1
|
Jiao Y, Zheng Y, Wu S, Zhou L, Jiang H, Li Y, Lin F. Antifungal activity of paeonol against Botrytis cinerea by disrupting the cell membrane and the application on cherry tomato preservation. Front Microbiol 2024; 15:1509124. [PMID: 39687874 PMCID: PMC11646983 DOI: 10.3389/fmicb.2024.1509124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Botrytis cinerea may cause gray mold in fruits and vegetables. Paeonol, an active component of traditional Chinese medicine, could suppress various microbial growth. However, reports on its effect on B. cinerea have not yet been documented. In this paper, we demonstrated that paeonol completely inhibited B. cinerea growth at 250 mg/L, corroborated by the observation of irregular morphological alterations in B. cinerea exposed to paeonol. Notably, the investigation of the operating mechanism revealed that paeonol induced cell death by disrupting the cell membrane, potentially mediated by the interaction between paeonol and ergosterol from the membrane. Further studies indicated that paeonol decreased ergosterol content and the expression of certain genes involved in ergosterol biosynthesis was significantly downregulated. In addition, paeonol treatment reduced the gray mold of cherry tomatoes. Meanwhile, compared to the control treatment, paeonol treatment could reduce weight loss and maintain higher contents of total soluble solid (TSS) and ascorbic acid, leading to a higher quality of the stored cherry tomato. Together, the data indicate that paeonol was effective as an alternative agent targeting disrupting the cell membrane to control gray mold and prolong the shelf life of cherry tomatoes, suggesting that paeonol could be used as a natural antifungal compound during postharvest storage.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuanhong Li
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Fuxing Lin
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Wiegand V, Gao Y, Teusch N. Pharmacological Effects of Paeonia lactiflora Focusing on Painful Diabetic Neuropathy. PLANTA MEDICA 2024; 90:1115-1129. [PMID: 39471979 DOI: 10.1055/a-2441-6488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Painful diabetic neuropathy (PDN) is a highly prevalent complication in patients suffering from diabetes mellitus. Given the inadequate pain-relieving effect of current therapies for PDN, there is a high unmet medical need for specialized therapeutic options. In traditional Chinese medicine (TCM), various herbal formulations have been implemented for centuries to relieve pain, and one commonly used plant in this context is Paeonia lactiflora (P. lactiflora). Here, we summarize the chemical constituents of P. lactiflora including their pharmacological mechanisms-of-action and discuss potential benefits for the treatment of PDN. For this, in silico data, as well as preclinical and clinical studies, were critically reviewed and comprehensively compiled. Our findings reveal that P. lactiflora and its individual constituents exhibit a variety of pharmacological properties relevant for PDN, including antinociceptive, anti-inflammatory, antioxidant, and antiapoptotic activities. Through this multifaceted and complex combination of various pharmacological effects, relevant hallmarks of PDN are specifically addressed, suggesting that P. lactiflora may represent a promising source for novel therapeutic approaches for PDN.
Collapse
Affiliation(s)
- Vanessa Wiegand
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Germany
| | - Ying Gao
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Germany
| | - Nicole Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
3
|
Hu W, Yu A, Wang Z, Meng Y, Kuang H, Wang M. Genus Paeonia polysaccharides: A review on their extractions, purifications, structural characteristics, biological activities, structure-activity relationships and applications. Int J Biol Macromol 2024; 282:137089. [PMID: 39486721 DOI: 10.1016/j.ijbiomac.2024.137089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The Paeonia genus, the most distinctive representative of the Paeoniaceae family, holds significant edible and medicinal value. Its plants are rich in chemical constituents, including polysaccharides, phenols, terpenes, and flavonoids. Among these, Paeonia polysaccharide (PPS) is a key bioactive component, exhibiting diverse biological activities such as anti-cancer, anti-depressant, anti-oxidant, anti-inflammatory, anti-bacterial, immunomodulatory activities and therapeutical effect of diabetic kidney disease. Additionally, PPS possess favorable physicochemical properties including low toxicity and high biocompatibility. Recent studies increasingly demonstrate that PPS can enhance the sensory quality of food products during processing, and confer specific functional benefits through targeted biological activities indicating substantial potential for application in the food industry. The biological activity, emulsifying capacity, and film-forming properties of PPS also render them promising additives in cosmetic formulations, suggesting opportunities for further development. Despite their potential, challenges remain, particularly in optimizing extraction and purification techniques to improve PPS yield and preserve bioactivity. Therefore, a comprehensive review of the latest research advancements and future prospects is essential to deepen the understanding and facilitate the development of PPS.
Collapse
Affiliation(s)
- Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Zhibin Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Yonghai Meng
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
4
|
Hong C, Zhao Y, Qiao M, Huang Z, Wei L, Zhou Q, Lu W, Sun G, Huang Z, Gao H. Molecular dissection of the parental contribution in Paeonia Itoh hybrids. PLANT PHYSIOLOGY 2024; 196:1953-1964. [PMID: 39115387 DOI: 10.1093/plphys/kiae413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/11/2024] [Indexed: 11/05/2024]
Abstract
Hybrid breeding between herbaceous peonies (the maternal parent) and tree peonies (the paternal parent) results in Paeonia Itoh hybrids (Itoh peonies), a triploid species that combines advantageous traits from both parental species, thus offering great economic value. However, the exact genetic contribution of the two parents is unclear. In this study, we introduce a straightforward approach utilizing heterozygous single-nucleotide polymorphisms (SNPs) and Sanger sequencing of targeted gene fragments to trace the original bases back to their parents in Itoh peonies. Our results indicate that in triploid Itoh peonies, only one set of genes is derived from herbaceous peonies, and two sets of genes are derived from the tree peonies. Notably, the presence of three distinct bases of heterozygous SNPs across multiple Itoh cultivars suggests that the gametes from the paternal parents carry two sets of heterozygous homologous chromosomes, which could be due to Meiosis I failure during gamete formation. To validate our method's effectiveness in parentage determination, we analyze two Itoh hybrids and their parents, confirming its practical utility. This research presents a method to reveal the parental genetic contribution in Itoh peonies, which could enhance the efficiency and precision of hybrid breeding programs of triploids in Paeonia and other plant species.
Collapse
Affiliation(s)
- Conghao Hong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Yingying Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Meiyu Qiao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Ziteng Huang
- National Peony Gene Bank, Luoyang, Henan Province 471002, China
- Luoyang Peony Industry Development Center, Luoyang, Henan Province 471002, China
| | - Lan Wei
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Qingqing Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Wanqing Lu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Guorun Sun
- National Peony Gene Bank, Luoyang, Henan Province 471002, China
- Luoyang Peony Industry Development Center, Luoyang, Henan Province 471002, China
| | - Zhimin Huang
- National Peony Gene Bank, Luoyang, Henan Province 471002, China
- Luoyang Peony Industry Development Center, Luoyang, Henan Province 471002, China
| | - Hongbo Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
5
|
Tossetta G, Fantone S, Togni L, Santarelli A, Olivieri F, Marzioni D, Rippo MR. Modulation of NRF2/KEAP1 Signaling by Phytotherapeutics in Periodontitis. Antioxidants (Basel) 2024; 13:1270. [PMID: 39456522 PMCID: PMC11504014 DOI: 10.3390/antiox13101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Periodontitis affects up to 40% of adults over 60 years old and is a consequence of gingivitis. Periodontitis is characterized by a chronic inflammation, periodontal damage, and alveolar bone resorption. The nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2)/Kelch-like ECH-Associated Protein 1 (KEAP1) (NRF2/KEAP1) signaling pathway plays a key role in periodontitis by modulating redox balance and inflammation of the periodontium. However, NRF2 expression is decreased in gingival tissues of patients with periodontitis while oxidative stress is significantly increased in this pathology. Oxidative stress and lipopolysaccharide (LPS) produced by gram-negative bacteria favor the production of inflammatory causing periodontal inflammation and favoring alveolar bone. In this review, we analyzed the current literature regarding the role of natural and synthetic compounds in modulating the NRF2/KEAP1 pathway in in vitro and in vivo models of periodontitis in order to evaluate new potential treatments of periodontitis that can improve the outcome of this disease.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Sonia Fantone
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (F.O.)
| | - Lucrezia Togni
- Department of Clinical Specialistic and Dental Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (L.T.); (A.S.)
| | - Andrea Santarelli
- Department of Clinical Specialistic and Dental Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (L.T.); (A.S.)
- Dentistry Clinic, National Institute of Health and Science of Aging, IRCCS INRCA, 60126 Ancona, Italy
| | - Fabiola Olivieri
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (S.F.); (F.O.)
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
- IRCCS INRCA, 60124 Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy;
| |
Collapse
|
6
|
Zhao Y, Cui G, Wang J, Ma Y, Han Y, Su P, Guo J, Zhang J, Huang L. Functional Identification of the Terpene Synthase Family Involved in Biosynthesis in Paeonia lactiflora. Molecules 2024; 29:4662. [PMID: 39407591 PMCID: PMC11478036 DOI: 10.3390/molecules29194662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/14/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
The root of Paeonia lactiflora pall. is a significant component of traditional Chinese medicine, with terpenoids and their glycosides, such as paeoniflorins, serving as key active ingredients known for their anti-inflammatory, hepatoprotective, and analgesic properties. By generating a transcriptome and functionally characterizing 32 terpene synthases (TPSs) from P. lactiflora, we successfully constructed 24 pESC-Trp-PlTPS expression vectors. Through expression in Saccharomyces cerevisiae engineered strains, we identified four mono-TPSs and five sesqui-TPSs that produce 18 compounds, including eight monoterpenes and ten sesquiterpenes in vitro. This includes a bifunctional enzyme (PlTPS22). Additionally, PlTPS21 was characterized as a pinene synthase with α-pinene as its main product. The expression pattern of PlTPS21 aligns closely with the accumulation patterns of paeoniflorins and α-pinene in the plant, suggesting that PlTPS21 is a key enzyme in the biosynthesis of paeoniflorin.
Collapse
Affiliation(s)
- Yufeng Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
| | - Guanghong Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| | - Jian Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| | - Ying Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| | - Yang Han
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| | - Jiyu Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
| | - Luqi Huang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| |
Collapse
|
7
|
Feifei W, Wenrou S, Jinyue S, Qiaochu D, Jingjing L, Jin L, Junxiang L, Xuhui L, Xiao L, Congfen H. Anti-ageing mechanism of topical bioactive ingredient composition on skin based on network pharmacology. Int J Cosmet Sci 2024. [PMID: 39246148 DOI: 10.1111/ics.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE To elucidate the anti-ageing mechanism of the combination of eight ingredients on the skin from a multidimensional view of the skin. METHODS The target pathway mechanisms of composition to delay skin ageing were investigated by a network pharmacology approach and experimentally validated at three levels: epidermal, dermal, and tissue. RESULTS We identified 24 statistically significant skin ageing-related pathways, encompassing crucial processes such as epidermal barrier repair, dermal collagen and elastin production, inhibition of reactive oxygen species (ROS), as well as modulation of acetylcholine and acetylcholine receptor binding. Furthermore, our in vitro experimental findings exhibited the following outcomes: the composition promotes fibroblast proliferation and the expression of barrier-related genes in the epidermis; it also stimulated the expression of collagen I, collagen III, and elastic fibre while inhibiting ROS and β-Gal levels in HDF cells within the dermis. Additionally, Spilanthol in the Acmella oleracea extract contained in the composition demonstrated neuro-relaxing activity in Zebrafish embryo, suggesting its potential as an anti-wrinkle ingredient at the hypodermis level. CONCLUSIONS In vitro experiments validated the anti-ageing mechanism of composition at multiple skin levels. This framework can be extended to unravel the functional mechanisms of other clinically validated compositions, including traditional folk recipes utilized in cosmeceuticals.
