1
|
Saha B, Ateia M, Tolaymat T, Fernando S, Varghese JR, Golui D, Bezbaruah AN, Xu J, Aich N, Briest J, Iskander SM. The unique distribution pattern of PFAS in landfill organics. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135678. [PMID: 39217946 PMCID: PMC11483333 DOI: 10.1016/j.jhazmat.2024.135678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
PFAS from degrading landfill waste partition into organic matter, leachate, and landfill gas. Driven by the limited understanding of PFAS distribution in landfill organics, we analyzed PFAS across various depths and seven spatially distinct locations within a municipal landfill. The measured PFAS concentrations in organics ranged from 6.71 to 73.06 µg kg-1, a sum of twenty-nine PFAS from six classes. Perfluorocarboxylic acids (PFCAs) and fluorotelomer carboxylic acids (FTCAs) were the dominant classes, constituting 25-82 % and 8-40 % of total PFAS at different depths. PFBA was the most dominant PFCA with a concentration range of 0.90-37.91 µg kg-1, while 5:3 FTCA was the most prevalent FTCA with a concentration of 0.26-17.99 µg kg-1. A clear vertical distribution of PFAS was observed, with significantly greater PFAS concentrations at the middle depths (20-35 ft), compared to the shallow (10-20 ft) and high depths (35-50 ft). A strong positive correlation (r > 0.50) was noted between total PFAS, total carbon, and dissolved organic matter in landfill organics. Multivariate statistical analysis inferred common sources and transformations of PFAS within the landfill. This study underscores the importance of a system-level analysis of PFAS fate in landfills, considering waste variability, chemical properties, release mechanisms, and PFAS transformations.
Collapse
Affiliation(s)
- Biraj Saha
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Mohamed Ateia
- U S Environmental Protection Agency Office of Research and Development, 26 Martin Luther King Dr W, Cincinnati, OH 45268, United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States
| | - Thabet Tolaymat
- U S Environmental Protection Agency Office of Research and Development, 26 Martin Luther King Dr W, Cincinnati, OH 45268, United States
| | - Sujan Fernando
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, United States
| | - Juby R Varghese
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, United States
| | - Debasis Golui
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States; Department of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Achintya N Bezbaruah
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Jiale Xu
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Nirupam Aich
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - John Briest
- Weaver Consultants Group, Centennial, CO 80111, United States
| | - Syeed Md Iskander
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States; Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58108, United States.
| |
Collapse
|
2
|
Vakili M, Cagnetta G, Deng S, Wang W, Gholami Z, Gholami F, Dastyar W, Mojiri A, Blaney L. Regeneration of exhausted adsorbents after PFAS adsorption: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134429. [PMID: 38691929 DOI: 10.1016/j.jhazmat.2024.134429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The adsorption process efficiently removes per- and polyfluoroalkyl substances (PFAS) from water, but managing exhausted adsorbents presents notable environmental and economic challenges. Conventional disposal methods, such as incineration, may reintroduce PFAS into the environment. Therefore, advanced regeneration techniques are imperative to prevent leaching during disposal and enhance sustainability and cost-effectiveness. This review critically evaluates thermal and chemical regeneration approaches for PFAS-laden adsorbents, elucidating their operational mechanisms, the influence of water quality parameters, and their inherent advantages and limitations. Thermal regeneration achieves notable desorption efficiencies, reaching up to 99% for activated carbon. However, it requires significant energy input and risks compromising the adsorbent's structural integrity, resulting in considerable mass loss (10-20%). In contrast, chemical regeneration presents a diverse efficiency landscape across different regenerants, including water, acidic/basic, salt, solvent, and multi-component solutions. Multi-component solutions demonstrate superior efficiency (>90%) compared to solvent-based solutions (12.50%), which, in turn, outperform salt (2.34%), acidic/basic (1.17%), and water (0.40%) regenerants. This hierarchical effectiveness underscores the nuanced nature of chemical regeneration, significantly influenced by factors such as regenerant composition, the molecular structure of PFAS, and the presence of organic co-contaminants. Exploring the conditional efficacy of thermal and chemical regeneration methods underscores the imperative of strategic selection based on specific types of PFAS and material properties. By emphasizing the limitations and potential of particular regeneration schemes and advocating for future research directions, such as exploring persulfate activation treatments, this review aims to catalyze the development of more effective regeneration processes. The ultimate goal is to ensure water quality and public health protection through environmentally sound solutions for PFAS remediation efforts.
Collapse
Affiliation(s)
| | - Giovanni Cagnetta
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Shubo Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province 810016, China
| | - Zahra Gholami
- ORLEN UniCRE, a.s, Revoluční 1521/84, 400 01 Ústí nad Labem, Czech Republic
| | - Fatemeh Gholami
- Department of Mathematics, Physics, and Technology, Faculty of Education, University of West Bohemia, Klatovská 51, Plzeň 301 00, Czech Republic
| | - Wafa Dastyar
- Chemical, Environmental, and Materials Engineering Department, McArthur Engineering Building, University of Miami, Coral Gables, FL 33124, USA
| | - Amin Mojiri
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, Baltimore, MD 21250, USA
| |
Collapse
|
3
|
Kabiri S, Tavakkoli E, Navarro DA, Degryse F, Grimison C, Higgins CP, Mueller JF, Kookana RS, McLaughlin MJ. The complex effect of dissolved organic carbon on desorption of per- and poly-fluoroalkyl substances from soil under alkaline conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124234. [PMID: 38815892 DOI: 10.1016/j.envpol.2024.124234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFASs) are contaminants of emerging concern, yet the understanding of factors that control their leaching and release from contaminated soils remains limited. This study aimed to investigate the impact of dissolved organic carbon (DOC) on the release of PFASs-specifically, perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), and perfluorooctanoic acid (PFOA)from soils contaminated by aqueous film forming foam (AFFF). Batch aqueous leaching experiments were conducted on AFFF-contaminated soils under alkaline solution conditions (pH 9.5, 10.5, and 12) as it enhances leaching of both PFAS and DOC. Leaching of PFOS was significantly increased under alkaline conditions. Although the leaching of PFAS generally increased with pH, PFOS appeared to be more retained under the very alkaline pH conditions used in this study. At the same solution pH, leaching of PFOS and DOC was less in Ca(OH)2 than in NaOH. The retention of PFOS under these conditions may be attributable to the shielding of the negative charge of the soil components and colloids (e.g., DOC and clay minerals) in the leachates and/or the screening of negative charges on head groups of PFOS due to the high concentration of divalent cations. Solution chemistry affected desorption of PFOS more than PFHxS and PFOA. The study highlights that the influence of DOC on PFAS leaching and transport can be very complex, and depends on leachate chemistry (e.g., pH and cation type), PFAS chemistry, the magnitude of PFAS contamination and factors that influence the solid:liquid partitioning of organic carbon in soil.
Collapse
Affiliation(s)
- Shervin Kabiri
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia.
| | - Ehsan Tavakkoli
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia
| | | | - Fien Degryse
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia
| | | | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Rai S Kookana
- CSIRO Environment, PMB 2, Glen Osmond, SA, 5064, Australia
| | - Michael J McLaughlin
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
4
|
Feng G, Zhou B, Yuan R, Luo S, Gai N, Chen H. Influence of soil composition and environmental factors on the adsorption of per- and polyfluoroalkyl substances: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171785. [PMID: 38508244 DOI: 10.1016/j.scitotenv.2024.171785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have garnered considerable scientific and regulatory scrutiny due to their widespread distribution across environments and their potential toxicological impacts on human health. The pedosphere serves as a vital reservoir for these chemicals, significantly determining their environmental trajectory and chemical transformations. This study offers a comprehensive synthesis of the current understanding regarding the adsorption mechanics of PFASs in soil matrices. Due to their unique molecular structure, PFASs predominantly engage in hydrophobic and electrostatic interactions during soil adsorption. This work thoroughly evaluates the influence of various factors on adsorption efficiency, including soil properties, molecular characteristics of PFASs, and the prevailing environmental conditions. The complex nature of soil environments complicates isolating individual impacts on PFAS behavior, necessitating an integrated approach to understanding their environmental destinies better. Through this exploration, we seek to clarify the complex interplay of factors that modulate the adsorption of PFASs in soils, highlighting the urgent need for future research to disentangle the intricate and combined effects that control the environmental behavior of PFAS compounds.
