1
|
Zhou P, Zhang X, Chen Y, Fang J, Meng Y, Yang F, Wei P, Hua H. Changing trends in oral mucosal diseases in China (2016-2024): a cross-sectional study of 316,166 patients with focus on COVID-19 impact and use of chinese patent medicines. BMC Oral Health 2025; 25:444. [PMID: 40148866 PMCID: PMC11948658 DOI: 10.1186/s12903-025-05797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Oral mucosal health is a critical component of overall oral health and impacts an individual's quality of life. Despite variations in prevalence rates of oral mucosal diseases across regions, previous studies often involved small sample sizes with insufficient data analysis. This study addresses the gap by providing a comprehensive analysis of the changing spectrum of oral mucosal diseases in China, with a focus on the impact of COVID-19. It also explores trends in the use of Chinese patent medicines (CPMs) for treatment. METHODS This retrospective, cross-sectional study included 316,166 patients from the Department of Oral Medicine at Peking University School and Hospital of Stomatology between 2016 and 2024. Data on patient demographics, chief complaints, diagnoses, and the use of CPMs were collected and analyzed. Statistical comparisons were made using t-tests and chi-square tests, with significance set at P < 0.05. RESULTS The average patient age was 49.42 ± 17.92 years, and women were significantly overrepresented (male/female ratio: 0.59). The most frequent diagnoses were oral lichen planus and recurrent aphthous stomatitis, accounting for the top two positions each year. The study found significant differences in disease patterns among age groups, with oral potentially malignant disorders like oral lichen planus becoming more prevalent in older populations. CPMs were used by 52.29% of patients, with similar proportions using topical and systemic treatments. During the COVID-19 pandemic (2020-2022), the number of patients dropped significantly, and an increased prevalence of burning mouth syndrome and oral candidiasis was observed. CONCLUSION This study offers the largest amount of valuable epidemiological data on the management of oral mucosal diseases to date in China, underscoring the need for targeted health resource allocation. An important trend was the greater predilection for females and middle-aged and elderly populations. The top three diseases in terms of number of patients were oral lichen planus, recurrent aphthous stomatitis, and oral candidiasis. The treatment data indicated widespread use of CPMs for oral mucosal diseases. The COVID-19 pandemic was associated with a significant decrease in the number of total patients and was also characterized by an increase in the proportion of patients with diseases that have psychosomatic associations. The impact of the COVID-19 pandemic and the widespread use of CPMs warrant further investigation in future studies to ensure evidence-based medical practices. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Peiru Zhou
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Street Haidian, Beijing, 100081, China
| | - Xu Zhang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yifan Chen
- Information Center, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiakun Fang
- Office of Operations Management, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yanhong Meng
- Department of Clinical Laboratory, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School and Hospital of Stomatology, Beijing, China
| | - Furong Yang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Street Haidian, Beijing, 100081, China
| | - Pan Wei
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Street Haidian, Beijing, 100081, China.
| | - Hong Hua
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Street Haidian, Beijing, 100081, China.
| |
Collapse
|
2
|
Sahoo A, Paidesetty SK, Panda M. Target-specific high-throughput screening of anti-inflammatory phytosteroids for autoimmune diseases: A molecular docking-dynamics simulation approach. Steroids 2025; 217:109601. [PMID: 40120839 DOI: 10.1016/j.steroids.2025.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Without proper pathophysiology and recommended therapy, synthetic steroids are widely used as a first-line option for the management of autoimmune diseases. However, their prolonged use often leads to severe side effects such as osteoporosis, hypertension, cardiovascular, gastrointestinal complications, etc. To search for potential and safer therapeutic options, the present study aims to explore the potency and drug-ability profiles of anti-inflammatory phytosteroids (PSs). In a target-specific approach, we have selected three key molecular targets: glucocorticoid receptor/GR (PDB ID: 4P6W), cyclooxygenase-2/COX2 (PDB ID: 5F1A), and inducible nitric oxide synthase/iNOS (PDB ID: 4NOS) for a docking study of 167) selected PSs. The drug-chemistry profiles (physicochemical, toxicity, pharmacokinetic, drug-ability, etc.) of PSs were also assessed using various bioinformatics and chemoinformatics tools. The above assessment suggested that withaminilide B (PS46) is a lead candidate with higher drug-ability properties. Further, the drug stability and kinetic behaviour of the lead with the GR target 'GR-withaminilide B' in comparison with the control drug, 'GR-triamcinolone acetonide' docking complex, were studied through molecular dynamics (MD) simulation at 200 nanosecond with free energy calculation (MM/PBSA). Overall findings suggested that PSs exhibit distinct drug-ability profiles based on their functional attachments with a steroidal core moiety, where withaminilide B is a lead PSs among all to be used as alternative/ complementary candidates expected with limited adverse effects. Further experimentation is essential before mainstream application, but the study provided a platform to select drug-able candidates with a higher chance of experimental success and accelerate the drug discovery process within limited resources.
