chen C, Sun B, Chen K, Bao H, Tao Y, Zhou J, Yuan X, He L, Lu Z, Chen K, Li Y, Yu C, Chen Y, Zhang Y. Atractylenolide-I restore intestinal barrier function by targeting the S100A9/AMPK/mTOR signaling pathway. Front Pharmacol 2025; 16:1530109. [PMID: 40196359 PMCID: PMC11973269 DOI: 10.3389/fphar.2025.1530109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Impaired intestinal epithelial barrier function is closely associated with the pathogenesis of ulcerative colitis (UC). Atractylenolide-I (AT-I), a major sesquiterpene derived from the herb Atractylodes macrocephala Koidz., has been reported to alleviate DSS-induced colitis in mice. This study aims to investigated the protective effects of AT-1 on intestinal epithelial barrier function and elucidate it's underlying mechanisms. In vivo, an acute colitis model was established in mice, and transcriptomic analysis to identify differentially expressed genes. In vitro, overexpression plasmids and recombinant protein were used to evaluate their effects on intestinal barrier function, and further analysis of its potential mechanisms.The study found that AT-1 ameliorate DSS-induced acute ulcerative colitis, exhibiting protective effects on the intestinal barrier. Transcriptomic analysis revealed that AT-1 significantly modulated the expression of S100A8 and S100A9. Further investigations indicated that S100A9, rather than S100A8, mediated the expression of tight junction proteins, meanwhile, AT-1 reduces neutrophil activation and subsequent release of S100A9. Mechanistically, recombinant human S100A9 protein was found to induce a decrease in intracellular Ca2+ concentration, while AT-1 regulated the expression of tight junction proteins via modulation of the AMPK/mTOR signaling pathway. AT-1 enhances the recovery of DSS-induced intestinal barrier dysfunction by regulating the recombinant human S100A9 protein-mediated AMPK/mTOR signaling pathway. This study provides new insights into the pathogenesis of ulcerative colitis and suggests potential therapeutic strategies for its treatment.
Collapse
Affiliation(s)
- Chen Chen
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bingjie Sun
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Keming Chen
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Bao
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Xuzhou City Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Xuzhou, China
| | - Yu Tao
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyong Zhou
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaomin Yuan
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Linhai He
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhihua Lu
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kaidi Chen
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Li
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengli Yu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yugen Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yinan Zhang
- Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Cheng Y, Di YM, May B, Zhang AL, Xue CC, Zhang B. Effects of Chinese herbal medicine on colorectal adenoma recurrence following polypectomy: a systematic review and meta-analysis. Front Pharmacol 2025; 16:1460900. [PMID: 40183090 PMCID: PMC11966114 DOI: 10.3389/fphar.2025.1460900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 02/05/2025] [Indexed: 04/05/2025] Open
Abstract
Objective Preventing colorectal adenoma (CRA) recurrence after polypectomy is essential. However, the current evidence of Chinese herbal medicine (CHM) for CRA recurrence is still limited. This study aims to synthesize the effects of CHM as a prevention method for CRA recurrence. Methods Nine databases were searched up to May 2024. Randomised controlled trials identifying the preventive effects of CHM among people with CRA post-polypectomy were included. spreadsheets were used to collect and extract data. RevMan and STATA were used for data analysis. We performed subgroup and sensitivity analyses to explore potentially influencing variables. Results Twenty trials (2,325 participants) were included. The commonly used botanical drugs belonged to the categories of strengthening the spleen and anti-tumour metabolites. Compared to routine care (RC) alone, oral CHM plus RC significantly reduced the CRA recurrence rate at 12 months (RR 0.51, 95% CI [0.39, 0.67], I2 = 42%), 6 months (RR 0.44, 95% CI [0.36, 0.55], I2 = 0%), and 3 months (RR 0.46, 95% CI [0.22, 0.96], I2 = 0%) post-polypectomy. Compared to CHM placebo plus RC, San zi granule combined with RC significantly reduced CRA recurrence at 12 months post-polypectomy (RR 0.39, 95% CI [0.16, 0.93], I2 = 0%) and during the 2-year follow-up (RR 0.73, 95% CI [0.58, 0.90]). There were no significant differences between groups for treatment duration and syndromes. Additional analysis showed that oral CHM containing the botanical drugs of Si jun zi decoction plus RC reduced CRA recurrence at 12 months post-polypectomy with a low heterogeneity, compared to RC alone (RR 0.26, 95% CI [0.13, 0.54], I2 = 0%). Adverse events were similar in the above two comparisons. Conclusion Oral CHM combined with RC may reduce CRA recurrence and be well-tolerated. San zi granule and Si jun zi decoction may be representative prescriptions Experimental studies of the frequent botanical drugs have found anti-cancer effects that may account for the clinical findings. Future rigorous clinical trials are needed due to low-to-moderate certainty of evidence. Systematic Review Registration PROSPERO (CRD42023324197), https://www.crd.york.ac.uk/PROSPERO/view/CRD42023324197.
Collapse
Affiliation(s)
- Yi Cheng
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC, Australia
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Yuan Ming Di
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Brian May
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Anthony Lin Zhang
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Charlie Changli Xue
- The China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC, Australia
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Beiping Zhang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Ye ZW, Yang QY, Yang DH, Lin QH, Liu XX, Li FQ, Yan FF, Luo P, Qin S, Wang F. Transdermal administration of herbal essential oil alleviates high-fat diet-induced obesity by regulating metabolism and gut microbiota. Front Pharmacol 2025; 16:1565030. [PMID: 40176906 PMCID: PMC11962428 DOI: 10.3389/fphar.2025.1565030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Obesity, a global health challenge, is characterized by excessive fat accumulation and associated metabolic disorders. The ZhiZhu decoction, a traditional Chinese herbal formula consisting of Citrus aurantium L. (ZS, ZhiShi in Chinese) and Atractylodes macrocephala Koidz (BZ, Baizhu in Chinese), is widely recognized in clinics for its gastrointestinal regulatory effects. Methods The chemical composition of ZS-BZ essential oil (ZBEO) was characterized using gas chromatography-mass spectrometry (GC-MS). Concurrently, we conducted in vitro investigations using HepG2 hepatoma cells to evaluate its anti-lipid deposition potential. To further elucidate the anti-obesity mechanisms, an in vivo model was established through high-fat diet (HFD)-induced obese rats, followed by transdermal ZBEO administration. Systemic analyses were performed integrating serum metabolomic profiling via UPLC-QTOF-MS and gut microbiota dynamics assessment through 16S rRNA gene sequencing. Results ZBEO, rich in atractylon, D-limonene, and γ-elemene and shown to reduce lipid accumulation. Transdermal ZBEO administration in obese rats led to significant weight loss and improved serum metabolic indexes related to the POMC/CART signaling pathway. Additionally, ZBEO altered gut microbiota, enhancing beneficial bacteria and affecting metabolic pathways linked to obesity. Discussion We discovered that ZBEO exerts a significant influence on obesity by modulating key biological processes, including glucose metabolism, lipid metabolism, and the composition of gut microbiota.
Collapse
Affiliation(s)
- Zu-Wen Ye
- Cancer Research Center, The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qi-Yue Yang
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Minola, NY, United States
| | - Qiao-Hong Lin
- Cancer Research Center, The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiao-Xia Liu
- Cancer Research Center, The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Feng-Qin Li
- Cancer Research Center, The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Fang-Fang Yan
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Luo
- Cancer Research Center, The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Si Qin
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fang Wang
- Cancer Research Center, The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
13
|
Park C, Kim M, Park JW, Kim J, Bu Y, Ko SJ. Effect of Bojanggunbi-tang and its primary constituent herbs on the gastrointestinal tract: a scoping review. Front Pharmacol 2025; 16:1543194. [PMID: 40144663 PMCID: PMC11938064 DOI: 10.3389/fphar.2025.1543194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Background Bojanggunbi-tang (BGT), a herbal prescription used in traditional Korean medicine, has been used to treat various gastrointestinal (GI) diseases. Methods Studies on BGT published until May 2024 were retrieved from the electronic databases of Medline, CENTRAL, Embase, AMED, CNKI, CiNii, Kmbase, KISS, NDSL, and OASIS using GI-related terms. All study types, regardless of the research method or language, were eligible for inclusion. Additional articles on Lonicera japonica, Atractylodes macrocephala, and Alisma canaliculatum, which are key components of BGT, were retrieved from the databases of Medline, CENTRAL, Embase, and Web of Science using GI-specific terms. The basic information, research models, administration methods, evaluation methods, and treatment outcomes of the selected studies were examined subsequently. Results Fourteen studies, comprising nine animal studies, one cell-based study, and four human studies, were included in the final analysis. BGT was found to exhibit anti-inflammatory effects, promote restoration of the gastrointestinal mucosa, and regulate GI motility. Analysis of the key herbal components L. japonica, A. macrocephala, and A. canaliculatum revealed that they inhibit inflammatory cytokines and oxidative substances, regulate serotonin and cholinergic pathways, and modulate intestinal microbiota. Conclusion This scoping review confirmed the therapeutic potential and mechanisms of action of BGT and its main components, L. japonica, A. macrocephala, and A. canaliculatum, thereby indicating its ability to enhance GI health. Further studies, including randomized clinical trials, must be conducted in the future to confirm these findings. Scoping review registration The study was registered in OSF, an international scoping review database: https://doi.org/10.17605/OSF.IO/ATU4S.
Collapse
Affiliation(s)
- Chaehyun Park
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Internal Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Minjeong Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Internal Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Jae-Woo Park
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Internal Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
- Department of Digestive Diseases, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinsung Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Digestive Diseases, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Division of Digestive Diseases, Department of Korean Internal Medicine, Kyung Hee University Korean Medicine Hospital, Seoul, Republic of Korea
| | - Youngmin Bu
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seok-Jae Ko
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Internal Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
- Department of Digestive Diseases, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Luo W, Zhang K, Wang Y, Ye M, Zhang Y, Xu W, Chen L, Li H. The Rhizome of Atractylodes macrocephala Koidz.: A Comprehensive Review on the Traditional Uses, Phytochemistry and Pharmacology. Chem Biodivers 2025; 22:e202401879. [PMID: 39473269 DOI: 10.1002/cbdv.202401879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/28/2024] [Indexed: 03/16/2025]
Abstract
Atractylodes macrocephala Koidz. (A. macrocephala) is a perennial herb of the genus Atractylodes. The rhizome of A. macrocephala (AMR) is its medicinal part. It primarily grows in Southeast Asia and function to invigorate the spleen and qi, drying dampness and removing water. It has long been used for cancer treatment, relieving inflammation, and improving gastrointestinal function, highlighting its remarkable medicinal value. This paper focuses on recent advancements in the traditional uses, phytochemistry, and pharmacology of AMR from 2018 to the present, while exploring its therapeutic and scientific potential. In recent years, more than 120 compounds have been identified in AMR. The primary active components have been identified as sesquiterpenoids, polysaccharides and polyacetylenes. Modern pharmacological studies have demonstrated that AMR has anti-inflammatory, anti-tumor, immunity enhancement, gastrointestinal function improvement, and other pharmacological effects. It is mainly employed in the clinical treatment of tumors and gastrointestinal diseases, showing promising developmental potential. Its mechanism may be related to reducing oxidative stress, inhibiting the expression of inflammatory mediators and factors, and alleviating apoptosis through related signaling pathways. It is hoped that this review can provide a theoretical reference and scientific basis for further systematic research and extensive clinical application of AMR.