Collapse
Affiliation(s)
- Wang Feifei
- Yunnan Botanee Bio-Technology Group Co., Ltd., Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan, China
| | - Su Wenrou
- Yunnan Botanee Bio-Technology Group Co., Ltd., Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan, China
| | - Sun Jinyue
- AGECODE R&D Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
- Beijing Key Lab of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Du Qiaochu
- Yunnan Botanee Bio-Technology Group Co., Ltd., Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan, China
| | - Li Jingjing
- Yunnan Botanee Bio-Technology Group Co., Ltd., Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan, China
| | - Liu Jin
- Yunnan Botanee Bio-Technology Group Co., Ltd., Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan, China
| | - Li Junxiang
- AGECODE R&D Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
- Harvest Biotech (Zhejiang) Co., Ltd., Zhejiang, China
| | - Li Xuhui
- AGECODE R&D Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
| | - Lin Xiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - He Congfen
- Beijing Key Lab of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
8
|
Zhou X, Alimu A, Zhao J, Xu X, Li X, Lin H, Lin Z. Paeonia genus: a systematic review of active ingredients, pharmacological effects and mechanisms, and clinical applications for the treatment of cancer. Arch Pharm Res 2024; 47:677-695. [PMID: 39306813 DOI: 10.1007/s12272-024-01512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
The main active constituents of plants of the Paeonia genus are known to have antitumor activity. Hundreds of compounds with a wide range of pharmacological activities, including monoterpene glycosides, flavonoids, tannins, stilbenes, triterpenoids, steroids, and phenolic compounds have been isolated. Among them, monoterpenes and their glycosides, flavonoids, phenolic acids, and other constituents have been shown to have good therapeutic effects on various cancers, with the main mechanisms including the induction of apoptosis; the inhibition of tumor cell proliferation, migration, and invasion; and the modulation of immunity. In this study, many citations related to the traditional uses, phytochemical constituents, antitumor effects, and clinical applications of the Paeonia genus were retrieved from popular and widely used databases such as Web of Science, Science Direct, Google Scholar, and PubMed using different search strings. A systematic review of the antitumor constituents of the Paeonia genus and their therapeutic effects on various cancers was conducted and the mechanisms of action and pathways of these phytochemicals were summarised to provide a further basis for antitumor research.
Collapse
Affiliation(s)
- Xinrui Zhou
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Aikebaier Alimu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiarui Zhao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinyi Xu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiaowen Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - He Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Zhe Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
9
|
Meng QQ, Su Y, Tong SY, Peng XR, Zhu JC, Liu JK. Four new phenolic constituents from root barks of Paeonia ostii. Nat Prod Res 2024:1-10. [PMID: 39084318 DOI: 10.1080/14786419.2024.2373963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The Paeonia ostii, also known as "Feng Dan" have a crucial role in folk medicine to treat lumbar muscles strain, knee osteoarthritis and cervical spondylosis. In this study, four new phenolic compounds, specifically Paeoniaostiph A-E (1-4) phenolic compounds were characterised through spectroscopic techniques, including 1D and 2D NMR, HRESIMS, UV, IR, and electronic circular dichroism computations to explore their structures. Cytotoxicity and NO production inhibition of the new phenolic compounds were also studied. The results of the cytotoxicity experiment showed that compound 1 is cytotoxic to two human cancer cell lines with IC50 values ranging from 13.3 to 13.5 μM. Compounds 1 and 2 showed certain inhibitory activity on NO production. This is the first report on isolating the components from natural sources.
Collapse
Affiliation(s)
- Qian-Qian Meng
- The Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, People's Republic of China
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, People's Republic of China
| | - Yi Su
- The Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shun-Yao Tong
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Jun-Chen Zhu
- The Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Ji-Kai Liu
- The Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, People's Republic of China
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
10
|
Nakra T. Integrating Skincare into Medical Practice. Int Ophthalmol Clin 2024; 64:13-22. [PMID: 38910501 DOI: 10.1097/iio.0000000000000525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The integration of skincare into medical practice can enhance patient care. Understanding the anatomy and physiology of the skin is the foundation for effective skincare interventions. Genetic and inflammatory conditions play a significant role in aesthetic skin physiology. There are key active ingredients that are pivotal in addressing various skin concerns. Sunscreens provide crucial protection against UV radiation, while pigment control agents such as hydroquinone, kojic acid, and arbutin target the melanin pathway. Exfoliating agents and skin turnover enhancers such as retinoids and hydroxy acids promote skin renewal and rejuvenation. In addition, ingredients such as hyaluronic acid, ceramides, niacinamide, antioxidants, peptides, and botanicals contribute to improving skin quality. Adding skincare to medical practice requires careful product selection, patient education, and marketing strategies.
Collapse
Affiliation(s)
- Tanuj Nakra
- Department of Ophthalmology, Dell Medical School, The University of Texas at Austin, Austin, TX
| |
Collapse
|
11
|
Ma M, Du Q, Shi S, Lv J, Zhang W, Ge D, Xing L, Yu N. Integrating UPLC-Q-TOF-MS and Network Pharmacology to Explore the Potential Mechanisms of Paeonia lactiflora Pall. in the Treatment of Blood Stasis Syndrome. Molecules 2024; 29:3019. [PMID: 38998977 PMCID: PMC11243510 DOI: 10.3390/molecules29133019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Paeonia lactiflora Pall. (PLP) is thought to promote blood circulation and remove blood stasis. This study used blood component analysis, network pharmacology, and molecular docking to predict the mechanism of PLP in the treatment of blood stasis syndrome (BSS). PLP was processed into Paeoniae Radix Alba (PRA) and Paeoniae Radix Rubra (PRR). PRA and PRR could significantly reduce whole blood viscosity (WBV) at 1/s shear rates and could increase the erythrocyte aggregation index (EAI), plasma viscosity (PV), and erythrocyte sedimentation rate (ESR) of rats with acute blood stasis. They prolonged the prothrombin time (PT), and PRR prolonged the activated partial thromboplastin time (APTT). PRA and PRR increased the thrombin time (TT) and decreased the fibrinogen (FBG) content. All the results were significant (p < 0.05). Ten components of Paeoniflorin, Albiflorin, Paeonin C, and others were identified in the plasma of rats using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). A protein-protein interaction network (PPI) analysis showed that AKT1, EGFR, SRC, MAPK14, NOS3, and KDR were key targets of PLP in the treatment of BSS, and the molecular docking results further verified this. This study indicated that PLP improves BSS in multiple ways and that the potential pharmacological mechanisms may be related to angiogenesis, vasoconstriction and relaxation, coagulation, and the migration and proliferation of vascular cells.
Collapse
Affiliation(s)
- Mengzhen Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.M.); (Q.D.); (S.S.); (J.L.); (W.Z.)
| | - Qianqian Du
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.M.); (Q.D.); (S.S.); (J.L.); (W.Z.)
| | - Suying Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.M.); (Q.D.); (S.S.); (J.L.); (W.Z.)
| | - Jiahui Lv
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.M.); (Q.D.); (S.S.); (J.L.); (W.Z.)
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.M.); (Q.D.); (S.S.); (J.L.); (W.Z.)
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Dezhu Ge
- Anhui Jiren Pharmaceutical Co., Ltd., Bozhou 236800, China;
| | - Lihua Xing
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.M.); (Q.D.); (S.S.); (J.L.); (W.Z.)
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.M.); (Q.D.); (S.S.); (J.L.); (W.Z.)
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
12
|
Zhou G, Zhuang Y, Dai Y, Chen C, Jiang B, Li G, Yin L. A LC-MS-based serum pharmacochemistry approach to reveal the compatibility features of mutual promotion/assistance herb pairs in Xijiao Dihuang decoction. J Pharm Biomed Anal 2024; 243:116111. [PMID: 38493752 DOI: 10.1016/j.jpba.2024.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Xijiao Dihuang decoction (XDT), a famous formula, was usually used to improve the prognosis of patients with blood-heat and blood-stasis syndrome-related diseases. There were some mutual promotion and mutual assistance herb pairs in XDT. However, the exact functions of these herb pairs in the compatibility of XDT were not elucidated due to the lack of appropriate methodologies. Based on the theory of serum pharmacochemistry, a systematic method was established for the qualitative and quantitative analysis of characteristic components in the extracts and drug-containing plasma samples of XDT and its relational mutual promotion/assistance herb pairs. For qualitative analysis, 85 characteristic components were identified using the liquid chromatography with triple time-of-flight mass/mass spectrometry (LC-Triple QTOF-MS/MS) based on the mass defect filtering, product ion filtering, neutral loss filtering and isotope pattern filtering techniques. For quantitative detection, a relative quantitation assay using an extract ion chromatogram (EIC) of the full scan MS experiment was validated and employed to assess the quantity of the 85 identified compounds in the test samples of single herb, herb pairs and XDT. The results of multivariate statistical analyses indicated that both the assistant and guide herbs could improve the solubilization of active compounds from the sovereign and minister herbs in XDT in vitro, might change the trans-membrane transportation, and regulate metabolism in vivo. The methods used in present study might be also valuable for the investigation of multiple components from other classic TCM formulas for the purpose of compatibility feature study.
Collapse
Affiliation(s)
- Guisheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Zhuang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Dai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cuihua Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Baoping Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guochun Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lian Yin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
13
|
Shady NH, Mokhtar FA, Mahmoud BK, Yahia R, Ibrahim AM, Sayed NA, Samy MN, Alzubaidi MA, Abdelmohsen UR. Capturing the antimicrobial profile of Paeonia officinalis, Jasminum officinale and Rosa damascene against methicillin resistant Staphylococcus aureus with metabolomics analysis and network pharmacology. Sci Rep 2024; 14:13621. [PMID: 38871725 DOI: 10.1038/s41598-024-62369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
In the current study, we evaluated the in vitro antibacterial efficacy of the roots' extracts of Jasminum officinale, Rosa damascene and Paeonia officinalis against MRSA (methicillin-resistant Staphylococcus aureus) by well diffusion technique. The root extract of P. officinalis exerted a potent anti-MRSA with MIC 0.4673 µg/ml, while both J. officinale and R. damascene exhibited very weak activity. Therefore, chemical profiling of the crude extract P. officinalis roots assisted by LC-HR-ESI-MS was performed and led to the dereplication of twenty metabolites of different classes, in which terpenes are the most abundant compounds. On a molecular level, network pharmacology was used to determine the targets of active metabolites to bacterial infections, particularly MRSA. Online databases PubChem, UniProt, STRING, and Swiss Target Prediction were used. In addition to using CYTOSCAPE software to display and analyze the findings, ShinyGO and FunRich tools were used to identify the gene enrichment analysis to the set of recognized genes. The results detected the identified metabolites were annotated by 254 targets. ALB, ACHE, TYMS, PRKCD, PLG, MMP9, MMP2, ERN1, EDNRA, BRD4 were found to be associated with MRSA infection. The top KEGG pathway was the vascular smooth muscle contraction pathway according to enrichment FDR. The present study suggested a possible implication of P. officinalis roots as a potent candidate having a powerful antibacterial activity against MRSA.
Collapse
Affiliation(s)
- Nourhan Hisham Shady
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, 61111, Egypt.
- Center for Research and Sustainability, Deraya University, Universities Zone, New Minia City, 61111, Egypt.
| | | | - Basma Khalaf Mahmoud
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Ramadan Yahia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, New Minia City, Minia, Egypt
| | - Ayman M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia City, 61111, Egypt
| | - Nada Ahmed Sayed
- Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, 61111, Egypt
| | - Mamdouh Nabil Samy
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Mubarak A Alzubaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, 61111, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
14
|
Ning B, Ge T, Zhao QQ, Feng LS, Wu YQ, Chen H, Lian K, Zhao MJ. Research status of pathogenesis of anxiety or depression after percutaneous coronary intervention and Traditional Chinese Medicine intervention. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118017. [PMID: 38462028 DOI: 10.1016/j.jep.2024.118017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Anxiety or depression after percutaneous coronary intervention (PCI) is a common clinical disease. Currently, conventional pharmacotherapy primarily involves the administration of anxiolytic or antidepressant medications in conjunction with anticoagulants, antiplatelet agents, and other cardiovascular drugs. However, challenges such as drug dependence, adverse reactions and related concerns persist in the treatment of this disease. Numerous pertinent studies have demonstrated that Traditional Chinese Medicine (TCM) exhibits significant therapeutic efficacy and distinctive advantages in managing post-PCI anxiety or depression. AIM OF THIS REVIEW This review attempted to summarize the characteristics of TCM for treating anxiety or depression after PCI, including single Chinese herbs, Chinese medicine monomers, compound TCM prescriptions, TCM patented drugs, and other TCM-related treatment methods, focusing on the analysis of the relevant mechanism of TCM treatment of this disease. METHODS By searching the literature on treating anxiety or depression after PCI with TCM in PubMed, Web of Science, CNKI, and other relevant databases, this review focuses on the latest research progress of TCM treatment of this disease. RESULTS In the treatment of anxiety or depression after PCI, TCM exerts significant pharmacological effects such as anti-inflammatory, antioxidant, anti-anxiety or anti-depression, cardiovascular and cerebrovascular protection, and neuroprotection, mainly by regulating the levels of related inflammatory factors, oxidative stress markers, neurotransmitter levels, and related signaling pathways. TCM has a good clinical effect in treating anxiety or depression after PCI with individualized treatment. CONCLUSIONS TCM has terrific potential and good prospects in the treatment of anxiety or depression after PCI. The main direction of future exploration is the study of the mechanism related to Chinese medicine monomers and the large sample clinical study related to compound TCM prescriptions.
