1
|
Mansouri M, Imenshahidi M, Rameshrad M, Hosseinzadeh H. Effects of Tinospora cordifolia (giloy) on metabolic syndrome components: a mechanistic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03642-2. [PMID: 39731594 DOI: 10.1007/s00210-024-03642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/15/2024] [Indexed: 12/30/2024]
Abstract
Metabolic syndrome is a cluster of some conditions such as high blood sugar, high blood triglycerides, low HDL cholesterol, abdominal obesity, and high blood pressure. Introducing a drug or a food that manages the majority of these medical conditions is invaluable. Tinospora cordifolia, known as guduchi and giloy, is a medicinal herb in ayurvedic medicine that is used in the treatment of various diseased conditions and also as a food for the maintenance of health. Here, we reviewed the current evidence supporting the role of giloy in the development and treatment of metabolic syndrome components. Appropriate articles that have been published until May 2024 were carefully extracted from PubMed, Scopus, and WOS databases to write a narrative review systematically. Gathered data showed the beneficial effects of giloy on metabolic syndrome components: hyperlipidemia, obesity, atherosclerosis, hypertension, and especially diabetes mellitus. As diabetes and insulin resistance seem to be a central feature of metabolic syndrome and in turn, can cause dyslipidemia, obesity, and, atherosclerosis, these beneficial effects are predictable with the anti-diabetogenic property of giloy. In this review, the main mechanisms of action of giloy in metabolic syndrome components are discussed. Based on the results, although giloy has been less investigated, considerable studies provide evidence of its beneficial effects on different components of metabolic syndrome. Relevant clinical trials are necessary to validate the mentioned effects, safety, and optimum dose of this herbal medicine and its components in managing different components of metabolic syndrome and transition from bench to bedside.
Collapse
Affiliation(s)
- Mehran Mansouri
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Rajkumar M, Presley SID, Menaa F, Elbehairi SEI, Alfaifi MY, Shati AA, Albalawi AE, Althobaiti NA, Kirubakaran D, Govindaraj P, Meenambigai K, Gomathi T. Biosynthesis and biological activities of magnesium hydroxide nanoparticles using Tinospora cordifolia leaf extract. Bioprocess Biosyst Eng 2024; 47:2111-2129. [PMID: 39284929 DOI: 10.1007/s00449-024-03089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/07/2024] [Indexed: 10/13/2024]
Abstract
The synthesis of magnesium hydroxide nanoparticles (Mg(OH)2 NPs) using plant extracts are known to be a practical, economical, and an environmentally friendly approach. In this work, Mg(OH)2 NPs were synthesized using aqueous leaf extract of Tinospora cordifolia, a medicinal plant commonly found in India. The synthesized Mg(OH)2 NPs were characterized using various spectroscopic techniques. The ultraviolet-visible (UV-Vis) absorption peak of the Mg(OH)2 NPs was detected at 289 nm, Fourier transform infrared (FTIR) analysis confirmed the presence of various functional groups, and X-ray diffraction (XRD) patterns revealed the well-crystallized structure of the Mg(OH)2 NPs. High-resolution transmission electron microscopy (HR-TEM) and scanning electron microscopy (SEM) analyses depicted spherical morphology and an average particle size (PS) of 27.71 nm. The energy-dispersive X-ray (EDX) analysis confirmed the presence of C, O, and Mg elements, and the X-ray photoelectron spectroscopy (XPS) survey spectrum confirmed the elements for the Su 1 s peak at 280.2 eV. The dynamic light scattering (DLS) analysis displayed an average PS of 54.3 nm, and the Zeta potential (ZP) was of 9.89 mV. The fabricated Mg(OH)2 NPs displayed notable antibacterial activity against S. epidermidis, E. coli, and S. aureus. In addition, these NPs exhibited strong antioxidant properties (> 75%) based on DPPH, ABTS, and hydrogen peroxide (H2O2) assays. Further, the same NPs exerted a potent anti-inflammatory activity (> 65%) based on COX-1 and COX-2 evaluations. The anti-Alzheimer' disease (AD) potential of Mg(OH)2 NPs was assessed through effective inhibition (> 70%) of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities. Molecular docking (MD) studies confirmed that caryophyllene has higher binding affinity with AChE (-5.3 kcal/mol) and BuChE (-6.4 kcal/mol) enzymes. This study emphasizes the green synthesis of Mg(OH)2 NPs using T. cordifolia as a plant source and highlights their potential for biomedical applications.
Collapse
Affiliation(s)
- Manickam Rajkumar
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamil Nadu, 603110, India
| | - S I Davis Presley
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamil Nadu, 603110, India.
| | - Farid Menaa
- Department of Biomedical and Bioenvironmental Engineering (BEE), California Innovations Corporation, San Diego, 92037, USA.