Collapse
Affiliation(s)
- Ge Feng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Eco-geochemistry, Ministry of Natural Resources of China, National Research Center for Geo-analysis (NRCGA), Beijing 100037, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shuai Luo
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Nan Gai
- Key Laboratory of Eco-geochemistry, Ministry of Natural Resources of China, National Research Center for Geo-analysis (NRCGA), Beijing 100037, China.
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
5
|
Umeh AC, Naidu R, Olisa E, Liu Y, Qi F, Bekele D. A systematic investigation of single solute, binary and ternary PFAS transport in water-saturated soil using batch and 1-dimensional column studies: Focus on mixture effects. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132688. [PMID: 37797575 DOI: 10.1016/j.jhazmat.2023.132688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/27/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
This study aimed to investigate the transport and release of per- and polyfluoroalkyl substances (PFAS), as single solutes and binary and ternary mixtures, and associated competitive sorption effects in water-saturated soil. Batch sorption isotherm and desorption, and one-dimensional miscible displacement studies were conducted. For the batch study, the mixtures exhibited extensive sorption isotherm nonlinearity at aqueous concentrations exceeding 20 µg/L. At and above this threshold, competitive effects significantly decreased PFAS sorption, mostly affecting perfluorooctanoic acid (PFOA) and perfluorohexane sulfonate (PFHxS). Importantly, mixture effects exacerbated isotherm nonlinearity and may increase the leaching of PFAS in subsurface soil and groundwater. Further, up to 100% desorption occurred for single solutes and mixtures, indicating that the studied PFAS were weakly sorbed. For the column study, at influent concentrations (21 - 27 µg/L, depending on PFAS) near the threshold, PFOA and PFHxS breakthrough curves (BTC) generally exhibited equilibrium (nonlinear) transport, whereas perfluorooctane sulfonate (PFOS) exhibited nonequilibrium transport, with minimal or no mixture effects. Nonequilibrium transport of PFOS was driven by rate-limited sorption, especially as flow interruption tests confirmed the absence of physical nonequilibrium. The sorption distribution coefficients (Kd) from moment and frontal analyses, and 2-site modelling of the BTC, were consistent with the batch-derived Kd, although comparatively smaller. Such discrepancies may limit the applicability of batch-derived Kd values for predictive transport modelling purposes. Overall, understanding mixture impacts may aid effective predictive modelling of PFAS transport and leaching, especially in aqueous film forming foam (AFFF)-source zone areas associated with elevated PFAS concentrations. At low or environmental PFAS concentrations, mixture effects can be expected to be play a minor role in influencing PFAS transport.
Collapse
Affiliation(s)
- Anthony C Umeh
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; crcCARE, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; crcCARE, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Emmanuel Olisa
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; Geosyntec Consultants, 211 Wheeler St, Saskatoon, SK S7P 0A4, Canada
| | - Yanju Liu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; crcCARE, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Fangjie Qi
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; Nanjing Institute of Soil Science, Chinese Academy of Sciences, 71 Beijing East Road, Nanjing, Jiangsu Province 210008, China
| | - Dawit Bekele
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; Douglas Partners Pty Ltd, 439 Montague Road West End, QLD 4101, Australia
| |
Collapse
|
6
|
Cai W, Navarro DA, Du J, Srivastava P, Cao Z, Ying G, Kookana RS. Effect of heavy metal co-contaminants on the sorption of thirteen anionic per- and poly-fluoroalkyl substances (PFAS) in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167188. [PMID: 37734606 DOI: 10.1016/j.scitotenv.2023.167188] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
Understanding the sorption behavior of per- and poly-fluoroalkyl substances (PFAS) in soils are essential for assessing their mobility and risk in the environment. Heavy metals often coexist with PFAS depending on the source and history of contamination. In this study, we investigated the effect of heavy metal co-contaminants (Pb2+, Cu2+ and Zn2+) on the sorption of 13 anionic PFAS with different perfluorocarbon chain length (C3-C9) in two soils with different properties. Results revealed that Pb2+, Cu2+ and Zn2+ had little effect on the sorption of most short-chain compounds, while the presence of these heavy metals enhanced the sorption of long-chain PFAS in two soils. The distribution coefficients (Kd) of several long-chain PFAS linearly increased with increasing concentrations of heavy metal, especially in the presence of Pb2+ (ΔKd/Δ [Pb2+] > 3 for PFOS and PFNA vs <1 for PFPeS and PFHxS). While several mechanisms may have contributed to the enhancement of sorption of PFAS, the heavy metals most likely contributed through enhanced hydrophobic interactions of PFAS by neutralizing the negative charge of adsorption surfaces in soils and thus making it more favorable for their partitioning onto the solid phase. Moreover, the increase in the concentrations of heavy metals led to a decrease in the pH of the system and promoted sorption of long-chain compounds, especially in soil with lower organic carbon content. Overall, this study provides evidence that the presence of co-existing heavy metal cations in soils can significantly enhance the sorption of long-chain PFAS onto soil, thereby potentially limiting their mobility in the environment.
Collapse
Affiliation(s)
- Wenwen Cai
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Divina A Navarro
- CSIRO Environment, Locked Bag 2, Glen Osmond, 5064, Australia; School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Locked Bag 1, Glen Osmond 5064, Australia.
| | - Jun Du
- CSIRO Environment, Locked Bag 2, Glen Osmond, 5064, Australia
| | | | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Guangguo Ying
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Rai S Kookana
- CSIRO Environment, Locked Bag 2, Glen Osmond, 5064, Australia; School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Locked Bag 1, Glen Osmond 5064, Australia
| |
Collapse
|
7
|
Dai M, Yan N, Brusseau ML. Potential impact of bacteria on the transport of PFAS in porous media. WATER RESEARCH 2023; 243:120350. [PMID: 37499541 PMCID: PMC10530518 DOI: 10.1016/j.watres.2023.120350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
The transport and fate of per- and poly-fluoroalkyl substances (PFAS) in soil and groundwater is a topic of critical concern. A number of factors and processes may influence the transport and fate of PFAS in porous media. One factor that has received minimal attention to date is the impact of bacteria on the retention and transport of PFAS, which is the focus of this current study. The first part of this work comprised a critical review of prior studies to delineate observed PFAS-bacteria interactions and to summarize the mechanisms of PFAS sorption and retention by bacteria. Retention of PFAS by bacteria can occur through sorption onto cell surfaces and/or by incorporation into the cell interior. Factors such as the molecular structure of PFAS, solution chemistry, and bacterial species can affect the magnitude of PFAS sorption. The influence of bacteria on the retention and transport of PFAS was investigated in the second part of the study with a series of batch and miscible-displacement experiments. Batch experiments were conducted using Gram-negative Pseudomonas aeruginosa and Gram-positive Bacillus subtilis to quantify the sorption of perfluorooctane sulfonic acid (PFOS). The results indicated that both bacteria showed strong adsorption of PFOS, with no significant difference in adsorption capacity. Miscible-displacement experiments were then conducted to examine the retention and transport of PFOS in both untreated sand and sand inoculated with Pseudomonas aeruginosa or Bacillus subtilis for 1 and 3 days. The transport of PFOS exhibited greater retardation for the experiments with inoculated sand. Furthermore, the enhanced sorption was greater for the 3-day inoculation compared to the 1-day, indicating that biomass is an important factor affecting PFOS transport. A mathematical model representing transport with nonlinear and rate-limited sorption successfully simulated the observed PFOS transport. This study highlights the need for future studies to evaluate the effect of bacteria on the transport of PFAS in soil and groundwater.