Collapse
Affiliation(s)
- Weihong Luo
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Kexin Zhang
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yali Wang
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Miao Ye
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yuqin Zhang
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Wei Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Lixia Chen
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Hua Li
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Wuya College of Innovation, School of Pharmacy, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| |
Collapse
|
15
|
Zheng Y, Gao X, Tang J, Gao L, Cui X, Liu K, Zhang X, Jin M. Exploring the Efficacy and Target Genes of Atractylodes Macrocephala Koidz Against Alzheimer's Disease Based on Multi-Omics, Computational Chemistry, and Experimental Verification. Curr Issues Mol Biol 2025; 47:118. [PMID: 39996839 PMCID: PMC11853862 DOI: 10.3390/cimb47020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
OBJECTIVE To unveil the efficacy and ferroptosis-related mechanisms of Atractylodes Macrocephala Koidz (AMK) against Alzheimer's disease (AD), which is the most widespread neurodegenerative disease. METHODS Gene set variation analysis (GSVA) scores were used to investigate the relationship between ferroptosis and AD. Logistic regression with seven feature selections and a deep learning model were utilized to identify potential targets of AMK based on transcriptomic data from multiple tissues. A transcriptome-wide association study (TWAS), summary-data-based mendelian randomization (SMR), and mendelian randomization (MR) were utilized to validate the causal relationship between target genes and AD risk. A single-gene gene set enrichment analysis (GSEA) was employed to investigate the biological pathways associated with the target genes. Three molecular docking strategies and a molecular dynamics simulation were employed to verify the binding domains interacting with AMK. Furthermore, the anti-AD effects of AMK were validated in a zebrafish AD model by testing behavior responses, apoptosis, and the deposition of beta-amyloid (Aβ) in the brain. Ultimately, real-time qPCR was used to verify the ferroptosis-related targets, which was identified via multi-omics. RESULTS Ferroptosis is an important pathogenic mechanism of AD, as suggested by the GSVA scores. AMK may exert its anti-AD activity through targets genes identified in the brain (ATP5MC3, GOT1, SAT1, EGFR, and MAPK9) and blood (G6PD, PGD, ALOX5, HMOX1, and ULK1). EGFR and HMOX1 were further confirmed as target genes mediating the anti-AD activity of AMK through TWAS, SMR, and MR analyses. The GSEA results indicated that EGFR may be involved in oxidative phosphorylation-related pathways, while HMOX1 may be associated with lysosome and phagosome pathways. The results of three molecular docking strategies and molecular dynamics simulations implied that the kinase domain of EGFR and the catalytic domain of HMOX1 played pivotal roles in the interaction between AMK and the targets. In a zebrafish model, AD-like symptoms including motor slowness and delayed responses, neuronal apoptosis, and plaque deposition in the brain, were significantly improved after AMK treatment. Accordingly, AMK reversed the abnormal expression of egfra and hmox1a, two core targets genes involved in ferroptosis. CONCLUSIONS AMK significantly alleviated AD-like symptoms through the modulation of EGFR and HMOX1, which might reduce lipid peroxidation, thereby suppressing ferroptosis. This study provided evidence supporting the efficacy and therapeutic targets associated with ferroptosis in AMK-treated AD, which aid in the development of therapeutic interventions.
Collapse
Affiliation(s)
- Yuanteng Zheng
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210, China
| | - Xin Gao
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Jiyang Tang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Li Gao
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210, China
| | - Xiaotong Cui
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Xiujun Zhang
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210, China
| | - Meng Jin
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210, China
| |
Collapse
|
16
|
Zhang H, Gao M, Wang H, Zhang J, Wang L, Dong G, Ma Q, Li C, Dai J, Li Z, Yan F, Xiong H. Atractylenolide I prevents acute liver failure in mouse by regulating M1 macrophage polarization. Sci Rep 2025; 15:4015. [PMID: 39893238 PMCID: PMC11787394 DOI: 10.1038/s41598-025-86977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
Acute liver failure (ALF) is a life-threatening clinical syndrome with a substantial risk of mortality. A murine model of lipopolysaccharide (LPS)- and D-galactosamine (D-GalN)-induced ALF is widely used to investigate the underlying mechanisms and potential therapeutic drugs for human liver failure. Atractylenolide I (ATR-I) is an active component of the Atractylodes macrocephala rhizome and possesses various pharmacological activities, including anti-tumor, anti-inflammatory, and anti-oxidant properties. Given the key role of oxidative stress and inflammation in ALF pathogenesis, this study investigates the protective effects of ATR-I on LPS/D-GalN-induced ALF in mice. The results suggest that ATR-I pretreatment significantly ameliorates ALF, as evidenced by decreased serum aminotransferase levels and prolonged mice survival. Additionally, ATR-I pretreatment inhibits oxidative stress. Furthermore, the ATR-I pretreatment markedly suppresses M1 macrophage activation in hepatic mononuclear cells. In vitro experiments with bone marrow-derived macrophages indicate that ATR-I regulates macrophage polarization through the mitogen-activated protein kinase (MAPK) and interferon regulatory factor (IRF) signaling pathways. Collectively, ATR-I pretreatment protects mice from LPS/D-GalN-induced ALF partially by regulating M1 macrophage polarization.
Collapse
Affiliation(s)
- Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Min Gao
- Clinical Laboratory, Jining First People's Hospital, Jining, Shandong, China
| | - Haiyan Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Lin Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Zhihua Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
17
|
Li C, Zhang B, Kim M, Liu H, Yang F, Chen K, Shi H. Atractylenolide Ⅲ partially alleviates tunicamycin-induced damage in porcine oocytes during in vitro maturation by reducing oxidative stress. Anim Reprod Sci 2025; 273:107761. [PMID: 39765131 DOI: 10.1016/j.anireprosci.2024.107761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/19/2025]
Abstract
Assisted reproductive technology (ART) is widely used to address infertility and enhance reproductive outcomes in livestock. Among various ART techniques, in vitro maturation (IVM) is commonly used to obtain high-quality oocytes but is susceptible to oxidative stress. In traditional Chinese medicine, Rhizoma Atractylodis Macrocephalae (Bai Zhu) is used to enhance maternal and fetal health. Atractylenolide Ⅲ (AⅢ), a major component of Bai Zhu, has shown both antioxidant properties and oxidative stress induction, leading to controversy. This study used porcine oocytes as a model to investigate the effects of AⅢ under tunicamycin (TM)-induced oxidative stress. During IVM, oocytes were treated with various concentrations of AⅢ and a constant dose of TM. AⅢ promoted oocyte maturation and cumulus cell expansion, with the optimal concentration being 1 mg/L. AⅢ reduced reactive oxygen species (ROS) and malondialdehyde (MDA) levels, indicating reduced oxidative damage. Mitochondrial function and membrane potential (MMP) were preserved in AⅢ-treated oocytes. Additionally, AIII could alleviate TM-induced endoplasmic reticulum (ER) stress, as shown by decreased mRNA expression of ER stress markers. Following parthenogenetic activation (PA), AⅢ-treated oocytes exhibited increased cleavage and blastocyst formation rates with reduced apoptosis compared to the TM group. These findings suggest that AⅢ protects against oxidative stress, improving oocyte quality and developmental potential, with potential applications in ART.
Collapse
Affiliation(s)
- Chuang Li
- China-Japan Union Hospital of Jilin University, Rehabilitation Medicine Department, Changchun, Jilin, China; Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Butian Zhang
- China-Japan Union Hospital of Jilin University, Rehabilitation Medicine Department, Changchun, Jilin, China
| | - Minkyu Kim
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea; MK biotech Inc., Daejeon, South Korea
| | - Haixing Liu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, China
| | - Feiyang Yang
- College of Computer Science and Technology, Jilin University, Jilin, China
| | - Ke Chen
- Department of international trade, College of Economics and Management, Chungnam National University, Daejeon, South Korea
| | - Hongfeng Shi
- China-Japan Union Hospital of Jilin University, Rehabilitation Medicine Department, Changchun, Jilin, China.
| |
Collapse
|
18
|
Qi H, Gao Y, Zhang Z, Zhang X, Tian D, Jiang Y, Zhang L, Zeng N, Yang R. HouShiHeiSan attenuates sarcopenia in middle cerebral artery occlusion (MCAO) rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118917. [PMID: 39423947 DOI: 10.1016/j.jep.2024.118917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/15/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Physical therapy is the main clinical treatment for limb symptoms after ischemic stroke, and there is a lack of reliable drug intervention programs. HouShiHeiSan (HS)comes from "Synopsis of the Golden Chamber", where it is recorded: "seauelae of wind stroke and heaviness of limbs", indicating this formulae is a promising opion for clinical practice. AIM OF THE STUDY The aim of this study is to explore the therapeutic effect of HS on sarcopenia after ischemic stroke (ISS) by using the middle cerebral artery occlusion (MCAO) rats. MATERIALS AND METHODS After 7 days of adaptive feeding Sprague-Dawley (SD) rats were randomly divided into sham and MCAO surgery groups. After MCAO operation, the agreement of the models was evaluated with a laser speckle instrument, and then, treatment groups were administered HS and related solvent. During the 7 days treatment period, the Zea-Longa score was used to assess the neural function, the treadmill for exercise capacity and traction instrument for grip strength. Besides, the physiological electrical signal system was used to record muscular electrical signals, while the muscle thickness was measured by ultrasound. After data acquisition on the 7th day after MCAO operation, the soleus muscle was dissected, and the indexes of length, weight of whole muscle tissue and cross-sectional area of muscular cells by H&E were recorded. Subsequently, mechanistic indicators were examined. MuRF1 and MAFbx expression was detected by immunohistochemistry (IHC). Furthermore, the expression level of more related indicators of muscular differentiation and cellular proterin balance, including mTOR, p-mTOR, AKT, p-AKT, p70s6k, p-p70s6, FOXO1, p-FOXO1, MyoD1, Myostatin, MuRF1 and MAFbx, were tested via Western blot. RESULTS HS improved motor performance and promoted muscle regeneration in MCAO rats. In terms of motor ability, HS mixed with alcohol significantly improved the neurological function damage, reduce the weight loss, increase the running distance per unit time and increase the grip strength. The postoperative muscle electrical signal intensity increased, and muscle thickness, weight, and length were maintained. The HS with alcohol group significantly maintained the cross-sectional size of muscle cells and reduced the number of MyoD1 and myostatin-positive cells in the muscle tissue. It simultaneously promoted the expression of p-mTOR, p-AKT, p-p70s6k, and MyoD1 to promote the synthesis of muscle proteins and inhibited the expression of p-FOXO1, myostatin, MAFbx, and MuRF1 to reduce muscle protein degradation. CONCLUSION HS can enhance muscle protein synthesis and decrease protein breakdown by activating the AKT/mTOR/FOXO1 pathway, thereby preserving muscle health and enhancing motor performance following stroke in rats.
Collapse
Affiliation(s)
- Hu Qi
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuanlin Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zeyang Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiongwei Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dan Tian
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanning Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lihong Zhang
- Department of Otorhinolaryngology, Chengdu Xinjin District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
| | - Nan Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ruocong Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
19
|
Gao Y, Wang D, Ma X, Li J, Wang D, Chen B, Yang X, Leng H. The biological function of Atractylodes lancea and its application in animal husbandry: a review. Front Vet Sci 2025; 11:1518433. [PMID: 39867604 PMCID: PMC11757280 DOI: 10.3389/fvets.2024.1518433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Atractylodes lancea, is a herbaceous plant of the Asteraceae family which is a traditional Chinese herbal medicine. It is often used for dehumidification, antiemetics, spleen strengthening and antipyretic effects. Atractylodes lancea is rich in various bio-active substances and has many biological functions, for instance anti-inflammatory, antioxidant and antiviral effects. Therefore, it is widely used in animal production, such as relieving heat stress, protecting intestinal health and regulating immunity. In recent years, it has received widespread attention in green cultivation. This article reviews the biological functions of Atractylodes lancea and looks forward to its application prospects in animal husbandry, in order to provide a theoretical basis for Atractylodes lancea to become a new feed additive in animal production.