| | | | - Mohammad Y Alfaifi
- Department of Biology, Faculty of Science, King Khalid University, 9004, Abha, Saudi Arabia
| | - Ali A Shati
- Department of Biology, Faculty of Science, King Khalid University, 9004, Abha, Saudi Arabia
| | - Aishah E Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, 47913, Tabuk, Saudi Arabia
| | - Norah A Althobaiti
- Department of Biology, College of Science and Humanities-Al Quwaiiyah, Shaqra University, 19257, Al Quwaiiyah, Saudi Arabia
| | - Dharmalingam Kirubakaran
- Department of Botany, School of Life Sciences, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Prabha Govindaraj
- Department of Chemistry, St. Joseph's Institute of Technology, Chennai, Tamil Nadu, 636119, India
| | - Krishnan Meenambigai
- Department of Pharmaceutical, Vinayaka Mission's Kirupananda Variyar Engineering College, Tamil Nadu, Ariyanur, Salem, 636308, India
| | - Thandapani Gomathi
- PG and Research Department of Chemistry, D.K.M. College for Women (Autonomous), Vellore, Tamil Nadu, 632001, India
| |
Collapse
|
3
|
Lu L, Huang C, Zhou Y, Jiang H, Chen C, Du J, Zhou T, Wen F, Pei J, Wu Q. Tinosporae Radix attenuates acute pharyngitis by regulating glycerophospholipid metabolism and inflammatory responses through PI3K-Akt signaling pathway. Front Pharmacol 2024; 15:1491321. [PMID: 39568590 PMCID: PMC11576305 DOI: 10.3389/fphar.2024.1491321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction With the onset of the COVID-19 pandemic, the incidence and prevalence of acute pharyngitis (AP) have increased significantly. Tinosporae Radix (TR) is a vital medication utilized in the treatment of pharyngeal and laryngeal ailments, especially AP. The study endeavors to explore unclear molecular mechanisms of TR in addressing AP. Methods Network pharmacology and metabolomics analyses of effect of TR on AP were conducted, and apossible pathway was validated both in vivo using the acute pharyngitis rat model and in vitro using the LPS-induced RAW264.7 cells model, through techniques such as histopathological examinations, immunohistochemical technology, ELISA, RT-qPCR, and Western blotting to systematically explore the possible mechanisms underlying the inhibition of AP by TR. Results and discussion Network pharmacology analysis identified several key targets, including PIK3CA, IL6, AKT1, TNF, and PTGS2, alongside pivotal signaling pathways such as IL-17, TNF, Hepatitis B, nuclear factor kappa B (NF-κB), Influenza A, and the PI3K-Akt pathway. Most of them are closely associated with inflammation. Then, wide-target metabolomics analysis showed that TR downregulated substances within the glycerophospholipid metabolic pathway, and modulated the PI3K-Akt pathway. The integrated findings from network pharmacology and metabolomics underscored the pivotal role of the PI3K-Akt signaling pathway and the attenuation of inflammatory responses. Finally, in vitro and in vivo experiments have shown that TR can inhibit inflammatory factors such as IL-6, TNF - α, and COX-2, downregulate targets such as PI3K and AKT on the PI3K-Akt signaling pathway, and thereby alleviate the inflammatory response of AP. Our study demonstrated that TR exerts an anti-AP effect through suppression of release of inflammatory factors and modulation of glycerophospholipid metabolism via suppressing the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Lijie Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chengfeng Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongfeng Zhou
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Huajuan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cuiping Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinyu Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feiyan Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinghua Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Llamasares-Castillo A, Uclusin-Bolibol R, Rojsitthisak P, Alcantara KP. In vitro and in vivo studies of the therapeutic potential of Tinospora crispa extracts in osteoarthritis: Targeting oxidation, inflammation, and chondroprotection. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118446. [PMID: 38857679 DOI: 10.1016/j.jep.2024.118446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The increasing incidence of osteoarthritis (OA), especially among the elderly population, highlights the need for more efficacious treatments that go beyond mere symptomatic relief. Tinospora crispa (L.) Hook. f. & Thomson (TC) boasts a rich traditional heritage, widespread use in Ayurveda, traditional Chinese medicine (TCM), and diverse indigenous healing practices throughout Southeast Asia for treating arthritis, rheumatism, fever, and inflammation. AIM OF THE STUDY This study investigates the anti-inflammatory and chondroprotective potential of TC stem extracts, including ethanolic TC extract (ETCE) and aqueous TC extract (ATCE), in modulating OA pathogenesis through in vitro and in vivo approaches. MATERIALS AND METHODS The study utilized LC-MS/MS to identify key compounds in TC stem extracts. In vitro experiments assessed the antioxidative and anti-inflammatory properties of ETCE and ATCE in activated macrophages, while an in vivo monoiodoacetate (MIA)-induced OA rat model evaluated the efficacy of ETCE treatment. Key markers of oxidative stress, such as superoxide dismutase (SOD) and catalase (CAT), were assessed alongside pro-inflammatory cytokines TNF-α and IL-1β, and matrix-degrading enzymes, matrix metalloproteinase (MMP 13 and MMP 3), to evaluate the therapeutic effects of TC stem extracts on OA. RESULTS Chemical profiling of the extracts was conducted using LC-MS/MS in positive ionization, identifying seven compounds, including pseudolaric acid B, stylopine, and reticuline, which were reported for the first time in this species. The study utilized varying concentrations of TC stem extracts, specifically 6.25-25 μg/mL for in vitro assays and 500 mg/kg for in vivo studies. Our findings also revealed that both ETCE and ATCE exhibit dose-dependent reduction in reactive oxygen species (41%-52%) and nitric oxide (NO) levels (50% and 72%), with ETCE displaying superior antioxidative efficacy and marked anti-inflammatory properties, significantly reducing TNF-α and IL-6 at concentrations above 12.5 μg/mL. In the MIA-induced OA rat model, ETCE treatment notably outperformed ATCE, markedly lowering TNF-α (1.91 ± 0.37 pg/mL) and IL-1β (26.30 ± 3.68 pg/mL) levels and effectively inhibiting MMP 13 and MMP 3 enzymes. Furthermore, macroscopic and histopathological assessments, including ICRS scoring and OARSI grading, indicate that TC stem extracts reduce articular damage and proteoglycan loss in rat knee cartilage. These results suggest that TC stem extracts may play a role in preventing cartilage degradation and potentially alleviating inflammation and pain associated with OA, though further studies are needed to confirm these effects. CONCLUSION This study highlights the potential of TC stem extracts as a novel, chondroprotective therapeutic avenue for OA management. By targeting oxidative stress, pro-inflammatory cytokines, and cartilage-degrading enzymes, TC stem extracts promise to prevent cartilage degradation and alleviate inflammation and pain associated with OA.
Collapse
Affiliation(s)
- Agnes Llamasares-Castillo
- The Graduate School, University of Santo Tomas, Manila, 1015, Philippines; Research Center for the Natural and Applied Sciences (RCNAS), University of Santo Tomas, Manila, 1015, Philippines; Faculty of Pharmacy, Department of Pharmacy, University of Santo Tomas, Manila, 1015, Philippines.
| | | | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Singh N, Yadav SS. Anti-dengue therapeutic potential of Tinospora cordifolia and its bioactives. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118242. [PMID: 38679398 DOI: 10.1016/j.jep.2024.118242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengue is one of the most prevalent mosquito-borne viral infections. Moreover, due to the absence of appropriate curative and preventive measures against it, the mortality rate is increasing alarmingly. However, remarkable docking and clinical advances have been achieved with plant-based natural and conventional therapeutics. Tinospora cordifolia is one of the highly explored panaceas at the local level for its effective anti-dengue formulations. AIM OF THE STUDY The present article aims for critical assessment of the data available on the anti-dengue therapeutic use of T. cordifolia. Efforts have also been made on the clinical and in-silico anti-dengue efficacy of this plant. The phytochemistry and the antiviral machinery of the plant are also emphasized. MATERIALS AND METHODS The present article is the outcome of the literature survey on the anti-dengue effect of T. cordifolia. A literature survey was conducted from 2011 to 2024 using different databases with appropriate keywords. RESULTS The present study confirms the anti-dengue potential of T. cordifolia. The plant can suppress the initiation of 'cytokine storm', vascular leakage and inhibition of various structural and NS proteins to exert its anti-dengue potential. Berberine and magnoflorine phytocompounds were highly explored for their anti-dengue potential. CONCLUSIONS The present study concluded that T. cordifolia serves as an effective therapeutic agent for treating dengue. Further in-silico and clinical studies are needed so that stable, safe and efficacious anti-dengue drug can be developed. Besides, a precise antiviral mechanism of T. cordifolia against DENV infection is still needed.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Surender Singh Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
6
|
Elvir Lazo OL, White PF, Lee C, Cruz Eng H, Matin JM, Lin C, Del Cid F, Yumul R. Use of herbal medication in the perioperative period: Potential adverse drug interactions. J Clin Anesth 2024; 95:111473. [PMID: 38613937 DOI: 10.1016/j.jclinane.2024.111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Use of herbal medications and supplements has experienced immense growth over the last two decades, with retail sales in the USA exceeding $13 billion in 2021. Since the Dietary Supplement Health and Education Act (DSHEA) of 1994 reduced FDA oversight, these products have become less regulated. Data from 2012 shows 18% of U.S. adults used non-vitamin, non-mineral natural products. Prevalence varies regionally, with higher use in Western states. Among preoperative patients, the most commonly used herbal medications included garlic, ginseng, ginkgo, St. John's wort, and echinacea. However, 50-70% of surgical patients fail to disclose their use of herbal medications to their physicians, and most fail to discontinue them preoperatively. Since herbal medications can interact with anesthetic medications administered during surgery, the American Society of Anesthesiologists (ASA) and the American Association of Nurse Anesthetists (AANA) recommend stopping herbal medications 1-2 weeks before elective surgical procedures. Potential adverse drug effects related to preoperative use of herbal medications involve the coagulation system (e.g., increasing the risk of perioperative bleeding), the cardiovascular system (e.g., arrhythmias, hypotension, hypertension), the central nervous system (e.g., sedation, confusion, seizures), pulmonary (e.g., coughing, bronchospasm), renal (e.g., diuresis) and endocrine-metabolic (e.g., hepatic dysfunction, altered metabolism of anesthetic drugs). During the preoperative evaluation, anesthesiologists should inquire about the use of herbal medications to anticipate potential adverse drug interactions during the perioperative period.
Collapse
Affiliation(s)
| | - Paul F White
- Department of Anesthesiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; White Mountain Institute, The Sea Ranch, CA 95497, USA.
| | - Carol Lee
- Department of Anesthesiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Hillenn Cruz Eng
- Department of Anesthesiology, Adena Health System, Chillicothe, OH, USA.
| | - Jenna M Matin
- Tulane University School of Medicine, New Orleans, LA, USA.
| | - Cory Lin
- Department of Anesthesiology and Perioperative Care, University of California Irvine, CA, USA.
| | - Franklin Del Cid
- Department of Anesthesiology, Hospital Escuela, Tegucigalpa, Honduras.
| | - Roya Yumul
- Department of Anesthesiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine-UCLA, Charles R, Drew University of Medicine and Science, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Zhu D, Zhu Y, Tan H, Ding R, Dai Q, Du X, Liu Y, Yue R. Effects of jujube ( Ziziphus jujuba mill.) fruit extracts on oxidative stress: A systematic review and meta-analysis of rodent studies. Food Sci Nutr 2024; 12:5312-5328. [PMID: 39139963 PMCID: PMC11317725 DOI: 10.1002/fsn3.4234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 08/15/2024] Open
Abstract
This study aimed to evaluate the effects of jujube (Ziziphus jujuba Mill.) fruit extracts on oxidative stress levels in rodent models. Animal studies meeting the inclusion criteria were retrieved from PubMed, Web of Science, Embase, China National Knowledge Infrastructure (CNKI), Wanfang Data Knowledge Service Platform, and VIP Periodical Service Platform. The Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) risk-of-bias tool was used to evaluate the risk of bias in the included studies. A meta-analysis was performed based on the guidelines provided in the Cochrane Handbook for Systematic Reviews of Interventions (CHSRI) by using Stata 17.0 software. Nineteen studies were included in the meta-analysis. Jujube fruit extracts significantly decreased the level of malonaldehyde (MDA) and increased the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Meanwhile, there was no significant improvement in the catalase (CAT) levels. In addition, there was considerable heterogeneity in the results of the meta-analysis. The results of the subgroup analysis indicated that the animal model, type of extracts, and source of target parameters may have contributed to the heterogeneity. Jujube fruit extracts are healthy and effective antioxidant dietary supplements that may be an effective adjunctive therapy for diseases in which oxidative stress is a major pathological factor. However, the overall methodological quality of the included studies was low, and additional research is warranted.
Collapse
Affiliation(s)
- Di Zhu
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Yu Zhu
- Chengdu Sport UniversityChengduChina
| | - Hao Tan
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Rui Ding
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Qiangqiang Dai
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Xiaoming Du
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Yulin Liu
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
8
|
Majhi P, Sayyad S, Gaur M, Kedar G, Rathod S, Sahu R, Pradhan PK, Tripathy S, Ghosh G, Subudhi BB. Tinospora cordifolia Extract Enhances Dextromethorphan Bioavailability: Implications for Alzheimer's Disease. ACS OMEGA 2024; 9:23634-23648. [PMID: 38854540 PMCID: PMC11154920 DOI: 10.1021/acsomega.4c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 06/11/2024]
Abstract
Tinospora cordifolia (Willd.) Miers (Menispermaceae) is a traditional rejuvenator and a conventional medicine used to manage oxidative stress-related diseases, including those associated with the central nervous system. Decreased dextromethorphan (DEM) metabolism is necessary for high bioavailability and application against Alzheimer's disease (AD). Since T. cordifolia stem extract (TCE) can potentially inhibit several metabolic enzymes, it can also enhance dextromethorphan bioavailability. This study investigates the potential of TCE to improve DEM's bioavailability and efficacy for the management of AD. In silico analysis was carried out to find the inhibition potential of phytocomponents of T. cordifolia for CYP2D6 and CYP3A4. The LC-MS method was revalidated for the analysis of DEM and metabolite dextrorphan (DEX) in the presence of quinidine (QN). The ratio of DEM to DEX was estimated with varying doses of TCE following pharmacokinetic analysis. Network pharmacology analysis was carried out to understand the complementary potential of phytocomponents. This was further validated in the scopolamine-induced dementia model through behavioral and histopathological analyses. TCE (100 mg/kg) for 14 days increased the DEM to DEX ratio by 2.8-fold compared to QN treatment. While T max was comparable to that of QN treatment at this dose (100 mg/kg) of TCE, it increased significantly at the higher dose (400 mg/kg) of TCE pretreatment. All other pharmacokinetic parameters were also enhanced at this dose with a 4.7-fold increase in DEM/DEX compared with QN. Network pharmacology analysis indicated the ability of TCE to target multiple factors associated with AD. Furthermore, it improved spatial memory and reduced hyperactivity in rodents better than the combination of QN and DEM.