Collapse
Affiliation(s)
- Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003 Odisha, India; Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003 Odisha, India
| | - Sudhir Kumar Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003 Odisha, India
| | - Maitreyee Panda
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003 Odisha, India.
| |
Collapse
|
3
|
Prajapati MK, Mittal A, Panda P. Phytoflavonoids as alternative therapeutic effect for melanoma: Integrative Network pharmacology, molecular dynamics and drug-likeness profiling for lead discovery. Comput Biol Chem 2025; 117:108390. [PMID: 40056707 DOI: 10.1016/j.compbiolchem.2025.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/10/2025]
Abstract
Melanoma, an aggressive skin cancer, poses significant therapeutic challenges due to its resistance to conventional therapies and high metastatic potential. From this perspective, phytoflavonoids from different medicinal and aromatic plants gained attention due to their diverse multimodal anticancer effects with higher antioxidant and anti-inflammatory properties. This study explores phytoflavonoid potency against melanoma via a computer-aided drug design (CADD) platform. Using the core moiety of flavonoids (flavan), four most putative targets, such as cyclin-dependent kinases 1 and 5 (CDK1, CDK5), cell division cycles 25B and 225 C (CDC25B, and CDC225C), have been identified through a network pharmacology approach using TNMplot datasets (GenChip and RNA sequence). Further, 44 phytoflavonoids were selected from extensive literature, and molecular docking studies were carried out against four targets along with standard drugs using AutoDock 4.2 software. Subsequently, physicochemical, toxicity, pharmacokinetics, and drug-ability profiles of phytoflavonoids were predicted. Based on potency and drug-ability, we have selected 'CDK1-naringenin' with the standard drug complex, 'CDK1-dinaciclib,' for molecular dynamic simulation at 100 nanoseconds using GROMACS 2020 software. Based on potency (average docking score: 8.35 kcal/mol.), physicochemical properties (obeyed Lipinski rule of five), toxicity (class-IV), fifty percent lethal dose (2000 mg/kg), bioavailability (0.55), drug-likeness score (0.82), along with ideal pharmacokinetics profiles and higher protein-ligand stability, naringenin is considered as a potential and non-toxic anticancer candidate to be used for melanoma as alternative or complementary agent. The integrative and systematic analyses not only highlight the potential of phytoflavonoids but also select the potential lead from the library within limited resources to accelerate the current anticancer drug discovery process.
Collapse
Affiliation(s)
- Manoj Kumar Prajapati
- NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan 303121, India; Kashi Institute of Pharmacy, Mirzamurad, Varanasi, Uttar Pradesh 221307, India.