Collapse
Affiliation(s)
- Yang Gao
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Dong Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xue Ma
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Jiahui Li
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Difei Wang
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Bo Chen
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Xuexi Yang
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Huan Leng
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
20
|
Ren H, Dai L, Ma C, Zhou L, Wang L. Hydrolysates exhibited differential modulatory effects on macrophage compared to the raw polysaccharide (xyloglucomannan) isolated from Atractylodes macrocephala Koidz. Prep Biochem Biotechnol 2024; 55:620-633. [PMID: 40311656 DOI: 10.1080/10826068.2024.2444979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
It has been claimed that Atractylodes macrocephala applied as a traditional Chinese medicinal herb for centuries, owing to its excellent immunomodulatory and hepatic protective properties. This study aims to explore the immunomodulation of oligosaccharides obtained by gastrointestinal digestion after oral administration of A. macrocephala polysaccharide (xyloglucomannan, XGM). The analysis of chemistry showed that XGM consisted of D-glucose, D-mannose, and D-xylose in a molar ratio of 6.8:3.0:1.0, and the molecular weight was 5465 Da. Furthermore, HCl and pancreatic amylase were used to simulate digestive tract hydrolysis of polysaccharides, obtaining two XGM hydrolysates (XGM-AH and -EH). Oligosaccharide identification results indicated that both XGM-AH and XGM-EH contained glucans (degree of polymerization, DP = 2 ∼ 5). XGM-AH had a wider variety of oligosaccharides than XGM-EH, mainly glucomannans. In vitro immunostimulatory assay indicated that XGM could effectively stimulate the activation and enhance the phagocytosis of RAW264.7 cells. In contrast, XGM-AH and -EH exhibited anti-inflammatory effects, inhibited lipopolysaccharide (LPS)-induced aberrant activation of macrophages, reduced the release of cytokines of macrophages. Flow cytometry assay suggested that XGM-AH and -EH inhibited LPS-induced M1-type polarization of macrophages. In conclusion, XGM-derived oligosaccharides possess anti-inflammatory bioactivities and exhibit differential macrophage regulatory behaviors in contrast to the immune-activating effects exhibited by the prototype polysaccharides.
Collapse
Affiliation(s)
- Huanzhi Ren
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Longchao Dai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Chang Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Luyao Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Lingchong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
21
|
Xie Y, Lin N, Song P, Ni X, Wang Y, Huang P, Han Z, Wang D, Sun N. Identification of immunostimulatory activities and active compounds from sequentially extracted fractions of rhizosphere fungal fermentation broth of Atractylodes macrocephala Koidz. rhizomes. Front Pharmacol 2024; 15:1460614. [PMID: 39759456 PMCID: PMC11695301 DOI: 10.3389/fphar.2024.1460614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Pharmacological studies have shown that the rhizome of Atractylodes macrocephala Koidz. (Compositae), commonly known as atractylodes macrocephala rhizome (AMR), can modulate immunity. Nevertheless, its resources have been largely depleted, and the pharmacological activity of artificial AMR is relatively modest. We hypothesized that the fermented crude extracts of the rhizosphere fungi of AMR would have similar immunomodulatory effects since the metabolites generated by these fungi are similar to those of the host plant given their long-term synergistic evolution. Methods Rhizosphere fungi were isolated from the rhizosphere soil of AMR and cultured to produce the secondary metabolites. These metabolites were then sequentially extracted with four solvents of increasing polarities (petroleum ether, ethyl acetate, n-butanol, and water). The in vitro immunomodulatory activities of the metabolite extracts were evaluated by cell proliferation capacity, cell phagocytosis activity, NO secretion capacity, cell morphology changes, and cytokine (TNF-α, IL-1β and IL-6) secretion capacity in RAW264.7 macrophage cells. The biologically active secondary metabolites produced by the rhizosphere fungi were identified using ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). Results Three rhizosphere fungi, namely Penicillium (MK-1), Penicillium glaucoroseum (MN-1), and Purpureocillium lilalium (MG-1), were isolated from the rhizosphere soil of AMR. The assays for cell proliferation capacity, cell phagocytosis activity, and NO secretion capacity showed that all metabolite extracts exhibited in vitro immunomodulatory activities. The crude extracts of MG-1 exhibited the highest levels of in vitro immunomodulatory activities compared to the other extracts. Furthermore, it was demonstrated that the fermented extracts of MG-1 could facilitate immunological enhancement in vitro by altering the cellular morphology in the resting state and increasing the secretions of TNF-α, IL-1β, and IL-6. Meanwhile, there was no observable endotoxin contamination. The metabolite profiling of MG-1 by UHPLC-Q-TOFMS revealed the presence of several compounds with established immunoreactive activities, including L-arginine, prostaglandin I2, deoxyguanosine, bestatin, and osthole. Discussion The present study demonstrated that the metabolite extracts of the rhizosphere fungi isolated from the rhizosphere soil of AMR exhibited in vitro immunoreactive activities and that these rhizosphere fungi could produce several bioactive metabolites. The crude extracts of the rhizosphere fungi may hence extend the medicinal utility of AMR and provide a basis for further development of natural plant-based immunomodulators.
Collapse
Affiliation(s)
- Yuxin Xie
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Na Lin
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Pingping Song
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiangyan Ni
- Beijing Municipal Bureau of Agriculture and Rural Affairs, Beijing Agricultural Product Quality and Safety Center, Beijing, China
| | - Yakun Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Peng Huang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhili Han
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Dianlei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Nianxia Sun
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
22
|
Dai S, Wu Y, Zhu N, Zhao Y, Mao M, Li Z, Zhu B, Zhao W, Yuan X. Rapid and accurate detection of Fusarium oxysporum f. sp. Lycopersici using one-pot, one-step LAMP-CRISPR/Cas12b method. FRONTIERS IN PLANT SCIENCE 2024; 15:1485884. [PMID: 39759228 PMCID: PMC11695371 DOI: 10.3389/fpls.2024.1485884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025]
Abstract
Introduction Fusarium oxysporum f. sp. Lycopersici (Fol) is one of the most devastating plant pathogenic fungi, the causal agent of root rot for Atractylides macrocephala Koidz (AMK). An accurate rapid and convenient diagnosis for FoL detection is essential for determining management practices and preventing future losses for AMK. Methods Here, we developed a novel method for Fol detection by integrating loop-mediated isothermal amplification (LAMP) assay and CRISPR/Cas12b detection in one-pot, and the whole reaction can simultaneously amplify and detect the target gene of Fol in one-step. Results The total time of the present method is limited to 45 min and isothermally performed at 60°C. The limit of detection of this assay is 88.9 copies per reaction. The specificity of the LAMP-CRISPR/Cas12b method was 100% without any cross-reaction of other pathogens. A total of 24 nucleic acid samples were used to evaluate the performance of the LAMP-CRISPR/Cas12b method, including 12 with-Fol and 12 without-Fol. Compared with the gold standard results from real-time PCR, the present method provides a sensitivity of 100% (12/12), specificity of 100% (12/12), and consistency of 100% (24/24). Discussion Together, our preliminary results illustrated that the LAMP-CRISPR/Cas12b method is a rapid simple, and reliable tool for Fol diagnosis and could be applied in point-of-need phytopathogen detection.
Collapse
Affiliation(s)
- Shijie Dai
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yangsheng Wu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Na Zhu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yujin Zhao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mingjiang Mao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zheming Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weichun Zhao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaofeng Yuan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Guo Y, Liu J, Zhang S, Sun D, Dong Z, Cao J. A Transcriptome Approach Evaluating the Effects of Atractylenolide I on the Secretion of Estradiol and Progesterone in Feline Ovarian Granulosa Cells. Vet Sci 2024; 11:663. [PMID: 39729003 DOI: 10.3390/vetsci11120663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/05/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024] Open
Abstract
Atractylodes macrocephala Koidz (AMK) as an oriental medicine has been used in the treatment of threatened abortion. Atractylenolide I (AT-I) is one of the major bioactive components of AMK. This study aimed to investigate the effect of AT-I on the secretion of estradiol (E2) and progesterone (P4) in feline ovarian granulosa cells (FOGCs), which is necessary for pregnancy. At first, the proliferation of FOGCs after AT-I treatment was measured by CCK-8. Then, the synthesis of E2 and P4 were measured by ELISA. Lastly, transcriptome sequencing was used to detect the DEGs in the FOGCs, and RNA-seq results were verified by RT-qPCR and biochemical verification. It was found that AT-I could promote proliferation and the secretion of E2 and P4 in FOGCs; after AT-I treatment, 137 significant DEGs were observed, out of which 49 were up-regulated and 88 down-regulated. The DEGs revealed significant enrichment of 52 GO terms throughout the differentiation process (p < 0.05), as deciphered by Gene Ontology enrichment analysis. Kyoto Encyclopedia of Genes and Genomes analysis manifested that the DEGs were successfully annotated as members of 155 pathways, with 23 significantly enriched (p < 0.05). A relatively high number of genes were enriched for the cholesterol metabolism, ovarian steroidogenesis, and biosynthesis of unsaturated fatty acids. Furthermore, the contents of the total cholesterol and low-density lipoprotein cholesterol were decreased by AT-I treatment in the cell culture supernatant. The results indicated that AT-I could increase the ability of FOGCs to secrete E2 and P4, which might be achieved by activation of cholesterol metabolism.
Collapse
Affiliation(s)
- Yuli Guo
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Junping Liu
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuangyi Zhang
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Di Sun
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhiying Dong
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jinshan Cao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
24
|
Lin F, Xu Y, Liu B, Li H, Chen L. Research progress on extraction, separation, structure, and biological activities of polysaccharides from the genus Atractylodes: A review. Int J Biol Macromol 2024; 283:137550. [PMID: 39542321 DOI: 10.1016/j.ijbiomac.2024.137550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Plants of the genus Atractylodes are perennial herbaceous plants in the family Asteraceae, whose rhizome is often used in the production of medicines and health products. There are 6 main species in this genus, namely A. macrocephala, A. lancea, A. chinensis, A. carlinoides, A. koreana and A. japonica. Among them, A. lancea and A. macrocephala are the most extensively investigated. Polysaccharides as the main active ingredients extracted and isolated from plants in this genus, show good pharmacological activities in vivo and in vitro, such as immunomodulatory, antioxidant, antidiabetic and intestinal protective activities. The pharmacological activities of polysaccharides are closely related to their extraction methods and physicochemical properties. This article discusses the extraction and separation methods, molecular weight, monosaccharide composition, chemical structure characteristics and pharmacological activities of polysaccharides from the genus Atractylodes. Furthermore, a comparative analysis of the relationship of monosaccharide composition, relative molecular weight and structural modifications with the pharmacological activities of polysaccharides of the genus Atractylodes was carried out, which provided a reference for the development and utility of polysaccharides.
Collapse
Affiliation(s)
- Fei Lin
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
25
|
Li JR, Li LY, Zhang HX, Zhong MQ, Zou ZM. Atramacronoid A induces the PANoptosis-like cell death of human breast cancer cells through the CASP-3/PARP-GSDMD-MLKL pathways. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1475-1488. [PMID: 38958645 DOI: 10.1080/10286020.2024.2368841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
Breast cancer is the most common malignant tumor and a major cause of mortality among women worldwide. Atramacronoid A (AM-A) is a unique natural sesquiterpene lactone isolated from the rhizome of Atractylodes macrocephala Koidz (known as Baizhu in Chinese). Our study demonstrated that AM-A triggers a specific form of cell death resembling PANoptosis-like cell death. Further analysis indicated that AM-A-induced PANoptosis-like cell death is associated with the CASP-3/PARP-GSDMD-MLKL pathways, which are mediated by mitochondrial dysfunction. These results suggest the potential of AM-A as a lead compound and offer insights for the development of therapeutic agents for breast cancer from natural products.
Collapse
Affiliation(s)
- Jing-Rong Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ling-Yu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hai-Xin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ming-Qin Zhong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China
| |
Collapse
|
26
|
Yao Y, Shen G, Luo J, Wang J, Xu Z, Wang H, Cui L. Research Progress with Atractylone as an Antitumor Agent. Molecules 2024; 29:5450. [PMID: 39598839 PMCID: PMC11597220 DOI: 10.3390/molecules29225450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Atractylone is a sesquiterpenoid compound extracted from Rhizoma Atractylodis. As one of the main active components in the volatile oil of the Atractylodes genus, it has exhibited certain therapeutic effects, including anti-inflammatory, antiviral, antioxidant, antiallergic, antiangiogenic, and neuroprotective activities, among others. With further research on the chemical constituents and pharmacology of sesquiterpenes, research on the antitumor activity of Atractylone has also been further expanded. Much of the current literature pays particular attention to the antitumor activity of Atractylone, which was found to inhibit the apoptosis of tumor cells and prevent growth, invasion, and migration through different apoptosis pathways and signaling pathways. Due to its promising potential for cancer prevention, it may play a role in reducing the incidence of malignant tumors. In this paper, the antitumor activity and mechanism of Atractylone are reviewed, providing a reference to inform future research on the tumor treatment, clinical application, and further development and utilization of this plant genus.
