1
|
Ma Z, Zhang H, Zhao F, Li K, Dong N, Sang W. Safety and effectiveness of Salvia miltiorrhiza and ligustrazine injection for acute cerebral infarction in Chinese population: a PRISMA-compliant meta-analysis. Front Pharmacol 2024; 15:1425053. [PMID: 39687295 PMCID: PMC11646771 DOI: 10.3389/fphar.2024.1425053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Background Salvia miltiorrhiza and ligustrazine injection (SML) is a type of traditional Chinese medicine injection, which has been considered a promising adjunctive therapy treatment for acute cerebral infarction (ACI). Although there have been positive reports on the treatment of SML, there is still controversy over its exact efficacy and safety in ACI patients. In this study, a systematic review was conducted on randomized controlled trials (RCTs) of SML for the treatment of ACI to evaluate its clinical efficacy and safety. Method From the establishment of the database until May 2023, all randomized controlled trials related to SML and ACI were collected from the Cochrane Library, Web of Science, Embase, Medline, PubMed, CSJD, Wanfang database, CBM and CNKI. This systematic review and meta-analysis were strictly conducted in accordance with the PRISMA statement. The reported outcomes including overall response (ORR), National Institutes of Health Stroke Scale (NIHSS), hemorrheology indexes, activity of daily living (ADL) and adverse events were in detail investigated. Results An analysis was conducted on the relevant data of 3869 ACI patients from 38 trials. The results indicated that the combination of conventional treatment and SML can significantly improve the ORR of patients (RR = 1.23, 95% CI = 1.20-1.27, P < 0.00001), neurological status (NIHSS, MD = -4.35, 95% CI = -5.15-3.54, P < 0.00001) and ADL (Barthel Index score, MD = 10.27, 95% CI = 7.75-12.79, P < 0.00001) compared with regular treatment alone. After the combined therapy, the hemorheology of ACI patients also significantly improved (P < 0.05). There is no significant difference in the frequency of adverse events between the two groups (RR = 1.49, 95% CI = 0.91-2.46, P = 0.11). Conclusion The evidence from the meta-analysis suggested that the combination of conventional therapy and SML is safer and more effective than conventional therapy alone in treating ACI. However, due to the limitations of this analysis, such as regional bias and publication bias, the above conclusions need to be further verified by prospective, high-quality and multicenter clinical trials.
Collapse
Affiliation(s)
- Zhuoya Ma
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Hu Zhang
- Department of Emergency Medicine, Taizhou People’s Hospital, Taizhou, Jiangsu, China
| | - Fen Zhao
- Department of Clinical Laboratory, Fushan District People’s Hospital of Yantai City, Yantai, Shandong, China
| | - Ke Li
- Department of Central Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Nanhai Dong
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Wenwen Sang
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| |
Collapse
|
2
|
Qu B, Hu Z, Tan W, Li B, Xin Y, Mo J, Huang M, Wu Q, Li Y, Wu Y. Tetramethylpyrazine-derived polyurethane for improved hemocompatibility and rapid endothelialization. J Mater Chem B 2024; 12:11810-11816. [PMID: 39434545 DOI: 10.1039/d4tb01478b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Thrombosis and intimal hyperplasia (IH) are the main factors affecting the long-term patency of small-diameter vascular grafts (SDVGs). Fabricating a confluent endothelial cell (EC) layer on surfaces with physiological elasticity to mimic vascular endothelium should be an effective strategy to prevent restenosis that is caused by thrombosis and IH. However, the vascular endothelialization process is time-consuming and always constrained by hemocompatibility of the vascular grafts, since excellent hemocompatibility could guarantee a sufficient time window for the endothelialization process. Tetramethylpyrazine (TMP)-derived polyurethane (PU) with improved hemocompatibility and accelerated endothelialization ability is synthesized by incorporating TMP moieties into PU backbones. Results show that TMP-contained PU films possess improved hemocompatibility by down-regulating platelet adhesion/activation and increasing the clotting time. Furthermore, the in vitro human umbilical vein endothelial cell (HUVEC) test demonstrates that the introduction of TMP can significantly promote HUVEC adhesion and proliferation, and thus accelerate luminal endothelialization of vascular grafts. Moreover, the TMP-containing PU films exhibit excellent biocompatibility especially for HUVECs, and their excellent, adjustable elasticity (1123%) guarantees compliance accommodation of vascular grafts. This newly synthesized TMP-containing material with multiple biological functions is expected to make up for the shortcomings of available SDVGs in clinical practice, and has significant potential in improving the long-term patency of SDVGs.
Collapse
Affiliation(s)
- Baoliu Qu
- School of Textile Science and Engineering, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China.
| | - Zhenzhen Hu
- Food Inspection Institute of Jiangmen, 36 Xinghe Road, Pengjiang District, Jiangmen 529000, Guangdong, P. R. China
| | - Weilong Tan
- School of Textile Science and Engineering, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China.
| | - Bingyan Li
- School of Textile Science and Engineering, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China.
| | - Yue Xin
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
| | - Jinpeng Mo
- School of Textile Science and Engineering, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China.
| | - Meilin Huang
- School of Textile Science and Engineering, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China.
| | - Qinghua Wu
- School of Textile Science and Engineering, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China.
| | - Yangling Li
- School of Textile Science and Engineering, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China.
| | - Yingzhu Wu
- School of Textile Science and Engineering, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China.