Collapse
Affiliation(s)
- Praful
Kumar Majhi
- Drug
Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be
University), Bhubaneswar, Odisha 751029, India
| | - Samir Sayyad
- Vitely
Bio LLP, Ahmedabad , Gujarat 380054, India
| | - Mahendra Gaur
- Drug
Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be
University), Bhubaneswar, Odisha 751029, India
| | | | | | - Rajanikant Sahu
- Drug
Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be
University), Bhubaneswar, Odisha 751029, India
| | | | - Shyamalendu Tripathy
- Drug
Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be
University), Bhubaneswar, Odisha 751029, India
| | - Goutam Ghosh
- Department
of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751029, India
| | - Bharat Bhusan Subudhi
- Drug
Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be
University), Bhubaneswar, Odisha 751029, India
| |
Collapse
|
9
|
Aqsa, Ali S, Summer M, Yousaf S, Nazakat L, Noor S. Pharmacological and immunomodulatory modes of action of medically important phytochemicals against arthritis: A molecular insight. Mol Biol Rep 2024; 51:448. [PMID: 38536526 DOI: 10.1007/s11033-024-09386-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 08/04/2024]
Abstract
Arthritis is a common illness that affects joints and it may result in inflammation and pain. Even though arthritis usually affects older people, it can also affect children, adults, and both genders. Numerous arthritic mouse models have been developed but the CIA model of rheumatoid arthritis (RA) has received the most attention. With the use of steroids, DMARDs, and NSAIDs, therapy objectives such as reduced disease incidence and better pain management are achieved. Long-term usage of these therapeutic approaches may have negative side effects. Herbal medications are the source of several medicinal substances. Studies have explored the potential benefits of medicinal plants in treating RA. These benefits include up-regulating antioxidant potential, inhibiting cartilage degradation, down-regulating inflammatory cytokines such as NF-kB, IL-6, and TNF-α, and suppressing oxidative stress. In this review, we systematically discuss the role of traditional medicinal plants in rheumatoid arthritis (RA) disease treatment. The role of different medicinal plants such as Curcuma longa, Syzygium aromaticum, Zingiber officinale and Withania somnifera, against arthritis is discussed in this review.
Collapse
Affiliation(s)
- Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Saima Yousaf
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, 54470, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
10
|
Li C, Li Y, Huang X, Li S, Sangji K, Gu R. Traditional Tibetan medicine: therapeutic potential in lung diseases. Front Pharmacol 2024; 15:1365911. [PMID: 38567353 PMCID: PMC10986185 DOI: 10.3389/fphar.2024.1365911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Lung diseases have become a major threat to human health worldwide. Despite advances in treatment and intervention in recent years, effective drugs are still lacking for many lung diseases. As a traditional natural medicine, Tibetan medicine has had a long history of medicinal use in ethnic minority areas, and from ancient times to the present, it has a good effect on the treatment of lung diseases and has attracted more and more attention. In this review, a total of 586 Tibetan medicines were compiled through literature research of 25 classical works on Tibetan medicine, drug standards, and some Chinese and English databases. Among them, 33 Tibetan medicines have been studied to show their effectiveness in treating lung diseases. To investigate the uses of these Tibetan medicines in greater depth, we have reviewed the ethnomedicinal, phytochemical and pharmacological properties of the four commonly used Tibetan medicines for lung diseases (rhodiola, gentian, sea buckthorn, liexiang dujuan) and the five most frequently used Tibetan medicines (safflower, licorice, sandalwood, costus, myrobalan). It is expected to provide some reference for the development of new drugs of lung diseases in the future.
Collapse
Affiliation(s)
- Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kangzhuo Sangji
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Joshi P, Patel S, Paliwal A, Jain S, Verma K, Dwivedi J, Sharma S. Tinospora cordifolia ameliorates paclitaxel-induced neuropathic pain in albino rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117559. [PMID: 38072294 DOI: 10.1016/j.jep.2023.117559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tinospora cordifolia (T. cordifolia) (Willd.) Miers, a member of the Menispermaceae, family documented in the ancient textbooks of the Ayurveda System of Medicine, has been used in the management of sciatica pain and diabetic neuropathy. AIM The study has been designed to evaluate the antinociceptive potential of various extracts of T. cordifolia stem in Paclitaxel (PT)-generated neuropathic pain model in albino rats and explore its possible mechanism employing molecular docking studies. METHODS Stems of T. cordifolia were shade dried, grinded in fine powder, and extracted separately with different solvents viz. ethanol, water & hydro-alcoholic and characterized using LCMS/MS. The antinociceptive property of T. cordifolia stem (200 and 400 mg/kg) was examined in albino rats using a PT-induced neuropathic pain model. Further, the effect of these extracts was also observed using different behavioral assays viz. cold allodynia, mechanical hyperalgesia (pin-prick test), locomotor activity test, walking track test, and Sciatic Functional Index (SFI) in rats. Tissue lysate of the sciatic nerve was used to determine various biochemical markers such as GSH, SOD, TBARS, tissue protein, and nitrite. Further to explore the possible mechanism of action, the most abundant and therapeutically active compounds available in aqueous extract were analyzed for binding affinity towards soluble epoxide hydrolase (sEH) enzyme (PDB ID: 3wk4) employing molecular docking studies. RESULTS The results of the LCMS/MS study of different extracts of T. cordifolia indicated presence of alkaloids, glycosides, terpenoids, sterols and sugars such as amritoside A, tinocordin, magnoflorine, N-methylcoclaurine, coridine, 20β-hydroxyecdysone and menaquinone-7 palmatin, cordifolioside A and tinosporine etc. Among all the three extracts, the hydroalcoholic extract (400 mg/kg) showed the highest response followed by aqueous and ethanolic extracts as evident in in vivo behavioral and biochemical evaluations. Furthermore, docking studies also exposed that these compounds viz. N-methylcoclaurine tinosporin, palmatine, tinocordin, 20β-hydroxyecdysone, and coridine exhibited well to excellent affinity towards target sEH protein. CONCLUSION T. cordifolia stem could alleviate neuropathic pain via soluble epoxide hydrolase inhibitory activity.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India; R&D, Patanjali Ayurved Ltd, Patanjali Food and Herbal Park, Haridwar, Uttarakhand, India
| | - Saraswati Patel
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Ajita Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India.