Collapse
Affiliation(s)
- Ying Yao
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
| | - Guanghuan Shen
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
- Postdoctoral Programme of Meteria Medica Institute, Harbin University of Commerce, Harbin 150076, China
| | - Jianghan Luo
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
| | - Jinhong Wang
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
| | - Zheng Xu
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
| | - Hao Wang
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
| | - Linlin Cui
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
| |
Collapse
|
27
|
Xu Y, Huang C, Xu H, Xu J, Cheng KW, Mok HL, Lyu C, Zhu L, Lin C, Tan HY, Bian Z. Modified Zhenwu Decoction improved intestinal barrier function of experimental colitis through activation of sGC-mediated cGMP/PKG signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118570. [PMID: 39002824 DOI: 10.1016/j.jep.2024.118570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND The invasion of luminal antigens and an aberrant immune response resulting from a disrupted physical epithelial barrier are the key characteristics of ulcerative colitis (UC). The restoration of damaged epithelial function is crucial for maintaining mucosal homeostasis and disease quiescence. Current therapies for UC primarily focus on suppressing inflammation. However, most patients fail to respond to therapy or develop secondary resistance over time, emphasizing the need to develop novel therapeutic targets for UC. Our study aimed to identify the potential targets of a novel modified herbal formula from the Zhen Wu Decoction, namely CDD-2103, which has demonstrated promising efficacy in treating chronic colitis. METHODS The effect of CDD-2103 on epithelial barrier function was examined using in vitro and ex vivo models of tissue injury, as well as a chronic colitis C57BL/6 mouse model. Transcriptomic analysis was employed to profile gene expression changes in colonic tissues following treatment with CDD-2103. RESULTS Our in vivo experiments demonstrated that CDD-2103 dose-dependently reduced disease severity in mice with chronic colitis. The efficacy of CDD-2103 was mediated by a reduction in goblet cell loss and the enhancement of tight junction protein integrity. Mechanistically, CDD-2103 suppressed epithelial cell apoptosis and tight junction protein breakdown by activating the soluble guanynyl cyclase (sGC)-mediated cyclic guanosine monophosphate (cGMP)/PKG signaling cascade. Molecular docking analysis revealed strong sGC ligand recognition by the CDD-2103-derived molecules, warranting further investigation. CONCLUSION Our study revealed a novel formulation CDD-2103 that restores intestinal barrier function through the activation of sGC-regulated cGMP/PKG signaling. Furthermore, our findings suggest that targeting sGC can be an effective approach for promoting mucosal healing in the management of UC.
Collapse
Affiliation(s)
- Yiqi Xu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chunhua Huang
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hengyue Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jiaruo Xu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ka Wing Cheng
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Heung Lam Mok
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Cheng Lyu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lin Zhu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hor Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Zhaoxiang Bian
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
28
|
Yang J, Ou W, Lin G, Wang Y, Chen D, Zeng Z, Chen Z, Lu X, Wu A, Lin C, Liang Y. PAMK Ameliorates Non-Alcoholic Steatohepatitis and Associated Anxiety/Depression-like Behaviors Through Restoring Gut Microbiota and Metabolites in Mice. Nutrients 2024; 16:3837. [PMID: 39599623 PMCID: PMC11597619 DOI: 10.3390/nu16223837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES Long-term Western diet-induced non-alcoholic steatohepatitis (NASH) can lead to liver cirrhosis and NASH-associated hepatocellular carcinoma, which are end-stage liver diseases. Meanwhile, NASH is associated with mental burden and worsens as the disease progresses. Atractylodes Macrocephala Koidz (AMK) is one of the main ingredients of Shenling Baizhu San, and the effect of Polysaccharide from AMK ameliorates (PAMK), as an important medicinal ingredient of AMK, on NASH and associated anxiety/depression-like behaviors is still unclear. METHODS This study investigated the protective effect of PAMK on NASH and associated anxiety/depression-like behaviors through a Western diet-induced NASH mice model. RESULTS showed that PAMK decreased the concentrations of liver TC, TG, and serum AST and ALT, improving glucose tolerance, and reducing liver steatosis and fibrosis. Moreover, the expression of liver IL-6, IL-1β, TNF-α, IL-18 and MCP-1 could be reduced by PAMK significantly. Additionally, PAMK decreased anxiety/depression-like behaviors and expression of IL-6, IL-1β, TNF-α, and MCP-1 in the hippocampus. 16S rRNA gene sequencing revealed that PAMK diminished the Firmicutes/Bacteroidetes ratio and abundance of Faecalibaculum_rodentium, and increased the abundance of Muribaculaceae. This might be related to gene abundance of Pentose, the glucuronate interconversions pathway and carbohydrate enzymes (GH1, GH4). Serum metabolomics suggested that PC (18:5e/2:0), PC (16:2e/2:0), Lysopc 20:4, PC (16:0/2:0), and LPC 19:0 upregulated significantly after PAMK intervention, together with the enrichment of carbon metabolism and Citrate cycle pathways specially. CONCLUSIONS PAMK as a potential prebiotic ameliorated NASH and associated anxiety/depression-like behaviors in mice, probably by regulating Faecalibaculum_rodentium, carbohydrate enzymes and lipid metabolites.
Collapse
Affiliation(s)
- Jianmei Yang
- School of Nursing, Jinan University, Guangzhou 510632, China; (J.Y.); (W.O.); (G.L.); (Y.W.); (D.C.); (Z.Z.); (Z.C.); (X.L.); (A.W.)
| | - Wanyi Ou
- School of Nursing, Jinan University, Guangzhou 510632, China; (J.Y.); (W.O.); (G.L.); (Y.W.); (D.C.); (Z.Z.); (Z.C.); (X.L.); (A.W.)
| | - Guiru Lin
- School of Nursing, Jinan University, Guangzhou 510632, China; (J.Y.); (W.O.); (G.L.); (Y.W.); (D.C.); (Z.Z.); (Z.C.); (X.L.); (A.W.)
| | - Yuanfei Wang
- School of Nursing, Jinan University, Guangzhou 510632, China; (J.Y.); (W.O.); (G.L.); (Y.W.); (D.C.); (Z.Z.); (Z.C.); (X.L.); (A.W.)
| | - Dongliang Chen
- School of Nursing, Jinan University, Guangzhou 510632, China; (J.Y.); (W.O.); (G.L.); (Y.W.); (D.C.); (Z.Z.); (Z.C.); (X.L.); (A.W.)
| | - Ze Zeng
- School of Nursing, Jinan University, Guangzhou 510632, China; (J.Y.); (W.O.); (G.L.); (Y.W.); (D.C.); (Z.Z.); (Z.C.); (X.L.); (A.W.)
| | - Zumin Chen
- School of Nursing, Jinan University, Guangzhou 510632, China; (J.Y.); (W.O.); (G.L.); (Y.W.); (D.C.); (Z.Z.); (Z.C.); (X.L.); (A.W.)
| | - Xiaomin Lu
- School of Nursing, Jinan University, Guangzhou 510632, China; (J.Y.); (W.O.); (G.L.); (Y.W.); (D.C.); (Z.Z.); (Z.C.); (X.L.); (A.W.)
| | - Aiping Wu
- School of Nursing, Jinan University, Guangzhou 510632, China; (J.Y.); (W.O.); (G.L.); (Y.W.); (D.C.); (Z.Z.); (Z.C.); (X.L.); (A.W.)
| | - Chenli Lin
- School of Medicine, Jinan University, Guangzhou 510632, China
- Health Science Center, Jinan University, Guangzhou 510632, China
| | - Yinji Liang
- School of Nursing, Jinan University, Guangzhou 510632, China; (J.Y.); (W.O.); (G.L.); (Y.W.); (D.C.); (Z.Z.); (Z.C.); (X.L.); (A.W.)
- Health Science Center, Jinan University, Guangzhou 510632, China
| |
Collapse
|
29
|
Liu G, Xie R, Tan Q, Zheng J, Li W, Wang Q, Liang Y. Pharmacokinetic study and neuropharmacological effects of atractylenolide Ⅲ to improve cognitive impairment via PI3K/AKT/GSK3β pathway in intracerebroventricular-streptozotocin rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118420. [PMID: 38838925 DOI: 10.1016/j.jep.2024.118420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese herbal remedy Atractylodes macrocephala Koidz is renowned for its purported gastrointestinal regulatory properties and immune-enhancing capabilities. Atractylenolide III (ATL III), a prominent bioactive compound in Atractylodes macrocephala Koidz, has demonstrated significant pharmacological activities. However, its impact on neuroinflammation, oxidative stress, and therapeutic potential concerning Alzheimer's disease (AD) remain inadequately investigated. AIM OF THE STUDY This study aims to assess the plasma pharmacokinetics of ATL III in Sprague-Dawley (SD) rats and elucidate its neuropharmacological effects on AD via the PI3K/AKT/GSK3β pathway. Through this research, we endeavor to furnish experimental substantiation for the advancement of novel therapeutics centered on ATL III. MATERIALS AND METHODS The pharmacokinetic profile of ATL III in SD rat plasma was analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). AD models were induced in SD rats through bilateral intracerebroventricular (ICV) administration of streptozotocin (STZ). ATL III was administered at doses of 0.6 mg/kg, 1.2 mg/kg, and 2.4 mg/kg, while donepezil (1 mg/kg) served as control. Cognitive function assessments were conducted employing behavioral tests including the Morris Water Maze and Novel Object Recognition. Neuronal pathology and histological changes were evaluated through Nissl staining and Hematoxylin-Eosin (HE) staining, respectively. Oxidative stress levels were determined by quantifying malondialdehyde (MDA) content and total superoxide dismutase (T-SOD) activity. Molecular docking analysis was employed to explore the direct binding between ATL III and its relevant targets, followed by validation using Western blot (WB) experiments to assess the expression of p-Tau, PI3K, AKT, GSK3β, and their phosphorylated forms. RESULTS Within the concentration range of 5-500 ng/mL, ATL III demonstrated exceptional linearity (R2 = 0.9991), with a quantification limit of 5 ng/mL. In male SD rats, ATL III exhibited a Tmax of 45 min, a t1/2 of 172.1 min, a Cmax of 1211 ng/L, and an AUC(0-t) of 156031 ng/L*min. Treatment with ATL III significantly attenuated Tau hyperphosphorylation in intracerebroventricular-streptozotocin (ICV-STZ) rats. Furthermore, ATL III administration mitigated neuroinflammation and oxidative stress, as evidenced by reduced Nissl body loss, alleviated histological alterations, decreased MDA content, and enhanced T-SOD activity. Molecular docking analyses revealed strong binding affinity between ATL III and the target genes PI3K, AKT, and GSK3β. Experimental validation corroborated that ATL III stimulated the phosphorylation of PI3K and AKT while reducing the phosphorylation of GSK3β. CONCLUSIONS Our results indicate that ATL III can mitigate Tau protein phosphorylation through modulation of the PI3K/AKT/GSK3β pathway. This attenuation consequently ameliorates neuroinflammation and oxidative stress, leading to enhanced learning and memory abilities in ICV-STZ rats.