| |
Collapse
|
3
|
Zhang N, Zhang S, Dong X. Plant-derived bioactive compounds and their novel role in central nervous system disorder treatment via ATF4 targeting: A systematic literature review. Biomed Pharmacother 2024; 176:116811. [PMID: 38795641 DOI: 10.1016/j.biopha.2024.116811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Central nervous system (CNS) disorders exhibit exceedingly intricate pathogenic mechanisms. Pragmatic and effective solutions remain elusive, significantly compromising human life and health. Activating transcription factor 4 (ATF4) participates in the regulation of multiple pathophysiological processes, including CNS disorders. Considering the widespread involvement of ATF4 in the pathological process of CNS disorders, the targeted regulation of ATF4 by plant-derived bioactive compounds (PDBCs) may become a viable strategy for the treatment of CNS disorders. However, the regulatory relationship between PDBCs and ATF4 remains incompletely understood. Here, we aimed to comprehensively review the studies on PDBCs targeting ATF4 to ameliorate CNS disorders, thereby offering novel directions and insights for the treatment of CNS disorders. A computerized search was conducted on PubMed, Embase, Web of Science, and Google Scholar databases to identify preclinical experiments related to PDBCs targeting ATF4 for the treatment of CNS disorders. The search timeframe was from the inception of the databases to December 2023. Two assessors conducted searches using the keywords "ATF4," "Central Nervous System," "Neurological," "Alzheimer's disease," "Parkinson's Disease," "Stroke," "Spinal Cord Injury," "Glioblastoma," "Traumatic Brain Injury," and "Spinal Cord Injury." Overall, 31 studies were included, encompassing assessments of 27 PDBCs. Combining results from in vivo and in vitro studies, we observed that these PDBCs, via ATF4 modulation, prevent the deposition of amyloid-like fibers such as Aβ, tau, and α-synuclein. They regulate ERS, reduce the release of inflammatory factors, restore mitochondrial membrane integrity to prevent oxidative stress, regulate synaptic plasticity, modulate autophagy, and engage anti-apoptotic mechanisms. Consequently, they exert neuroprotective effects in CNS disorders. Numerous PDBCs targeting ATF4 have shown potential in facilitating the restoration of CNS functionality, thereby presenting expansive prospects for the treatment of such disorders. However, future endeavors necessitate high-quality, large-scale, and comprehensive preclinical and clinical studies to further validate this therapeutic potential.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, the Seventh Clinical College of China Medical University, No. 24 Central Street, Xinfu District, Fushun, Liaoning 113000, China
| | - Shun Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| |
Collapse
|
4
|
Su W, Lv M, Wang D, He Y, Han H, Zhang Y, Zhang X, Lv S, Yao L. Tanshinone IIA Alleviates Traumatic Brain Injury by Reducing Ischemia‒Reperfusion via the miR-124-5p/FoxO1 Axis. Mediators Inflamm 2024; 2024:7459054. [PMID: 38549714 PMCID: PMC10978079 DOI: 10.1155/2024/7459054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/22/2023] [Accepted: 11/27/2023] [Indexed: 04/02/2024] Open
Abstract
Background Cerebral ischemia-reperfusion injury is a common complication of ischemic stroke that affects the prognosis of patients with ischemic stroke. The lipid-soluble diterpene Tanshinone IIA, which was isolated from Salvia miltiorrhiza, has been indicated to reduce cerebral ischemic injury. In this study, we investigated the molecular mechanism of Tanshinone IIA in alleviating reperfusion-induced brain injury. Methods Middle cerebral artery occlusion animal models were established, and neurological scores, tetrazolium chloride staining, brain volume quantification, wet and dry brain water content measurement, Nissl staining, enzyme-linked immunosorbent assay, flow cytometry, western blotting, and reverse transcription-quantitative polymerase chain reaction were performed. The viability of cells was measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assays, while cell damage was measured by lactate dehydrogenase release in the in vitro oxygen glucose deprivation model. In addition, enzyme-linked immunosorbent assay, flow cytometry, western blotting, and reverse transcription-quantitative polymerase chain reaction were used to evaluate the therapeutic effect of Tanshinone IIA on ischemia/reperfusion (I/R) induced brain injury, as well as its effects on the inflammatory response and neuronal apoptosis, in vivo and in vitro. Furthermore, this study validated the targeting relationship between miR-124-5p and FoxO1 using a dual luciferase assay. Finally, we examined the role of Tanshinone IIA in brain injury from a molecular perspective by inhibiting miR-124-5p or increasing FoxO1 levels. Results After treatment with Tanshinone IIA in middle cerebral artery occlusion-reperfusion (MCAO/R) rats, the volume of cerebral infarction was reduced, the water content of the brain was decreased, the nerve function of the rats was significantly improved, and the cell damage was significantly reduced. In addition, Tanshinone IIA effectively inhibited the I/R-induced inflammatory response and neuronal apoptosis, that is, it inhibited the expression of inflammatory cytokines IL-1β, IL-6, TNF-α, decreased the expression of apoptotic protein Bax and Cleaved-caspase-3, and promoted the expression of antiapoptotic protein Bcl-2. In vitro oxygen-glucose deprivation/reoxygenation (OGD/R) cell model, Tanshinone IIA also inhibited the expression of inflammatory factors in neuronal cells and inhibited the occurrence of neuronal apoptosis. In addition, Tanshinone IIA promoted the expression of miR-124-5p. Transfection of miR-124-5p mimic has the same therapeutic effect as Tanshinone IIA and positive therapeutic effect on OGD cells, while transfection of miR-124-5p inhibitor has the opposite effect. The targeting of miR-124-5p negatively regulates FoxO1 expression. Inhibition of miR-124-5p or overexpression of FoxO1 can weaken the inhibitory effect of Tanshinone IIA on brain injury induced by I/R, while inhibition of miR-124-5p and overexpression of FoxO1 can further weaken the effect of Tanshinone IIA. Conclusion Tanshinone IIA alleviates ischemic-reperfusion brain injury by inhibiting neuroinflammation through the miR-124-5p/FoxO1 axis. This finding provides a theoretical basis for mechanistic research on cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Wenbing Su
- Rehabilitation Medicine of Qujing No. 1 Hospital, Qujing 655000, Yunnan, China
| | - Meifen Lv
- Rehabilitation Medicine of Qujing No. 1 Hospital, Qujing 655000, Yunnan, China
| | - Dayu Wang
- Rehabilitation Medicine of Qujing No. 1 Hospital, Qujing 655000, Yunnan, China
| | - Yinghong He
- Rehabilitation Medicine of Qujing No. 1 Hospital, Qujing 655000, Yunnan, China
| | - Hui Han
- Rehabilitation Medicine of Qujing No. 1 Hospital, Qujing 655000, Yunnan, China
| | - Yu Zhang
- Rehabilitation Medicine of Qujing No. 1 Hospital, Qujing 655000, Yunnan, China
| | - Xiuying Zhang
- Rehabilitation Medicine of Qujing No. 1 Hospital, Qujing 655000, Yunnan, China
| | - Shaokun Lv
- Rehabilitation Medicine of Qujing No. 1 Hospital, Qujing 655000, Yunnan, China
| | - Liqing Yao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunnan, China
| |
Collapse
|
5
|
Yu Q, Zhang Y, Zeng W, Sun Y, Zhang X, Guo L, Zhang Y, Yu B, Guo M, Wang Y, Li H, Suo Y, Jiang X, Song L. Buyang Huanwu Decoction Alleviates Atherosclerosis by Regulating gut Microbiome and Metabolites in Apolipoprotein E-deficient Mice fed with High-fat Diet. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:88-102. [PMID: 38780293 DOI: 10.4103/ejpi.ejpi-d-23-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/25/2024] [Indexed: 05/25/2024]
Abstract
ABSTRACT The traditional Chinese herbal prescription Buyang Huanwu decoction (BHD), effectively treats atherosclerosis. However, the mechanism of BHD in atherosclerosis remains unclear. We aimed to determine whether BHD could alleviate atherosclerosis by altering the microbiome-associated metabolic changes in atherosclerotic mice. An atherosclerotic model was established in apolipoprotein E-deficient mice fed high-fat diet, and BHD was administered through gavage for 12 weeks at 8.4 g/kg/d and 16.8 g/kg/d. The atherosclerotic plaque size, composition, serum lipid profile, and inflammatory cytokines, were assessed. Mechanistically, metabolomic and microbiota profiles were analyzed by liquid chromatography-mass spectrometry and 16S rRNA gene sequencing, respectively. Furthermore, intestinal microbiota and atherosclerosis-related metabolic parameters were correlated using Spearman analysis. Atherosclerotic mice treated with BHD exhibited reduced plaque area, aortic lumen occlusion, and lipid accumulation in the aortic root. Nine perturbed serum metabolites were significantly restored along with the relative abundance of microbiota at the family and genus levels but not at the phylum level. Gut microbiome improvement was strongly negatively correlated with improved metabolite levels. BHD treatment effectively slows the progression of atherosclerosis by regulating altered intestinal microbiota and perturbed metabolites.