Collapse
Affiliation(s)
- Bo Ning
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Teng Ge
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Qiang-Qiang Zhao
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Lan-Shuan Feng
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Yong-Qing Wu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Huan Chen
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Kun Lian
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Ming-Jun Zhao
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China; Academician Workstation, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China; Shaanxi Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Xi'an, 712046, China.
| |
Collapse
|
15
|
Batinić P, Jovanović A, Stojković D, Čutović N, Cvijetić I, Gašić U, Carević T, Zengin G, Marinković A, Marković T. A novel source of biologically active compounds - The leaves of Serbian herbaceous peonies. Saudi Pharm J 2024; 32:102090. [PMID: 38766273 PMCID: PMC11101739 DOI: 10.1016/j.jsps.2024.102090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
In order to gain further insight into how various extraction techniques (maceration, microwave-, and ultrasound-assisted extractions) affect the chemical profile and biological activities of leaf extracts from Paeonia tenuifolia L., Paeonia peregrina Mill., and Paeonia officinalis L., this research was performed. The targeted chemical characterization of the extracts was achieved using the Ultra-High-Performance-Liquid-Chromatography-Linear-Trap-Mass-Spectrometry OrbiTrap instrumental technique, while Fourier Transform Infrared Spectroscopy was conducted to investigate the structural properties of the examined leaf extracts. According to the results, the species P. officinalis, Božurna locality as the origin of the plant material, and microwave-assisted extraction produced the maximum polyphenol yield, (491.9 ± 2.7 mg gallic acid equivalent (GAE)/mL). The ethanolic extracts exhibited moderate antioxidant activity as evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl) and phosphomolybdenum tests. With MIC values of 0.125 mg/mL, the leaf extracts produced by ultrasound-assisted extraction and maceration (Deliblato sands and Bogovo gumno) had the best antibacterial activity against Pseudomonas aeruginosa and Salmonella Typhimurium. Ultrasound-assisted extraction has proven to produce the most effective antimicrobial agents. Inhibitory potential towards glucosidase, amylase, cholinesterases, and tyrosinase was evaluated in enzyme inhibition assays and molecular docking simulations. Results show that leaves of P. tenuifolia L. obtained by ultrasound-assisted extraction had the highest acetylcholinesterase and butyrylcholinesterase inhibitory activity. Namely, the complexity of the polyphenol structures, the extraction method, the used locality, and the different mechanisms of the reactions between bioactives from leaf extracts and other components (free radicals, microorganisms, and enzymes) are the main factors that influence the results of the antioxidant tests, as well as the antibacterial and enzyme-inhibitory activities of the extracts. Hydroxymethyl-phenyl pentosyl-hexoside and acetyl-hydroxyphenyl-hexoside were the first time identified in the leaf extract of the Paeonia species. Due to their proven biological activities and the confirmed existence of bioactive compounds, leaf extracts may find use in foodstuffs, functional foods, and pharmaceutical products.
Collapse
Affiliation(s)
- Petar Batinić
- Institute for Medicinal Plant Research, ''Dr. Josif Pančić'', Tadeuša Košćuška 1 11000, Belgrade, Serbia
| | - Aleksandra Jovanović
- University of Belgrade, Institute for the Application of Nuclear Energy INEP, Banatska 31b 11080, Belgrade – Zemun, Serbia
| | - Dejan Stojković
- University of Belgrade, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, Bulevar Despota Stefana 142 11060, Belgrade, Serbia
| | - Natalija Čutović
- Institute for Medicinal Plant Research, ''Dr. Josif Pančić'', Tadeuša Košćuška 1 11000, Belgrade, Serbia
| | - Ilija Cvijetić
- University of Belgrade, Faculty of Chemistry, Students Square 10-13 11000, Belgrade, Serbia
| | - Uroš Gašić
- University of Belgrade, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, Bulevar Despota Stefana 142 11060, Belgrade, Serbia
| | - Tamara Carević
- University of Belgrade, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, Bulevar Despota Stefana 142 11060, Belgrade, Serbia
| | - Gökhan Zengin
- Selcuk University, Science Faculty, Department of Biology, 42130, Konya, Turkey
| | - Aleksandar Marinković
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4 11060, Belgrade, Serbia
| | - Tatjana Marković
- Institute for Medicinal Plant Research, ''Dr. Josif Pančić'', Tadeuša Košćuška 1 11000, Belgrade, Serbia
| |
Collapse
|
16
|
Wang J, Zou J, Shi Y, Zeng N, Guo D, Wang H, Zhao C, Luan F, Zhang X, Sun J. Traditional Chinese medicine and mitophagy: A novel approach for cardiovascular disease management. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155472. [PMID: 38461630 DOI: 10.1016/j.phymed.2024.155472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide, imposing an enormous economic burden on individuals and human society. Laboratory studies have identified several drugs that target mitophagy for the prevention and treatment of CVD. Only a few of these drugs have been successful in clinical trials, and most studies have been limited to animal and cellular models. Furthermore, conventional drugs used to treat CVD, such as antiplatelet agents, statins, and diuretics, often result in adverse effects on patients' cardiovascular, metabolic, and respiratory systems. In contrast, traditional Chinese medicine (TCM) has gained significant attention for its unique theoretical basis and clinical efficacy in treating CVD. PURPOSE This paper systematically summarizes all the herbal compounds, extracts, and active monomers used to target mitophagy for the treatment of CVD in the last five years. It provides valuable information for researchers in the field of basic cardiovascular research, pharmacologists, and clinicians developing herbal medicines with fewer side effects, as well as a useful reference for future mitophagy research. METHODS The search terms "cardiovascular disease," "mitophagy," "herbal preparations," "active monomers," and "cardiac disease pathogenesis" in combination with "natural products" and "diseases" were used to search for studies published in the past five years until January 2024. RESULTS Studies have shown that mitophagy plays a significant role in the progression and development of CVD, such as atherosclerosis (AS), heart failure (HF), myocardial infarction (MI), myocardial ischemia/reperfusion injury (MI/RI), cardiac hypertrophy, cardiomyopathy, and arrhythmia. Herbal compound preparations, crude extracts, and active monomers have shown potential as effective treatments for these conditions. These substances protect cardiomyocytes by inducing mitophagy, scavenging damaged mitochondria, and maintaining mitochondrial homeostasis. They display notable efficacy in combating CVD. CONCLUSION TCM (including herbal compound preparations, extracts, and active monomers) can treat CVD through various pharmacological mechanisms and signaling pathways by inducing mitophagy. They represent a hotspot for future cardiovascular basic research and a promising candidate for the development of future cardiovascular drugs with fewer side effects and better therapeutic efficacy.
Collapse
Affiliation(s)
- Jinhui Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - He Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Chongbo Zhao
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
17
|
Lan T, Li P, Zhang SJ, Liu SY, Zeng XX, Chai F, Tong YH, Mao ZJ, Wang SW. Paeoniflorin promotes PPARγ expression to suppress HSCs activation by inhibiting EZH2-mediated histone H3K27 trimethylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155477. [PMID: 38489890 DOI: 10.1016/j.phymed.2024.155477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND The alleviating effect of paeoniflorin (Pae) on liver fibrosis has been established; however, the molecular mechanism and specific target(s) underlying this effect remain elusive. PURPOSE This study was to investigate the molecular mechanism underlying the regulatory effect of Pae on hepatic stellate cells (HSCs) activation in liver fibrosis, with a specific focus on the role of Pae in modulating histone methylation modifications. METHODS The therapeutic effect of Pae was evaluated by establishing in vivo and in vitro models of carbon tetrachloride (CCl4)-induced mice and transforming growth factor β1 (TGF-β1)-induced LX-2 cells, respectively. Molecular docking, surface plasmon resonance (SPR), chromatin immunoprecipitation-quantitative real time PCR (ChIP-qPCR) and other molecular biological methods were used to clarify the molecular mechanism of Pae regulating HSCs activation. RESULTS Our study found that Pae inhibited HSCs activation and histone trimethylation modification in liver of CCl4-induced mice and LX-2 cells. We demonstrated that the inhibitory effect of Pae on the activation of HSCs was dependent on peroxisome proliferator-activated receptor γ (PPARγ) expression and enhancer of zeste homolog 2 (EZH2). Mechanistically, Pae directly binded to EZH2 to effectively suppress its enzymatic activity. This attenuation leaded to the suppression of histone H3K27 trimethylation in the PPARγ promoter region, which induced upregulation of PPARγ expression. CONCLUSION This investigative not only sheds new light on the precise targets that underlie the remission of hepatic fibrogenesis induced by Pae but also emphasizes the critical significance of EZH2-mediated H3K27 trimethylation in driving the pathogenesis of liver fibrosis.
Collapse
Affiliation(s)
- Tian Lan
- Laboratory Animal Resources Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100 Minjiang Road, Quzhou 324000, China; Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| | - Ping Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Si-Jia Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Shi-Yu Liu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Fang Chai
- Department of Orthopedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yu-Hua Tong
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Zhu-Jun Mao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China; Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| | - Si-Wei Wang
- Laboratory Animal Resources Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100 Minjiang Road, Quzhou 324000, China; Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
18
|
Zhou W, Zuo H, Qian Y, Miao W, Chen C. Paeoniflorin attenuates particulate matter-induced acute lung injury by inhibiting oxidative stress and NLRP3 inflammasome-mediated pyroptosis through activation of the Nrf2 signaling pathway. Chem Biol Interact 2024; 395:111032. [PMID: 38705442 DOI: 10.1016/j.cbi.2024.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Particulate matter (PM), the main component of air pollutants, emerges as a research hotspot, especially in the area of respiratory diseases. Paeoniflorin (PAE), known as anti-inflammatory and immunomodulatory effects, has been reported to alleviate acute lung injury (ALI). However, the effect of PAE on PM-induced ALI and the underlying mechanisms are still unclear yet. In this study, we established the PM-induced ALI model using C57BL/6J mice and BEAS-2B cells to explore the function of PAE. In vivo, mice were intraperitoneally injected with PAE (100 mg/kg) or saline 1 h before instilled with 4 mg/kg PM intratracheally and were euthanized on the third day. For lung tissues, HE staining and TUNEL staining were used to evaluate the degree of lung injury, ELISA assay was used to assess inflammatory mediators and oxidative stress level, Immunofluorescence staining and western blotting were applied to explore the role of pyroptosis and Nrf2 signaling pathway. In vitro, BEAS-2B cells were pretreated with 100 μM PAE before exposure to 200 μg/ml PM and were collected after 24h for the subsequent experiments. TUNEL staining, ROS staining, and western blotting were conducted to explore the underlying mechanisms of PAE on PM-induced ALI. According to the results, PAE can attenuate the degree of PM-induced ALI in mice and reduce PM-induced cytotoxicity in BEAS-2B cells. PAE can relieve PM-induced excessive oxidative stress and NLRP3 inflammasome-mediated pyroptosis. Additionally, PAE can also activate Nrf2 signaling pathway and inhibition of Nrf2 signaling pathway can impair the protective effect of PAE by aggravating oxidative stress and pyroptosis. Our findings demonstrate that PAE can attenuate PM-induced ALI by inhibiting oxidative stress and NLRP3 inflammasome-mediated pyroptosis, which is mediated by Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Wanting Zhou
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hao Zuo
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yao Qian
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wanqi Miao
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chengshui Chen
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
19
|
Xu SY, Cao HY, Yang RH, Xu RX, Zhu XY, Ma W, Liu XB, Yan XY, Fu P. Genus Paeonia monoterpene glycosides: A systematic review on their pharmacological activities and molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155483. [PMID: 38432036 DOI: 10.1016/j.phymed.2024.155483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/11/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Genus Paeonia, which is the main source of Traditional Chinese Medicine (TCM) Paeoniae Radix Rubra (Chishao in Chinese), Paeoniae Radix Alba (Baishao in Chinese) and Moutan Cortex (Mudanpi in Chinese), is rich in active pharmaceutical ingredient such as monoterpenoid glycosides (MPGs). MPGs from Paeonia have extensive pharmacological effects, but the pharmacological effects and molecular mechanisms of MPGs has not been comprehensively reviewed. PURPOSE MPGs compounds are one of the main chemical components of the genus Paeonia, with a wide variety of compounds and strong pharmacological activities, and the structure of the mother nucleus-pinane skeleton is similar to that of a cage. The purpose of this review is to summarize the pharmacological activity and mechanism of action of MPGs from 2012 to 2023, providing reference direction for the development and utilization of Paeonia resources and preclinical research. METHODS Keywords and phrases are widely used in database searches, such as PubMed, Web of Science, Google Scholar and X-Mol to search for citations related to the new compounds, extensive pharmacological research and molecular mechanisms of MPGs compounds of genus Paeonia. RESULTS Modern research confirms that MPGs are the main compounds in Paeonia that exert pharmacological effects. MPGs with extensive pharmacological characteristics are mainly concentrated in two categories: paeoniflorin derivatives and albiflflorin derivatives among MPGs, which contains 32 compounds. Among them, 5 components including paeoniflorin, albiflorin, oxypaeoniflorin, 6'-O-galloylpaeoniflorin and paeoniflorigenone have been extensively studied, while the other 28 components have only been confirmed to have a certain degree of anti-inflammatory and anticomplementary effects. Studies of pharmacological effects are widely involved in nervous system, endocrine system, digestive system, immune system, etc., and some studies have identified clear mechanisms. MPGs exert pharmacological activity through multilateral mechanisms, including anti-inflammatory, antioxidant, inhibition of cell apoptosis, regulation of brain gut axis, regulation of gut microbiota and downregulation of mitochondrial apoptosis, etc. CONCLUSION: This systematic review delved into the pharmacological effects and related molecular mechanisms of MPGs. However, there are still some compounds in MPGs whose pharmacological effects and pharmacological mechanisms have not been clarified. In addition, extensive clinical randomized trials are needed to verify the efficacy and dosage of MPGs.