| | - Abhilasha Mittal
- NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan 303121, India
| | - Pritipadma Panda
- School of Pharmacy, Kalinga Institute of Industrial Technology Deemed to be University, Patia, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
4
|
Rath D, Pattnaik G, Kar B, Padhy GK, Patro CS, Bhukta P. Antidiabetic potency of glimepiride and naringin: an in silico and in vitro investigation. J Biomol Struct Dyn 2024:1-12. [PMID: 39731535 DOI: 10.1080/07391102.2024.2442759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/29/2024] [Indexed: 12/30/2024]
Abstract
Glimepiride (GLM) is one of the potential antidiabetic drugs used in clinics for a long time. It is currently used in combination with metformin along with other drugs, but has shown various complications in patients from long-term use. Thus, the hypothesis is to use a lower dose of GLM with a non-toxic class of flavonoid, naringin (NARN), for better therapy with minimal side-effects. Initially, we assessed the binding efficacy of GLM and NARN against nine putative target enzymes using AutoDock 4.2 software. We also analysed the drug chemistry, drug-ability, and cytotoxicity, as well as performed molecular dynamic (MD) simulation at 100 ns with individual and combination states using GROMACS-2022 software. Both candidates showed higher binding efficacy, especially against the AKT-serine/threonine kinase-1 (AKT1) target enzyme (-11.85 kcal/mol), and demonstrated higher stability and compatibility with AKT1 from MD-simulation (based on RMSD, Rg, RMSF, and H-bond plots) in combination than individual form. The in vitro cytotoxicity with human embryonic kidney (HEK-293) cells suggested 100 µg/mL (observed 80% of the cell viability) as a non-toxic dose for further study. Alpha-amylase, alpha-glucosidase, and DPP-IV inhibition assays revealed that both GLM and NARN inhibited up to 60% at 100 µg/mL in a concentration-dependent manner. At the end, selecting a lower dose of GLM and a higher dose of NARN (2:8 v/v ratio) showed up to 87% inhibition at 100 µg/mL. Both in silico and in vitro studies suggest that the investigated formulation could be a potential and non-toxic dose for diabetics.
Collapse
Affiliation(s)
- Deepankar Rath
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan University, Bhubaneswar, Odisha, India
| | - Gopal Krishna Padhy
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| | - Chandra Sekhar Patro
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| | - Pallishree Bhukta
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| |
Collapse
|
5
|
Namiot ED, Smirnovová D, Sokolov AV, Chubarev VN, Tarasov VV, Schiöth HB. Depression clinical trials worldwide: a systematic analysis of the ICTRP and comparison with ClinicalTrials.gov. Transl Psychiatry 2024; 14:315. [PMID: 39085220 PMCID: PMC11291508 DOI: 10.1038/s41398-024-03031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Major depressive disorder (MDD), commonly known as depression, affects over 300 million people worldwide as of 2018 and presents a wide range of clinical symptoms. The international clinical trials registry platform (ICTRP) introduced by WHO includes aggregated data from ClinicalTrials.gov and 17 other national registers, making it the largest clinical trial platform. Here we analysed data in ICTRP with the aim of providing comprehensive insights into clinical trials on depression. Applying a novel hidden duplicate identification method, 10,606 depression trials were identified in ICTRP, with ANZCTR being the largest non- ClinicalTrials.gov database at 1031 trials, followed by IRCT with 576 trials, ISRCTN with 501 trials, CHiCTR with 489 trials, and EUCTR with 351 trials. The top four most studied drugs, ketamine, sertraline, duloxetine, and fluoxetine, were consistent in both groups, but ClinicalTrials.gov had more trials for each drug compared to the non-ClinicalTrials.gov group. Out of 9229 interventional trials, 663 unique agents were identified, including approved drugs (74.5%), investigational drugs (23.2%), withdrawn drugs (1.8%), nutraceuticals (0.3%), and illicit substances (0.2%). Both ClinicalTrials.gov and non-ClinicalTrials.gov databases revealed that the largest categories were antidepressive agents (1172 in ClinicalTrials.gov and 659 in non-ClinicalTrials.gov) and nutrients, amino acids, and chemical elements (250 in ClinicalTrials.gov and 659 in non-ClinicalTrials.gov), indicating a focus on alternative treatments involving dietary supplements and nutrients. Additionally, 26 investigational antidepressive agents targeting 16 different drug targets were identified, with buprenorphine (opioid agonist), saredutant (NK2 antagonist), and seltorexant (OX2 antagonist) being the most frequently studied. This analysis addresses 40 approved drugs for depression treatment including new drug classes like GABA modulators and NMDA antagonists that are offering new prospects for treating MDD, including drug-resistant depression and postpartum depression subtypes.