Collapse
Affiliation(s)
- Guoqing Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Ruiye Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qiwen Tan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Jingjing Zheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
30
|
Niu X, Gu H, Li J, Zuo J, Ren W, Huang Y, Shu X, Jiang C, Shu P. Efficacy and safety of Atractylodes macrocephala-containing traditional Chinese medicine combined with neoadjuvant chemotherapy in the treatment of advanced gastric cancer: a systematic evaluation and meta-analysis. Front Oncol 2024; 14:1431381. [PMID: 39479020 PMCID: PMC11521787 DOI: 10.3389/fonc.2024.1431381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/18/2024] [Indexed: 11/02/2024] Open
Abstract
Background In China, Atractylodes-containing Chinese medicines are widely used as adjuvant therapy to neoadjuvant chemotherapy (NAC) in individuals diagnosed with advanced gastric cancer (AGC). Nevertheless, the findings concerning its effectiveness are still restricted. The aim from this research was to examine the efficiency and security Atractylodes macrocephala-containing traditional Chinese medicine together with NAC in the management of AGC. Methods Literature was systematically searched across 8 electronic databases until September 20, 2023. Two researchers conducted a thorough review of the selected studies. The primary outcome measures included the objective response rate (ORR), disease control rate (DCR), quality of life (QOL), adverse drug reactions (ADRs), and levels of peripheral blood lymphocytes. The relevant effect estimates are as follows as risk ratios (RR) or mean differences (MD) with corresponding 95% confidence intervals (CI). Credibility of information was evaluated using the GRADE analyzer. Results The results showed that solely on the basis of the accessible literature examined in NAC patients, individuals who received the therapeutic regimen containing Atractylodis Macrocephalae Chinese herbal preparations demonstrated a superior overall response rate (Relative Risk: 1.41, 95% confidence interval: 1.27-1.57, P < 0.001); DCR (RR: 1.20, 95% confidence interval: 1.13-1.27, P < 0.001), as compared to QOL (RR: 1.43, 95% confidence interval: 1.30-1.57, P < 0.001, MD: 8.47, 95% confidence interval: 7.16 - 9.77, P < 0.001); the proportions of CD3+ T-cells, CD4+ T-cells, CD8+ T-cells, CD4+CD8+ T-cells were increased; and the incidence of adverse reactions was decreased. Subgroup analyses showed that oral administration of all the traditional Chinese medicines containing Atractylodes macrocephala could improve tumor efficacy. Regardless of the duration of therapy of ≥8 weeks or <8 weeks, Atractylodes macrocephala-containing traditional Chinese medicine increased the tumor response in AGC patients. Combination of Atractylodes macrocephala-containing TCM with neoadjuvant chemotherapy increased ORR and DCR; when used in conjunction with cisplatin, only ORR was increased. Conclusion The combination of Atractylodes macrocephala-containing herbs with NAC in the treatment of AGC improves efficacy, improves prognosis, and reduces adverse effects. Nevertheless, additional high-quality randomized trials are required. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023461079.
Collapse
Affiliation(s)
- Xiaotao Niu
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haoqing Gu
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jingzhan Li
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiaqian Zuo
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wenqin Ren
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yujie Huang
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinyan Shu
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chao Jiang
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Peng Shu
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
31
|
Zhao ZH, Dong YH, Jiang XQ, Wang J, Qin WL, Liu ZY, Zhang XQ, Wei YJ. Five commonly used traditional Chinese medicine formulas in the treatment of ulcerative colitis: A network meta-analysis. World J Clin Cases 2024; 12:5067-5082. [DOI: 10.12998/wjcc.v12.i22.5067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Currently, traditional Chinese medicine (TCM) formulas are commonly being used as adjunctive therapy for ulcerative colitis in China. Network meta-analysis, a quantitative and comprehensive analytical method, can systematically compare the effects of different adjunctive treatment options for ulcerative colitis, providing scientific evidence for clinical decision-making.
AIM To evaluate the clinical efficacy and safety of commonly used TCM for the treatment of ulcerative colitis (UC) in clinical practice through a network meta-analysis.
METHODS Clinical randomized controlled trials of these TCM formulas used for the adjuvant treatment of UC were searched from the establishment of the databases to July 1, 2022. Studies that met the inclusion criteria were screened and evaluated for literature quality and risk of bias according to the Cochrane 5.1 standard. The methodological quality of the studies was assessed using ReviewManager (RevMan) 5.4, and a funnel plot was constructed to test for publication bias. ADDIS 1.16 statistical software was used to perform statistical analysis of the treatment measures and derive the network relationship and ranking diagrams of the various intervention measures.
RESULTS A total of 64 randomized controlled trials involving 5456 patients with UC were included in this study. The adjuvant treatment of UC using five TCM formulations was able to improve the clinical outcome of the patients. Adjuvant treatment with Baitouweng decoction (BTWT) showed a significant effect [mean difference = 36.22, 95% confidence interval (CI): 7.63 to 65.76]. For the reduction of tumor necrosis factor in patients with UC, adjunctive therapy with BTWT (mean difference = −9.55, 95%CI: −17.89 to −1.41), Shenlingbaizhu powder [SLBZS; odds ratio (OR) = 0.19, 95%CI: 0.08 to 0.39], and Shaoyao decoction (OR = −23.02, 95%CI: −33.64 to −13.14) was effective. Shaoyao decoction was more effective than BTWT (OR = 0.12, 95%CI: 0.03 to 0.39), SLBZS (OR = 0.19, 95%CI: 0.08 to 0. 39), and Xi Lei powder (OR = 0.34, 95%CI: 0.13 to 0.81) in reducing tumor necrosis factor and the recurrence rate of UC.
CONCLUSION TCM combined with mesalazine is more effective than mesalazine alone in the treatment of UC.
Collapse
Affiliation(s)
- Zhi-Hui Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi-Hang Dong
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xin-Qi Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wan-Li Qin
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhang-Yi Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiao-Qing Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu-Jie Wei
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
32
|
Hao Y, Zhang X, Lin X, Yang S, Huang Y, Lai W, Liao X, Liao W, Fu C, Zhang Z. *The traditional Chinese medicine processing change chemical composition and pharmacological effectiveness: Taking Atractylodes macrocephala Koidz. and honey bran-fried Atractylodes macrocephala Koidz. as examples. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155739. [PMID: 38797027 DOI: 10.1016/j.phymed.2024.155739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Atractylodes macrocephala Koidz. (Baizhu in Chinese, BZ) is a typical traditional edible-medicinal herb used for thousands of years. Known as "the spleen-reinforcing medicine", it is often used clinically to treat reduced digestive function, abdominal distension, and diarrhoea, which are all caused by spleen deficiency. Among BZ's processing products, honey bran-fried BZ (HBBZ) is the only processed product recorded in BZ in the 2020 Chinese Pharmacopoeia (ChP). There are differences in effectiveness, traditional application, and clinical indications between them. PURPOSE This review reviewed BZ and its main product HBBZ from botany, ethnopharmacology, chemical composition, pharmacological effectiveness, and safety. The changes in chemical composition and pharmacological effectiveness of BZ induced by the processing of traditional Chinese medicine were emphatically described. METHODS Keywords related to Atractylodes macrocephala Koidz., honey bran frying, essential oil, lactones, polysaccharide and combinations to include published studies of BZ and HBBZ from 2004-2023 were searched in the following databases: Pubmed, Chengdu University of TCM Library, Google Scholar, China National Knowledge Infrastructure (CNKI), and Wanfang database. All studies, published in English or Chinese, were included. However, in the process of chemical composition collection, we reviewed all available literature on the chemical composition of BZ and HBBZ. CONCLUSION Honey bran frying processing methods will affect BZ's chemical composition and pharmacological effectiveness. The types and contents of chemical components in the HBBZ showed some changes compared with those in BZ. For example, the content of volatile oil decreased and the content of lactones increased after stir-fried bran. In addition, new ingredients such as phenylacetaldehyde, 2-acetyl pyrrole, 6- (1,1-dimethylethyl) -3,4-dihydro-1 (2H) -naphthalone and 5-hydroxymethylfurfural appeared. Both BZ and HBBZ have a variety of pharmacological effectiveness. After stir-fried with honey bran, the "Zao Xing" is reduced, and the efficacy of tonify spleen is strengthened, which is more suitable for patients with weak spleen and stomach.
Collapse
Affiliation(s)
- Yiwen Hao
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Xing Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Xia Lin
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Shasha Yang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Wenjing Lai
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Xin Liao
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China
| | - Wan Liao
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| | - Zhen Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| |
Collapse
|
33
|
Fan S, Tang Y, Zhu N, Meng Q, Zhou Y, Zhao Y, Xu J, Gu C, Dai S, Zhu B, Yuan X. Analyzing the defense response mechanism of Atractylodes macrocephala to Fusarium oxysporum through small RNA and degradome sequencing. FRONTIERS IN PLANT SCIENCE 2024; 15:1415209. [PMID: 39104842 PMCID: PMC11298489 DOI: 10.3389/fpls.2024.1415209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Introduction Fusarium oxysporum is a significant soil-borne fungal pathogen that affects over 100 plant species, including crucial crops like tomatoes, bananas, cotton, cucumbers, and watermelons, leading to wilting, yellowing, growth inhibition, and ultimately plant death. The root rot disease of A. macrocephala, caused by F. oxysporum, is one of the most serious diseases in continuous cropping, which seriously affects its sustainable development. Methods In this study, we explored the interaction between A. macrocephala and F. oxysporum through integrated small RNA (sRNA) and degradome sequencing to uncover the microRNA (miRNA)-mediated defense mechanisms. Results We identified colonization of F. oxysporum in A. macrocephala roots on day 6. Nine sRNA samples were sequenced to examine the dynamic changes in miRNA expression in A. macrocephala infected by F. oxysporum at 0, 6, and 12 days after inoculation. Furthermore, we using degradome sequencing and quantitative real-time PCR (qRT-PCR), validated four miRNA/target regulatory units involved in A. macrocephala-F. oxysporum interactions. Discussion This study provides new insights into the molecular mechanisms underlying A. macrocephala's early defense against F. oxysporum infection, suggesting directions for enhancing resistance against this pathogen.
Collapse
Affiliation(s)
- Sen Fan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunjia Tang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Na Zhu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingling Meng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanguang Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yujin Zhao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingyan Xu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxian Gu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shijie Dai
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Yuan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
34
|
Wang M, Zhang TH, Li Y, Chen X, Zhang Q, Zheng Y, Long D, Cheng X, Hong A, Yang X, Wang G. Atractylenolide-I Alleviates Hyperglycemia-Induced Heart Developmental Malformations through Direct and Indirect Modulation of the STAT3 Pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155698. [PMID: 38728919 DOI: 10.1016/j.phymed.2024.155698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Gestational diabetes could elevate the risk of congenital heart defects (CHD) in infants, and effective preventive and therapeutic medications are currently lacking. Atractylenolide-I (AT-I) is the active ingredient of Atractylodes Macrocephala Koidz (known as Baizhu in China), which is a traditional pregnancy-supporting Chinese herb. PURPOSE In this study, we investigated the protective effect of AT-I on the development of CHD in embryos exposed to high glucose (HG). STUDY DESIGN AND METHODS First, systematic review search results revealed associations between gestational diabetes mellitus (GDM) and cardiovascular malformations. Subsequently, a second systematic review indicated that heart malformations were consistently associated with oxidative stress and cell apoptosis. We assessed the cytotoxic impacts of Atractylenolide compounds (AT-I, AT-II, and AT-III) on H9c2 cells and chick embryos, determining an optimal concentration of AT-I for further investigation. Second, immunofluorescence, western blot, Polymerase Chain Reaction (PCR), and flow cytometry were utilized to delve into the mechanisms through which AT-I mitigates oxidative stress and apoptosis in cardiac cells. Molecular docking was employed to investigate whether AT-I exerts cardioprotective effects via the STAT3 pathway. Then, we developed a streptozotocin-induced diabetes mellitus (PGDM) mouse model to evaluate AT-I's protective efficacy in mammals. Finally, we explored how AT-I protects hyperglycemia-induced abnormal fetal heart development through microbiota analysis and untargeted metabolomics analysis. RESULTS The study showed the protective effect of AT-I on embryonic development using a chick embryo model which rescued the increase in the reactive oxygen species (ROS) and decrease in cell survival induced by HG. We also provided evidence suggesting that AT-I might directly interact with STAT3, inhibiting its phosphorylation. Further, in the PGDM mouse model, we observed that AT-I not only partially alleviated PGDM-related blood glucose issues and complications but also mitigated hyperglycemia-induced abnormal fetal heart development in pregnant mice. This effect is hypothesized to be mediated through alterations in gut microbiota composition. We proposed that dysregulation in microbiota metabolism could influence the downstream STAT3 signaling pathway via EGFR, consequently impacting cardiac development and formation. CONCLUSIONS This study marks the first documented instance of AT-I's effectiveness in reducing the risk of early cardiac developmental anomalies in fetuses affected by gestational diabetes. AT-I achieves this by inhibiting the STAT3 pathway activated by ROS during gestational diabetes, significantly reducing the risk of fetal cardiac abnormalities. Notably, AT-I also indirectly safeguards normal fetal cardiac development by influencing the maternal gut microbiota and suppressing the EGFR/STAT3 pathway.