Collapse
Affiliation(s)
- Shi-Yi Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hui-Yan Cao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Rui-Hong Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Rong-Xue Xu
- The Health Center of Longjiang Airlines, Harbin 150000, China; Qiqihar Medical University, Qiqihar 161003, China
| | - Xing-Yu Zhu
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiu-Bo Liu
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China
| | - Xue-Ying Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Peng Fu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
20
|
Batinić P, Jovanović A, Stojković D, Zengin G, Cvijetić I, Gašić U, Čutović N, Pešić MB, Milinčić DD, Carević T, Marinković A, Bugarski B, Marković T. Phytochemical Analysis, Biological Activities, and Molecular Docking Studies of Root Extracts from Paeonia Species in Serbia. Pharmaceuticals (Basel) 2024; 17:518. [PMID: 38675478 PMCID: PMC11054981 DOI: 10.3390/ph17040518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Without being aware of their chemical composition, many cultures have used herbaceous peony roots for medicinal purposes. Modern phytopreparations intended for use in human therapy require specific knowledge about the chemistry of peony roots and their biological activities. In this study, ethanol-water extracts were prepared by maceration and microwave- and ultrasound-assisted extractions (MAE and UAE, respectively) in order to obtain bioactive molecules from the roots of Paeonia tenuifolia L., Paeonia peregrina Mill., and Paeonia officinalis L. wild growing in Serbia. Chemical characterization; polyphenol and flavonoid content; antioxidant, multianti-enzymatic, and antibacterial activities of extracts; and in vitro gastrointestinal digestion (GID) of hot water extracts were performed. The strongest anti-cholinesterase activity was observed in PT extracts. The highest anti-ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical potential was observed in PP extracts, whereas against DPPH (2,2-diphenyl-1-picrylhydrazyl radicals), the best results were achieved with PO extracts. Regarding antibacterial activity, extracts were strongly potent against Bacillus cereus. A molecular docking simulation was conducted to gather insights into the binding affinity and interactions of polyphenols and other Paeonia-specific molecules in the active sites of tested enzymes. In vitro GID of Paeonia teas showed a different recovery and behavior of the individual bioactives, with an increased recovery of methyl gallate and digallate and a decreased recovery of paeoniflorin and its derivatives. PT (Gulenovci) and PP (Pirot) extracts obtained by UAE and M were more efficient in the majority of the bioactivity assays. This study represents an initial step toward the possible application of Paeonia root extracts in pharmacy, medicine, and food technologies.
Collapse
Affiliation(s)
- Petar Batinić
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (N.Č.); (T.M.)
| | - Aleksandra Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, Zemun, 11080 Belgrade, Serbia;
| | - Dejan Stojković
- Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.S.); (U.G.); (T.C.)
| | - Gökhan Zengin
- Science Faculty, Selcuk University, 42130 Konya, Turkey;
| | - Ilija Cvijetić
- Faculty of Chemistry, University of Belgrade, Students Square 10-13, 11000 Belgrade, Serbia;
| | - Uroš Gašić
- Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.S.); (U.G.); (T.C.)
| | - Natalija Čutović
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (N.Č.); (T.M.)
| | - Mirjana B. Pešić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, Zemun, 11080 Belgrade, Serbia; (M.B.P.); (D.D.M.)
| | - Danijel D. Milinčić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, Zemun, 11080 Belgrade, Serbia; (M.B.P.); (D.D.M.)
| | - Tamara Carević
- Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.S.); (U.G.); (T.C.)
| | - Aleksandar Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (A.M.); (B.B.)
| | - Branko Bugarski
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (A.M.); (B.B.)
| | - Tatjana Marković
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (N.Č.); (T.M.)
| |
Collapse
|
21
|
Sgadari F, Vaglica A, Porrello A, Savoca D, Schicchi R, Bruno M. Paeonia mascula subsp. russoi (biv.) Cullen & Heywood: the chemical composition of the aerial parts essential oils of two different populations collected in Sicily (Italy). Nat Prod Res 2024:1-8. [PMID: 38613326 DOI: 10.1080/14786419.2024.2340759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024]
Abstract
In the present study, the chemical composition of the essential oil from aerial parts of two populations of Paeonia mascula subsp. russoi, collected in Sicily, was evaluated by GC-MS. No previously phytochemical investigation has been reported for this subspecies. The main components of the essential oil of the population with pink flowers were salicylaldehyde (34.31%), nonanal (16.95%) and 2-hexenal (10.17%), whereas essential oil of the population with white flowers, was shown to be rich of myrtanal (14.14%), eugenol (14.02%) and salicylaldehyde (12.21%). Furthermore, a complete literature review, not present in literature, on the composition of the essential oils of all the other taxa of Paeonia, studied so far, was performed. PCA and HCA analyses of the composition of essential oils obtained from the aerial parts were also carried out.
Collapse
Affiliation(s)
- Francesco Sgadari
- Department of Agricultural, Food and Forest Sciences (SAAF), Università Degli Studi di Palermo, Palermo, Italy
| | - Alessandro Vaglica
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Antonella Porrello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Dario Savoca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Rosario Schicchi
- Department of Agricultural, Food and Forest Sciences (SAAF), Università Degli Studi di Palermo, Palermo, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Centro Interdipartimentale di Ricerca "Riutilizzo Bio-Based Degli Scarti Da Matrici Agroalimentari" (RIVIVE), University of Palermo, Palermo, Italy
| |
Collapse
|
22
|
Lv J, Du Q, Shi S, Ma M, Zhang W, Ge D, Xing L, Yu N. Untargeted Metabolomics Based on UPLC-Q-Exactive-Orbitrap-MS/MS Revealed the Differences and Correlations between Different Parts of the Root of Paeonia lactiflora Pall. Molecules 2024; 29:992. [PMID: 38474505 DOI: 10.3390/molecules29050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Paeonia lactiflora Pall. (PLP) is a plant with excellent ornamental and therapeutic value that can be utilized in traditional Chinese medicine as Paeoniae Radix Alba (PRA) and Paeoniae Radix Rubra (PRR). PRA must undergo the "peeling" process, which involves removing the cork and a portion of the phloem. PLP's biological function is strongly linked to its secondary metabolites, and the distribution of metabolites in different regions of the PLP rhizome causes changes in efficacy when PLP is processed into various therapeutic compounds. METHODS The metabolites of the cork (cor), phloem (phl), and xylem (xyl) were examined in the roots of PLP using a metabolomics approach based on UPLC-Q-Exactive-Orbitrap-MS/MS (UPLC-MS/MS), and the differential metabolites were evaluated using multivariate analysis. RESULTS Significant changes were observed among the cor, phl, and xyl samples. In both positive and negative ion modes, a total of 15,429 peaks were detected and 7366 metabolites were identified. A total of 525 cor-phl differential metabolites, 452 cor-xyl differential metabolites, and 328 phl-xyl differential metabolites were evaluated. Flavonoids, monoterpene glycosides, fatty acids, sugar derivatives, and carbohydrates were among the top 50 dissimilar chemicals. The key divergent metabolic pathways include linoleic acid metabolism, galactose metabolism, ABC transporters, arginine biosynthesis, and flavonoid biosynthesis. CONCLUSION The cor, phl, and xyl of PLP roots exhibit significantly different metabolite types and metabolic pathways; therefore, "peeling" may impact the pharmaceutical effect of PLP. This study represents the first metabolomics analysis of the PLP rhizome, laying the groundwork for the isolation and identification of PLP pharmacological activity, as well as the quality evaluation and efficacy exploration of PLP.
Collapse
Affiliation(s)
- Jiahui Lv
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qianqian Du
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Suying Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mengzhen Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Research, Development of Chinese Medicine, Hefei 230012, China
| | - Dezhu Ge
- Anhui Jiren Pharmaceutical Co., Ltd., Bozhou 236800, China
| | - Lihua Xing
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Research, Development of Chinese Medicine, Hefei 230012, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Research, Development of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
23
|
Chen M, Li Y, Li L, Ma Q, Zhou X, Ding F, Mo X, Zhu W, Bian Q, Zou X, Xue F, Yan L, Li X, Chen J. Qi-Zhi-Wei-Tong granules alleviates chronic non-atrophic gastritis in mice by altering the gut microbiota and bile acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117304. [PMID: 37838294 DOI: 10.1016/j.jep.2023.117304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, Qi-zhi-wei-tong granule (QZWT) significantly reduced the major gastrointestinal and psychological symptoms of functional dyspepsia. AIM OF THE STUDY We aimed to explore the therapeutic effect of QZWT treated chronic non-atrophic gastritis (CNAG) and to elucidate its potential mechanism. MATERIALS AND METHODS The composition of QZWT was analysed by UPLC-Q/TOF-MS. The CNAG mice model was established by chronic restraint stress (CRS) in combination with iodoacetamide (IAA). Morphological staining was utilized to reveal the impact of QZWT on stomach and gut integrity. RT‒qPCR and ELISA were used to measure proinflammatory cytokines in the stomach, colon tissues and serum of CNAG mice. Next-generation sequencing of 16 S rDNA was applied to analyse the gut microbiota community of faecal samples. Finally, we investigated the faecal bile acid composition using GC‒MS. RESULTS Twenty-one of the compounds from QZWT were successfully identified by UPLC-Q/TOF-MS analysis. QZWT enhanced gastric and intestinal integrity and suppressed inflammatory responses in CNAG mice. Moreover, QZWT treatment reshaped the gut microbiota structure by increasing the levels of the Akkermansia genus and decreasing the populations of the Desulfovibrio genus in CNAG mice. The alteration of gut microbiota was associated with gut bacteria BA metabolism. In addition, QZWT reduced BAs and especially decreased conjugated BAs in CNAG mice. Spearman's correlation analysis further confirmed the links between the changes in the gut microbiota and CNAG indices. CONCLUSIONS QZWT can effectively inhibited gastrointestinal inflammatory responses of CNAG symptoms in mice; these effects may be closely related to restoring the balance of the gut microbiota and regulating BA metabolism to protect the gastric mucosa. This study provides a scientific reference for the pathogenesis of CNAG and the mechanism of QZWT treatment.