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.
| |
Collapse
|
12
|
Mathe A, Mulpuru V, Katari SK, Karlapudi AP, T C V. Virtual screening and invitro evaluation of cyclooxygenase inhibitors from Tinospora cordifolia using the machine learning tool. J Biomol Struct Dyn 2023; 42:13275-13289. [PMID: 37904339 DOI: 10.1080/07391102.2023.2275175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/21/2023] [Indexed: 11/01/2023]
Abstract
Tinospora cordifolia has a variety of compounds, and some of these compounds may have anti-inflammatory and antioxidant properties. In the present study, we identified the compounds in the leaf extract of T. cordifolia through Gas Chromatography-Mass Spectrometry (GC-MS) analysis and found the various metabolites. The compounds are screened virtually using a machine learning model, followed by molecular docking and simulation study to identify top-hit compounds as cyclooxygenase (COX) inhibitors. The molecular docking revealed that the compound 7,9-Di-tert-butyl-1-oxaspiro (4,5) deca-6,9-diene-2,8-dione (CID:545303) exhibited the lowest binding energies of -7.1 and -6.8 kcal/mol against COX 1 and COX 2 respectively. The interactions are favored by hydrogen bonding and hydrophobic interaction inside the binding pocket. The 100 ns MD simulation study for these compounds was performed to know the stability and found the RMSD around 2 Å and around 1.0 Å with minimal fluctuations indicating a stable complex throughout the simulation of 100 ns. Based on these findings, we proposed 7,9-Di-tertbutyl- 1-oxaspiro (4,5) deca-6,9-diene-2,8-dione could be used as a dual inhibitor of COX enzymes and a drug-like molecule for treating inflammation after evaluation of their biological properties. The methanolic extract of T. cordifolia was subjected to in vitro DPPH, ABTS, nitric oxide, anti-microbial, COX, and LOX inhibition activity. The results exhibited possible positive effects against the above activities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amaze Mathe
- Department of Biotechnology, Vignan's Foundation for Science, Technology, and Research, Vadlamudi, India
| | - Viswajit Mulpuru
- Department of Biotechnology, Vignan's Foundation for Science, Technology, and Research, Vadlamudi, India
| | - Sudheer Kumar Katari
- Department of Biotechnology, Vignan's Foundation for Science, Technology, and Research, Vadlamudi, India
| | - Abraham Peele Karlapudi
- Department of Biotechnology, Vignan's Foundation for Science, Technology, and Research, Vadlamudi, India
| | - Venkateswarulu T C
- Department of Biotechnology, Vignan's Foundation for Science, Technology, and Research, Vadlamudi, India
| |
Collapse
|
13
|
Rani R, Sharma AK, Chitme HR. Therapeutic Effect of Tinospora cordifolia (Willd) Extracts on Letrozole-Induced Polycystic Ovarian Syndrome and its Complications in Murine Model. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231203864. [PMID: 37901891 PMCID: PMC10612436 DOI: 10.1177/11795514231203864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/24/2023] [Indexed: 10/31/2023] Open
Abstract
Background Tinosopora cordifolia (Willd) (TC) is commonly used in Ayurvedic medicine since long time for number of ailments and its preparations are also considered by food safety and standards authority of India as nutritional supplement. However the scientific evidence on its possible safety and efficacy in polycystic ovarian syndrome and associated complications was not studied in detail. Objectives The purpose of this investigation is to examine whether or not TC can have therapeutic effects on letrozole induced PCOS and related complications such as body weight, dyslipidaemia, glucose tolerance, hormonal regulation, insulin resistance and sensitivity, severity of PCOS and histopathological changes in ovary using mice animal model. Design Present study is a preclinical study involving laboratory animals. Methods and analysis After verifying the absence of PCOS, the animals began receiving Letrozole, which lasted for 21 days. Fasting blood glucose (FBG), the oral glucose tolerance test (OGTT), triglycerides, cholesterol, and weight were recorded. The levels of hormones like oestrogen, progesterone, insulin, testosterone, luteinising hormone (LH) and follicle stimulating hormone (FSH), histopathology was carried out. Ethics The Institutional Animal Ethics Committee at DITU gave its clearance to the animal experimentation on July 10, 2021 (DITU/IAEC/21-22/07-06). Discussion The majority of cornified epithelial cells were seen in groups treated with TC extract during the estrous phase of the cycle. Mice exposed to TC retained normal body weight. FBG, 1- and 2-hour OGTT, triglyceride and cholesterol levels were all significantly improved by extracts. Estradiol, progesterone, testosterone, insulin, LH and FSH concentration were all corrected in TC-treated animals. The HOMA-IR, HOMA-Beta and QUICKI values were also corrected with TC extracts. The morphological and microscopic features of the ovary were also greatly enhanced. Based on these findings, we conclude that treating PCOS mice with TC extracts significantly ameliorates the disease and severity down to nil-to-moderate levels by reducing hyperinsulinemia, hyperandrogenism, dyslipidaemia, enhancing insulin sensitivity, correcting oestrogen, progesterone, LH and FSH levels via enhanced ovarian function. Further molecular and cellular level of study is recommended for further elaboration of mechanism of action. Plain language summaries • Tinospora cordifolia satva, oil and hydroalcoholic extract were studied in letrozole-induced PCOS in mice model• Anti PCOS efficacy of 3 preparations studied with respect to their mechanism of action in detail• For the first time proposing method of calculating severity of PCOS in animal model• Tinospora cordifolia oil preparation completely reversed PCOS effect of letrozole and made them normal• Histopathological and morphological studies support the biochemical claims.