Collapse
Affiliation(s)
- Qun Yu
- School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yilin Zhang
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Wenyun Zeng
- Oncology, Ganzhou People's Hospital, Ganzhou, China
| | - Yingxin Sun
- School of Faculty of Health and Exercise Science, Tianjin University of Sport, Tianjin, China
| | - Xiaolu Zhang
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Lin Guo
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Yue Zhang
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Bin Yu
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Maojuan Guo
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Yu Wang
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Huhu Li
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Yanrong Suo
- Oncology, Ganzhou People's Hospital, Ganzhou, China
| | - Xijuan Jiang
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Lili Song
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| |
Collapse
|
6
|
Pang HQ, Guo JX, Yang Y, Xu L, Wang J, Yang F, Xu ZB, Huang YF, Shi W, Lu X, Ibrahim MEH, Hu WC, Yan BC, Liu L. Elucidating the chemical interaction effects of herb pair Danshen-Chuanxiong and its anti-ischemic stroke activities evaluation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117058. [PMID: 37597675 DOI: 10.1016/j.jep.2023.117058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge (Danshen) and Ligusticum chuanxiong Hort. (Chuanxiong) is the core herb pair in traditional Chinese medicines (TCMs) formulae for treating ischemic stroke. However, the synergistic effect of Danshen-Chuanxiong against anti-ischemic stroke and its compatibility mechanism remains unclear. AIM OF THE STUDY This study aimed to uncover the compatibility mechanism of Danshen-Chuanxiong against ischemic stroke through chemical profiling, pharmacodynamics evaluation, network pharmacology and experimental validation. MATERIALS AND METHODS Ultra-high performance liquid chromatography (UHPLC) combined with quadrupole time-of-flight tandem mass spectrometry (QTOF-MS) and UHPLC connected with tandem triple quadrupole mass spectrometry (QQQ-MS) were utilized to conduct the chemical interaction analysis. Then the synergistic effects of Danshen-Chuanxiong against ischemic stroke were comprehensively evaluated by the middle cerebral artery occlusion reperfusion (MCAO/R) mice model, zebrafish ischemic stroke model and glutamic acid-induced PC12 cells injury model. Afterwards, network pharmacology and molecular docking were applied to dissect the significant active compounds and potential mechanisms. Finally, the key target proteins were experimentally validated by Western blot. RESULTS 83 compounds were characterized in Danshen-Chuanxiong by UHPLC-QTOF-MS analysis, and 4 compounds were tentatively identified for the first time. The quantification results (24 accurately identified compounds) in 13 proportions of Danshen-Chuanxiong revealed that Danshen significantly increased the dissolution of most phthalides (from Chuanxiong), while Chuanxiong facilitated the dissolution of most phenolic acids (from Danshen) in solution. The anti-ischemic stroke effects of Danshen-Chuanxiong were significantly better than Danshen or Chuanxiong in attenuating infarct size, reducing brain edema and neurological scores in MCAO/R mice. Also, compared with single herbs, this herb pair exerted better effects of suppressing the incidence of cerebral thrombosis in zebrafish, and increasing the cell viability of glutamic acid-induced PC12 cells. In network pharmacology, 7 effective compounds (rosmarinic acid, chlorogenic acid, salvianolic acid B, (Z)-ligustilide, ferulic acid, caffeic acid, tanshinone IIA) and 5 hub targets (AKT, TNF-α, IL-1β, CASP3 and BCL2) as well as 4 key pathways were predicted. Western blot results showed that Danshen-Chuanxiong exert therapeutic effects mainly through decreasing the protein expressions of TNF-α, IL-1β and Cleaved-CASP3, elevating the levels of p-AKT and BCL2. CONCLUSIONS This work provided an integration strategy for uncovering the synergistic effects and compatibility mechanism of Danshen-Chuanxiong herb pair for treating ischemic stroke, and laid foundation for the further development and utilization of this herb pair.
Collapse
Affiliation(s)
- Han-Qing Pang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guiling, 541000, China.
| | - Jia-Xiu Guo
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China.
| | - Yang Yang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China; Guangling College, Yangzhou University, Yangzhou, 225000, China.
| | - Li Xu
- Yangzhou Food and Drug Inspection and Testing Center, Yangzhou, 225000, China.
| | - Jian Wang
- Yangzhou Food and Drug Inspection and Testing Center, Yangzhou, 225000, China.
| | - Fan Yang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China.
| | - Zhuo-Bing Xu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China.
| | - Yu-Fan Huang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China.
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guiling, 541000, China.
| | - Xin Lu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China.
| | - Muhi Eldeen Hussien Ibrahim
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China.
| | - Wei-Chen Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China.
| | - Bing-Chun Yan
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China.
| | - Liang Liu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Jin M, Fang J, Wang JJ, Shao X, Xu SW, Liu PQ, Ye WC, Liu ZP. Regulation of toll-like receptor (TLR) signaling pathways in atherosclerosis: from mechanisms to targeted therapeutics. Acta Pharmacol Sin 2023; 44:2358-2375. [PMID: 37550526 PMCID: PMC10692204 DOI: 10.1038/s41401-023-01123-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/04/2023] [Indexed: 08/09/2023] Open
Abstract
Atherosclerosis, one of the life-threatening cardiovascular diseases (CVDs), has been demonstrated to be a chronic inflammatory disease, and inflammatory and immune processes are involved in the origin and development of the disease. Toll-like receptors (TLRs), a class of pattern recognition receptors that trigger innate immune responses by identifying pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), regulate numerous acute and chronic inflammatory diseases. Recent studies reveal that TLRs have a vital role in the occurrence and development of atherosclerosis, including the initiation of endothelial dysfunction, interaction of various immune cells, and activation of a number of other inflammatory pathways. We herein summarize some other inflammatory signaling pathways, protein molecules, and cellular responses associated with TLRs, such as NLRP3, Nrf2, PCSK9, autophagy, pyroptosis and necroptosis, which are also involved in the development of AS. Targeting TLRs and their regulated inflammatory events could be a promising new strategy for the treatment of atherosclerotic CVDs. Novel drugs that exert therapeutic effects on AS through TLRs and their related pathways are increasingly being developed. In this article, we comprehensively review the current knowledge of TLR signaling pathways in atherosclerosis and actively seek potential therapeutic strategies using TLRs as a breakthrough point in the prevention and therapy of atherosclerosis.
Collapse
Affiliation(s)
- Mei Jin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Jian Fang
- Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, 510800, China
| | - Jiao-Jiao Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Xin Shao
- Department of Food Science and Engineering, Jinan University, Guangzhou, 511436, China
| | - Suo-Wen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Pei-Qing Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China.