Collapse
Affiliation(s)
- Mengwei Wang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, China
| | - Tong-Hua Zhang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Yunjin Li
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China
| | - Xiaofeng Chen
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China
| | - Qiongyin Zhang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China
| | - Ying Zheng
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China
| | - Denglu Long
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xin Cheng
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, China
| | - Xuesong Yang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Clinical Research Center, Clifford Hospital, Guangzhou 511495, China.
| | - Guang Wang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Guangzhou 510317.
| |
Collapse
|
35
|
Yuan C, Yu C, Sun Q, Xiong M, Ren B, Zhong M, Peng Q, Zeng M, Meng P, Li L, Song H. Atractylenolide I Alleviates Indomethacin-Induced Gastric Ulcers in Rats by Inhibiting NLRP3 Inflammasome Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14165-14176. [PMID: 38872428 DOI: 10.1021/acs.jafc.3c08188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Atractylodes macrocephala Koidz, a traditional Chinese medicine, contains atractylenolide I (ATR-I), which has potential anticancer, anti-inflammatory, and immune-modulating properties. This study evaluated the therapeutic potential of ATR-I for indomethacin (IND)-induced gastric mucosal lesions and its underlying mechanisms. Noticeable improvements were observed in the histological morphology and ultrastructures of the rat gastric mucosa after ATR-I treatment. There was improved blood flow, a significant decrease in the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, and IL-18, and a marked increase in prostaglandin E2 (PGE2) expression in ATR-I-treated rats. Furthermore, there was a significant decrease in the mRNA and protein expression levels of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), cysteinyl aspartate specific proteinase-1 (caspase-1), and nuclear factor-κB (NF-κB) in rats treated with ATR-I. The results show that ATR-I inhibits the NLRP3 inflammasome signaling pathway and effectively alleviates local inflammation, thereby improving the therapeutic outcomes against IND-induced gastric ulcers in rats.
Collapse
Affiliation(s)
- Chengzhi Yuan
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chang Yu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Qifang Sun
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Meng Xiong
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Baoping Ren
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Meiqi Zhong
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Qinghua Peng
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Meiyan Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Pan Meng
- School of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Liang Li
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Houpan Song
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
36
|
Zhang J, Leng S, Huang C, Li K, Li J, Chen X, Feng Y, Kai G. Characterization of a group of germacrene A synthases involved in the biosynthesis of β-elemene from Atractylodis macrocephala. Int J Biol Macromol 2024; 271:132467. [PMID: 38763249 DOI: 10.1016/j.ijbiomac.2024.132467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
β-Elemene, an important component of the volatile oil of Atractylodis macrocephala, has been widely utilized as an antitumor drug for over 20 years. However, the germacrene A synthase (GAS) genes responsible for the biosynthesis of β-elemene in A. macrocephala were previously unidentified. In this study, two new AmGASs were identified from the A. macrocephala transcriptome, demonstrating their capability to convert farnesyl pyrophosphate into germacrene A, which subsequently synthesizes β-elemene through Cope rearrangement. Additionally, two highly catalytic AmGAS1 mutations, I307A and E392A, resulted in a 2.23-fold and 1.57-fold increase in β-elemene synthesis, respectively. Furthermore, precursor supply and fed-batch strategies were employed to enhance the precursor supply, resulting in β-elemene yields of 7.3 mg/L and 33.3 mg/L, respectively. These findings identify a promising candidate GAS for β-elemene biosynthesis and lay the foundation for further functional studies on terpene synthases in A. macrocephala.
Collapse
Affiliation(s)
- Jianbo Zhang
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siqi Leng
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chao Huang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kunlun Li
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junbo Li
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuefei Chen
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Feng
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
37
|
Choi NR, Choi WG, Lee JH, Park J, Kim YT, Das R, Woo JH, Kim BJ. Atractylodes macrocephala Koidz Alleviates Symptoms in Zymosan-Induced Irritable Bowel Syndrome Mouse Model through TRPV1, NaV1.5, and NaV1.7 Channel Modulation. Nutrients 2024; 16:1683. [PMID: 38892616 PMCID: PMC11174792 DOI: 10.3390/nu16111683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
(1) Background: Irritable bowel syndrome (IBS) is a common disease in the gastrointestinal (GI) tract. Atractylodes macrocephala Koidz (AMK) is known as one of the traditional medicines that shows a good efficacy in the GI tract. (2) Methods: We investigated the effect of AMK in a network pharmacology and zymosan-induced IBS animal model. In addition, we performed electrophysiological experiments to confirm the regulatory mechanisms related to IBS. (3) Results: Various characteristics of AMK were investigated using TCMSP data and various analysis systems. AMK restored the macroscopic changes and weight to normal. Colonic mucosa and inflammatory factors were reduced. These effects were similar to those of amitriptyline and sulfasalazine. In addition, transient receptor potential (TRP) V1, voltage-gated Na+ (NaV) 1.5, and NaV1.7 channels were inhibited. (4) Conclusion: These results suggest that AMK may be a promising therapeutic candidate for IBS management through the regulation of ion channels.
Collapse
Affiliation(s)
- Na-Ri Choi
- Department of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (W.-G.C.)
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woo-Gyun Choi
- Department of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (W.-G.C.)
| | - Jong-Hwan Lee
- Department of Biomedical Engineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea;
| | - Joon Park
- Division of Food Functionality, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (J.P.); (Y.-T.K.)
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Yun-Tai Kim
- Division of Food Functionality, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (J.P.); (Y.-T.K.)
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Raju Das
- Department of Physiology, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea;
| | - Joo-Han Woo
- Department of Physiology, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea;
| | - Byung-Joo Kim
- Department of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (W.-G.C.)
| |
Collapse
|
38
|
Wei X, Liang J, Liu J, Dai Y, Leng X, Cheng Y, Chi L. Anchang Yuyang Decoction inhibits experimental colitis-related carcinogenesis by regulating PPAR signaling pathway and affecting metabolic homeostasis of host and microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117995. [PMID: 38428656 DOI: 10.1016/j.jep.2024.117995] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) presents a risk of carcinogenesis, which escalates with the duration of IBD. Persistent histological inflammation is considered to be the driving factor of colitis carcinogenesis. Effective control of inflammation is helpful to prevent and treat colitis-related colorectal cancer (CAC). Anchang Yuyang Decoction (AYD), a traditional Chinese medicine (TCM) formula, is originated from the ancient prescription of TCM for treating colitis and colorectal cancer. AYD has demonstrated efficacy in treating IBD and potential anti-carcinogenic properties. AIM OF THE STUDY This research aims to assess the therapeutic efficacy of AYD in ameliorating experimental colitis-related carcinogenesis induced by AOM/DSS. It further seeks to elucidate its potential mechanisms by integrating multiple omics sequencing approaches. MATERIALS AND METHODS A rat model for colitis-related carcinogenesis was developed using azoxymethane (AOM)/dextran sulfate sodium (DSS). UPLC-MS identified AYD's chemical constituents. Rats were administered varying doses of AYD (18.37, 9.19 and 4.59 g/kg) orally for 53 days, with mesalazine as a positive control. The study evaluated anti-carcinogenic effects by examining adenoma number, adenoma load, abnormal crypt foci (ACF), histopathological damage, and tumor-related protein expression. Anti-inflammatory and reparative effects were assessed through body weight, disease activity index (DAI), colon length, spleen index, inflammatory cytokine levels, and tight junction protein expression. The effects on intestinal microbiota and host metabolism were explored through 16S rRNA sequencing, targeted short-chain fatty acid (SCFA) metabonomics, and non-targeted colon metabolomics. Potential AYD targets were identified through transcriptomic sequencing and validated by qRT-PCR and western blotting. RESULTS AYD significantly reduced adenoma number, adenoma load, neoplasm-associated lesions, ACF, and tumor-related protein expression (e.g., p53, PCNA) in AOM/DSS-induced rats, thus impeding colitis-related carcinogenesis progression. AYD also alleviated histopathological damage and inflammation, promoting intestinal mucosal barrier repair. Furthermore, AYD modulated intestinal flora structure, enhanced SCFA production, and regulated colon metabolites. Transcriptomic sequencing revealed a significant impact on the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Subsequent qRT-PCR and western blotting experiments indicated AYD's influence in up-regulating PPAR-γ and down-regulating PPAR-α, PPAR-β/δ, and related proteins (thrombomodulin [Thbd], fatty acid binding protein 5 [Fabp5], stearoyl-CoA desaturase 2 [Scd2], phospholipid transfer protein [Pltp]). CONCLUSIONS This study demonstrates AYD's ability to inhibit experimental colitis-related carcinogenesis induced by AOM/DSS. Its mechanism likely involves modulation of the PPAR signaling pathway, impacting intestinal microbiota and host metabolic equilibrium.
Collapse
Affiliation(s)
- Xiunan Wei
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Junwei Liang
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Jiahui Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Yonggang Dai
- Department of Clinical Laboratory Medicine, Shandong Provincial Third Hospital, Jinan, 250014, China.