Collapse
Affiliation(s)
- Ritu Rani
- Faculty of Pharmacy, DIT University, Dehradun, UK, India
| | - Avinash Kumar Sharma
- Non-Wood Forestry Products Division, Forest Research Institute, Dehradun, UK, India
| | | |
Collapse
|
14
|
Ghareeb OA. Hematotoxicity Induced by Copper Oxide Nanoparticles and the Attenuating Role of Giloy In Vivo. Cureus 2023; 15:e46577. [PMID: 37936991 PMCID: PMC10626200 DOI: 10.7759/cureus.46577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Background In line with the growing industrial applications of copper oxide nanoparticles (CuONPs) in various fields, concerns about their potentially harmful consequences on the environment, human, and animal health are increasing. Giloy is considered an alternative medicine to treat various ailments. Giloy's potential in helping manage diabetes, alleviating arthritis and joint pain, and addressing skin disorders such as eczema and acne underscores its multifaceted role in traditional medicine. Moreover, it is deemed beneficial for reducing stress and anxiety levels, promoting liver health, and potentially impacting heart health by regulating cholesterol levels. Emerging research also explores its potential in cancer prevention. This study aimed to evaluate the hematotoxicity of CuONPs and the alleviating effect of giloy in adult rats. Materials and methods In this experiment, 28 laboratory rats were used, set to four groups (7/group), as follows: control group without any dose; CuONPs group administered copper oxide nanoparticles at 300 mg/kg/day; CuONPs + giloy group dosed with CuONPs at 300 mg/kg/day plus giloy at 100 mg/kg/day; giloy group treated only with giloy at 100 mg/kg/day. All treatments were given by gastric gavage and continued for 28 uninterrupted days. Results Dosing animals with CuONPs led to significant adverse changes in the examined blood profile. In contrast, when the animals were coadministered with giloy, restoring the disturbed blood levels was observed. Conclusion Copper oxide nanoparticles at a high dose had notable hematotoxicity in laboratory rats and, supplemented with giloy, could reduce this hematological toxicity.
Collapse
|
15
|
Zhang M, Ou X, Shi H, Huang W, Song L, Zhu J, Yu R. Isolation, structures and biological activities of medicinal glycoproteins from natural resources: A review. Int J Biol Macromol 2023:125406. [PMID: 37327918 DOI: 10.1016/j.ijbiomac.2023.125406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/23/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
In recent years, natural resources have proven to be tremendous sources of glycoproteins. As biological macromolecules, glycoproteins are essential to the growth and development of organisms, and have attracted increasing attention around the world. This review summarized and discussed the development of glycoproteins from natural resources, including isolation methods, purification processes, structural features and biological activities. Generally, the vast majority of glycoproteins can be isolated by hot water extraction followed by purification through gel filtration chromatography. Combined with component analysis, the physicochemical properties of glycoproteins are studied by using several spectroscopic techniques such as ultraviolet-visible (UV-Visible), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR). Moreover, natural glycoproteins possess various remarkable biological activities, including anti-tumor, anti-oxidant, anti-coagulant and anti-microbial activities. The content of this review will provide a theoretical basis for the research on related glycoproteins and give a perspective on the use of these medical resources.
Collapse
Affiliation(s)
- Man Zhang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaozheng Ou
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Hui Shi
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Weijuan Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
16
|
Pandey DP, Subedi Pandey G, Sapkota S, Dangol DR, Devkota NR. Attitudes, knowledge and practices of traditional snakebite healers in Nepal: implications for prevention and control of snakebite. Trans R Soc Trop Med Hyg 2023; 117:219-228. [PMID: 36366978 DOI: 10.1093/trstmh/trac104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/02/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Traditional healers are a valuable source of information about community-level treatment of snakebite. Snakebite victims in Nepal depend on traditional healers for treatment, but their practices have not been well-documented. METHODS This was a cross-sectional study of 50 traditional snakebite healers (TSHs) who were selected using a snowball sampling method representing eight districts and four provinces of Nepal. Data were collected using face-to-face-interviews and semi-structured questionnaires. RESULTS About half of the respondents liked to gain knowledge on modern care for snakebite management and nearly all respondents (94%) wished to cooperate closely with the local healthcare system to support snakebite management. People's ingrained faith in traditional healing of snakebite (84%), unaffordable modern care of snakebite (60%) and wishes for early treatment of snakebites (44-48%) were the main causes of their dependency on TSHs. Rauvolfia serpentina, Piper nigrum, Momordica charantia and Tinospora cordifolia were commonly used plants in traditional treatment of snakebite. CONCLUSIONS Easily accessible and affordable healthcare facilities provided by TSHs, public beliefs in traditional healing and inadequate knowledge of antivenom therapy caused dependency on TSHs. The introduction of snakebite treatment centres in snakebite-prone regions and educational interventions are essential to minimize this kind of dependency and associated deaths and disabilities.
Collapse
Affiliation(s)
- Deb P Pandey
- Department of Veterinary Microbiology and Parasitology, Agriculture and Forestry University, Rampur, Chitwan, Bagmati Province, Nepal
| | - Gita Subedi Pandey
- Institute for Social and Environmental Research-Nepal, Fulbari, Chitwan, Bagmati Province, Nepal
| | - Sunil Sapkota
- Raise Hands Nepal, Adarsha Tole, Bharatpur-15, Chitwan, Bagmati Province, Nepal
| | - Dharma R Dangol
- Institute for Social and Environmental Research-Nepal, Fulbari, Chitwan, Bagmati Province, Nepal
| | - Naba R Devkota
- DOREX, Agriculture and Forestry University, Rampur, Chitwan, Bagmati Province, Nepal
| |
Collapse
|
17
|
Kumar M, Hasan M, Sharma A, Suhag R, Maheshwari C, Radha, Chandran D, Sharma K, Dhumal S, Senapathy M, Natarajan K, Punniyamoorthy S, Mohankumar P, Dey A, Deshmukh V, Anitha T, Balamurugan V, Pandiselvam R, Lorenzo JM, Kennedy JF. Tinospora cordifolia (Willd.) Hook.f. & Thomson polysaccharides: A review on extraction, characterization, and bioactivities. Int J Biol Macromol 2023; 229:463-475. [PMID: 36563821 DOI: 10.1016/j.ijbiomac.2022.12.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Human awareness of the need for health and wellness practices that enhance disease resilience has increased as a result of recent health risks. Plant-derived polysaccharides with biological activity are good candidates to fight diseases because of their low toxicity. Tinospora cordifolia (Willd.) Hook.f. & Thomson polysaccharides extract from different plant parts have been reported to possess significant biological activity such as anti-oxidant, anti-cancer, immunomodulatory, anti-diabetic, radioprotective and hepatoprotective. Several extraction and purification techniques have been used to isolate and characterize T. cordifolia polysaccharides. Along with hot-water extraction (HWE), other novel techniques like microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), pulsed electric field (PEF), supercritical-fluid extraction (SFE), and enzyme-assisted extraction (EAE) are used to extract T cordifolia polysaccharides. SFE is a revolutionary technology that gives the best yield and purity of low-molecular-weight polysaccharides. According to the findings, polysaccharides extracted and purified from T. cordifolia have a significant impact on their structure and biological activity. As a result, the methods of extraction, structural characterization, and biological activity of T. cordifolia polysaccharides are covered in this review. Research on T. cordifolia polysaccharides and their potential applications will benefit greatly from the findings presented in this review.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India; Department of Biology, East Carolina University, Greenville 27858, USA.