Collapse
Affiliation(s)
- Man Chen
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| | - Ying Li
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| | - Lan Li
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Xuan Zhou
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Fengmin Ding
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| | - Xiaowei Mo
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Wenjun Zhu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Qinglai Bian
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| | - Xiaojuan Zou
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| | - Feifei Xue
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Li Yan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China.
| | - Xiaojuan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China.
| | - Jiaxu Chen
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China; Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
24
|
Bai Z, Tang J, Li Y, Li Z, Gu S, Deng L, Zhang Y. Integrated Metabolomics Approach Reveals the Dynamic Variations of Metabolites and Bioactivities in Paeonia ostii 'Feng Dan' Leaves during Development. Int J Mol Sci 2024; 25:1059. [PMID: 38256133 PMCID: PMC10816844 DOI: 10.3390/ijms25021059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Paeonia ostii 'Feng Dan' is widely cultivated in China for its ornamental, medicinal, and edible properties. The whole plant of tree peony is rich in bioactive substances, while the comprehensive understanding of metabolites in the leaves is limited. In this study, an untargeted metabolomics strategy based on UPLC-ESI-TOF-MS was conducted to analyze the dynamic variations of bioactive metabolites in P. ostii 'Feng Dan' leaves during development. A total of 321 metabolites were rapidly annotated based on the GNPS platform, in-house database, and publications. To accurately quantify the selected metabolites, a targeted method of HPLC-ESI-QQQ-MS was used. Albiflorin, paeoniflorin, pentagalloylglucose, luteolin 7-glucoside, and benzoylpaeoniflorin were recognized as the dominant bioactive compounds with significant content variations during leaf development. Metabolite variations during the development of P. ostii 'Feng Dan' leaves are greatly attributed to the variations in antioxidant activities. Among all tested bacteria, the leaf extract exhibited exceptional inhibitory effects against Streptococcus hemolytis-β. This research firstly provides new insights into tree peony leaves during development. The stages of S1-S2 may be the most promising harvesting time for potential use in food or pharmaceutical purposes.
Collapse
Affiliation(s)
- Zhangzhen Bai
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.B.); (J.T.); (Y.L.); (Z.L.); (S.G.)
| | - Junman Tang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.B.); (J.T.); (Y.L.); (Z.L.); (S.G.)
| | - Yajie Li
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.B.); (J.T.); (Y.L.); (Z.L.); (S.G.)
| | - Zhuoning Li
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.B.); (J.T.); (Y.L.); (Z.L.); (S.G.)
| | - Siyi Gu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.B.); (J.T.); (Y.L.); (Z.L.); (S.G.)
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.B.); (J.T.); (Y.L.); (Z.L.); (S.G.)
| |
Collapse
|
25
|
Čutović N, Marković T, Carević T, Stojković D, Bugarski B, Jovanović AA. Liposomal and Liposomes-Film Systems as Carriers for Bioactives from Paeonia tenuifolia L. Petals: Physicochemical Characterization and Biological Potential. Pharmaceutics 2023; 15:2742. [PMID: 38140083 PMCID: PMC10747293 DOI: 10.3390/pharmaceutics15122742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Paeonia tenuifolia L. (steppe peony) petal extract was proficiently encapsulated into liposomes and biopolymer films in the current work, both times utilizing a single-step procedure. The encapsulation efficiency, size of the particles, and index of polydispersity (PDI), as well as the ζ potential of the obtained liposomes were determined, whereas in the case of films, the test included moisture content and mechanical property assessment. Fourier transform infrared spectroscopy (FT-IR) was used to evaluate the chemical composition and existence of numerous interactions in the systems. All the obtained encapsulates were subjected to antibacterial, antifungal and antibiofilm activity testing of the pathogens associated with human skin. The results indicated that the liposomes prepared using Phospholipon had the highest encapsulation efficiency (72.04%), making them the most favorable ones in the release study as well. The biological assays also revealed that Phospholipon was the most beneficial phospholipid mixture for the preparation of liposomes, whereas the film containing these liposomes did not have the ability to inhibit pathogen growth, making the double encapsulation of P. tenuifolia L. petal extract needless. These findings may be a first step toward the potential use of steppe peony extract-loaded films and liposomes in pharmaceutical and cosmetical industries.
Collapse
Affiliation(s)
- Natalija Čutović
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia;
| | - Tatjana Marković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia;
| | - Tamara Carević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (T.C.); (D.S.)
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (T.C.); (D.S.)
| | - Branko Bugarski
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Aleksandra A. Jovanović
- Institute for the Application of Nuclear Energy INEP, Banatska 31b, Zemun, 11080 Belgrade, Serbia;
| |
Collapse
|
26
|
Zou M, Xue Q, Teng Q, Zhang Q, Liu T, Li Y, Zhao J. Acaricidal activities of paeonol from Moutan Cortex, dried bark of Paeonia × suffruticosa, against the grain pest mite Aleuroglyphus ovatus (Acari: Acaridae). EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:615-628. [PMID: 37979065 DOI: 10.1007/s10493-023-00861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Aleuroglyphus ovatus (Acari: Acaridae) is a major pest mite of stored grains that is distributed worldwide. Paeonol, a phenolic component of the essential oil extracted from the Chinese herb Paeonia moutan, possesses a range of biological activities, including antiviral, antifungal and acaricidal activity. This study investigated the bioactivity of paeonol against A. ovatus and its effect on the activity of detoxification enzymes. The bioactivity of paeonol against A. ovatus was determined by contact, fumigation and repellency bioassays, and the mechanism was preliminarily explored via morphological observation of the color changes of mite epidermis and determination of the changing trend of some important enzymes associated with acaricidal efficacy in the mites. The results showed that the median lethal concentration (LC50) in the contact and fumigation bioassays was 9.832 μg/cm2 and 14.827 μg/cm3, respectively, and the acaricidal activity of paeonol was higher under direct contact than under fumigation. Dynamic symptomatology studies registered typical neurotoxicity symptoms including excitation, convulsion and paralysis in A. ovatus treated with paeonol. The enzyme activity of catalase (CAT), nitric oxide synthase (NOS) and glutathione-S-transferase (GST) was higher, whereas the activity of superoxide dismutase (SOD) and acetylcholinesterase (AChE) was lower, compared to the control group. CAT, NOS and GST were activated, whereas SOD and AChE activities were inhibited after paeonol intervention. Our findings suggest paeonol has potent acaricidal activity against A. ovatus and thus may be used as an agent to control the stored-product mite A. ovatus.
Collapse
Affiliation(s)
- Minghui Zou
- Department of Medical Parasitology, Wannan Medical College, No. 22 Wenchang West Road, Wuhu, 241002, China
| | - Qiqi Xue
- Department of Medical Parasitology, Wannan Medical College, No. 22 Wenchang West Road, Wuhu, 241002, China
| | - Qiao Teng
- Department of Medical Parasitology, Wannan Medical College, No. 22 Wenchang West Road, Wuhu, 241002, China
| | - Qiqi Zhang
- School of Clinical Medicine, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Ting Liu
- Department of Medical Parasitology, Wannan Medical College, No. 22 Wenchang West Road, Wuhu, 241002, China
| | - Yuanyuan Li
- Department of Medical Parasitology, Wannan Medical College, No. 22 Wenchang West Road, Wuhu, 241002, China.
- Anhui Provincial Key Laboratory of Biological Macromolecules, Wuhu, 241002, Anhui, China.
| | - Jinhong Zhao
- Department of Medical Parasitology, Wannan Medical College, No. 22 Wenchang West Road, Wuhu, 241002, China.
- Anhui Provincial Key Laboratory of Biological Macromolecules, Wuhu, 241002, Anhui, China.
| |
Collapse
|
27
|
Xie Z, Xie H, Peng X, Hu J, Chen L, Li X, Qi H, Zeng J, Zeng N. The antidepressant-like effects of Danzhi Xiaoyao San and its active ingredients. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155015. [PMID: 37597362 DOI: 10.1016/j.phymed.2023.155015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/08/2023] [Accepted: 08/06/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Depression is a severe mental illness that endangers human health. Depressed individuals are prone to sleep less and to the loss of appetite for food; their thinking and cognition processes, as well as mood, may even be affected. Danzhi Xiaoyao San (DXS), documented in the Internal Medicine Summary, has been used for hundreds of years in China and is widely applied traditionally to treat liver qi stagnation, liver and spleen blood deficiency, menstrual disorders, and spontaneous and night sweating. DXS can also clear heat and drain the liver. Presently, it is used frequently in the treatment of depression based on its ability to clear the liver and alleviate depression. PURPOSE To summarize clinical and preclinical studies on the antidepressant-like effects of DXS, understand the material basis and mechanisms of these effects, and offer new suggestions and methods for the clinical treatment of depression. METHODS "Danzhi Xiaoyao", "Danzhixiaoyao", "Xiaoyao", "depression" and active ingredients were entered as keywords in PubMed, Google Scholar, CNKI and WANFANG DATA databases in the search for material on DXS and its active ingredients. The PRISMA guidelines were followed in this review process. RESULTS Per clinical reports, DXS has a therapeutic effect on patients with depression but few side effects. DXS and its active ingredients allegedly produce their neuroprotective antidepressant-like effects by modulating monoamine neurotransmitter levels, inhibiting the hypothalamic-pituitary-adrenal (HPA) axis hyperfunction, reducing neuroinflammation and increasing neurotrophic factors. CONCLUSION Overall, DXS influences multiple potential mechanisms to exert its antidepressant-like effects thanks to its multicomponent character. Because depression is not caused by a single mechanism, probing the antidepressant-like effects of DXS could further help understand the pathogenesis of depression and discover new antidepressant drugs.
Collapse
Affiliation(s)
- Zhiqiang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Hongxiao Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jingwen Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Department of Pharmacy, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Xiangyu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Hu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
28
|
Yang K, Zeng L, Long Z, He Q, Xiang W, Ge A, Zhen H, Xiao W, Ge J. Efficacy and safety of total glucosides of paeony in the treatment of 5 types of inflammatory arthritis: A systematic review and meta-analysis. Pharmacol Res 2023; 195:106842. [PMID: 37402434 DOI: 10.1016/j.phrs.2023.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
OBJECTIVE To evaluate efficacy and safety of total glucosides of paeony in the treatment of 5 types of inflammatory arthritis METHODS: Databases such as Pubmed, Cochran Library, Embase were searched to collect RCTs about TGP in the treatment of inflammatory arthritis. Then, the RCTs were assessed for risk of bias and RCT data were extracted. Finally, RevMan 5.4 was used for the meta-analysis. RESULTS A total of 63 RCTs were finally included, involving 5293 participants and 5 types of types of inflammatory arthritis: rheumatoid arthritis (RA), ankylosing spondylitis (AS), osteoarthritis (OA), juvenile idiopathic arthritis (JIA), psoriatic arthritis. For AS, TGP may improve AS disease activity score (ASDAS), decrease erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), tumor necrosis factor (TNF)- α and interleukin (IL)- 6; for RA, TGP may improve disease activity of 28 joints (DAS28), decrease ESR, CRP, rheumatoid factor (RF), TNF-α and IL-6; for psoriatic arthritis, TGP may improve psoriasis area and severity index (PASI) and decrease ESR; for OA, TGP may improve visual analogue scale (VAS) and decrease nitric oxide (NO); for JIA, TGP may increase total efficiency rate, decrease ESR, CRP and TNF-α. For safety, RCTs showed that the addition of TGP did not increase adverse events, and may even reduce adverse events. CONCLUSION TGP may improve symptoms and inflammation levels in patients with inflammatory arthritis. However, due to the low quality and small number of RCTs, large-sample, multi-center clinical trials are still needed for revision or validation.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Huang Zhen
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wei Xiao
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China..
| |
Collapse
|
29
|
Zheng Y, Li P, Shen J, Yang K, Wu X, Wang Y, Yuan YH, Xiao P, He C. Comprehensive comparison of different parts of Paeonia ostii, a food-medicine plant, based on untargeted metabolomics, quantitative analysis, and bioactivity analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1243724. [PMID: 37711307 PMCID: PMC10497777 DOI: 10.3389/fpls.2023.1243724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
Introduction Paeonia ostii T. Hong & J.X. Zhang (s.s.) (Chinese name, Fengdan) is a widely cultivated food-medicine plant in China, in which root bark, seed kernels, and flowers are utilized for their medicinal and edible values. However, other parts of the plant are not used efficiently, in part due to a poor understanding of their chemical composition and potential biological activity. Methods Untargeted ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UPLC-Q-TOF-MS) metabolomics was applied to characterize the metabolic profiles of 10 different parts of P. ostii. Results and discussion A total of 160 metabolites were alternatively identified definitely or tentatively, which were significantly different in various plant parts by multivariate statistical analysis. Quantitative analysis showed that underutilized plant parts also contain many active ingredients. Compared with the medicinal part of root bark, the root core part still contains a higher content of paeoniflorin (17.60 ± 0.06 mg/g) and PGG (15.50 ± 2.00 mg/g). Petals, as an edible part, contain high levels of quercitrin, and stamens have higher methyl gallate and PGG. Unexpectedly, the ovary has the highest content of methyl gallate and rather high levels of PGG (38.14 ± 1.27 mg/g), and it also contains surprisingly high concentrations of floralalbiflorin I. Paeoniflorin (38.68 ± 0.76 mg/g) is the most abundant in leaves, and the content is even higher than in the root bark. Branches are also rich in a variety of catechin derivatives and active ingredients such as hydrolyzable tannins. Seed kernels also contain fairly high levels of paeoniflorin and albiflorin. Fruit shells still contain a variety of components, although not at high levels. Seed coats, as by-products removed from peony seeds before oil extraction, have high contents of stilbenes, such as trans-gnetin H and suffruticosol B, showing significant potential for exploitation. Except for the seed kernels, extracts obtained from other parts exhibited good antioxidant activity in DPPH, ABTS, and ferric ion reducing antioxidant power (FRAP) assays (0.09-1.52 mmol TE/g). Five compounds (gallic acid, PGG, trans-resveratrol, kaempferol, and quercitrin) were important ingredients that contributed to their antioxidant activities. Furthermore, P. ostii seed cakes were first reported to possess agonistic activity toward CB1/CB2 receptors. This study provides a scientific basis for the further development and utilization of P. ostii plant resources.