| | - Xiaohui Leng
- Department of Cardiovascular Medicine, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
| | - Yan Cheng
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Lili Chi
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
39
|
Jin X, Chen N, Zhang T, Fang Q, Hu Y, Tao J, Lin H. Phellinus igniarius polysaccharides induced mitochondrial apoptosis of hepatic carcinoma by enhancing reactive oxygen species-mediated AKT/p53 signalling pathways. Nat Prod Res 2024; 38:1748-1752. [PMID: 37328932 DOI: 10.1080/14786419.2023.2222428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
Phellinus igniarius (PI) has various kinds of biological activities, such as antitumour activities, and polysaccharides are one of its main components. In this study, polysaccharides from PI (PIP) were prepared, purified, analysed for their structure and investigated for their antitumour activity and mechanism in vitro. PIP consists of 12138 kDa of carbohydrates containing 90.5 ± 1.6% neutral carbohydrates. PIP consists of glucose, galactose, mannose, xylose, D-fructose, L-guluronic acid, glucosamine hydrochloride, rhamnose, arabinose and D-mannoturonic acid. PIP can significantly inhibit HepG2 cell proliferation, induce cell apoptosis and also inhibited migration and invasion in a concentration-dependent manner. PIP increased reactive oxygen species (ROS), increased the expression of p53, and induced cytochrome c release into the cytoplasm to activate caspase-3. PIP is a promising potential candidate for the therapeutic treatment of hepatic carcinoma via the ROS-mediated mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmacy, Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Ningbo, China
| | - Ninggang Chen
- Department of Dermatology Medical Cosmetology Center, Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Ningbo, China
| | - Tingsu Zhang
- Department of Oncology, Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Ningbo, China
| | - Qing Fang
- Department of Pharmacy, Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Ningbo, China
| | - Ying Hu
- College of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, China
| | - Jin Tao
- College of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, China
| | - Hangjuan Lin
- Department of Pharmacy, Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Ningbo, China
| |
Collapse
|
40
|
Liang X, Xie H, Yu L, Ouyang J, Peng Q, Chen K, Liu F, Chen H, Chen X, Du X, Zhu X, Li G, He R. Study on the effects and mechanisms of Wenzhong Bushen Formula in improving ovarian reserve decline in mice based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117756. [PMID: 38218503 DOI: 10.1016/j.jep.2024.117756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Wenzhong Bushen Formula (WZBSF) is a traditional Chinese medicine empirical formula known for its effects in tonifying qi, strengthening the spleen, warming the kidneys, promoting yang, regulating blood circulation, and balancing menstruation. Clinical evidence has demonstrated its significant efficacy in treating Diminished Ovarian Reserve (DOR) by improving ovarian reserves. However, the specific pharmacological mechanisms of WZBSF remain unclear. AIM OF THE STUDY This study aims to investigate the mechanisms by which WZBSF improves ovarian reserve decline through network pharmacology and animal experiments. METHODS AND MATERIALS WZBSF was analyzed using a dual UPLC-MS/MS and GC-MS platform. Effective components and targets of WZBSF were obtained from the TCMSP database and standardized using UniProt. Disease targets were collected from GeneCard, OMIM, PHARMGKB, and DisGeNET databases, with cross-referencing between the two sets of targets. A PPI protein interaction network was constructed using Cytoscape3.9.1 and STRING database, followed by KEGG and GO enrichment analysis using the Metascape database. Finally, an ovarian reserve decline model was established in mice, different doses of WZBSF were administered, and experimental validation was conducted through serum hormone detection, H&E staining, immunofluorescence (IF), immunohistochemistry (IHC), and Western blot analysis (WB). RESULTS WZBSF shares 145 common targets with ovarian reserve decline. GO enrichment analysis revealed involvement in biological processes such as response to hormone stimulation and phosphatase binding, while KEGG analysis implicated pathways including the PI3K-AKT signaling pathway and FoxO signaling pathway. In mice with ovarian reserve decline, WZBSF restored weight gain rate, increased ovarian index, normalized estrous cycles, reversed serum hormone imbalances, restored various follicle counts, and improved ovarian morphology. Additionally, WZBSF reduced p-AKT and p-FOXO3a levels, preventing excessive activation of primordial follicles and maintaining ovarian reserve. CONCLUSION WZBSF can ameliorate cyclophosphamide and busulfan-induced ovarian reserve decline, and its mechanism may be associated with the inhibition of the PI3K/AKT/FOXO3a signaling pathway.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Haibo Xie
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Leyi Yu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Jiahui Ouyang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Qingjie Peng
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Keming Chen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; General Hospital of Ningxia Medical University, Yinchuan, China
| | - Feifei Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Hua Chen
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaojiang Chen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaoli Du
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiangdong Zhu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Guangyong Li
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; General Hospital of Ningxia Medical University, Yinchuan, China
| | - Rui He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
41
|
Chen Q, Chen X, Zhu Y, Yu X. A relatively rare traditional Chinese medicine pattern of primary Sjögren syndrome: A case report. Medicine (Baltimore) 2024; 103:e37744. [PMID: 38608118 PMCID: PMC11018238 DOI: 10.1097/md.0000000000037744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/07/2024] [Indexed: 04/14/2024] Open
Abstract
RATIONALE This report presents a unique case of a patient diagnosed with Primary Sjögren's syndrome and a relatively rare traditional Chinese medicine pattern, known as the combined cold and heat pattern and cold-dampness syndrome. The patient's condition was successfully managed using Chinese herbal medicine, specifically the modified Da-Chai-Hu decoction and Linggui Zhugan decoction. PATIENT CONCERNS A 56-year-old woman had chronic dry eye and mouth for over 10 years. She was initially managed with traditional Chinese herbal medicine (TCHM) prescriptions, including the Zengye decoction, but the therapeutic effects were unsatisfactory. As the disease progressed, she was diagnosed with an anxiety disorder due to symptoms of vexation and insomnia. Treatment with alprazolam and venlafaxine failed to alleviate these symptoms. Recently, her general condition gradually worsened, with symptoms including a bitter taste in her mouth, dizziness, hot flashes, chills, poor appetite, chest discomfort, and constipation. DIAGNOSES After a series of examinations, including a Schirmer test and labial gland biopsy, she was diagnosed with Sjögren's syndrome. INTERVENTIONS Despite regular treatment with pilocarpine, sodium hyaluronate eye drops, venlafaxine, and alprazolam, the dry mouth symptoms intensified. Consequently, she sought further intervention through the TCHM. OUTCOMES After 8 weeks of treatment with the modified Da-Chai-Hu decoction and Linggui Zhugan decoction, she reported a significant improvement in her dryness-related symptoms and sleep quality. LESSONS This case report demonstrates that TCHM can effectively treat Primary Sjögren's syndrome, and should be considered for broader applications. Furthermore, this underscores the importance of tailoring treatment formulas to patients by identifying their specific syndrome differentiation in a clinical setting.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinru Chen
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuqing Zhu
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiali Yu
- Department of Rheumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
42
|
Deng JW, Yuan S, Shi LP, Chen X, Liu J, Chen ZW, Tan KY, Yang Q, Cao WF. Integration of network pharmacology and serum medicinal chemistry to investigate the pharmacological mechanisms of QiZhuYangGan Decoction in the treatment of hepatic fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117730. [PMID: 38190954 DOI: 10.1016/j.jep.2024.117730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 01/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qizhuyanggan Decoction (QZD), a traditional Chinese medicine formula, is frequently utilized in clinical practice for managing hepatic fibrosis. However, the specific target and mechanism of action of QZD for hepatic fibrosis treatment remain unknown. AIM OF THE STUDY By combining network pharmacology, serum medicinal chemistry, and experimental validation methods, our study aimed to investigate the therapeutic effects of QZD on hepatic fibrosis, the anti-hepatic fibrosis active ingredients, and the possible mechanism of anti-hepatic fibrosis action. MATERIALS AND METHODS The study aimed to investigate the therapeutic effect of QZD on hepatic fibrosis induced by CCl4 in SD rats, as well as its mechanism of action. The rats were anesthetized intraperitoneally using 3% pentobarbital and were executed after asphyxiation with high concentrations of carbon dioxide. Several techniques were employed to evaluate the efficacy of QZD, including ELISA, Western blot, HYP reagent assay, and various pathological examinations such as HE, Masson, Sirius Red staining, and immunohistochemistry (IHC). Additionally, serum biochemical assays were conducted to assess the effect of QZD on liver injury. Network pharmacology, UPLC, molecular docking, and molecular dynamics simulation were utilized to explore the mechanism of QZD in treating hepatic fibrosis. Finally, experimental validation was performed through ELISA, IHC, RT-qPCR, and Western blot analysis. RESULT Liver histopathology showed that QZD reduced inflammation and inhibited collagen production, and QZD significantly reduced HA and LN content to treat hepatic fibrosis. Serum biochemical analysis showed that QZD improved liver injury. Network pharmacology combined with UPLC screened six active ingredients and obtained 87 targets for the intersection of active ingredients and diseases. The enrichment analysis results indicated that the PI3K/AKT pathway might be the mechanism of action of QZD in the treatment of hepatic fibrosis, and counteracting the inflammatory response might be one of the pathways of action of QZD. Molecular docking and molecular dynamics simulations showed that the active ingredient had good binding properties with PI3K, AKT, and mTOR proteins. Western blot, ELISA, PCR, and IHC results indicated that QZD may treat hepatic fibrosis by inhibiting the PI3K/AKT/mTOR pathway and suppressing M1 macrophage polarization, while also promoting M2 macrophage polarization. CONCLUSIONS QZD may be effective in the treatment of hepatic fibrosis by inhibiting the PI3K/AKT/mTOR signaling pathway and M1 macrophage polarization, while promoting M2 macrophage polarization. This provides a strong basis for the clinical application of QZD.
Collapse
Affiliation(s)
- Jing-Wei Deng
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Su Yuan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China; Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li-Peng Shi
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Xin Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Jun Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China; Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Wei Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Kai-Yue Tan
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Qian Yang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Wen-Fu Cao
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China; Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
43
|
Zhang Y, Li WW, Wang Y, Fan YW, Wang QY, Liu C, Jiang S, Shang EX, Duan JA. Investigation of the material basis and mechanism of Lizhong decoction in ameliorating ulcerative colitis based on spectrum-effect relationship and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117666. [PMID: 38159822 DOI: 10.1016/j.jep.2023.117666] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lizhong decoction (LZD), a classical herbal prescription recorded by Zhang Zhongjing in Treatise on Febrile and Miscellaneous Diseases, has been extensively used to treat ulcerative colitis (UC) in clinical practice for thousands of years. However, its material basis and underlying mechanism are not yet clear. AIM OF THE STUDY This study aims to explore the material basis and potential mechanism of LZD against UC based on the spectrum-effect relationship and network pharmacology. MATERIALS AND METHODS First, LZD was extracted by a systematic solvent extraction method into four parts. Ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) technique was used to identify the compounds from different polar parts, and dextran sulfate sodium (DSS)-induced colitis model was used to evaluate the efficacy of each fraction. Then, the spectrum-effect analyses of compounds and efficacy indicators were established via grey relational analysis (GRA), bivariate correlation analysis (BCA) and partial least squares regression (PLSR). Finally, the potential mechanism of LZD for UC therapy was explored by network pharmacology, and the results were further verified by molecular docking and reverse transcription quantitative polymerase chain reaction (RT-qPCR). RESULTS 66 chemical components of LZD were identified by UPLC-Q-TOF-MS/MS technology. The pharmacodynamic results showed that extraction parts of LZD had different therapeutic effects on UC, among which ethyl acetate and n-butanol extracts had significant anti-colitis effects, which might be the main effective fractions of LZD. Furthermore, the spectrum-effect analyses indicated that 21 active ingredients such as liquiritin apioside, neolicuroside, formononetin, ginsenoside Rg1, 6-gingesulfonic acid, licoricesaponin A3, liquiritin, glycyrrhizic acid were the main material basis for LZD improving UC. Based on the above results, network pharmacology suggested that the amelioration of LZD on UC might be closely related to the PI3K-Akt signaling pathway. Additionally, molecular docking technology and RT-qPCR further verified that LZD could markedly inhibit the PI3K-Akt signaling pathway. CONCLUSION Overall, our study first identified the chemical compositions of LZD by using UPLC-Q-TOF-MS/MS. Furthermore, the material basis and potential mechanism of LZD in improving UC were comprehensively elucidated via spectrum-effect relationships, network pharmacology, molecular docking and experimental verification. The proposed strategy provided a systematic approach for exploring how herbal medicines worked. More importantly, it laid the solid foundation for further clinical application and rational development of LZD.
Collapse
Affiliation(s)
- Yun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Wen-Wen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Yu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Yu-Wen Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Qu-Yi Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Chen Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| |
Collapse
|
44
|
Jiang Y, Zeng Y, Chen K, Cheng H, Dai S, Deng X, Wang L, Liao J, Yang R, Zhang L. Effects of natural extract from medicinal herbs on broilers experimentally infected with Eimeria tenella. Vet Parasitol 2024; 327:110107. [PMID: 38401178 DOI: 10.1016/j.vetpar.2023.110107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 02/26/2024]
Abstract
This study aimed to evaluate the effects of natural extracts from nine medicinal herbs (SMA) on the growth performance, immunity, and intestinal integrity of broilers experimentally infected with Eimeria tenella. A total of 252 one-day-old broiler chicks were divided into 7 groups with 3 replicates per group and 12 broilers per cage. The groups were uninfected-untreated blank control group (BC), infected-untreated negative control group (NC), SMA treatment groups, Chinese medicine positive control group (CM), and chemical drug positive control group (CD). The SMA groups were infected and fed a basal diet supplemented with 0.6 (SMA-L), 0.8 (SMA-M), and 1.0 (SMA-H) g/kg SMA. The CM and CD groups were infected and fed a basal diet supplemented with 15 g/kg Jiqiuchong San and 0.2 g/kg Diclazuril, respectively. Results showed that feeding SMA could significantly reduce the number of oocysts in infected chickens, especially 1.0 g/kg SMA, which exhibited moderate anticoccidial efficacy. When infected with E. tenella, the supplementation of 1.0 g/kg SMA increased the renal index; restored the hepatic, splenic, and bursal indexes to BC levels; increased the levels of immunoglobulin A (IgA), IgM, and IgY; and reduced the contents of tumor necrosis factor (TNF-α), interferon-γ (IFN-γ), interleukin-6 (IL-6), and IL-10 of the infected chickens. Moreover, treatment with 1.0 g/kg SMA alleviated the pathological changes in cecal tissue and increased the contents of zonula occludens-1 (ZO-1), occludin, claudin-1, and mucoprotein 2 (mucin-2) in cecal tissues of E. tenella-infected chickens. We found that 1.0 g/kg SMA reduced the number of oocysts, improved immunity, and alleviated intestinal barrier damage, which could improve the growth performance of infected chickens. Thus, SMA proved to be an effective natural extract against E. tenella and has the potential to be used as an efficient anticoccidial drug or additive.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Yujuan Zeng
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Keyu Chen
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Haoran Cheng
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Songjiang Dai
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Xuexue Deng
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Long Wang
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Jinqiu Liao
- College of Life, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Ruiwu Yang
- College of Life, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| |
Collapse
|
45
|
Choi NR, Choi WG, Zhu A, Park J, Kim YT, Hong J, Kim BJ. Exploring the Therapeutic Effects of Atractylodes macrocephala Koidz against Human Gastric Cancer. Nutrients 2024; 16:965. [PMID: 38612999 PMCID: PMC11013299 DOI: 10.3390/nu16070965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Atractylodes macrocephala Koidz (AMK) is a traditional herbal medicine used for thousands of years in East Asia to improve a variety of illnesses and conditions, including cancers. This study explored the effect of AMK extract on apoptosis and tumor-grafted mice using AGS human gastric adenocarcinoma cells. We investigated the compounds, target genes, and associated diseases of AMK using the Traditional Chinese Medical Systems Pharmacy (TCMSP) database platform. Cell viability assay, cell cycle and mitochondrial depolarization analysis, caspase activity assay, reactive oxygen species (ROS) assay, and wound healing and spheroid formation assay were used to investigate the anti-cancer effects of AMK extract on AGS cells. Also, in vivo studies were conducted using subcutaneous xenografts. AMK extract reduced the viability of AGS cells and increased the sub-G1 cell fraction and the mitochondrial membrane potential. Also, AMK extract increased the production of ROS. AMK extract induced the increased caspase activities and modulated the mitogen-activated protein kinases (MAPK). In addition, AMK extract effectively inhibited AGS cell migration and led to a notable reduction in the growth of AGS spheroids. Moreover, AMK extract hindered the growth of AGS xenograft tumors in NSG mice. Our results suggest that AMK has anti-cancer effects by promoting cell cycle arrest and inhibiting the proliferation of AGS cancer cells and a xenograft model through apoptosis. This study could provide a novel approach to treat gastric cancer.