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Bhopal 462038, India
| | - Anshu Sharma
- Department of Food Science and Technology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni 173230, India
| | - Rajat Suhag
- National Institute of Food Technology Entrepreneurship and Management, Sonipat 131028, Haryana, India
| | - Chirag Maheshwari
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 12, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India.
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Kanika Sharma
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India.
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, SNNPR, Ethiopia
| | - Krishnaprabu Natarajan
- Department of Agronomy, VIT School of Agricultural Innovations and Advanced Learning, VIT University, Vellore 632014, India
| | - Sheela Punniyamoorthy
- Department of Food Science and Technology, SRM College of Agricultural Sciences, SRMIST-Vendhar Nagar, Baburayanpettai, Chengalpet 603201, India
| | - Pran Mohankumar
- School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Vishal Deshmukh
- Bharati Vidyapeeth (Deemed to be University), Yashwantrao Mohite Institute of Management, Karad, India
| | - T Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Periyakulam 625604, India
| | - V Balamurugan
- Department of Agricultural Economics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Ravi Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, Kerala 671124, India
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, Kyrewood House, Tenbury Wells, Worcs WR15 8FF, UK
| |
Collapse
|
18
|
Tinosporaside from Tinospora cordifolia Encourages Skeletal Muscle Glucose Transport through Both PI-3-Kinase- and AMPK-Dependent Mechanisms. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020483. [PMID: 36677541 PMCID: PMC9864719 DOI: 10.3390/molecules28020483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
The stem of Tinospora cordifolia has been traditionally used in traditional Indian systems of medicine for blood sugar control, without the knowledge of the underlying mechanism and chemical constitution responsible for the observed anti-diabetic effect. In the present study, Tinosporaside, a diterpenoid isolated from the stem of T. cordifolia, was investigated for its effects on glucose utilization in skeletal muscle cells, which was followed by determining the anti-hyperglycemic efficacy in our diabetic db/db mice model. We found that tinosporaside augmented glucose uptake by increasing the translocation of GLUT4 to the plasma membrane in L6 myotubes, upon prolonged exposure for 16 h. Moreover, tinosporaside treatment significantly increased the phosphorylation of protein kinase B/AKT (Ser-473) and 5' AMP-activated protein kinase (AMPK, Thr-172). These effects were abolished in the presence of the wortmannin and compound C. Administration of tinosporaside to db/db mice improved glucose tolerance and peripheral insulin sensitivity associated with increased gene expression and phosphorylation of the markers of phosphoinositide 3-kinases (PI3Ks) and AMPK signaling in skeletal muscle tissue. The findings revealed that tinosporaside exerted its antidiabetic efficacy by enhancing the rate of glucose utilization in skeletal muscle, mediated by PI3K- and AMPK-dependent signaling mechanisms.
Collapse
|
19
|
Khan M, Altamish M, Samal M, Srivastav V, Insaf A, Parveen R, Akhtar J, Krishnan A, Ahmad S. Antiviral Potential of Traditional Unani Medicine with Special Emphasis on Dengue: A Review. Curr Drug Targets 2023; 24:1317-1334. [PMID: 38037908 DOI: 10.2174/0113894501257577231103044735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/20/2023] [Accepted: 09/07/2023] [Indexed: 12/02/2023]
Abstract
Dengue fever has become a major public health concern. It is usually related to intravascular leaking, bleeding disorders, and thrombocytopenia and is recognized as a potent threat to humans. The scarcity of anti-dengue medication or vaccine for such a serious disease leads to an upsurge in the usage of traditional medicines for its proper management. India has diverse biodiversity and a long history of using plant-based remedies. Several medicinal plant extracts have been studied for producing anti-dengue viral activity. AYUSH traditional systems provide a plethora of plants that have been reported to be useful in the treatment of fever. Single and compound plant- based formulations in natural form have been used in Unani holistic approaches. This review serves as a new approach to illustrate the most recent evidence regarding the antiviral activity of various plants by providing scientific proof and also to validate the traditional formulations as effective treatments in dengue fever for global acceptance.
Collapse
Affiliation(s)
- Muzayyana Khan
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Altamish
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Monalisha Samal
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Varsha Srivastav
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Areeba Insaf
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rabea Parveen
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Jamal Akhtar
- Central Council for Research in Unani Medicine, Ministry of AYUSH, Government of India, New Delhi, 110058, India
| | - Anuja Krishnan
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, 110062, India
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
20
|
Rawat K, Syeda S, Shrivastava A. A novel role of Tinospora cordifolia in amelioration of cancer-induced systemic deterioration by taming neutrophil infiltration and hyperactivation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154488. [PMID: 36240606 DOI: 10.1016/j.phymed.2022.154488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cancer has emerged as a systemic disease which targets various organs thus challenging the overall physiology of the host. Recently, we have shown that hyperactive neutrophils infiltrate various organs of tumor bearing host and contribute to gradual systemic deterioration. Therefore, taming neutrophils via potent immunomodulators could be an appropriate therapeutic approach in regulating systemic damage. Tinospora cordifolia (TC), an Ayurvedic panacea, is known for its immense medicinal values in traditional literature and recent reports have also documented its immunomodulatory potential. However, whether TC can regulate neutrophils to exert its therapeutic effectiveness has not been deciphered so far. METHODS For the in vivo study, we utilized murine model of Dalton's Lymphoma (DL). T. cordifolia extract (TCE) treatment was scheduled at early, mid and advanced stages of tumor growth at a dose of 400 mg/kg b.w for 30 consecutive days. Effect of TCE on neutrophil infiltration was examined by immunostaining. Neutrophil elastase (NE) level in serum, ascitic fluid and various tissues was monitored by ELISA. Further, qPCR was performed to assess transcripts levels of NE, myeloperoxidase (MPO), metalloproteinases (MMP-8, MMP-9) and cathepsin G (CSTG) in various tissues. ROS level in tissue was assessed by DHE staining and organ function was assessed by histology post TCE treatment. RESULTS Our findings showed that TC treatment significantly reduced neutrophil count in peripheral blood and their infiltration in vital organs of tumor-bearing host. Further, it ameliorated neutrophil hyperactivation by down regulating the expression of its key cargoes including NE, MPO, MMP-8, MMP-9 and CSTG at early and mid stage of tumor growth. In addition, TC treatment prevented histopathological alterations and restored the normal serum enzyme levels at different stages of tumor growth. Importantly, TC treatment also showed significant reduction in tumor burden which was accompanied by a remarkable increase in survival of the tumor-bearing mice. CONCLUSIONS We conclude that T. cordifolia could limit systemic damage via regulating neutrophil infiltration and hyperactivation which can further lead to cancer control at both prophylactic and therapeutic level.