Collapse
Affiliation(s)
- Mengfan Dai
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Ni Yan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| | - Mark L Brusseau
- Environmental Science Department, University of Arizona, Tucson, AZ 85721, United States; Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
8
|
Zhang D, Li J, Li X, Wang M, Zhong Y, Chen G, Xiao H, Zhang Y. Phytoremediation of fluoroalkylethers (ether-PFASs): A review on bioaccumulation and ecotoxilogical effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161260. [PMID: 36587702 DOI: 10.1016/j.scitotenv.2022.161260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Fluoroalkylethers (ether-PFASs), as alternatives to phased-out per- and perfluoroalkyl substances (PFASs), have attracted mounting attention due to their ubiquitous detection in aquatic environment and their similarity to legacy PFASs in terms of persistence and toxicity. In this review, the sources and distribution of ether-PFASs in soil ecosystem as well as their toxic impacts on soil microbial community are summarized. The plant uptake and bioaccumulation potential of ether-PFASs are presented, and a wide range of the influencing factors for their uptake and translocation is discussed. In response to ether-PFASs, the corresponding phytotoxic effects, such as seed germination, plant growth, photosynthesis, oxidative damage, antioxidant enzymes activities, and genotoxicity, are systematically elucidated. Finally, the current knowledge gaps and future research prospective are highlighted. The findings of this review will advance our understanding for the environmental behavior and implications ether-PFASs in soil-plant systems and help explore the strategies for ether-PFASs remediation to minimize their adverse toxicity.
Collapse
Affiliation(s)
- Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.
| | - Jiaying Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xia Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.
| | - Mo Wang
- College of Architecture and Urban Planning, Guangzhou University, Guangzhou 510006, China.
| | - Yongming Zhong
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Gaolin Chen
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Hongyu Xiao
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yu Zhang
- College of Architecture and Urban Planning, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
9
|
Groffen T, Prinsen E, Devos Stoffels OA, Maas L, Vincke P, Lasters R, Eens M, Bervoets L. PFAS accumulation in several terrestrial plant and invertebrate species reveals species-specific differences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23820-23835. [PMID: 36331738 DOI: 10.1007/s11356-022-23799-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Despite the known persistence and bioaccumulation potential of perfluoroalkyl substances (PFAS), much uncertainty exists regarding their bioavailability in the terrestrial environment. Therefore, this study investigated the influence of soil characteristics and PFAS concentrations on the adsorption of PFAS to soil and their influence on the PFAS bioavailability to terrestrial plants and invertebrates. PFAS concentrations and profile were compared among different invertebrate and plant species and differences between leaves and fruits/nuts of the plant species were assessed. Soil concentrations were primarily affected by organic carbon content. The PFAS accumulation in biota was, except for PFOA concentrations in nettles, unrelated to the soil concentrations, as well as to the soil characteristics. The PFAS profiles in soil and invertebrates were mainly dominated by PFOA and PFOS, whereas short-chained PFAS were more abundant in plant tissues. Our results show that different invertebrate taxa accumulate different PFAS, likely due to dietary differences. Both long-chained and, to lesser extent, short-chained PFAS were observed in herbivorous invertebrate taxa, whereas the carnivorous invertebrates only accumulated long-chained PFAS. Correlations were observed between PFOA concentrations in herbivorous invertebrates and in the leaves of some plant species, whereas such relationships were absent for the carnivorous spiders. It is essential to continuously monitor PFAS exposure in terrestrial organisms, taking into account differences in bioaccumulation, and subsequent potential toxicity, among taxa, in order to protect the terrestrial ecosystem.
Collapse
Affiliation(s)
- Thimo Groffen
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Ona-Abeni Devos Stoffels
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Layla Maas
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Pieter Vincke
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Robin Lasters
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Lieven Bervoets
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
10
|
Xu S, Zhu Y, Zhu P, Wang C, Zhang D, Pan X. Effects of PFOS at ng/L levels on photostability of extracellular polymeric substances under solar irradiation by fluorescence and infrared spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160119. [PMID: 36370784 DOI: 10.1016/j.scitotenv.2022.160119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The ubiquitous EPS (extracellular polymeric substances), as a type of dissolved organic carbon, plays a key role in carbon cycling in water environment. When EPS meet the omnipresent PFOS (perfluorooctane sulfonate), they must interact with each other and exert profound effect on behavior and fate of both, which is still not well known. We hypothesized that the highly persistent PFOS at real environmental levels may significantly influence behavior of EPS under solar irradiation which may retard carbon turnover. In this study, 3D-EEM fluorescence spectroscopy and FTIR spectroscopy were used to probe responses of composition and structure of EPS under solar irradiation in the absence and presence of PFOS (5-500 ng/L). The experimental results showed that PFOS at ng/L levels significantly affected responses of EPS to sunlight irradiation and the effects were dependent on the components in EPS. Photostability of humic-like substances was significantly increased in the presence of PFOS; Degradation and unfolding of proteins induced by solar light were reduced by PFOS. In addition, degradation of both hydrophilic and hydrophobic functional groups by sunlight was inhibited by PFOS. The novel findings provide new insights for assessing the environmental behavior of EPS and PFOS and understanding the effect of PFOS on carbon cycling in water environments.
Collapse
Affiliation(s)
- Shuyan Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yitian Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Pengfeng Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Caiqin Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
11
|
Anderson RH, Feild JB, Dieffenbach-Carle H, Elsharnouby O, Krebs RK. Assessment of PFAS in collocated soil and porewater samples at an AFFF-impacted source zone: Field-scale validation of suction lysimeters. CHEMOSPHERE 2022; 308:136247. [PMID: 36049637 DOI: 10.1016/j.chemosphere.2022.136247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) measurable in soil porewater authoritatively represent the mobile mass fraction critical to accurate assessment of leaching from source zones. This study evaluated PFAS occurrence in lysimeter-collected porewater samples for two depth intervals at a decades-old aqueous film-forming foam (AFFF)-impacted field site quarterly for a year. Notably, site-wide Log10 (∑PFAS) concentrations did not significantly differ among sampling events despite highly variable sample yields due to a heterogeneous and dynamic soil moisture regime. However, Log10 (∑PFAS) concentrations were significantly higher in the shallow interval concordant with higher mean soil concentrations and higher total organic carbon (TOC) reflecting net retention, which is supported by soil-to-groundwater annual mass discharge estimates less than 0.2% of the total source mass for any given PFAS. Interestingly, PFAS-specific Log10 (soil-to-porewater ratios) significantly increased with soil concentration in both depth intervals contrary to concentration dependence resulting from the saturation of sorption sites potentially implicating self-assembly as an additional operative retention mechanism. Overall, these data validate the use of suction lysimeters for short-term site characterization deployments and emphasize the importance of in situ porewater samples for interrogating PFAS transport within source zones.