Collapse
Affiliation(s)
- Na-Ri Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea; (N.-R.C.); (W.-G.C.)
| | - Woo-Gyun Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea; (N.-R.C.); (W.-G.C.)
| | - Anlin Zhu
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea;
| | - Joon Park
- Division of Food Functionality, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (J.P.); (Y.-T.K.)
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Yun-Tai Kim
- Division of Food Functionality, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (J.P.); (Y.-T.K.)
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Jaewoo Hong
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea;
| | - Byung-Joo Kim
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea; (N.-R.C.); (W.-G.C.)
| |
Collapse
|
46
|
Lin J, Guo H, Qin H, Zhang X, Sheng J. Integration of meta-analysis and network pharmacology analysis to investigate the pharmacological mechanisms of traditional Chinese medicine in the treatment of hepatocellular carcinoma. Front Pharmacol 2024; 15:1374988. [PMID: 38560356 PMCID: PMC10978761 DOI: 10.3389/fphar.2024.1374988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background: This study will explore the therapeutic value of traditional Chinese medicine (TCM) in Hepatocellular Carcinoma (HCC) through meta-analysis, combined with network pharmacology analysis. Methods: The results of randomized controlled trials on TCM and HCC were retrieved and summarized from multiple databases. The effective active com-pounds and target genes of the high-frequency TCM were obtained using the TCMSP database, and disease targets of HCC were acquired through the public disease database. The network pharmacology analysis was used to get the core genes and investigate the potential oncogenic molecular mechanism. Results: A total of 14 meta-analysis studies with 1,831 patients suggested that therapy combined TCM is associated with better clinical efficacy and survival prognosis, as well as avoiding many adverse events. A total of 156 compounds, 247 herbal target genes and 36 core genes were identified. The function analysis suggested above genes may participate development in HCC through regulating some pathways, such as HIF-1 pathway and PD-L1 immune-related pathway. Conclusion: TCM, as a novel, safe, and effective multi-mechanism therapy, holds greater value in the treatment of HCC.
Collapse
Affiliation(s)
- Jie Lin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Huaijuan Guo
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Hanjiao Qin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
47
|
Tian S, Ren L, Liu C, Wang Z. Atractylenolide II Suppresses Glycolysis and Induces Apoptosis by Blocking the PADI3-ERK Signaling Pathway in Endometrial Cancer Cells. Molecules 2024; 29:939. [PMID: 38474453 PMCID: PMC10934053 DOI: 10.3390/molecules29050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Atractylenolide II (AT-II), the major bioactive compound of Atractylodes macrocephala, exhibits anti-cancer activity against many types of tumors, but the roles and the potential mechanisms in endometrial cancer remain unclear. In the present study, AT-II treatment was found to significantly suppress RL95-2 and AN3CA cell proliferation and glycolysis, and induced their apoptosis by inactivating the ERK signaling pathway, accompanied by the changing expression of the glycolytic key enzymes and apoptotic-related proteins. Peptidyl arginine deiminase 3 (PADI3), as the candidate target gene of AT-II, was highly expressed in the endometrial cancer tissues and associated with a poor prognosis according to bioinformatics analysis. PADI3 knockdown inhibited proliferation and glycolysis in endometrial cancer cells and induced cell apoptosis. Furthermore, AT-II negatively regulated the expression of PADI3, and PADI3 overexpression reversed the effects of AT-II on endometrial cancer cells. Our findings suggested that the anti-cancer function of AT-II is associated with the suppression of glycolysis and induction of apoptosis by blocking the PADI3-ERK signaling pathway. Thus, AT-II represents a novel therapeutic target for endometrial cancer and targeting AT-II may serve as a potential strategy for the clinical therapy of endometrial cancer.
Collapse
Affiliation(s)
- Shuang Tian
- Department of Pathology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China;
- Department of Cell Biology and Genetics, Basic Medical College, Jinzhou Medical University, Jinzhou 121001, China
| | - Lili Ren
- Department of Neurobiology, Basic Medical College, Jinzhou Medical University, Jinzhou 121001, China;
| | - Chao Liu
- Department of Cell Biology and Genetics, Basic Medical College, Jinzhou Medical University, Jinzhou 121001, China
| | - Zhe Wang
- Department of Pathology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China;
| |
Collapse
|
48
|
Ding J, Gu B, Meng J, Hu M, Wang W, Liu J. Response of serum biochemical profile, antioxidant enzymes, and gut microbiota to dietary Hong-bailanshen supplementation in horses. Front Microbiol 2024; 15:1327210. [PMID: 38444806 PMCID: PMC10912594 DOI: 10.3389/fmicb.2024.1327210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Background Traditional Chinese medicine (TCM) is widely used in humans and animals, which is very important for health. TCM affects the body 's immunity and changes in intestinal flora. This study was conducted to investigate the effects of dietary Hong-bailanshen (HBLS) supplementation in horses on serum biochemical profile, antioxidant enzymes and gut microbiota. Methods In this study, five horses were selected. On day 0, 14, 28, blood samples and feces were collected on days 0, 14, and 28 to analyse gut microbiota, serum biochemical and redox indexes. Results The results showed that the addition of HBLS to horse diets significantly decreased the level of alanine aminotransferase, alkaline phosphatase, creatine kinase and malondialdehyde (p < 0.05, p < 0.01) and significantly increased the activity of total antioxidant capacity, superoxide dismutase and catalase (p < 0.05, p < 0.01). Compared with day 14, the levels of alanine aminotransferase, alkaline phosphatase and creatine kinase were significantly decreased; however, the level of catalase was significantly increased in the horses continuously fed with HBLS for 28 days (p < 0.05, p < 0.01). Alpha diversity analysis was performed that chao1 (p < 0.05), observed_specicies, faith'pd and goods_coverage upregulated in the horses fed HBLS. A total of 24 differential genera were detected adding HBLS to diet increased the abundance of Bacillus, Lactobacillaceae, Leuconostocaceae, Christensenellaceae, Peptostreptococcaceae, Faecalibacterium, Erysipelotrichaceae, Pyramidobacter, Sphaerochaeta, WCHB1-25, Bacteria, Oscillospira, and Acetobacteraceae, while reduced Aerococcus, EtOH8, Syntrophomonas, Caulobacter, Bradyrhizobiaceae, W22, Succinivibrionaceae, and Desulfovibrio (p < 0.05, p < 0.01). Conclusion Adding HBLS to the diet could be a potentially effective strategy to improve horses' health.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
49
|
Zhang H, Wang Q, Wang J, Zhang S, Jia W, He N, Xia X, Wang T, Lai L, Li J, DU J, Olaleye OE, Chen X, Yang J, Li C. Composition analysis of Compound Shenhua Tablet, a seven-herb Chinese medicine for IgA nephropathy: evaluation of analyte-capacity of the assays. Chin J Nat Med 2024; 22:178-192. [PMID: 38342570 DOI: 10.1016/s1875-5364(24)60553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 02/13/2024]
Abstract
Compound Shenhua Tablet, a medicine comprising seven herbs, is employed in treating IgA nephropathy. This study aimed to meticulously analyze its chemical composition. Based on a list of candidate compounds, identified through extensive literature review pertinent to the tablet's herbal components, the composition analysis entailed the systematic identification, characterization, and quantification of the constituents. The analyte-capacity of LC/ESI-MS-based and GC/EI-MS-based assays was evaluated. The identified and characterized constituents were quantified to determine their content levels and were ranked based on the constituents' daily doses. A total of 283 constituents, classified into 12 distinct categories, were identified and characterized in the Compound Shenhua Tablet. These constituents exhibited content levels of 1-10 982 μg·g-1, with daily doses of 0.01-395 μmol·d-1. The predominant constituents, with daily doses of ≥ 10 μmol·d-1, include nine organic acids (citric acid, quinic acid, chlorogenic acid, cryptochlorogenic acid, gallic acid, neochlorogenic acid, isochlorogenic acid C, isochlorogenic acid B, and linoleic acid), five iridoids (specnuezhenide, nuezhenoside G13, nuezhenidic acid, secoxyloganin, and secologanoside), two monoterpene glycosides (paeoniflorin and albiflorin), a sesquiterpenoid (curzerenone), a triterpenoid (oleanolic acid), and a phenylethanoid (salidroside). Additionally, there were 83, 126, and 55 constituents detected in the medicine with daily doses of 1-10, 0.1-1, and 0.01-0.1 μmol·d-1, respectively. The combination of the LC/ESI-MS-based and GC/EI-MS-based assays demonstrated a complementary relationship in their analyte-capacity for detecting the constituents present in the medicine. This comprehensive composition analysis establishes a solid foundation for further pharmacological research on Compound Shenhua Tablet and facilitates the quality evaluation of this complex herbal medicine.
Collapse
Affiliation(s)
- Haiyan Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiuyue Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Sichao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weiwei Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoyan Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liyu Lai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaying Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing DU
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Olajide E Olaleye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| | - Junling Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Chuan Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Zhongshan 528400, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
50
|
Ma T, Pan X, Wang T, Luo Y. Contamination and health risk of pesticides in eight popular Chinese traditional medicines from Zhejiang Province. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9106-9120. [PMID: 38182955 DOI: 10.1007/s11356-023-31570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
Zhejiang Province is one of the top five major provinces producing traditional Chinese medicines (TCMs) and is famous for Zhebawei (in Chinese), the eight popular geo-authentic TCMs including Rhizoma Atractylodis Macrocephalae, Radix Paeoniae Alba, Thunberg Fritillary Bulb, Chrysanthemum morifolium, Corydalis yanhusuo W. T. Wang, Scrophulariae Radix, Ophiopogonis Radix, and Curcuma Wenyujin Y. H. Chen et C. Ling. High proportion application and residue of pesticides directly affect the quality and yield of TCMs. In this study, pesticides residual levels in crude and processing samples were assessed along with their health risks in Zhebawei primarily produced in Zhejiang Province. In total, the exceeded ratios of pesticides residual concentrations in above mentioned eight species were 15/23, 4/7, 26/70, 22/44, 10/19, 8/12, 7/15, and 0/2, respectively. No acute dietary intake health risks were found but the long-term risks from permethrin in S. Radix should be carefully considered, with all quotient values being higher than 2.1 for all groups between 7 and 70 years. Furthermore, the risks of total benzene hexachloride in T. Fritillary Bulb and carbendazim in C. morifolium should be closely monitored. Suggestions for the cultivation and pesticide management of herbal medicines have been proposed to promote the quality of medicinal materials.
Collapse
Affiliation(s)
- Tingting Ma
- College of Resource Environment and Tourism, Hubei University of Arts and Science, No. 296 Longzhong Road, Xiangcheng District, Xiangyang, 441053, China
- Wenzhou Key Laboratory of Soil Pollution Prevention and Control, Zhejiang Industry and Trade Vocation College, Wenzhou, 325002, China
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xia Pan
- Wenzhou Key Laboratory of Soil Pollution Prevention and Control, Zhejiang Industry and Trade Vocation College, Wenzhou, 325002, China
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Tiantian Wang
- College of Resource Environment and Tourism, Hubei University of Arts and Science, No. 296 Longzhong Road, Xiangcheng District, Xiangyang, 441053, China.
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|