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Wen-Cai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China.
| | - Zhi-Ping Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China.
| |
Collapse
|
8
|
Li Q, Tian C, Liu X, Li D, Liu H. Anti-inflammatory and antioxidant traditional Chinese Medicine in treatment and prevention of osteoporosis. Front Pharmacol 2023; 14:1203767. [PMID: 37441527 PMCID: PMC10335577 DOI: 10.3389/fphar.2023.1203767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
A metabolic bone disorder called osteoporosis is characterized by decreased bone mass and compromised microarchitecture. This condition can deteriorate bones and raise the risk of fractures. The two main causes of osteoporosis are an increase in osteoclast activity or quantity and a decrease in osteoblast viability. Numerous mechanisms, including estrogen shortage, aging, chemical agents, and decreased mechanical loads, have been linked to osteoporosis. Inflammation and oxidative stress have recently been linked to osteoporosis, according to an increasing number of studies. The two primary medications used to treat osteoporosis at the moment are bisphosphonates and selective estrogen receptor modulators (SERMs). These medications work well for osteoporosis brought on by aging and estrogen deprivation, however, they do not target inflammation and oxidative stress-induced osteoporosis. In addition, these drugs have some limitations that are attributed to various side effects that have not been overcome. Traditional Chinese medicine (TCM) has been applied in osteoporosis for many years and has a high safety profile. Therefore, in this review, literature related to botanical drugs that have an effect on inflammation and oxidative stress-induced osteoporosis was searched for. Moreover, the pharmacologically active ingredients of these herbs and the pathways were discussed and may contribute to the discovery of more safe and effective drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Qian Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Ciqiu Tian
- Hubei University of Chinese Medicine, City Wuhan, Hubei Province, China
| | - Xiangjie Liu
- Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Geriatric Department, City Wuhan, Hubei Province, China
| | - Dinglin Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Hao Liu
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| |
Collapse
|
9
|
Fan S, Xiao G, Ni J, Zhao Y, Du H, Liang Y, Lv M, He S, Fan G, Zhu Y. Guanxinning injection ameliorates cardiac remodeling in HF mouse and 3D heart spheroid models via p38/FOS/MMP1-mediated inhibition of myocardial hypertrophy and fibrosis. Biomed Pharmacother 2023; 162:114642. [PMID: 37027988 DOI: 10.1016/j.biopha.2023.114642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Heart failure (HF) is a cardiovascular disease with high morbidity and mortality. Guanxinning injection (GXNI) is clinically used for the treatment of coronary heart disease, but its therapeutic efficacy and potential mechanism for HF are poorly understood. This study aimed to evaluate the therapeutic potential of GXNI on HF, with a special focus on its role in myocardial remodeling. METHODS 3D cardiac organoids and transverse aortic constriction (TAC) mouse models were established and utilized. Heart function and pathology were evaluated by echocardiography, hemodynamic examination, tail-cuff blood pressure and histopathology. Key targets and pathways regulated by GXNI in HF mouse heart were revealed via RNA-seq and network pharmacology analysis, and were verified by RT-PCR, Western blot, immunohistochemistry and immunofluorescence. RESULTS GXNI significantly inhibited cardiac hypertrophy and cells death. It protected mitochondrial function in cardiac hypertrophic organoids and markedly improved cardiac function in HF mice. Analysis of GXNI-regulated genes in HF mouse hearts revealed that IL-17A signaling in fibroblasts and the corresponding p38/c-Fos/Mmp1 pathway prominently mediated cardiac. Altered expressions of c-Fos, p38 and Mmp1 by GXNI in heart tissues and in cardiac organoids were validated by RT-PCR, WB, IHC, and IF. H&E and Masson staining confirmed that GXNI substantially ameliorated myocardial hypertrophy and fibrosis in HF mice and in 3D organoids. CONCLUSION GXNI inhibited cardiac fibrosis and hypertrophy mainly via down-regulating p38/c-Fos/Mmp1 pathway, thereby ameliorating cardiac remodeling in HF mice. Findings in this study provide a new strategy for the clinical application of GXNI in the treatment of heart failure.
Collapse
Affiliation(s)
- Siwen Fan
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Jingyu Ni
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yuhan Zhao
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Hongying Du
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Yingran Liang
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Ming Lv
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Guanwei Fan
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China.
| |
Collapse
|
10
|
Liu D, Liu Y, Qian X, Yang J, Li C, Zhu L, Zhou J. Pharmacokinetic study on the effect of ligustrazine-tangeretin co-administration on the pharmacokinetics of ligustrazine and its potential mechanism in rats. Pharmacol Res Perspect 2023; 11:e01058. [PMID: 36852752 PMCID: PMC9972364 DOI: 10.1002/prp2.1058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/08/2022] [Accepted: 01/16/2023] [Indexed: 03/01/2023] Open
Abstract
Both ligustrazine and tangeretin are usually prescribed in the treatment of cardiovascular diseases, which makes their co-administration possible. The investigation of the interaction between ligustrazine and tangeretin is necessary for the clinical compatibility of their source herbs. This study aimed to investigate the interaction of ligustrazine and tangeretin during their co-administration. The pharmacokinetics of ligustrazine (15 mg/kg) was investigated in the presence of 50, 100, and 150 mg/kg tangeretin in rats with six of each. A single dose of ligustrazine was set as the control. The effect of tangeretin on the in vitro metabolic stability of ligustrazine was also investigated in rat liver microsomes. Tangeretin significantly reduced the system exposure of ligustrazine under all experimental concentrations. Specifically, tangeretin reduced the AUC (from 48.86 ± 12.57 to 41.02 ± 4.85 (50 mg/kg tangeretin), 31.47 ± 5.26 (100 mg/kg tangeretin), and 27.55 ± 9.60 (150 mg/kg) μg/mL × h), MRT (from 7.05 ± 0.26 to 6.33 ± 0.48, 5.53 ± 0.68, and 5.21 ± 1.31 h), Cmax (from 7.45 ± 0.44 to 6.03 ± 0.44, 5.24 ± 0.47, and 5.02 ± 0.56 μg/mL), and t1/2 (from 5.90 ± 1.27 to 4.84 ± 1.19, 3.48 ± 1.33, 3.09 ± 0.62 h) in rats. In vitro, tangeretin also reduced the metabolic stability of ligustrazine behaved as the decreased half-life and increased intrinsic clearance rate. Co-consumption of ligustrazine with tangeretin induced interactions, which shortens the system exposure of ligustrazine. This study provides theoretical guidance for the clinical prescription of ligustrazine- and tangeretin-containing herbs.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Yunjiao Liu
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Xian Qian
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Junwei Yang
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Chengjian Li
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | | | - Jin Zhou
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| |
Collapse
|
11
|
Dogan Z, Kutluay VM, Genc Y, Saracoglu I. Interactions between phenolic constituents of Scutellaria salviifolia and key targets associated with inflammation: network pharmacology, molecular docking analysis and in vitro assays. J Biomol Struct Dyn 2023; 41:1281-1294. [PMID: 34939529 DOI: 10.1080/07391102.2021.2019119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Scutellaria salviifolia Benth. (SS), an endemic plant for Turkey, is used for gastric ailments as folk medicine. In this study, we aimed to uncover the underlying molecular mechanisms with the help of network pharmacology and molecular docking analysis in the inflammation processes of gastric ailments. Gene enrichment analysis and target screening were carried out. Experimental validation was performed via cytokines of nitric oxide (NO) and interleukin-6 (IL-6) in LPS stimulated RAW 264.7 cells. Furthermore, antioxidant activity studies were performed by radical scavenging effects on different radicals. A total of 144 targets were listed for the isolated compounds where 26 of them were related to selected inflammation targets. According to the gene enrichment analysis, HIF1 signaling pathway and TNF signaling pathway were found to be involved in inflammation. We also defined AKT1, TNF, EGFR, and COX2 as key targets due to the protein-protein interactions of 26 common targets. The extract inhibited NO and IL-6 production at 100 and 200 µg/mL, while flavonoid-rich fraction possessed significant anti-inflammatory activity at the concentration of 50 and 100 µg/mL via NO and IL-6 production, respectively. It is thought that the anti-inflammatory effects of extracts, fractions and pure compounds were achieved by reducing NO and IL-6 levels via regulating the NF-κB pathway or reducing NO production by suppressing iNOS through the HIF-1 pathway when evaluated together with the results of network analysis and literature. Anti-inflammatory activities of the extract and fractions were promising and comparably with S. baicalensis, commonly used for its anti-inflammatory activity.