Collapse
Affiliation(s)
- Eugenia D Namiot
- Department of Surgical Science, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Diana Smirnovová
- Department of Surgical Science, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Aleksandr V Sokolov
- Department of Surgical Science, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Vladimir N Chubarev
- Advanced Molecular Technologies, Limited Liability Company (LLC), Moscow, Russia
| | - Vadim V Tarasov
- Advanced Molecular Technologies, Limited Liability Company (LLC), Moscow, Russia
| | - Helgi B Schiöth
- Department of Surgical Science, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
6
|
Tanty DK, Sahu PR, Mohapatra R, Sahu SK. Antidiabetic potency and molecular insights of natural products bearing indole moiety: A systematic bioinformatics investigation targeting AKT1. Comput Biol Chem 2024; 110:108059. [PMID: 38608439 DOI: 10.1016/j.compbiolchem.2024.108059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
Diabetic mellitus (DM) is a chronic disorder, and type 2 DM (T2DM) is the most prevalent among all categories (nearly 90%) across the globe every year. With the availability of potential drugs, the prevalence rate has remained uncontrollable, while natural resources showed a promising potency, and exploring such potential candidates at the preclinical stage is essential. An extensive literature search selected 89 marine and plant-derived indole derivatives with anti-inflammatory, antioxidant, lipid-lowering, etc., activities. However, as we know, drugs have not been able to convert from 'lead' to 'mainstream' due to inadequate drug-ability profiles, as our systematic investigation proved and selected herdmanine_A (HERD_A) and penerpene_D (PENE_D) as the most potential antidiabetic candidates from the library of indole derivatives. Based on our previous network pharmacology study, we selected three new target enzymes: Acetyl-CoA carboxylase 2 (ACACB; PDB ID: 3JRX), cyclin-dependent kinase 4 (CDK4; PDB ID: 3G33), and alpha serine/threonine-protein kinase 1 (AKT1; PDB ID: 3O96) to assess the antidiabetic potency of selected indole derivatives through binding energy or docking score. To conduct molecular docking studies with these enzymes, we used the PyRx-AutoDock platform. Furthermore, molecular dynamic simulation at 100 ns, physicochemical analysis, pharmacokinetics, toxicity assessment, and drug-likeness evaluation suggested that HERD_A and penerpene PENE_D were the most potent inhibitors against AKT1 compared to koenimbine (most potential based on the recorded IC50 value) and murrayakonine_A (most potential based on the docking score). In summary, HERD_A and/or PENE_D have the potential to be used as alternative therapeutic agent for the treatment of diabetes after some pharmacological investigation.
Collapse
Affiliation(s)
- Dhananjay K Tanty
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Prachi R Sahu
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Ranjit Mohapatra
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Susanta K Sahu
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India.
| |
Collapse
|
7
|
Turki T, Taguchi YH. GENEvaRX: A novel AI-driven method and web tool can identify critical genes and effective drugs for Lichen Planus. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2023; 124:106607. [DOI: 10.1016/j.engappai.2023.106607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
8
|
Serafini G, De Biase A, Lamazza L, Mazzucchi G, Lollobrigida M. Efficacy of Topical Treatments for the Management of Symptomatic Oral Lichen Planus: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1202. [PMID: 36673955 PMCID: PMC9859481 DOI: 10.3390/ijerph20021202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Oral lichen planus (OLP) is a chronic mucosal inflammatory disease associated with T-cell-mediated immunological dysfunction. Symptomatic OLP is a painful condition, and complete healing is often not achieved. The aim of this systematic review was to assess the effectiveness of topical drugs, medications, and other interventions compared to placebo or to other treatments in pain reduction and clinical resolution in adult patients with symptomatic OLP. A detailed electronic literature search was performed through the MEDLINE (PubMed) database between 1 January 2005 and 30 September 2022. Eligible studies were selected based on the inclusion criteria, and a quality assessment was conducted. From 649 titles, 121 articles were selected as abstracts, 75 papers were assessed as full text, along with 15 other papers obtained through a manual search. A total of 15 RCTs were finally included in the review process. Because of the significant heterogeneity in the study design of the included studies, no meta-analysis of the data could be performed. Topical corticosteroids represent the first-line treatment in the management of symptomatic OLP due to their efficacy and minimal adverse effects. Calcineurin inhibitors seem to be equally effective and are indicated in recalcitrant cases, extensive lesions, patients susceptible to oral candidiasis, or cases unresponsive to corticosteroids. Other treatments, such as aloe vera, chamomile, isotretinoin, ozone, and laser therapy, could be beneficial as adjunct therapies in association with first-line treatments.