Collapse
Affiliation(s)
- Yaping Zheng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Pei Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Jie Shen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
- School of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang, Shandong, China
| | - Kailin Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Xinyan Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Yue Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Yu-he Yuan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peigen Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Chunnian He
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Yang C, Cheng J, Zhu Q, Pan Q, Ji K, Li J. Review of the Protective Mechanism of Paeonol on Cardiovascular Disease. Drug Des Devel Ther 2023; 17:2193-2208. [PMID: 37525853 PMCID: PMC10387245 DOI: 10.2147/dddt.s414752] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/19/2023] [Indexed: 08/02/2023] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death in the world. Paeonol(Pae) is a phenolic component extracted from peony bark, peony root and Xu Changqing. Studies have shown that Pae can protect cardiomyocytes by inhibiting oxidative stress, promoting mitochondrial fusion, regulating mitochondrial autophagy and inhibiting inflammation. In addition, Pae improves ventricular remodeling by inhibiting myocardial apoptosis, hypertrophy and fibrosis. Pae also has a good protective effect on blood vessels by inhibiting vascular inflammation, reducing the expression of adhesion molecules, inhibiting vascular proliferation, and inhibiting oxidative stress and endoplasmic reticulum stress(ERS). Pae also has the effect of anti-endothelial cell senescence, promoting thrombus recanalization and vasodilating. In conclusion, the molecular targets of Pae are very complex, and the relationship between different targets and signaling pathways cannot be clearly explained, which requires us to use systems biology methods to further study specific molecular targets of Pae. It has to be mentioned that the bioavailability of Pae is poor, and some nanotechnology-assisted drug delivery systems improve the therapeutic effect of Pae. We reviewed the protective mechanism of paeonol on the cardiovascular system, hoping to provide help for drug development in the treatment of CVD.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Jiawen Cheng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qinwei Zhu
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Jun Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
31
|
Marković T, Čutović N, Carević T, Gašić U, Stojković D, Xue J, Jovanović A. Paeonia peregrina Mill Petals as a New Source of Biologically Active Compounds: Chemical Characterization and Skin Regeneration Effects of the Extracts. Int J Mol Sci 2023; 24:11764. [PMID: 37511520 PMCID: PMC10380736 DOI: 10.3390/ijms241411764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Paeonia peregrina Mill. is a perennial herbaceous plant species, known for the medicinal value of all of its plant parts, although the chemical composition of the petals is unknown. This study aimed to determine the chemical fingerprint of the petals and also establish the optimal extraction parameters, extraction medium, and extraction method for petals collected from different localities in Serbia. The optimization was performed in order to acquire extracts that are rich in the contents of total polyphenol content (TPC) and total flavonoid content (TFC), and also exhibit strong antioxidant activity. In addition, the influence of the extracts on several human skin pathogens was evaluated, as well as their ability to aid wound closure and act as anti-inflammatory agents. Both the extraction medium and the applied technique significantly influenced the skin-beneficial biological activities, while methanol proved to be a more favorable extraction medium. In conclusion, the extraction conditions that yielded the extract with the richest phenolic content with satisfactory biological potential varied between the assays, while the most promising locality in Serbia for the collection of P. peregrina petals was Pančevo (South Banat).
Collapse
Affiliation(s)
- Tatjana Marković
- Institute for Medicinal Plants Research "Dr Josif Pančić", Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Natalija Čutović
- Institute for Medicinal Plants Research "Dr Josif Pančić", Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Tamara Carević
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Jingqi Xue
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry Agriculture and Rural Affairs, Beijing 100081, China
| | - Aleksandra Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, Zemun, 11080 Belgrade, Serbia
| |
Collapse
|
32
|
Meng Q, Tong S, Zhao Y, Peng X, Li Z, Feng T, Liu J. New Phenolic Dimers from Plant Paeonia suffruticosa and Their Cytotoxicity and NO Production Inhibition. Molecules 2023; 28:4590. [PMID: 37375146 DOI: 10.3390/molecules28124590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The Paeonia suffruticosa, known as 'Feng Dan', has been used for thousands of years in traditional Chinese medicine. In our chemical investigation on the root bark of the plant, five new phenolic dimers, namely, paeobenzofuranones A-E (1-5), were characterized. Their structures were determined using spectroscopic analysis including 1D and 2D NMR, HRESIMS, UV, and IR, as well as ECD calculations. Compounds 2, 4, and 5 showed cytotoxicity against three human cancer cell lines, with IC50 values ranging from 6.7 to 25.1 μM. Compounds 1 and 2 showed certain inhibitory activity on NO production. To the best of our knowledge, the benzofuranone dimers and their cytotoxicity of P. suffruticosa are reported for the first time in this paper.
Collapse
Affiliation(s)
- Qianqian Meng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Medical School, Fuyang Normal University, Fuyang 236037, China
| | - Shunyao Tong
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Yuqing Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xingrong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhenghui Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jikai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
33
|
Zhang N, Zhang D, Zhang Q, Zhang R, Wang Y. Mechanism of Danggui Sini underlying the treatment of peripheral nerve injury based on network pharmacology and molecular docking: A review. Medicine (Baltimore) 2023; 102:e33528. [PMID: 37171334 PMCID: PMC10174355 DOI: 10.1097/md.0000000000033528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Danggui Sini is a traditional Chinese medicine prescription for treating peripheral nerve injury (PNI). We studied the mechanisms of this decoction through network pharmacology analysis and molecular docking. Using R language and Perl software, the active components and predicted targets of Danggui Sini, as well as the related gene targets of PNI, were mined through TCMSP, GeneCards, OMIM, TTD, and DrugBank. The network diagram of active components and intersection targets was constructed using Cytoscape software and the STRING database. The CytoNCA plug-in was used to screen out the core compounds and key targets. The genes were analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment. AutoDock was used to analyze the molecular docking of key targets and core compounds of diseases. The drug component disease target regulatory network showed that the key components included quercetin, kaempferol, naringenin, and licochalcone A, which play key roles in the whole network and may be the primary compounds associated with the action of Danggui Sini against PNI. PPI network topology analysis showed high degree values for RELA, JUN, MAPK1, RB1, and FOS. Enrichment analysis showed that the core targets of Danggui Sini participated in pathways associated with neurogenesis-multiple diseases. Molecular docking showed that the active ingredients in Danggui Sini had a good binding ability with key targets. We conclude that many active components of Danggui Sini play therapeutic roles in PNI treatment by regulating RELA, JUN, MAPK1, RB1, and FOS, and multiple other targets in inflammation, immunity, and lipid metabolism.
Collapse
Affiliation(s)
- Ning Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- Dalian Port Hospital, Dalian, China
| | - Dandan Zhang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Dalian Women and Children's MedicalGroup, Dalian, China
| | - Qian Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ruisu Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
34
|
Chen Q, Chen L, Teixeira da Silva JA, Yu X. The plastome reveals new insights into the evolutionary and domestication history of peonies in East Asia. BMC PLANT BIOLOGY 2023; 23:243. [PMID: 37150831 PMCID: PMC10165817 DOI: 10.1186/s12870-023-04246-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUD Paeonia holds considerable value in medicinal, ornamental horticultural, and edible oil industries, but the incomplete state of phylogenetic research in this genus poses a challenge to the effective conservation and development of wild germplasm, and also impedes the practical utilization of existing cultivars. Due to its uniparental inheritance and lack of recombination, the plastome (i.e., plastid genome), which is a valuable molecular marker for phylogenetic analyses, is characterized by an appropriate rate of nucleotide evolution. METHODS In this study, 10 newly assembled data and available reported data were combined to perform a comparative genomics and phylogenetics analysis of 63 plastomes of 16 Paeonia species, primarily from East Asia, which is the origin and diversity center of Paeonia. RESULTS Ranging between 152,153 and 154,405 bp, most plastomes displayed a conserved structure and relatively low nucleotide diversity, except for six plastomes, which showed obvious IR construction or expansion. A total of 111 genes were annotated in the Paeonia plastomes. Four genes (rpl22, rps3, rps19 and ycf1) showed different copy numbers among accessions while five genes (rpl36, petN, psbI, rpl33 and psbJ) showed strong codon usage biases (ENC < 35). Additional selection analysis revealed that no genes were under positive selection during the domestication of tree peony cultivars whereas four core photosynthesis-related genes (petA, psaA, psaB and rbcL) were under positive selection in herbaceous peony cultivars. This discovery might contribute to the wide adaption of these cultivars. Two types of molecular markers (SSR and SNP) were generated from the 63 plastomes. Even though SSR was more diverse than SNP, it had a weaker ability to delimit Paeonia species than SNP. The reconstruction of a phylogenetic backbone of Paeonia in East Asia revealed significant genetic divergence within the P. ostii groups. Evidence also indicated that the majority of P. suffruticosa cultivars had a maternal origin, from P. ostii. The results of this research also suggest that P. delavayi var. lutea, which likely resulted from hybridization with P. ludlowii, should be classified as a lineage within the broader P. delavayi group. CONCLUSIONS Overall, this study's research findings suggest that the Paeonia plastome is highly informative for phylogenetic and comparative genomic analyses, and could be useful in future research related to taxonomy, evolution, and domestication.
Collapse
Affiliation(s)
- Qihang Chen
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing, 100083, China
- National Engineering Research Center for Floriculture, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Le Chen
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing, 100083, China
- National Engineering Research Center for Floriculture, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | | | - Xiaonan Yu
- College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing, 100083, China.
- National Engineering Research Center for Floriculture, Beijing, 100083, China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China.
| |
Collapse
|
35
|
Kim GB, Seo K, Youn JU, Kwon IK, Park J, Park KH, Kim JS. Unsaturated Fatty Acids Complex Regulates Inflammatory Cytokine Production through the Hyaluronic Acid Pathway. Molecules 2023; 28:3554. [PMID: 37110788 PMCID: PMC10142694 DOI: 10.3390/molecules28083554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
In this study, we aimed to develop natural and/or functional materials with antioxidant and anti-inflammatory effects. We obtained extracts from natural plants through an oil and hot-water extraction process and prepared an extract composite of an effective unsaturated fatty acid complex (EUFOC). Furthermore, the antioxidant effect of the extract complex was evaluated, and the anti-inflammatory effect was explored by assessing its inhibitory effect on nitric oxide production through its HA-promoting effect. We conducted a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay to evaluate the cell viability of the EUFOC, and the results showed that EUFOC was not cytotoxic at the test concentrations. In addition, it showed no endogenous cytotoxicity in HaCaT (human keratinocyte) cells. The EUFOC showed excellent 1,1-diphenyl-2-picrylhydrazyl- and superoxide-scavenging abilities. Moreover, it exerted an inhibitory effect on NO production at concentrations that did not inhibit cell viability. The secretion of all the cytokines was increased by lipopolysaccharide (LPS) treatment; however, this was inhibited by the EUFOC in a concentration-dependent manner. In addition, hyaluronic acid content was markedly increased by the EUFOC in a dose-dependent manner. These results suggest that the EUFOC has excellent anti-inflammatory and antioxidant properties, and hence, it can be used as a functional material in various fields.