Collapse
Affiliation(s)
| | - James B Feild
- Wood Environment & Infrastructure Solutions, Inc., Knoxville, TN, USA
| | | | - Omneya Elsharnouby
- Wood Environment & Infrastructure Solutions, Inc., Cambridge, Ontario, Canada
| | - Rita K Krebs
- Air Force Civil Engineer Center, Ellsworth AFB, SD, USA
| |
Collapse
|
12
|
Qin C, Lu YX, Borch T, Yang LL, Li YW, Zhao HM, Hu X, Gao Y, Xiang L, Mo CH, Li QX. Interactions between Extracellular DNA and Perfluoroalkyl Acids (PFAAs) Decrease the Bioavailability of PFAAs in Pakchoi ( Brassica chinensis L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14622-14632. [PMID: 36375011 DOI: 10.1021/acs.jafc.2c04597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are emerging ionic organic pollutants worldwide. Great amounts of extracellular DNA (∼mg/kg) coexist with PFAAs in the environment. However, PFAA-DNA interactions and effects of such interactions have not been well studied. Herein, we used isothermal titration calorimetry (ITC), spectroscopy, and computational simulations to investigate the PFAA-DNA interactions. ITC assays showed that specific binding affinities of PFHxA-DNA, PFOA-DNA, PFNA-DNA, and PFOS-DNA were 5.14 × 105, 3.29 × 105, 1.99 × 105, and 2.18 × 104 L/mol, respectively, which were about 1-2 orders of magnitude stronger than those of PFAAs with human serum albumin. Spectral analysis suggested interactions of PFAAs with adenine (A), cytosine (C), guanine (G), and thymine (T), among which grooves associated with thymine were the major binding sites. Molecular dynamics simulations and quantum chemical calculations suggested that hydrogen bonds and van der Waals forces were the main interaction forces. Such a PFAA-DNA binding decreased the bioavailability of PFAAs in plant seedlings. The findings will help to improve the current understanding of the interaction between PFAAs and biomacromolecules, as well as how such interactions affect the bioavailability of PFAAs.
Collapse
Affiliation(s)
- Chao Qin
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Ying-Xin Lu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Thomas Borch
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado80523, United States
- Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, Colorado80523, United States
| | - Ling-Ling Yang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii96822, United States
| |
Collapse
|
13
|
Ambaye TG, Vaccari M, Prasad S, Rtimi S. Recent progress and challenges on the removal of per- and poly-fluoroalkyl substances (PFAS) from contaminated soil and water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58405-58428. [PMID: 35754080 DOI: 10.1007/s11356-022-21513-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Currently, due to an increase in urbanization and industrialization around the world, a large volume of per- and poly-fluoroalkyl substances (PFAS) containing materials such as aqueous film-forming foam (AFFF), protective coatings, landfill leachates, and wastewater are produced. Most of the polluted wastewaters are left untreated and discharged into the environment, which causes high environmental risks, a threat to human beings, and hampered socioeconomic growth. Developing sustainable alternatives for removing PFAS from contaminated soil and water has attracted more attention from policymakers and scientists worldwide under various conditions. This paper reviews the recent emerging technologies for the degradation or sorption of PFAS to treat contaminated soil and water. It highlights the mechanisms involved in removing these persistent contaminants at a molecular level. Recent advances in developing nanostructured and advanced reduction remediation materials, challenges, and perspectives in the future are also discussed. Among the variety of nanomaterials, modified nano-sized iron oxides are the best sorbents materials due to their specific surface area and photogenerated holes and appear extremely promising in the remediation of PFAS from contaminated soil and water.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute New Delhi, New Delhi, 110012, India
| | - Sami Rtimi
- Global Institute for Water, Environment and Health, CH-1201, Geneva, Switzerland.
| |
Collapse
|
14
|
Campos-Pereira H, Makselon J, Kleja DB, Prater I, Kögel-Knabner I, Ahrens L, Gustafsson JP. Binding of per- and polyfluoroalkyl substances (PFASs) by organic soil materials with different structural composition - Charge- and concentration-dependent sorption behavior. CHEMOSPHERE 2022; 297:134167. [PMID: 35276112 DOI: 10.1016/j.chemosphere.2022.134167] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The charge- and concentration-dependent sorption behavior of a range of per- and polyfluoroalkyl substances (PFASs) was studied for three organic soil samples with different organic matter quality, one Spodosol Oe horizon (Mor Oe) and two Sphagnum peats with different degrees of decomposition (Peat Oi and Peat Oe). Sorption to the two peat materials was, on average, four times stronger compared to that onto the Mor Oe material. In particular, longer-chained PFASs were more strongly bound by the two peats as compared to the Mor Oe sample. The combined results of batch sorption experiments and 13C NMR spectroscopy suggested sorption to be positively related to the content of carbohydrates (i.e., O-alkyl carbon). Sorption of all PFAS subclasses was inversely related to the pH value in all soils, with the largest pH effects being observed for perfluoroalkyl carboxylates (PFCAs) with C10 and C11 perfluorocarbon chain lengths. Experimentally determined sorption isotherms onto the poorly humified Peat Oi did not deviate significantly from linearity for most substances, while for the Mor Oe horizon, sorption nonlinearity was generally more pronounced. This work should prove useful in assessing PFAS sorption and leaching in organic soil horizons within environmental risk assessment.
Collapse
Affiliation(s)
- Hugo Campos-Pereira
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Box 7014, SE-750 07, Uppsala, Sweden
| | - Jennifer Makselon
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Box 7014, SE-750 07, Uppsala, Sweden
| | - Dan B Kleja
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Box 7014, SE-750 07, Uppsala, Sweden; Swedish Geotechnical Institute (SGI), SE-581 93, Linköping, Sweden
| | - Isabel Prater
- Soil Science, Research Department Ecology and Ecosystem Management, Technical University of Munich, Freising, 85354, Germany
| | - Ingrid Kögel-Knabner
- Soil Science, Research Department Ecology and Ecosystem Management, Technical University of Munich, Freising, 85354, Germany
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden
| | - Jon Petter Gustafsson
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Box 7014, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
15
|
Liu S, Zhou J, Guo J, Gao Z, Jia Y, Li S, Wang T, Zhu L. Insights into the impacts of dissolved organic matter of different origins on bioaccumulation and translocation of per- and polyfluoroalkyl substances (PFASs) in wheat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118604. [PMID: 34856244 DOI: 10.1016/j.envpol.2021.118604] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been found to be widely present in soil. Dissolved organic matter (DOM) in soil are supposed to greatly affect the bioavailability of PFASs in soil. Herein, hydroponic experiments were conducted to understand the impacts of two kinds of typical DOM, bovine serum albumin (BSA) and humic acid (HA), on the uptake and translocation of legacy PFASs and their emerging alternatives, perfluorooctane sulfonic acid (PFOS), perfluorooctane acid (PFOA), perfluorohexane sulfonic (PFHxS) and 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA) in wheat (Triticum aestivum L.). The results indicated that both HA and BSA significantly inhibited the bioaccumulation and translocation of PFASs in the roots and shoots of wheat, and the impacts of BSA were greater than HA. This difference was explained by the greater binding affinities of the four PFASs with BSA than with HA, as evidenced by the equilibrium dialysis and isothermal titration calorimetry (ITC) analyses. It was noting that inhibition impacts of the BSA-HA mixture (1:1) were lower than BSA alone. The results of Fourier transform infrared (FT-IR) spectroscopy and excitation-emission matrix (EEM) fluorescence spectroscopy suggested that HA could bind with the fluorescent tryptophan residues in BSA greatly, competing the binding sites with PFASs and forming a cover on the surface of BSA. As a result, the binding of PFASs with BSA-HA complex was much lower than that with BSA, but close to HA. The results of this study shed light on the impacts of DOM in soil on the bioaccumulation and translocation of PFASs in plants.