Collapse
Affiliation(s)
- Giorgio Serafini
- Department of Oral and Maxillo Facial Sciences, “Sapienza” University of Rome, Via Caserta 6, 00161 Rome, Italy
| | | | - Luca Lamazza
- Department of Oral and Maxillo Facial Sciences, “Sapienza” University of Rome, Via Caserta 6, 00161 Rome, Italy
| | | | | |
Collapse
|
9
|
Swain SS, Hussain T. Combined Bioinformatics and Combinatorial Chemistry Tools to Locate Drug-Able Anti-TB Phytochemicals: A Cost-Effective Platform for Natural Product-Based Drug Discovery. Chem Biodivers 2022; 19:e202200267. [PMID: 36307750 DOI: 10.1002/cbdv.202200267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022]
Abstract
Based on extensive experimental studies, a huge number of phytochemicals showed potential activity against tuberculosis (TB) at a lower minimum inhibitory concentration (MIC) and fewer toxicity profiles. However, these promising drugs have not been able to convert from 'lead' to 'mainstream' due to inadequate drug-ability profiles. Thus, early drug-prospective analyses are required at the primary stage to accelerate natural-product-based drug discovery with limited resources and time. In the present study, we have selected seventy-three potential anti-TB phytochemicals (MIC value ≤10 μg/mL) and assessed the drug-ability profiles using bioinformatics and combinatorial chemistry tools, systematically. Primarily, the molecular docking study was done against two putative drug targets, catalase-peroxidase enzyme (katG) and RNA polymerase subunit-β (rpoB) of Mycobacterium tuberculosis (Mtb) using AutoDock 4.2 software. Further, assessed the drug-ability score from Molsoft, toxicity profiles from ProTox, pharmacokinetics from SwisADME, hierarchical cluster analysis (HCA) by ChemMine tools and frontier molecular orbitals (FMOs) with Avogadro and structural activity relationships (SAR) analysis with ChemDraw 18.0 software. Above analyses indicated that, lower MIC exhibited anti-TB phytochemicals, abietane, 12-demethylmulticaulin exhibited poor docking and drug-ability scores, while tiliacorinine, 2-nortiliacorinine showed higher binding energy and drug-ability profiles. Overall, tiliacorinine, 2-nortiliacorinine, 7α-acetoxy-6β-hydroxyroyleanone (AHR), (2S)-naringenin and isovachhalcone were found as the most active and drug-able anti-TB candidates from 73 candidates. Phytochemicals are always a vital source of mainstream drugs, but the MIC value of a phytochemical is not sufficient for it to be promoted. An ideal drug-ability profile is therefore essential for achieving clinical success, where advanced bioinformatics tools help to assess and analyse that profile. Additionally, several natural pharmacophores found in existing anti-TB drugs in SAR analyses also provide crucial information for developing potential anti-TB drug. As a conclusion, combined bioinformatics and combinatorial chemistry are the most effective strategies to locate potent-cum-drug-able candidates in the current drug-development module.
Collapse
Affiliation(s)
- Shasank S Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Center, Bhubaneswar, 751023, Odisha, India
| | - Tahziba Hussain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Center, Bhubaneswar, 751023, Odisha, India
| |
Collapse
|