Collapse
Affiliation(s)
- Zeynep Dogan
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Vahap Murat Kutluay
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Yasin Genc
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Iclal Saracoglu
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sihhiye, Ankara, Turkey
| |
Collapse
|
12
|
Zhang J, Wang X, Guan B, Wang X, An X, Wang T, Chen X, Zhao L, Jia J, Song L, Ma D, Li Q, Zhang H, Ju J, Xu H. Qing-Xin-Jie-Yu Granule inhibits ferroptosis and stabilizes atherosclerotic plaques by regulating the GPX4/xCT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115852. [PMID: 36272494 DOI: 10.1016/j.jep.2022.115852] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qing-Xin-Jie-Yu Granule (QXJYG) is an integrated traditional Chinese medicine formula used to treat atherosclerotic (AS) cardiovascular diseases. A randomized controlled trial found that QXJYG reduced cardiovascular events and experiments also verified that QXJYG attenuated AS by remodeling the intestinal flora. AIM OF THE STUDY To determine whether QXJYG would attenuate AS and plaque vulnerability by regulating ferroptosis in high-fat diet-induced atherosclerotic ApoE-/- mice and to investigate the effects of QXJYG on macrophage ferroptosis in RAS-selective lethal 3 (RSL3)-induced J744A.1 cells. METHODS AS models in ApoE-/- mice and RSL3-induced ferroptosis in J744A.1 cells were established to measure the protective and anti-ferroptotic effects of QXJYG in vivo and in vitro. The glutathione peroxidase 4 (GPX4)/cystine glutamate reverse transporter (xCT) signal pathway was examined by immunohistochemistry and western blotting. RESULTS QXJYG attenuated AS progression and plaque vulnerability. Characteristic morphological changes of ferroptosis in the QXJYG-treated animals were rare. Total iron was significantly lower in the QXJYG group than in the model group (P < 0.05); QXJYG suppressed the lipid peroxidation (LPO) levels (malondialdehyde), enhanced the antioxidant capacity (superoxide dismutase and glutathione), and reduced inflammatory factors (interleukin [IL]-6, IL-1β, tumor necrosis factor-α) associated with ferroptosis. Expression of GPX4/xCT in aorta tissues was remarkably increased in the QXJYG group. QXJYG inhibited ferroptosis in J744A.1 macrophages disturbed using RSL3. The Fe2+, LPO, and reactive oxygen species levels were lower in the QXJYG group than in the RSL3 group (P < 0.05). The QXJYG group showed higher expression of the GPX4/xCT signal pathway. CONCLUSION QXJYG inhibits ferroptosis in vulnerable AS plaques partially via the GPX4/xCT signaling pathway.
Collapse
Affiliation(s)
- Jie Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xinyi Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, 100007, China
| | - Baoyi Guan
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, 100007, China
| | - Xue Wang
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100007, China
| | - Xiaojing An
- Pathology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tong Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuanye Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lin Zhao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jundi Jia
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Luxia Song
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dan Ma
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, 100007, China
| | - Qiuyi Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, 100007, China
| | - He Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
13
|
Xu S, Jin S, Yang L, Wang L, Zhang Q. Evidence-based complementary and alternative medicine conventional surgery combined with traditional Chinese medicinal retention enema for tubal obstructive infertility: A systematic review and meta-analysis. PLoS One 2023; 18:e0285859. [PMID: 37200249 DOI: 10.1371/journal.pone.0285859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Chinese medicinal retention enemas have gradually attracted the attention of clinicians as an alternative approach for tubal obstructive infertility. The purpose of this study was to investigate the efficacy and safety of conventional surgery combined with traditional Chinese medicinal retention enemas for the treatment of tubal obstructive infertility. MATERIALS AND METHODS Eight electronic databases were searched from their inception to November 30, 2022. To assess the efficacy and safety of different treatments, following outcomes were measured: clinical pregnancy rate, clinical total effective rate, incidence of ectopic pregnancy, the improvement of Traditional Chinese Medicinal (TCM) symptoms, the improvement of the signs of obstructive tubal infertility and side effects. RESULTS A total of 23 Randomized Controlled Trials (RCTs) with 1909 patients met the inclusion criteria. The pooled results showed a higher pregnancy rate in the experimental group than in the control group (RR 1.75, 95% CI [1.58, 1.94], Z = 10.55, P<0.00001). The clinical total effective rate in the experimental group was higher than that in the control group (RR 1.28, 95% CI [1.23, 1.34], Z = 11.07, P<0.00001). The incidence of ectopic pregnancy in the experimental group was lower than that in the control group (RR 0.40, 95% CI [0.20, 0.77], Z = -2.73, P = 0.01). CONCLUSION Based on current evidence, we concluded that conventional surgery combined with traditional Chinese medicinal retention enema for tubal obstructive infertility was superior to conventional surgery alone in improving the clinical pregnancy rate, improving clinical total effective rate, improving TCM symptoms, improving the signs of obstructive tubal infertility and lowering the incidence of ectopic pregnancy. However, further clinical trials with high-quality methodologies need to be conducted.