Collapse
Affiliation(s)
- Gi-Beum Kim
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Kwansung Seo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Ung Youn
- Eouidang Agricultural Company, Wanju, Jeonbuk 55360, Republic of Korea
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jinny Park
- Division of Hematology, Gacheon University Gil Medical Center, Incheon 21565, Republic of Korea
| | - Kwang-Hyun Park
- Department of Emergency Medicine and BioMedical Science Graduate Program (BMSGP), Chonnam National University, Gwangju 61469, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
| |
Collapse
|
36
|
Preparation and anti-tumor activity of selenium nanoparticles based on a polysaccharide from Paeonia lactiflora. Int J Biol Macromol 2023; 232:123261. [PMID: 36649870 DOI: 10.1016/j.ijbiomac.2023.123261] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/08/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The combination of selenium and polysaccharides is one of the significant ways to ameliorate the anti-cancer effects of polysaccharides. PLP50-1, a homogeneous polysaccharide purified from the aqueous extract of Paeonia lactiflora, had a molecular weight of 1.52 × 104 Da and consisted of α-D-Glcp-(1→, →4)-α-D-Glcp-(1→, →6)-α-D-Glcp-(1→, →4,6)-α-D-Glcp-(1→, and →6)-β-D-Fruf-(2→. PLP50-1 showed weak anti-tumor effects against A549 cells. To ameliorate the activity of PLP50-1, the complex nanoparticles combining P. lactiflora polysaccharide with selenium were constructed successfully. Structural properties of the polysaccharide-based selenium nanoparticles (PLP-SeNPs) were clarified using various means. The results displayed that a kind of monodisperse spherical nanoparticles containing high selenium content (39.1 %) with controllable size was constructed and showed satisfactory stability. The cellular anti-tumor assay indicated that PLP-SeNPs had stronger antiproliferative activity against A549 cells than PLP50-1. Additionally, the zebrafish experiments displayed that PLP-SeNPs inhibited the proliferation and migration of A549 cells significantly and blocked the angiogenesis.
Collapse
|
37
|
Xu S, Liu W, Liu X, Qin C, He L, Wang P, Kong L, Chen X, Liu Z, Ma W. DUS evaluation of nine intersubgeneric hybrids of Paeonia lactiflora and fingerprint analysis of the chemical components in the roots. Front Chem 2023; 11:1158727. [PMID: 36970400 PMCID: PMC10038168 DOI: 10.3389/fchem.2023.1158727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Intersubgeneric hybrids of Paeonia lactiflora (Paeonia lactiflora pall., P. lactiflora.) cover a huge variety of systems in the genus Paeonia. In recent years, many studies have confirmed that the intersubgeneric hybrids of P. lactiflora. are rich in paeoniflorin and other medicinal ingredients, however, it has always proved difficult to clarify the medicinal value of the hybrids and whether they can be used for medicinal purposes. In this study, the consistency of the plant population was evaluated through DUS evaluation, in order to clarify whether the selected research materials had stability and consistency within the population and specificity between populations. The differences between the paeoniflorin contents in the roots of the nine intersubgeneric hybrids of the P. lactiflora. varieties and two medicinal varieties were critically compared. The differences in the chemical components of the roots of nine intersubgeneric hybrids of P. lactiflora. and reference medicine substances of P. lactiflora. and Paeonia anomala subsp. veitchii (Lynch) D. Y. Hong and K. Y. Pan (Paeonia veitchii Lynch., P. veitchii.) were explored via stoichiometric and chemical fingerprint high performance liquid chromatography analyses. The results showed that there were significant differences in the chemical compositions between the intersubgeneric hybrids of P. lactiflora. and the medicinal reference materials, and the contents of paeoniflorin were elevated such that the hybrids could be used as the raw material for extraction of paeoniflorin, thus providing an opportunity to explore the medicinal value of the hybrids. This study explored the key differential components among the varieties and provides a reference and basis for the study of the medicinal value and the identification of the intersubgeneric hybrids of the P. lactiflora. varieties.
Collapse
Affiliation(s)
- Shiyi Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weili Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiubo Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Jiamusi College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chen Qin
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lianqing He
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Panpan Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lingyang Kong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xi Chen
- Harbin Academy of Agricultural Sciences, Harbin, China
| | - Zhiyang Liu
- Harbin Academy of Agricultural Sciences, Harbin, China
- *Correspondence: Zhiyang Liu, ; Wei Ma,
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Zhiyang Liu, ; Wei Ma,
| |
Collapse
|
38
|
Phytochemical Study on Seeds of Paeonia clusii subsp. rhodia-Antioxidant and Anti-Tyrosinase Properties. Int J Mol Sci 2023; 24:ijms24054935. [PMID: 36902364 PMCID: PMC10003135 DOI: 10.3390/ijms24054935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
In this study, the black fertile (BSs) and the red unfertile seeds (RSs) of the Greek endemic Paeonia clusii subsp. rhodia (Stearn) Tzanoud were studied for the first time. Nine phenolic derivatives, trans-resveratol, trans-resveratrol-4'-O-β-d-glucopyranoside, trans-ε-viniferin, trans-gnetin H, luteolin, luteolin 3'-O-β-d-glucoside, luteolin 3',4'-di-O-β-d-glucopyranoside, and benzoic acid, along with the monoterpene glycoside paeoniflorin, have been isolated and structurally elucidated. Furthermore, 33 metabolites have been identified from BSs through UHPLC-HRMS, including 6 monoterpene glycosides of the paeoniflorin type with the characteristic cage-like terpenic skeleton found only in plants of the genus Paeonia, 6 gallic acid derivatives, 10 oligostilbene compounds, and 11 flavonoid derivatives. From the RSs, through HS-SPME and GC-MS, 19 metabolites were identified, among which nopinone, myrtanal, and cis-myrtanol have been reported only in peonies' roots and flowers to date. The total phenolic content of both seed extracts (BS and RS) was extremely high (up to 289.97 mg GAE/g) and, moreover, they showed interesting antioxidative activity and anti-tyrosinase properties. The isolated compounds were also biologically evaluated. Especially in the case of trans-gnetin H, the expressed anti-tyrosinase activity was higher than that of kojic acid, which is a well-known whitening agent standard.
Collapse
|
39
|
Zahra N, Iqbal J, Arif M, Abbasi BA, Sher H, Nawaz AF, Yaseen T, Ydyrys A, Sharifi-Rad J, Calina D. A comprehensive review on traditional uses, phytochemistry and pharmacological properties of Paeonia emodi Wall. ex Royle: current landscape and future perspectives. Chin Med 2023; 18:23. [PMID: 36859262 PMCID: PMC9979516 DOI: 10.1186/s13020-023-00727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Paeonia emodi Wall. ex Royle is commonly known as Himalayan paeony has great importance as a food and medicine. The practice of Paeonia emodi Wall. ex Royle is very ancient and it is conventionally used for a wide range of illnesses in the folk system of medicine because of its wide beneficial phytochemical profile. The main purpose of the current review was the synthesis of recent data on botany, ethnopharmacology, phytochemistry and potential pharmacological mechanisms of action of Paeonia emodi Wall. ex Royle, thus offering new prospects for the development of new adjuvant natural therapies. Using scientific databases such as PubMed/MedLine, Scopus, Web of Science, ScienceDirect, Google Scholar, Springer, and Wiley, a comprehensive literature search was performed for Paeonia emodi Wall. ex Royle. For searching, we used the next MeSH terms: "Biological Product/isolation and purification", "Biological Products/pharmacology", "Drug Discovery/methods", "Ethnopharmacology, Medicine", "Traditional/methods", "Paeonia/chemistry", "Plant Extracts/pharmacology", "Phytochemicals/chemistry", "Phytochemicals/pharmacology", "Plants, Medicinal". The results of the most recent studies were analyzed and the most important data were summarized in tables and figures. Phytochemical research of Paeonia emodi Wall. ex Royle has led to the isolation of triterpenes, monoterpenes, phenolic acids, fatty acids, organic compounds, steroids, free radicals and some other classes of primary metabolites. In addition, diverse pharmacological activities like antibacterial, antifungal, anticoagulant, airway relaxant lipoxygenase and beta-glucuronidase inhibiting activity, radical scavenging activity, phytotoxic and insecticidal activities have been reported for Paeonia emodi Wall. ex Royle. Different bioactive compounds of Paeonia emodi Wall. ex Royle has proven their therapeutic potential in modern pharmacological and biomedical research to cure numerous gastrointestinal and nervous disorders. In future, further in vitro and in vivo therapeutic studies are required to identify new mechanisms of action, pharmacokinetics studies, and new pharmaceutical formulations for target transport and possible interaction with allopathic drugs. Also, new research regarding quality evaluation, toxicity and safety data in humans is needed.
Collapse
Affiliation(s)
- Nida Zahra
- Department of Biotechnology, University of Mianwali, Mianwali, 42200 Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa Pakistan
| | - Muhammad Arif
- Department of Biotechnology, University of Mianwali, Mianwali, 42200 Pakistan
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi, 46300 Pakistan
| | - Hassan Sher
- Center for Plant Sciences and Biodiversity, University of Swat, Kanju, 19201 Pakistan
| | - Ayesha Fazal Nawaz
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa Pakistan
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040 Almaty, Kazakhstan
- The Elliott School of International Affairs, George Washington University, 1957 E St NW, Washington, DC 20052 USA
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
40
|
Xia C, Wang G, Chen L, Geng H, Yao J, Bai Z, Deng L. Trans-gnetin H isolated from the seeds of Paeonia species induces autophagy via inhibiting mTORC1 signalling through AMPK activation. Cell Prolif 2023; 56:e13360. [PMID: 36377675 PMCID: PMC9977667 DOI: 10.1111/cpr.13360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Paeonia is a well-known species of ornamental plants, traditional Chinese medicines, and emerging oilseed crops. Apart from nutritional unsaturated fatty acids, the seeds of peonies are rich in stilbenes characterized by their wide-ranging health-promoting properties. Although the typical stilbene resveratrol has been widely reported for its multiple bioactivities, it remains uncertain whether the trimer of resveratrol trans-gnetin H has properties that regulate cancer cell viability, let alone the underlying mechanism. Autophagy regulated by trans-gnetin H was detected by western blotting, immunofluorescence, and quantitative real-time PCR. The effects of trans-gnetin H on apoptosis and proliferation were examined by flow cytometry, colony formation and Cell Counting Kit-8 assays. Trans-gnetin H significantly inhibits cancer cell viability through autophagy by suppressing the phosphorylation of TFEB and promoting its nuclear transport. Mechanistically, trans-gnetin H inhibits the activation and lysosome translocation of mTORC1 by inhibiting the activation of AMPK, indicating that AMPK is a checkpoint for mTORC1 inactivation induced by trans-gnetin H. Moreover, the binding of TSC2 to Rheb was markedly increased in response to trans-gnetin H stimulation. Similarly, trans-gnetin H inhibited the interaction between Raptor and RagC in an AMPK-dependent manner. More importantly, trans-gnetin H-mediated autophagy highly depends on the AMPK-mTORC1 axis. We propose a regulatory mechanism by which trans-gnetin H inhibits the activation of the mTORC1 pathway to control cell autophagy.
Collapse
Affiliation(s)
- Chao Xia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guoyan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huijun Geng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhangzhen Bai
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
41
|
Integration of a hybrid scan approach and in-house high-resolution MS2 spectral database for charactering the multicomponents of Xuebijing Injection. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2022.104519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
42
|
Yang MY, Shao ZX, Wang YT, Hou YL, Zhu DK, Chen S, Zhang YH, Cao F, Jing YK, Lin B, Li ZL, Li DH, Hua HM. Stilbenes with potent cytotoxicity from the seedcases of Paeonia suffruticosa Andrews. PHYTOCHEMISTRY 2023; 205:113515. [PMID: 36403670 DOI: 10.1016/j.phytochem.2022.113515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Stilbenes (based on the 1,2-diphenylethylene skeleton) are a class of plant polyphenols with rich structural and bioactive diversity. Twenty-six stilbenes, including five undescribed compounds (7,8-dioxy-4,3',5'-trihydroxystilbene, trans-13'-methoxygnetin H, suffruticosol E, paestibenetrimerols A and B), were isolated from the seedcases of Paeonia suffruticosa Andrews. Their structures were elucidated by spectroscopic analyses and comparison with previously reported data. The absolute configurations of trans-13'-methoxygnetin H, suffruticosol E, paestibenetrimerols A and B were assigned from their respective electronic circular dichroism (ECD) spectra. Additionally, the structures of known compounds suffruticosols A, B and rockiol B were revised and the absolute configurations of them, and along with (+)-davidiol A, were also further determined by ECD. The isolated compounds, trans-gnetin H, cis-gnetin H and suffruticosol E, were found to have potent cytotoxicity against the DU-145 and MDA-MB-231 cell lines with IC50 values of 4.89-8.61 μM. The preliminary antitumor structure-activity relationship of these stilbenes is discussed as well.