Collapse
Affiliation(s)
- Siqian Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Jia Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Zhuo Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Yibo Jia
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Shunli Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
16
|
Fabregat-Palau J, Vidal M, Rigol A. Modelling the sorption behaviour of perfluoroalkyl carboxylates and perfluoroalkane sulfonates in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149343. [PMID: 34418616 DOI: 10.1016/j.scitotenv.2021.149343] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
A simple parametric model was developed to predict the sorption of perfluoroalkyl substances (PFASs) in soils. Initially, sorption and desorption solid-liquid distribution coefficients (Kd and Kd,des respectively) of eight PFASs (five perfluoroalkyl carboxylates, PFCAs, and three perfluoroalkane sulfonates, PFSAs) in seven soils with organic carbon (OC) content ranging from 1.6 to 41% were quantified using batch experiments. The information obtained helped to fill the gaps in a literature-based database of Kd values of PFASs, which was lacking data on soils with high OC content. The overall dataset finally comprised 435 entries. Normalized sorption coefficients for the soil OC and mineral fraction contents (KOC and KMIN respectively) were deduced for each PFAS by correlating the corresponding Kd values obtained under a wide range of experimental conditions with the fraction of organic carbon (fOC) of the soils. Furthermore, the sorption mechanisms in each phase were shown to depend mainly on PFAS chain length. The dependence of KOC and KMIN values on PFAS chain length defined the basic equations to construct the model for predicting PFAS sorption, applicable to both PFCAs and PFSAs with chain lengths ranging from 3 to 11 fluorinated carbons. The validation of the proposed model confirmed its ability to predict the Kd of PFASs based only on the soil OC and silt+clay contents and PFAS chain length. Therefore, it can be used in the first stages of a risk assessment process aiming at estimating the potential mobility of PFASs in soils after a contamination event. SYNOPSIS: This study develops a new parametric model to predict the sorption of perfluoroalkyl substances (PFASs) in soils.
Collapse
Affiliation(s)
- Joel Fabregat-Palau
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Miquel Vidal
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Anna Rigol
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
17
|
Uriakhil MA, Sidnell T, De Castro Fernández A, Lee J, Ross I, Bussemaker M. Per- and poly-fluoroalkyl substance remediation from soil and sorbents: A review of adsorption behaviour and ultrasonic treatment. CHEMOSPHERE 2021; 282:131025. [PMID: 34118624 DOI: 10.1016/j.chemosphere.2021.131025] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are xenobiotics, present at variable concentrations in soils and groundwater worldwide. Some of the current remediation techniques being researched or applied for PFAS-impacted soils involve solidification-stabilisation, soil washing, excavation and disposal to landfill, on site or in situ smouldering, thermal desorption, ball milling and incineration. Given the large volumes of soil requiring treatment, there is a need for a more environmentally friendly technique to remove and treat PFASs from soils. Sorbents such as granular/powdered activated carbon, ion exchange resins and silicas are used in water treatment to remove PFAS. In this work, PFAS adsorption mechanisms and the effect of pore size, pH and organic matter on adsorption efficacy are discussed. Then, adsorption of PFAS to soils and sorbents is considered when assessing the viability of remediation techniques. Sonication-aided treatment was predicted to be an effective removal technique for PFAS from a solid phase, and the effect of varying frequency, power and particle size on the effectiveness of the desorption process is discussed. Causes and mitigation strategies for possible cavitation-induced particle erosion during ultrasound washing are also identified. Following soil remediation, degrading the extracted PFAS using sonolysis in a water-organic solvent mixture is discussed. The implications for future soil remediation and sorbent regeneration based on the findings in this study are given.
Collapse
Affiliation(s)
- Mohammad Angaar Uriakhil
- University of Surrey, Department of Chemical and Process Engineering, Surrey, England, GU2 7XH, UK
| | - Tim Sidnell
- University of Surrey, Department of Chemical and Process Engineering, Surrey, England, GU2 7XH, UK
| | | | - Judy Lee
- University of Surrey, Department of Chemical and Process Engineering, Surrey, England, GU2 7XH, UK
| | - Ian Ross
- Tetra Tech, Quay West at MediaCityUK, Trafford Wharf Rd, Trafford Park, Manchester, England, M17 1HH, UK
| | - Madeleine Bussemaker
- University of Surrey, Department of Chemical and Process Engineering, Surrey, England, GU2 7XH, UK.
| |
Collapse
|
18
|
Wang Y, Khan N, Huang D, Carroll KC, Brusseau ML. Transport of PFOS in aquifer sediment: Transport behavior and a distributed-sorption model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146444. [PMID: 33740555 PMCID: PMC8565396 DOI: 10.1016/j.scitotenv.2021.146444] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 05/22/2023]
Abstract
The objectives of this research were to examine the transport of perfluorooctane sulfonic acid (PFOS) in aquifer sediment comprising different geochemical properties, and to compare the behavior to that observed for PFOS transport in soil and sand. PFOS retardation was relatively low for transport in all aquifer media. The PFOS breakthrough curves were asymmetrical and exhibited extensive concentration tailing, indicating that sorption/desorption was significantly nonideal. The results of model simulations indicated that rate-limited sorption/desorption was the primary cause of the nonideal PFOS transport. Comparison of PFOS transport in aquifer media to data reported for PFOS transport in two soils and a quartz sand showed that PFOS exhibited more extensive elution tailing for the soils, likely reflecting differences in the relative contributions of various media constituents to sorption. A three-component distributed-sorption model was developed that accounted for contributions from soil organic carbon, metal oxides, and silt + clay fraction. The model produced very good predictions of Kd for the five media with lower soil organic‑carbon contents (≤0.1%). Soil organic carbon was estimated to contribute 19-42% of the total sorption for all media except the sand, to which it contributed ~100%. The contribution of silt + clay ranged from 51 to 80% for all media except the sand. The only medium for which the contribution of metal-oxides was significant is Hanford, with an estimated contribution of 15%. Overall, the results of the study indicate that sorption of PFOS by these aquifer media comprised contributions from multiple soil constituents.
Collapse
Affiliation(s)
- Yake Wang
- Environmental Science Department, University of Arizona, Tucson, AZ 85721, USA
| | - Naima Khan
- Department of Plant & Environmental Science, New Mexico State University, Las Cruces, NM 88003, USA; Water Science and Management Program, New Mexico State University, Las Cruces, NM 88003, USA
| | - Dandan Huang
- Environmental Science Department, University of Arizona, Tucson, AZ 85721, USA; School of Water Resources & Environment, China University of Geosciences, Beijing 100083, PR China
| | - Kenneth C Carroll
- Department of Plant & Environmental Science, New Mexico State University, Las Cruces, NM 88003, USA; Water Science and Management Program, New Mexico State University, Las Cruces, NM 88003, USA
| | - Mark L Brusseau
- Environmental Science Department, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
19
|
Anderson RH. The Case for Direct Measures of Soil-to-Groundwater Contaminant Mass Discharge at AFFF-Impacted Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6580-6583. [PMID: 33909419 DOI: 10.1021/acs.est.1c01543] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many entities around the world are initiating massive field campaigns to characterize the environmental distribution of per- and polyfluoroalkyl substances (PFAS), particularly at aqueous film-forming foam (AFFF) impacted sites where historic point-source discharges occurred at the ground surface. Concurrently, many regulatory agencies are publishing criteria used in practice to define the "nature and extent" of PFAS-impacted environmental media. Specific to the soil-to-groundwater transport pathway protective of the groundwater ingestion end point, these soil criteria (or screening values) are to date exclusively based on the traditional approach used for hydrophobic organics with a number of simplifying assumptions. Research has clearly contradicted these assumptions, yet alternative methodologies have yet to emerge from the literature. This Perspective provides a rationale for why alternative approaches are critically necessary and proposes the application of lysimetry as a practical solution to accurately assess PFAS transport within unsaturated vadose zone soils. Ultimately, there is an urgent need to justify soil remediation on the basis of groundwater protection and to prioritize remedial efforts in order to optimize limited fiscal resources.