Collapse
Affiliation(s)
- Sijia Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang, China
- Hangzhou Traditional Chinese Medicine Hospital, Zhejiang Chinese Medicine University, Zhejiang, China
| | - Shuo Jin
- Hangzhou Traditional Chinese Medicine Hospital, Zhejiang Chinese Medicine University, Zhejiang, China
| | - Liuqing Yang
- Hangzhou Traditional Chinese Medicine Hospital, Zhejiang Chinese Medicine University, Zhejiang, China
| | - Ling Wang
- Hangzhou Traditional Chinese Medicine Hospital, Zhejiang Chinese Medicine University, Zhejiang, China
| | - Qin Zhang
- Hangzhou Traditional Chinese Medicine Hospital, Zhejiang Chinese Medicine University, Zhejiang, China
| |
Collapse
|
14
|
Huajuan J, Xulong H, Bin X, Yue W, Yongfeng Z, Chaoxiang R, Jin P. Chinese herbal injection for cardio-cerebrovascular disease: Overview and challenges. Front Pharmacol 2023; 14:1038906. [PMID: 36909150 PMCID: PMC9998719 DOI: 10.3389/fphar.2023.1038906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Cardio-cerebrovascular diseases are the leading cause of death worldwide and there is currently no optimal treatment plan. Chinese herbal medicine injection (CHI) is obtained by combining traditional Chinese medicine (TCM) theory and modern production technology. It retains some characteristics of TCM while adding injection characteristics. CHI has played an important role in the treatment of critical diseases, especially cardio-cerebrovascular diseases, and has shown unique therapeutic advantages. TCMs that promote blood circulation and remove blood stasis, such as Salvia miltiorrhiza, Carthami flos, Panax notoginseng, and Chuanxiong rhizoma, account for a large proportion of CHIs of cardio-cerebrovascular disease. CHI is used to treat cardio-cerebrovascular diseases and has potential pharmacological activities such as anti-platelet aggregation, anti-inflammatory, anti-fibrosis, and anti-apoptosis. However, CHIs have changed the traditional method of administering TCMs, and the drugs directly enter the bloodstream, which may produce new pharmacological effects or adverse reactions. This article summarizes the clinical application, pharmacological effects, and mechanism of action of different varieties of CHIs commonly used in the treatment of cardio-cerebrovascular diseases, analyzes the causes of adverse reactions, and proposes suggestions for rational drug use and pharmaceutical care methods to provide a reference for the rational application of CHIs for cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Jiang Huajuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huang Xulong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Bin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wang Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhou Yongfeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ren Chaoxiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pei Jin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Salvianolic Acid A Protects against Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Neutrophil NETosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7411824. [PMID: 35910849 PMCID: PMC9334034 DOI: 10.1155/2022/7411824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/24/2022]
Abstract
Salvianolic acid A (SAA) is one of bioactive polyphenol extracted from a Salvia miltiorrhiza (Danshen), which was widely used to treat cardiovascular disease in traditional Chinese medicine. SAA has been reported to be protective in cardiovascular disease and ischemia injury, with anti-inflammatory and antioxidative effect, but its role in acute lung injury (ALI) is still unknown. In this study, we sought to investigate the therapeutic effects of SAA in a murine model of lipopolysaccharide- (LPS-) induced ALI. The optimal dose of SAA was determined by comparing the attenuation of lung injury score after administration of SAA at three different doses (low, 5 mg/kg; medium, 10 mg/kg; and, high 15 mg/kg). Dexamethasone (DEX) was used as a positive control for SAA. Here, we showed that the therapeutic effect of SAA (10 mg/kg) against LPS-induced pathologic injury in the lungs was comparable to DEX. SAA and DEX attenuated the increased W/D ratio and the protein level, counts of total cells and neutrophils, and cytokine levels in the BALF of ALI mice similarly. The oxidative stress was also relieved by SAA and DEX according to the superoxide dismutase and malondialdehyde. NET level in the lungs was elevated in the injured lung while SAA and DEX reduced it significantly. LPS induced phosphorylation of Src, Raf, MEK, and ERK in the lungs, which was inhibited by SAA and DEX. NET level and phosphorylation level of Src/Raf/MEK/ERK pathway in the neutrophils from acute respiratory distress syndrome (ARDS) patients were also inhibited by SAA and DEX in vitro, but the YEEI peptide reversed the protective effect of SAA completely. The inhibition of NET release by SAA was also reversed by YEEI peptide in LPS-challenged neutrophils from healthy volunteers. Our data demonstrated that SAA ameliorated ALI via attenuating inflammation, oxidative stress, and neutrophil NETosis. The mechanism of such protective effect might involve the inhibition of Src activation.
Collapse
|
16
|
Tetramethylpyrazine: A review on its mechanisms and functions. Biomed Pharmacother 2022; 150:113005. [PMID: 35483189 DOI: 10.1016/j.biopha.2022.113005] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Ligusticum chuanxiong Hort (known as Chuanxiong in China, CX) is one of the most widely used and long-standing medicinal herbs in China. Tetramethylpyrazine (TMP) is an alkaloid and one of the active components of CX. Over the past few decades, TMP has been proven to possess several pharmacological properties. It has been used to treat a variety of diseases with excellent therapeutic effects. Here, the pharmacological characteristics and molecular mechanism of TMP in recent years are reviewed, with an emphasis on the signal-regulation mechanism of TMP. This review shows that TMP has many physiological functions, including anti-oxidant, anti-inflammatory, and anti-apoptosis properties; autophagy regulation; vasodilation; angiogenesis regulation; mitochondrial damage suppression; endothelial protection; reduction of proliferation and migration of vascular smooth muscle cells; and neuroprotection. At present, TMP is used in treating cardiovascular, nervous, and digestive system conditions, cancer, and other conditions and has achieved good curative effects. The therapeutic mechanism of TMP involves multiple targets, multiple pathways, and bidirectional regulation. TMP is, thus, a promising drug with great research potential.
Collapse
|
17
|
Li ZK, Li CH, Yue AC, Song HP, Liu XH, Zhou XD, Bi MJ, Han W, Li Q. Therapeutic effect and molecular mechanism of Salvia Miltiorrhiza on rats with acute brain injury after carbon monoxide poisoning based on the strategy of internet pharmacology. ENVIRONMENTAL TOXICOLOGY 2022; 37:413-434. [PMID: 34761859 DOI: 10.1002/tox.23408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
The pathogenesis of brain injury caused by carbon monoxide poisoning (COP) is very complex, and there is no exact and reliable treatment in clinic. In the present study, we screened the therapeutic target and related signal pathway of Salvia Miltiorrhiza for acute COP brain injury, and clarified the pharmacological mechanism of multicomponent, multitarget, and multisignal pathway in Salvia Miltiorrhiza by network pharmacology. To further verify the therapeutic effect of Salvia Miltiorrhiza on acute brain injury based on the results of network analysis, a total of 216 male healthy Sprague Dawley rats were collected in the present study and randomly assigned to a normal control group, a COP group and a Tanshinone IIA sulfonate treatment group (72 rats in each group). The rat model of acute severe COP was established by the secondary inhalation in a hyperbaric oxygen chamber. We found that Salvia Miltiorrhiza had multiple active components, and played a role in treating acute brain injury induced by COP through multiple targets and multiple pathways, among them, MAPK/ERK1/2 signaling pathway was one of the most important. COP can start apoptosis process, activate the MAPK/ERK1/2 signaling pathway, and promote the expression of VEGF-A protein and the formation of brain edema. Tanshinone IIA can effectively inhibit apoptosis, up-regulate the expressions of VEGF-A, P-MEK1/2 and P-ERK1/2 proteins, thereby protect endothelial cells, promote angiogenesis and microcirculation, and finally alleviate brain edema.