Collapse
Affiliation(s)
- Meng-Yue Yang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Zhao-Xiang Shao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yue-Tong Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yong-Lian Hou
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Ding-Kang Zhu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Sha Chen
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Ya-Hui Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Fei Cao
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Yong-Kui Jing
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Zhan-Lin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Da-Hong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Hui-Ming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
43
|
Yu W, Ilyas I, Hu X, Xu S, Yu H. Therapeutic potential of paeoniflorin in atherosclerosis: A cellular action and mechanism-based perspective. Front Immunol 2022; 13:1072007. [PMID: 36618414 PMCID: PMC9811007 DOI: 10.3389/fimmu.2022.1072007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies have shown that the incidence, prevalence and mortality of atherosclerotic cardiovascular disease (ASCVD) are increasing globally. Atherosclerosis is characterized as a chronic inflammatory disease which involves inflammation and immune dysfunction. P. lactiflora Pall. is a plant origin traditional medicine that has been widely used for the treatment of various diseases for more than a millennium in China, Japan and Korean. Paeoniflorin is a bioactive monomer extracted from P. lactiflora Pall. with anti-atherosclerosis effects. In this article, we comprehensively reviewed the potential therapeutic effects and molecular mechanism whereby paeoniflorin protects against atherosclerosis from the unique angle of inflammation and immune-related pathway dysfunction in vascular endothelial cells, smooth muscle cells, monocytes, macrophages, platelets and mast cells. Paeoniflorin, with multiple protective effects in atherosclerosis, has the potential to be used as a promising therapeutic agent for the treatment of atherosclerosis and its complications. We conclude with a detailed discussion of the challenges and future perspective of paeoniflorin in translational cardiovascular medicine.
Collapse
Affiliation(s)
- Wei Yu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, China,Center for Drug Research and Development, Anhui Renovo Pharmaceutical Co., Ltd, Center for Drug Research and Development, Hefei, Anhui, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuerui Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Yu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interfacial Controlling Technology, Hebei University of Technology, Tianjin, China,*Correspondence: Hui Yu,
| |
Collapse
|
44
|
Chemical Profile and Skin-Beneficial Activities of the Petal Extracts of Paeonia tenuifolia L. from Serbia. Pharmaceuticals (Basel) 2022; 15:ph15121537. [PMID: 36558988 PMCID: PMC9787298 DOI: 10.3390/ph15121537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Without being aware of its chemical makeup, many ancient societies have used Steppe peony in their traditional medicine. Given that modern phytopreparation intended for use on human skin requires, above all, knowledge of its chemical composition, the goal of this study was to make a screening of the composition of aqueous and methanolic extracts of the petals of P. tenuifolia L. and to examine them for various skin-beneficial properties. The extracts were prepared by maceration, ultrasound-assisted, and microwave-assisted extraction procedures. The chemical profiling was conducted by the use of UHPLC-LTQ-OrbiTrap MS and UHPLC/MS, and spectrophotometric methods for the determination of total polyphenol and total flavonoid contents. The biological activities entailed antioxidant ABTS, DPPH, CUPRAC (Cupric Ion Reducing Antioxidant Capacity), and FRAP (Ferric Reducing Antioxidant Power) assays, antimicrobial (antibacterial and antifungal) and antibiofilm activities, cytotoxicity, wound healing potential, as well as the adhesion and invasion of Staphylococcus lugdunensis. The results showed that the petals are rich in phenolic acids and flavonoids, which are commonly associated with numerous biological activities. The aqueous extracts were more efficient in the majority of the bioactivity assays then the methanolic ones, whereas the optimal extraction method varied between the assays. This study is the first step towards the safe use of the aqueous extracts of P. tenuifolia petals for therapeutic skin treatments.
Collapse
|
45
|
Lan Z, Zhang Y, Lin H, Sun Y, Wang S, Meng J. Efficient monitoring for the nutrient changes in stir-fried Moutan Cortex using non-destructive near-infrared spectroscopy sensors. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Qin S, Geng H, Wang G, Chen L, Xia C, Yao J, Bai Z, Deng L. Suffruticosol C-Mediated Autophagy and Cell Cycle Arrest via Inhibition of mTORC1 Signaling. Nutrients 2022; 14:nu14235000. [PMID: 36501031 PMCID: PMC9736330 DOI: 10.3390/nu14235000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Paeonia species are well-known ornamental plants that are used in traditional Chinese medicines. The seeds of these species are rich in stilbenes, which have wide-ranging health-promoting effects. In particular, resveratrol, which is a common stilbene, is widely known for its anticancer properties. Suffruticosol C, which is a trimer of resveratrol, is the most dominant stilbene found in peony seeds. However, it is not clear whether suffruticosol C has cancer regulating properties. Therefore, in the present study, we aimed to determine the effect of suffruticosol C against various cancer cell lines. Our findings showed that suffruticosol C induces autophagy and cell cycle arrest instead of cell apoptosis and ferroptosis. Mechanistically, suffruticosol C regulates autophagy and cell cycle via inhibiting the mechanistic target of rapamycin complex 1 (mTORC1) signaling. Thus, our findings imply that suffruticosol C regulates cancer cell viability by inducing autophagy and cell cycle arrest via the inhibition of mTORC1 signaling.
Collapse
Affiliation(s)
- Senlin Qin
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712000, China
| | - Huijun Geng
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712000, China
| | - Guoyan Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712000, China
| | - Lei Chen
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712000, China
| | - Chao Xia
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712000, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712000, China
| | - Zhangzhen Bai
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang 712000, China
- Correspondence: (Z.B.); (L.D.); Tel.: +86-18829783704 (Z.B.); +86-18818275171 (L.D.)
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712000, China
- Correspondence: (Z.B.); (L.D.); Tel.: +86-18829783704 (Z.B.); +86-18818275171 (L.D.)
| |
Collapse
|
47
|
Jang S, Lee A, Hwang YH. Qualitative Profiling and Quantitative Analysis of Major Constituents in Jinmu-tang by UHPLC-Q-Orbitrap-MS and UPLC-TQ-MS/MS. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227887. [PMID: 36432001 PMCID: PMC9699523 DOI: 10.3390/molecules27227887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Jinmu-tang (JMT) is a traditional herbal medicine consisting of five herbal medicines: Poria cocos Wolf, Paeonia lactiflora Pallas, Zingiber officinale Roscoe, Atractylodes japonica Koidzumi, and Aconitum carmichaeli Debeaux. In this study, the JMT components were profiled using UHPLC-Q-Orbitrap-MS, and 23 compounds were identified and characterized. In addition, UPLC-TQ-MS/MS analysis was performed in the positive and negative ion modes of an electrospray ionization source for the simultaneous quantification of the identified compounds. The multiple reaction monitoring (MRM) method was established to increase the sensitivity of the quantitative analysis, and the method was verified through linearity, recovery, and precision. All analytes showed good linearity (R2 ≤ 0.9990). Moreover, the recovery and the relative standard deviation of precision were 86.19-114.62% and 0.20-8.00%, respectively. Using the established MRM analysis method, paeoniflorin was found to be the most abundant compound in JMT. In conclusion, these results provide information on the constituents of JMT and can be applied to quality control and evaluation.
Collapse
Affiliation(s)
- Seol Jang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Ami Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
- Korean Convergence Medicine Major KIOM, University of Science & Technology (UST), Daejeon 34054, Republic of Korea
| | - Youn-Hwan Hwang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
- Korean Convergence Medicine Major KIOM, University of Science & Technology (UST), Daejeon 34054, Republic of Korea
- Correspondence:
| |
Collapse
|
48
|
A multifunctional key to open a new window on the path to natural resources-lessons from a study on chemical composition and biological capability of Paeonia mascula L. from Turkey. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Zhang P, Yin X, Wang X, Wang J, Na G, Ирина Павловна К. Paeonol protects against acute pancreatitis by Nrf2 and NF-κB pathways in mice. J Pharm Pharmacol 2022; 74:1618-1628. [PMID: 36170125 DOI: 10.1093/jpp/rgac065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Paeonol (PAE) is an active ingredient with anti-inflammatory and antioxidant properties. This study was designed to investigate the effect of PAE on acute pancreatitis (AP). METHODS AP was induced by the intraperitoneal injection of 20% l-arginine (4 g/kg) for 6 h. Mice were pretreated with PAE (25, 50 or 100 mg/kg) intragastrically for 5 days. The histological damage and alterations of biochemical indicators, inflammatory cytokines and oxidative stress factors in AP mice were detected. The Nrf2 and NF-κB pathways were examined to illustrate the potential mechanism. KEY FINDINGS In AP model, we found that PAE attenuated histological injury of pancreatic tissues, reduced the serum levels of α-amylase and increased Ca2+ contents in a dose-dependent manner. The white blood cell content, and IL-1β, IL-6 and TNF-α levels in the serum of AP mice were reduced by PAE. Furthermore, PAE caused a reduction of MPO and MDA levels, accompanied by an increase in SOD activity in the pancreas of AP mice. We also demonstrated that the alterations of Nrf2 and NF-κB pathways in AP mice were reversed by PAE. CONCLUSIONS PAE attenuates inflammation and oxidative stress in the development of AP by the regulation of Nrf2 and NF-κB pathways.
Collapse
Affiliation(s)
- Peng Zhang
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China.,Animal Science and Veterinary Medicine Institute, Primorskaya State Academy of Agriculture, Ussuriysk, Russia
| | - Xing Yin
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Xinxin Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiaqing Wang
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Guangning Na
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Короткова Ирина Павловна
- Animal Science and Veterinary Medicine Institute, Primorskaya State Academy of Agriculture, Ussuriysk, Russia
| |
Collapse
|
50
|
Masota NE, Ohlsen K, Schollmayer C, Meinel L, Holzgrabe U. Isolation and Characterization of Galloylglucoses Effective against Multidrug-Resistant Strains of Escherichia coli and Klebsiella pneumoniae. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155045. [PMID: 35956993 PMCID: PMC9370434 DOI: 10.3390/molecules27155045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
The search for new antibiotics against multidrug-resistant (MDR), Gram-negative bacteria is crucial with respect to filling the antibiotics development pipeline, which is subject to a critical shortage of novel molecules. Screening of natural products is a promising approach for identifying antimicrobial compounds hosting a higher degree of novelty. Here, we report the isolation and characterization of four galloylglucoses active against different MDR strains of Escherichia coli and Klebsiella pneumoniae. A crude acetone extract was prepared from Paeonia officinalis Linnaeus leaves, and bioautography-guided isolation of active compounds from the extract was performed by liquid–liquid extraction, as well as open column, flash, and preparative chromatographic methods. Isolated active compounds were characterized and elucidated by a combination of spectroscopic and spectrometric techniques. In vitro antimicrobial susceptibility testing was carried out on E. coli and K. pneumoniae using 2 reference strains and 13 strains hosting a wide range of MDR phenotypes. Furthermore, in vivo antibacterial activities were assessed using Galleria mellonella larvae, and compounds 1,2,3,4,6-penta-O-galloyl-β-d-glucose, 3-O-digalloyl-1,2,4,6-tetra-O-galloyl-β-d-glucose, 6-O-digalloyl-1,2,3,4-tetra-O-galloyl-β-d-glucose, and 3,6-bis-O-digalloyl-1,2,4-tri-O-galloyl-β-d-glucose were isolated and characterized. They showed minimum inhibitory concentration (MIC) values in the range of 2–256 µg/mL across tested bacterial strains. These findings have added to the number of known galloylglucoses from P. officinalis and highlight their potential against MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Nelson E. Masota
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Sandering 2, 97074 Wuerzburg, Germany
- School of Pharmacy, Muhimbili University of Health and Allied Sciences, Upanga West, Dar es Salaam P.O. Box 65013, Tanzania
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Wuerzburg, Josef-Schneider-Strasse 2, 97080 Wuerzburg, Germany
| | - Curd Schollmayer
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Sandering 2, 97074 Wuerzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Sandering 2, 97074 Wuerzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Sandering 2, 97074 Wuerzburg, Germany
- Correspondence: ; Tel.: +49-931-3185461
| |
Collapse
|