Collapse
Affiliation(s)
- Kavita Rawat
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Saima Syeda
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
21
|
Comparative Evaluation of Various Extraction Techniques for Secondary Metabolites from Bombax ceiba L. Flowering Plants along with In Vitro Anti-Diabetic Performance. Bioengineering (Basel) 2022; 9:bioengineering9100486. [PMID: 36290454 PMCID: PMC9598353 DOI: 10.3390/bioengineering9100486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Bombax ceiba L. (Family: Malvaceae) was rightly called the “silent doctor” in the past as every part of it had medicinal value. For centuries, humans have used this plant according to the traditional medicinal systems of China, Ayurveda, and tribal communities. Recently, with an emerging interest in herbals, attention has been paid to scientifically validating medicinal claims for the treatment of diabetes using secondary metabolites of B. ceiba L. flowers. In the present study, specific secondary metabolites from the flowers of B. ceiba L. were isolated in good yield using the solvent extraction methodology, and their in vitro anti-diabetic efficacy was examined. Extraction efficiency of each solvent for secondary metabolites was found in following order: water > ethanol> methanol > chloroform > petroleum ether. Quantitative analysis of secondary metabolites showed 120.33 ± 2.33 mg/gm polyphenols, 60.77 ± 1.02 mg/g flavonoids, 60.26 ± 1.20 mg/g glycosaponins, 0.167 ± 0.02 mg/g polysaccharides for water extract; 91.00 ± 1.00 mg/g polyphenols, 9.22 ± 1.02 mg/g flavonoids, 43.90 ± 0.30 mg/g glycosaponins, 0.090 ± 0.03 mg/g poly saccharides for ethanol extract; 52.00 ± 2.64 mg/g polyphenols, 35.22 ± 0.38 mg/g flavonoids, 72.26 ± 1.05 mg/g glycosaponins, 0.147 ± 0.01 mg/g polysaccharides for methanol extract; 11.33 ± 0.58 mg/g polyphenols, 23.66 ± 1.76 mg/g flavonoids, 32.8 ± 0.75 mg/g glycosaponins, 0.013 ± 0.02 mg/g polysaccharides for chloroform extract; and 3.33 ± 1.53 mg/g polyphenols, 1.89 ± 1.39 mg/g flavonoids, 21.67 ± 1.24 mg/g glycosaponins, 0.005 ± 0.01 mg/g polysaccharides for petroleum ether extract. Glucose uptake by yeast cells increased 70.38 ± 2.17% by water extract.
Collapse
|
22
|
Girme A, Saste G, Singh R, Mirgal A, Ingavale R, Balasubramaniam AK, Ghoshal S, Ghule C, Patel S, Verma MK, Maurya R, Hingorani L. Quantitative and rapid quality assessment methods for the multi‐class bioactive constituents of
Tinospora cordifolia
using high‐performance liquid and thin layer chromatography analysis with tandem mass spectrometry characterization. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mahendra Kumar Verma
- Natural Products and Medicinal Chemistry CSIR‐Indian Institute of Integrative Medicine Jammu India
| | | | | |
Collapse
|
23
|
Chavda VP, Patel AB, Vihol D, Vaghasiya DD, Ahmed KMSB, Trivedi KU, Dave DJ. Herbal Remedies, Nutraceuticals, and Dietary Supplements for COVID-19 Management: An Update. CLINICAL COMPLEMENTARY MEDICINE AND PHARMACOLOGY 2022; 2:100021. [PMID: 36620357 PMCID: PMC8816850 DOI: 10.1016/j.ccmp.2022.100021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 01/11/2023]
Abstract
Currently, the world is facing a Coronavirus pandemic with a grave deficiency of specific therapy for Coronavirus Disease (COVID-19). Moreover, scientists attempt to discover the most refined approach to prevent this condition. Regarding COVID-19 infection, herbal medicines with immunomodulatory effects may offer patients a promising preventive treatment option. Several ayurvedic and Traditional Chinese Medicine (TCM) are effective during this worrisome Coronavirus pandemic i.e. Tinospora cordifolia (Willd.) Miers, Withania somnifera (L.) Dunal, Scutellaria baicalensis Georgi, Curcuma longa L. etc. TCM was shown to be utilized with over 90% efficacy when the COVID-19 pandemic broke out in early 2020. In addition to herbal treatments and nutraceutical drugs, dietary supplements such as vitamins and amino acid derivatives also play a significant part in COVID-19 management. Diet can assist in regulating inflammation, while nutraceuticals can aid in the prevention of viral invasion. Functional amino acids (e.g., arginine, cysteine, glutamate, glutamine, glycine, taurine, and tryptophan) and glutathione, which are all abundant in animal-sourced foodstuffs, are crucial for optimum immunity and health in humans and animals. The goal of this article is to thoroughly evaluate recent statistics on the effectiveness of herbal medicines in COVID-19, the antiviral activity of nutraceuticals, and the significance of these results in creating dietary supplements that would enhance innate immunity and contribute as preventive measures against severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
- Department of Pharmaceutics & Pharm. Technology, K. B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, Gujarat, India
| | - Aayushi B Patel
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Disha Vihol
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Darsh D Vaghasiya
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | | | - Kushal U Trivedi
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Divyang J Dave
- Department of Pharmaceutics & Pharm. Technology, K. B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, Gujarat, India
| |
Collapse
|