Collapse
Affiliation(s)
- Ze-Kun Li
- Emergency department, Shenzhen University General Hospital, Shenzhen, China
- School of Medicine, Institute of Integrated Medicine, Qingdao University, Qingdao, China
| | - Chun-Hua Li
- Department of Respiratory Medicine, Sami Medical Center, Shenzhen, China
| | - Ao-Chun Yue
- School of Medicine, Institute of Integrated Medicine, Qingdao University, Qingdao, China
| | - Hui-Ping Song
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xu-Han Liu
- Emergency department, Shenzhen University General Hospital, Shenzhen, China
| | - Xu-Dong Zhou
- Emergency department, Shenzhen University General Hospital, Shenzhen, China
| | - Ming-Jun Bi
- Physical Examination Centre, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Wei Han
- Emergency department, Shenzhen University General Hospital, Shenzhen, China
| | - Qin Li
- Emergency department, Shenzhen University General Hospital, Shenzhen, China
| |
Collapse
|
18
|
Optimization of supercritical fluid extraction of dihydrotanshinone, cryptotanshinone, tanshinone I, and tanshinone IIA from Salvia miltiorrhiza with a peanut oil modifier. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Yousaf M, Razmovski-Naumovski V, Zubair M, Chang D, Zhou X. Synergistic Effects of Natural Product Combinations in Protecting the Endothelium Against Cardiovascular Risk Factors. J Evid Based Integr Med 2022; 27:2515690X221113327. [PMID: 35849068 PMCID: PMC9297466 DOI: 10.1177/2515690x221113327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial dysfunction is an early hallmark of cardiovascular diseases (CVDs). Monotherapies are limited due to the complex, multifactorial pathways. The multi-component and multi-targeted approach of natural products have the potential to manage CVDs. This review aims to provide a comprehensive insight into the synergistic mechanism of natural product combinations in protecting the endothelium against various cardiovascular risk factors. Databases (PubMed, MEDLINE and EMBASE) and Google Scholar were searched, and studies in English published between January 2000 and February 2022 were collated. Clinical and pre-clinical studies of natural product combinations with or without pharmaceutical medicines, compared with monotherapy and/or proposing the underlying mechanism in protecting endothelial function, were included. Four clinical studies demonstrated that natural product combinations or natural product-pharmaceutical combinations improved endothelial function. This was associated with multi-targeted effects or improved absorption of the active substances in the body. Seventeen preclinical studies showed that natural product combinations produced synergistic (demonstrated by combination index or Bliss independence model) or enhanced effects in protecting the endothelium against hyperlipidemia, hypertension, diabetes mellitus, platelet activation, oxidative stress and hyperhomocysteinemia. The molecular targets included reactive oxygen species, Nrf2-HO-1, p38MAPK, P13K/Akt and NF-κB. Thus, the current available evidence of natural product combinations in targeting endothelial dysfunction is predominantly from preclinical studies. These have demonstrated synergistic/enhanced pharmacological activities and proposed associated mechanisms. However, evidence from larger, well-designed clinical trials remains weak. More cohesion is required between preclinical and clinical data to support natural product combinations in preventing or slowing the progression of CVDs.
Collapse
Affiliation(s)
- Muhammad Yousaf
- Department of Bioinformatics and Biotechnology, 72594Government College University, Faisalabad, Pakistan
| | - Valentina Razmovski-Naumovski
- NICM Health Research Institute, 6489Western Sydney University, Westmead, Australia.,South Western Sydney Clinical School, School of Medicine & Health, 7800University of New South Wales (UNSW), Sydney, Australia
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, 72594Government College University, Faisalabad, Pakistan
| | - Dennis Chang
- NICM Health Research Institute, 6489Western Sydney University, Westmead, Australia
| | - Xian Zhou
- NICM Health Research Institute, 6489Western Sydney University, Westmead, Australia
| |
Collapse
|
20
|
Li H, Yang M. Ligustrazine activate the PPAR-γ pathway and play a protective role in vascular calcification. Vascular 2021; 30:1224-1231. [PMID: 34670463 DOI: 10.1177/17085381211051477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The purpose of this study was to explore the role of ligustrazine in vascular calcification. METHODS After β-GP stimulation, vascular smooth muscle cells (VSMCs) were detected by Alizarin Red Staing staining. Calcium content and alkaline phosphatase (ALP) activity were detected by intracellular calcium assay kit and ALP assay kit, respectively. The expression of peroxisome proliferation-activated receptor (PPAR-γ) pathway-related proteins was detected by Western blot. PPAR-γ, MSX2, osteopontin (OPN), sclerostin, and BGP were detected by RT-PCR. RESULTS β-GP induced the decreased activity and expression of PPAR-γ and ALP in VSMCs, while ligustrazine activated the expression of PPAR-γ. Through activation of PPAR-γ, ligustrazine decreased β-GP-induced VSMC calcification, decreased the expression of markers of osteogenesis and chondrogenic differentiation, and increased the expression of VSMC markers. CONCLUSION Ligustrazine activates the PPAR-γ pathway and plays a protective role in vascular calcification.
Collapse
Affiliation(s)
- Hui Li
- Department of Cardiology, Shanxi Chinese Medical Hospital, Taiyuan, China
| | - Min Yang
- Department of Medical Oncology, The Second Affiliate Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
21
|
Song Z, Feng J, Zhang Q, Deng S, Yu D, Zhang Y, Li T. Tanshinone IIA Protects Against Cerebral Ischemia Reperfusion Injury by Regulating Microglial Activation and Polarization via NF-κB Pathway. Front Pharmacol 2021; 12:641848. [PMID: 33953677 PMCID: PMC8090935 DOI: 10.3389/fphar.2021.641848] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Tanshinone IIA, a fat-soluble diterpenoid isolated from Salvia miltiorrhiza Bunge, has been shown to attenuate the cerebral ischemic injury. The aim of this study was to examine the effects on neuroprotection and microglia activation of Tanshinone IIA. Male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO). We found that Tanshinone IIA significantly reduced infarction volume, alleviated neuronal injuries, reduced the release of TNF-α, IL-1β, and IL-6, increased SOD activity, and decrease the content of MDA in MCAO rats. Hematoxylin and eosin staining, Nissl staining, TUNEL staining and immunofluorescence staining showed that Tanshinone IIA improved the distribution and morphology of neurons in brain tissues and reduced apoptosis. In addition, Co-immunofluorescence staining of rat brain tissues and the mRNA expression levels of CD11b, CD32, iNOS, and Arg-1, CD206, IL-10 in BV2 cells indicated that Tanshinone IIA can downregulate M1 microglia and upregulate M2 microglia in MCAO rats. Further, BV2 microglial cells were subjected to oxygen-glucose deprivation, the protein expression levels were detected by western blot. Tanshinone IIA inhibited the expression levels of NF-κB signaling pathway related proteins. Taken together, this study suggested that Tanshinone IIA modulated microglial M1/M2 polarization via the NF-κB signaling pathway to confer anti-neuroinflammatory effects.
Collapse
Affiliation(s)
- Zhibing Song
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai, China.,College of Pharmacology, Anhui University of Chinese Medicine, Hefei, China
| | - Jingjing Feng
- College of Pharmacology, Anhui University of Chinese Medicine, Hefei, China
| | - Qian Zhang
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai, China
| | - Shanshan Deng
- School of Medicine, Shanghai University, Shanghai, China
| | | | - Yuefan Zhang
- School of Medicine, Shanghai University, Shanghai, China
| | - Tiejun Li
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai, China
| |
Collapse
|
22
|
Zhang JY, Chen QQ, Li J, Zhang L, Qi LW. Neuraminidase 1 and its Inhibitors from Chinese Herbal Medicines: An Emerging Role for Cardiovascular Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:843-862. [PMID: 33827385 DOI: 10.1142/s0192415x21500403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neuraminidase, also known as sialidase, is ubiquitous in animals and microorganisms. It is predominantly distributed in the cell membrane, cytoplasmic vesicles, and lysosomes. Neuraminidase generally recognizes the sialic acid glycosidic bonds at the ends of glycoproteins or glycolipids and enzymatically removes sialic acid. There are four types of neuraminidases, named as Neu1, Neu2, Neu3, and Neu4. Among them, Neu1 is the most abundant in mammals. Recent studies have revealed the involvement of Neu1 in several diseases, including cardiovascular diseases, diabetes, cancers, and neurological disorders. In this review, we center the attention to the role of Neu1 in cardiovascular diseases, including atherosclerosis, ischemic myocardial injury, cerebrovascular disease, congenital heart disease, and pulmonary embolism. We also summarize inhibitors from Chinese herbal medicines (CHMs) in inhibiting virus neuraminidase or human Neu1. Many Chinese herbs and Chinese herb preparations, such as Lonicerae Japonicae Flos, Scutellariae Radix, Yupingfeng San, and Huanglian Jiedu Decoction, have neuraminidase inhibitory activity. We hope to highlight the emerging role of Neu1 in humans and potentially titillate interest for further studies in this area.