Collapse
Affiliation(s)
- Richard H Anderson
- Air Force Civil Engineer Center (AFCEC), San Antonio, Texas 78056, United States
| |
Collapse
|
20
|
Kah M, Oliver D, Kookana R. Sequestration and potential release of PFAS from spent engineered sorbents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142770. [PMID: 33071146 DOI: 10.1016/j.scitotenv.2020.142770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) have contaminated land and water at numerous sites worldwide that now require remediation. The most common approach for treating contaminated water currently relies on removal of PFAS by sorption. The spent sorbents loaded with PFAS can potentially be disposed of at landfills, provided the sorbed contaminants remain sequestered and certain risk criteria are met. Hence, it is essential that remediation sorbents (i) rapidly adsorb a large variety of PFAS under varying water chemistry conditions, and (ii) do not release the adsorbed PFAS in due course. This review aims at establishing the current state of knowledge about the potential release of PFAS that may occur during and after treatment. The scientific literature currently provides data for a very restricted range of long-chain PFAS. Our knowledge of the dynamics of PFAS adsorption processes on engineered sorbents is limited, and even less is known about their desorption processes. The sorption of PFAS can be strongly affected by changes in the solution pH, ionic strength and dissolved organic matter content, and the process is also subject to complex competition mechanisms in the presence of other PFAS as well as organic contaminants and inorganic salts. Several studies suggest that changes in one or several of these factors may trigger the release of PFAS from engineered sorbents. This phenomenon is more likely to occur for PFAS with shorter carbon chain lengths (<C8), at high pH and in the presence of other PFAS or other anionic sorbates. The release of PFAS from spent sorbent materials, stored or deposited under conditions that vary over time, is highly undesirable, as they can potentially become a secondary source of PFAS in the environment. Our analysis identifies a number of knowledge-gaps that should be urgently addressed in order to design sustainable remediation solutions, including an improved management of spent sorbent materials.
Collapse
Affiliation(s)
- Melanie Kah
- School of Environment, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Danielle Oliver
- CSIRO, Land & Water, Locked bag 2, Glen Osmond, SA, Australia
| | - Rai Kookana
- CSIRO, Land & Water, Locked bag 2, Glen Osmond, SA, Australia; University of Adelaide, School of Agriculture, Food and Wine, Locked bag 1, Glen Osmond 5064, Australia
| |
Collapse
|
21
|
Singh G, Lee JM, Kothandam G, Palanisami T, Al-Muhtaseb AH, Karakoti A, Yi J, Bolan N, Vinu A. A Review on the Synthesis and Applications of Nanoporous Carbons for the Removal of Complex Chemical Contaminants. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200379] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jang Mee Lee
- Global Innovative Center for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Gopalakrishnan Kothandam
- Global Innovative Center for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Thavamani Palanisami
- Global Innovative Center for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ala'a H. Al-Muhtaseb
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khod 123, Muscat, Oman
| | - Ajay Karakoti
- Global Innovative Center for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Nanthi Bolan
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
22
|
Sima MW, Jaffé PR. A critical review of modeling Poly- and Perfluoroalkyl Substances (PFAS) in the soil-water environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143793. [PMID: 33303199 DOI: 10.1016/j.scitotenv.2020.143793] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Due to their health effects and the recalcitrant nature of their CF bonds, Poly- and Perfluoroalkyl Substances (PFAS) are widely investigated for their distribution, remediation, and toxicology in ecosystems. However, very few studies have focused on modeling PFAS in the soil-water environment. In this review, we summarized the recent development in PFAS modeling for various chemical, physical, and biological processes, including sorption, volatilization, degradation, bioaccumulation, and transport. PFAS sorption is kinetic in nature with sorption equilibrium commonly quantified by either a linear, the Freundlich, or the Langmuir isotherms. Volatilization of PFAS depends on carbon chain length and ionization status and has been simulated by a two-layer diffusion process across the air water interface. First-order kinetics is commonly used for physical, chemical, and biological degradation processes. Uptake by plants and other biota can be passive and/or active. As surfactants, PFAS have a tendency to be sorbed or concentrated on air-water or non-aqueous phase liquid (NAPL)-water interfaces, where the same three isotherms for soil sorption are adopted. PFAS transport in the soil-water environment is simulated by solving the convection-dispersion equation (CDE) that is coupled to PFAS sorption, phase transfer, as well as physical, chemical, and biological transformations. As the physicochemical properties and concentration vary greatly among the potentially thousands of PFAS species in the environment, systematic efforts are needed to identify models and model parameters to simulate their fate, transport, and response to remediation techniques. Since many process formulations are empirical in nature, mechanistic approaches are needed to further the understanding of PFAS-soil-water-plant interactions so that the model parameters are less site dependent and more predictive in simulating PFAS remediation efficiency.
Collapse
Affiliation(s)
- Matthew W Sima
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Peter R Jaffé
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
23
|
Knight ER, Bräunig J, Janik LJ, Navarro DA, Kookana RS, Mueller JF, McLaughlin MJ. An investigation into the long-term binding and uptake of PFOS, PFOA and PFHxS in soil - plant systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124065. [PMID: 33069992 DOI: 10.1016/j.jhazmat.2020.124065] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/28/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the potential aging and plant bioaccumulation of three perfluoroalkyl acids (PFAAs), perfluorosulphonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanesulphonic acid (PFHxS) in 20 soils over a six-month period. Sorption coefficients (Log Kd) ranged from 0.13-1.28 for PFHxS, 0.17-1.06 for PFOA and 0.98-2.03 for PFOS, respectively, and bioaccumulation factors (Log BAFs) ranged from 0.29-1.24, 0.22-1.46 and 0.05-0.65 for PFHxS, PFOA and PFOS, respectively. Over the six-month period, Kd values significantly increased for PFHxS and PFOA but the magnitude of the increase was very small and did not translate into differences in plant PFAA-concentrations between aged and freshly spiked treatments. The Kd and BAF values were modelled by multiple linear regression (MLR) to soil physico-chemical properties and by partial least squares regression to soil spectra acquired by mid-infrared spectroscopy (DRIFT-PLSR). Modelling of each PFAA was influenced by different soil properties, including organic carbon, pH, CEC, exchangeable cations (Ca2+, Mg2+, Na+ and K+) and oxalate extractable Al. BAF values were not strongly correlated to any soil property but were inversely correlated to Kd values. Our results indicate that limited aging occurred in these soils over the six-month period.
Collapse
Affiliation(s)
- Emma R Knight
- School of Agriculture, Food and Wine, Faculty of Sciences, The University of Adelaide, PMB 1 Waite Campus, Glen Osmond, South Australia, Australia; Commonwealth Scientific and Industrial Research Organisation, PMB 2 Land and Water, Waite Campus, South Australia, Australia.
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, Australia
| | - Leslie J Janik
- School of Agriculture, Food and Wine, Faculty of Sciences, The University of Adelaide, PMB 1 Waite Campus, Glen Osmond, South Australia, Australia
| | - Divina A Navarro
- Commonwealth Scientific and Industrial Research Organisation, PMB 2 Land and Water, Waite Campus, South Australia, Australia
| | - Rai S Kookana
- School of Agriculture, Food and Wine, Faculty of Sciences, The University of Adelaide, PMB 1 Waite Campus, Glen Osmond, South Australia, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, Australia
| | - Michael J McLaughlin
- School of Agriculture, Food and Wine, Faculty of Sciences, The University of Adelaide, PMB 1 Waite Campus, Glen Osmond, South Australia, Australia
| |
Collapse
|
24
|
Campos-Pereira H, Kleja DB, Sjöstedt C, Ahrens L, Klysubun W, Gustafsson JP. The Adsorption of Per- and Polyfluoroalkyl Substances (PFASs) onto Ferrihydrite Is Governed by Surface Charge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15722-15730. [PMID: 33244971 PMCID: PMC7745537 DOI: 10.1021/acs.est.0c01646] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/30/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
An improved quantitative and qualitative understanding of the interaction of per- and polyfluoroalkyl substances (PFASs) and short-range ordered Fe (hydr)oxides is crucial for environmental risk assessment in environments low in natural organic matter. Here, we present data on the pH-dependent sorption behavior of 12 PFASs onto ferrihydrite. The nature of the binding mechanisms was investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and by phosphate competition experiments. Sulfur K-edge XANES spectroscopy showed that the sulfur atom of the head group of the sulfonated PFASs retained an oxidation state of +V after adsorption. Furthermore, the XANES spectra did not indicate any involvement of inner-sphere surface complexes in the sorption process. Adsorption was inversely related to pH (p < 0.05) for all PFASs (i.e., C3-C5 and C7-C9 perfluorocarboxylates, C4, C6, and C8 perfluorosulfonates, perfluorooctane sulfonamide, and 6:2 and 8:2 fluorotelomer sulfonates). This was attributed to the pH-dependent charge of the ferrihydrite surface, as reflected in the decrease of surface ζ-potential with increasing pH. The importance of surface charge for PFAS adsorption was further corroborated by the observation that the adsorption of PFASs decreased upon phosphate adsorption in a way that was consistent with the decrease in ferrihydrite ζ-potential. The results show that ferrihydrite can be an important sorbent for PFASs with six or more perfluorinated carbons in acid environments (pH ≤ 5), particularly when phosphate and other competitors are present in relatively low concentrations.