Collapse
Affiliation(s)
- Jun-Yuan Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qian-Qian Chen
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jia Li
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Lei Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China.,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
23
|
Gao L, Wu T, Wang J, Xiao Z, Jia C, Wang W. The Clinical Efficacy of Phytochemical Medicines Containing Tanshinol and Ligustrazine in the Treatment of Stable Angina: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8616413. [PMID: 33623530 PMCID: PMC7875616 DOI: 10.1155/2021/8616413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/22/2020] [Accepted: 01/21/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Phytochemical medicines containing tanshinol and ligustrazine are commonly used in the treatment of stable angina in China, but their clinical effectiveness and risk have not been adequately assessed. In this paper, we conducted a systematic review and meta-analysis to evaluate the clinical efficacy. METHODS Relevant randomized controlled trials (RCTs) of phytochemical medicines containing tanshinol and ligustrazine in the treatment of stable angina were searched in electronic databases. The search date was up to March 31, 2020, and the languages of the RCTs were limited to English and Chinese. RESULTS A total of 28 studies, including 2518 patients, were included in the meta-analysis. It was shown that the adjunctive therapy of phytochemical medicines containing tanshinol and ligustrazine was better than the conventional therapies in the improvement of stable angina according to the clinical efficacy in symptoms (n = 2518, RR = 1.24, 95% CI: 1.20 to 1.29, P < 0.01) and clinical efficacy in electrocardiography (n = 1766, RR = 1.29, 95% CI: 1.19 to 1.40, P < 0.01). CONCLUSION The meta-analysis supported the use of phytochemical medicines containing tanshinol and ligustrazine in the treatment of stable angina. However, quality of the evidence for this finding was low due to a high risk of bias in the included studies. Therefore, well-designed RCTs are still needed to further evaluate the efficacy.
Collapse
Affiliation(s)
- Li Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- St Michael's Hospital, University of Toronto, Toronto, M5B 1W8, Canada
| | - Tong Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuoran Xiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chunhua Jia
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
24
|
Deng Z, Wang M, Fan Y, Liu M. Salviae miltiorrhizae and ligustrazine hydrochloride injection combined with mecobalamin for treating diabetic peripheral neuropathy: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e24103. [PMID: 33546016 PMCID: PMC7837888 DOI: 10.1097/md.0000000000024103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Currently, it is unclear whether the salviae miltiorrhizae (Danshen Salvia) and ligustrazine hydrochloride (Chuanxiong Chuanxiong) (SMLH) injection combined with mecobalamin can improve diabetic peripheral neuropathy (DPN). We conducted a systematic analysis to evaluate the clinical effects of SMLH injection combined with mecobalamin for treating DPN. METHODS Seven databases, including PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wan Fang Database (Wang Fang), Chinese Biomedical Literature Database (CBM), and VIP Database for Chinese Technical Periodicals (VIP) were searched for systematic literature retrieval. Each database was searched up to 2020 to identify randomized controlled trials on DPN treated with SMLH injection combined with mecobalamin. We used the RevMan 5.3 and Stata 14.0 software to assess the risk of bias in the included trials. RESULTS A total of 15 publications, including 1349 samples, were reviewed. The total effective rate of SMLH injection combined with mecobalamin was 31% higher than that of mecobalamin alone (95% confidence interval [CI] = 1.23-1.38; P < .00001). The experimental group showed a significant increase in the motor conduction velocity (MCV) of the peroneal nerve (weighted mean difference [WMD] = 4.81, 95% CI 3.53-6.09; P < .00001). In addition, SMLH injection combined with mecobalamin showed a statistical significant effect on the sensory conduction velocity (SCV) of the peroneal nerve (WMD = 5.03, 95% CI = 4.16-5.90; P < .00001), and MCV of the median nerve (WMD = 5.38, 95% CI = 4.05-6.72; P < .00001). The WMD for the change in SCV in the median nerve was 4.89 m/s (95% CI = 3.88-5.89; P < .00001). The P-values of the Egger and Begg tests were 0.967 and 0.961, respectively, indicating no publication bias. Subgroup and sensitivity analyses indicated that the results for MCV and SCV of the peroneal nerve and the median nerve were stable. CONCLUSION SMLH injection combined with mecobalamin can improve DPN, compared with mecobalamin alone.
Collapse
Affiliation(s)
- Zhiyuan Deng
- Gaozhou Hospital of Traditional Chinese Medicine (Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou
| | - Manjia Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou
| | - Yaohua Fan
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine
- Shenzhen Bao’an Traditional Chinese Medicine Hospital (Group), Guangzhou University of Chinese Medicine, Shenzhen
| | - Min Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
25
|
Guo ZP, Sörös P, Zhang ZQ, Yang MH, Liao D, Liu CH. Use of Transcutaneous Auricular Vagus Nerve Stimulation as an Adjuvant Therapy for the Depressive Symptoms of COVID-19: A Literature Review. Front Psychiatry 2021; 12:765106. [PMID: 34975571 PMCID: PMC8714783 DOI: 10.3389/fpsyt.2021.765106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) comprises more than just severe acute respiratory syndrome. It also interacts with the cardiovascular, nervous, renal, and immune systems at multiple levels, increasing morbidity in patients with underlying cardiometabolic conditions and inducing myocardial injury or dysfunction. Transcutaneous auricular vagus nerve stimulation (taVNS), which is derived from auricular acupuncture, has become a popular therapy that is increasingly accessible to the general public in modern China. Here, we begin by outlining the historical background of taVNS, and then describe important links between dysfunction in proinflammatory cytokine release and related multiorgan damage in COVID-19. Furthermore, we emphasize the important relationships between proinflammatory cytokines and depressive symptoms. Finally, we discuss how taVNS improves immune function via the cholinergic anti-inflammatory pathway and modulates brain circuits via the hypothalamic-pituitary-adrenal axis, making taVNS an important treatment for depressive symptoms on post-COVID-19 sequelae. Our review suggests that the link between anti-inflammatory processes and brain circuits could be a potential target for treating COVID-19-related multiorgan damage, as well as depressive symptoms using taVNS.
Collapse
Affiliation(s)
- Zhi-Peng Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Peter Sörös
- Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Zhu-Qing Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ming-Hao Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Dan Liao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chun-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|