Collapse
Affiliation(s)
- Hugo Campos-Pereira
- Department
of Soil and Environment, Swedish University
of Agricultural Sciences (SLU), P.O. Box 7014, SE-750 07 Uppsala, Sweden
| | - Dan B. Kleja
- Department
of Soil and Environment, Swedish University
of Agricultural Sciences (SLU), P.O. Box 7014, SE-750 07 Uppsala, Sweden
- Swedish
Geotechnical Institute (SGI), SE-581 93 Linköping, Sweden
| | - Carin Sjöstedt
- Department
of Soil and Environment, Swedish University
of Agricultural Sciences (SLU), P.O. Box 7014, SE-750 07 Uppsala, Sweden
| | - Lutz Ahrens
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7014, SE-750 07 Uppsala, Sweden
| | - Wantana Klysubun
- Synchrotron
Light Research Institute, 111 Moo 6, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | - Jon Petter Gustafsson
- Department
of Soil and Environment, Swedish University
of Agricultural Sciences (SLU), P.O. Box 7014, SE-750 07 Uppsala, Sweden
- Department
of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden
| |
Collapse
|
25
|
Zhang M, Wang P, Lu Y, Lu X, Zhang A, Liu Z, Zhang Y, Khan K, Sarvajayakesavalu S. Bioaccumulation and human exposure of perfluoroalkyl acids (PFAAs) in vegetables from the largest vegetable production base of China. ENVIRONMENT INTERNATIONAL 2020; 135:105347. [PMID: 31794940 DOI: 10.1016/j.envint.2019.105347] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
This study investigated perfluoroalkyl acids (PFAAs) in edible parts of vegetables, soils, and irrigation water in greenhouse and open filed, for the first time, in Shouguang city, the largest vegetable production base in China, which is located nearby a fluorochemical industrial park (FIP). The bioaccumulation factors (BAFs) were calculated, and the human exposures of PFAAs via consumption of the vegetables for different age groups assuming the maximum levels detected in each vegetable and average consumption rates were also estimated. The ΣPFAA levels ranged from 1.67 to 33.5 ng/g dry weight (dw) in the edible parts of all the vegetables, with perfluorobutanoic acid (PFBA) being the dominant compound with an average contribution of 49% to the ΣPFAA level. The leafy vegetables showed higher ΣPFAA levels (average 8.76 ng/g dw) than the fruit and root vegetables. For all the vegetables, the log10 BAF values of perfluorinated carboxylic acids showed a decreasing trend with increasing chain length, with PFBA having the highest log10 BAF values (average 0.98). Cabbage had higher bioaccumulation of PFBA (log10 BAF 1.24) than other vegetables. For the greenhouse soils and vegetables, the average contribution of perfluorooctanoic acid (PFOA) to ΣPFAA was lower than that in the open field samples, while the contributions of PFBA, PFHxA, PFPeA to ΣPFAA were higher. Irrigation water may be an important source of PFAAs in greenhouse, while for open field vegetables and soils, atmospheric deposition may be an additional contamination pathway. The estimated maximum exposure to PFOA through vegetable consumption for urban preschool children (aged 2-5 years) was 63% of the reference dose set by the European Food Safety Authority. Suggestions are also provided for mitigating the health risks of human exposure to PFAAs.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China.
| | - Xiaotian Lu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Anqi Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyang Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yueqing Zhang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Kifayatullah Khan
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19130, Pakistan
| | | |
Collapse
|
26
|
Li J, He J, Niu Z, Zhang Y. Legacy per- and polyfluoroalkyl substances (PFASs) and alternatives (short-chain analogues, F-53B, GenX and FC-98) in residential soils of China: Present implications of replacing legacy PFASs. ENVIRONMENT INTERNATIONAL 2020; 135:105419. [PMID: 31874352 DOI: 10.1016/j.envint.2019.105419] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 05/27/2023]
Abstract
With the worldwide regulation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), the alternatives (short chain analogues and emerging per- and polyfluoroalkyl substances, PFASs) have gradually attracted global attention. This study analysed the replacing of legacy PFASs in China using PFASs data from residential soils, which might be good environmental indicators of their present usage. The total concentrations of 21 PFASs ranged from 244 to 13564 pg/g, and PFOA was the dominant compound among the studied PFASs, with a concentration of 354 ± 439 pg/g. Serious PFASs pollution in residential soils mainly occurred in Eastern Coastal China as a result of locally developed industry and economies. Weak but significant correlations were found between PFASs and environmental and socioeconomic factors, suggesting that various factors determine PFASs contamination in residential soils. The concentration and detection frequency (DF) of short-chain analogues (C < 8) (375 ± 509 pg/g and 100%), and F-53B (216 ± 306 pg/g and 98.9%) were higher than those for PFOS (193 ± 502 pg/g and 85.4%), indicating that these compounds have been widely used as PFOS alternatives and their consumption has already exceeded that of PFOS in China. In addition, GenX (the PFOA alternative) had a concentration and DF of 19.1 ± 104 pg/g and 40.5%, respectively. These values were much lower than those for PFOA (354 ± 439 pg/g and 96.6%), indicating GenX consumption is still limited at the national scale of China, despite its use as a PFOA replacement. Moreover, the low concentration and DF of FC-98 (2.31 ± 11.1 pg/g and 27.0%) indicate that its consumption might be negligible. Our study demonstrated that short chain analogues and emerging alternatives have become the dominant PFAS pollutants in Chinese residential soils, and further studies need to be conducted to understand their toxicity and environmental risks.
Collapse
Affiliation(s)
- Jiafu Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiahui He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhiguang Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Ying Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
27
|
Groffen T, Rijnders J, Verbrigghe N, Verbruggen E, Prinsen E, Eens M, Bervoets L. Influence of soil physicochemical properties on the depth profiles of perfluoroalkylated acids (PFAAs) in soil along a distance gradient from a fluorochemical plant and associations with soil microbial parameters. CHEMOSPHERE 2019; 236:124407. [PMID: 31545204 DOI: 10.1016/j.chemosphere.2019.124407] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The widespread use of perfluoroalkylated acids (PFAAs) has led to a global presence in the environment, in which they accumulate and may cause detrimental effects. Although soils are known sinks for many persistent organic pollutants, still little is known on the behaviour of PFAAs in soils. Furthermore, studies that examine the relationships between PFAA concentrations and soil microbial parameters are scarce. The 3 M fluorochemical plant near Antwerp has been characterized as a PFAAs hotspot. In the present study, we examined the vertical distribution of 15 PFAAs and their associations with multiple physicochemical soil properties along a distance gradient from this hotspot. Additionally, we tested the relationships between PFAA concentrations in the top soil with soil respiration, microbial activity and microbial biomass. Our results show that both perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) concentrations were elevated in the subsurface layer (up to 50 cm), after which concentrations decreased again, suggesting a downward migration of both analytes in the soil. This downward movement might pose a potential threat for the contamination of the groundwater and, consequently, organisms that rely on this water for consumption. The soil concentrations were influenced by multiple physicochemical properties of the soil, which suggests differences in bioavailability and sorption/desorption capacities between different soil types. We did not observe any influence of PFAA contamination in the top soil on microbial activity and biomass nor soil respiration.
Collapse
Affiliation(s)
- Thimo Groffen
- Systemic Physiological and Ecotoxicologal Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; Behavioural Ecology and Ecophysiology Group (BECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Jet Rijnders
- Systemic Physiological and Ecotoxicologal Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Niel Verbrigghe
- Centre of Excellence Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Erik Verbruggen
- Centre of Excellence Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group (BECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Lieven Bervoets
- Systemic Physiological and Ecotoxicologal Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
28
|
Brusseau ML. Estimating the relative magnitudes of adsorption to solid-water and air/oil-water interfaces for per- and poly-fluoroalkyl substances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113102. [PMID: 31491699 PMCID: PMC6800169 DOI: 10.1016/j.envpol.2019.113102] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/18/2019] [Accepted: 08/22/2019] [Indexed: 05/19/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) have attracted considerable concern due to their widespread occurrence in the environment and potential human health risks. Given the complexity of PFAS retention in multi-phase systems, it would be useful for characterization and modeling purposes to be able to readily determine the relative significance of the individual retention processes for a given PFAS and set of subsurface conditions. A quantitative-structure/property-relationship (QSPR) analysis was conducted for adsorption of PFAS by soils, sediments, and granular activated carbon (GAC), and integrated with a prior analysis conducted for adsorption to air-water and oil-water interfaces. The results demonstrated that a model employing molar volume provided reasonable predictions of organic-carbon normalized soil/sediment adsorption coefficients (log Koc), GAC-adsorption coefficients (log Kd), and air/oil-water interfacial adsorption coefficients (log Ki) for PFAS. The relative magnitudes of solid-water and air/oil-water interfacial adsorption were compared as a function of controlling variables. A nomograph was developed that provides a first-order determination of the relative significance of these interfacial adsorption processes in multi-phase porous-media systems.
Collapse
Affiliation(s)
- Mark L Brusseau
- Environmental Science Department, School of Earth and Environmental Sciences, University of Arizona, Tucson, AZ 85721, USA; Hydrology and Atmospheric Sciences Department, School of Earth and Environmental Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
29
|
Kovacevic V, Simpson AJ, Simpson MJ. The concentration of dissolved organic matter impacts the metabolic response in Daphnia magna exposed to 17α-ethynylestradiol and perfluorooctane sulfonate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:468-478. [PMID: 30553925 DOI: 10.1016/j.ecoenv.2018.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
The pharmaceutical 17α-ethynylestradiol (EE2) and the industrial chemical perfluorooctane sulfonate (PFOS) are organic contaminants frequently detected in freshwater environments. It is hypothesized that hydrophobic organic contaminants can sorb to dissolved organic matter (DOM) and this may reduce the toxicity of these contaminants by reducing the contaminants' bioavailability. To investigate this hypothesis, 1H nuclear magnetic resonance (NMR)-based metabolomics was used to determine how the metabolome of Daphnia magna changes when a range of DOM concentrations are added during EE2 and PFOS exposure experiments. D. magna were exposed for 48 h to sub-lethal concentrations of 1 mg/L EE2 or 30 mg/L PFOS in the presence of 0, 1, 2, 3 and 4 mg dissolved organic carbon (DOC)/L. EE2 exposure resulted in increased amino acids and decreased glucose in D. magna. All DOM concentrations were able to lessen these metabolite disturbances from EE2 exposure, likely due to reductions in the bioavailability of EE2 through interactions with DOM. Exposure to PFOS resulted in decreased amino acids, and the presence of 1 mg DOC/L did not alter this metabolic response. However, PFOS exposure with the higher DOM concentrations resulted in a different pattern of metabolite changes which may be due to combined impacts of PFOS and DOM on the metabolome or due to an increase in PFOS bioavailability and uptake in D. magna. These results suggest that the concentration of DOM influences the sensitive biochemical changes in organisms that occur during acute sub-lethal exposure to organic contaminants.
Collapse
Affiliation(s)
- Vera Kovacevic
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - André J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4.
| |
Collapse
|
30
|
Li F, Fang X, Zhou Z, Liao X, Zou J, Yuan B, Sun W. Adsorption of perfluorinated acids onto soils: Kinetics, isotherms, and influences of soil properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:504-514. [PMID: 30176462 DOI: 10.1016/j.scitotenv.2018.08.209] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/06/2018] [Accepted: 08/16/2018] [Indexed: 05/22/2023]
Abstract
The adsorption of perfluorinated acids (PFAs) onto soils with different physicochemical properties was investigated in this study. The adsorption kinetics for all PFAs onto the soil with the highest contents of total organic carbon (TOC) and iron oxide were well described by a biexponential adsorption model, indicating that two types of binding sites characterized by a fast and a slow sorption rates were involved in the adsorption, and the time required for achieving adsorption equilibrium was <48 h for all PFAs. The adsorption isotherms were well represented by both of Freundlich equation (R2 = 0.9547-0.9977) and/or Virial equation (R2 = 0.8720-0.9995). The interfacial capacitances derived from the Virial isotherm were substantially low (in the range of 33.7 to 851 μF/m2) for all soils, but were not analyte-independent for all PFAs onto the same soil. The linear regression between distribution coefficient (Kd) and individual soil property as well as principle component analysis were conducted for determining the dominant soil physicochemical properties affecting the adsorption of PFAs onto soil in the present study. The results indicated that the content of protein rather than of total organic carbon (TOC) was the dominant property, and then followed by anion exchange capacity (AEC) and the content of iron oxides. For the other properties, the influences of fulvic acid (FA) and aluminum oxides were PFA-dependent, while there were no effects of saccharide, humic acid (HA), specific surface area (SSA) and cation exchange capacities (CEC) on the adsorption.
Collapse
Affiliation(s)
- Fei Li
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen 361021, China
| | - Xinliang Fang
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen 361021, China
| | - Zhenming Zhou
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen 361021, China
| | - Xiaobin Liao
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen 361021, China
| | - Jing Zou
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen 361021, China
| | - Baoling Yuan
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen 361021, China.
| | - Wenjie Sun
- Department of Civil and Environmental Engineering, Southern Methodist University, Dallas, TX 75275, USA.
| |
Collapse
|
31
|
Feng H, Zhang H, Cao H, Sun Y, Zhang A, Fu J. Application of a Novel Coarse-Grained Soil Organic Matter Model in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14228-14234. [PMID: 30444355 DOI: 10.1021/acs.est.8b03116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Soil organic matter (SOM) is ubiquitous in the environment. Intensive efforts have been made to find effective ways to assess the interaction of SOM with contaminants since such interactions are one of the important criteria used to evaluate the migration, persistency and bioavailability of chemicals in the environment. This study aims to extend the application of coarse-grained (CG) dissipative particle dynamics (DPD) to the water/SOM system and predict contaminant mobility in the system. The CG model was based on the Vienna Soil-Organic-Matter Modeler, which can generate flexible condensed-phase models of SOM. A series of DPD simulations was performed to investigate the mobility of perfluorinated sulfonic acids (PFSAs) and hexachlorobutadiene (HCBD). The results indicated that the mobility of PFSAs decreased with increasing length in the carbon chain. In addition, HCBD and hexachlorobenzene (HCB) have similar diffusion coefficients, indicating analogous behavior in SOM. Moreover, water-containing SOM layers may reflect a more realistic situation. This work, coupling the CG method with DPD simulation, provides a new high-efficiency tool to assess the behavior of contaminants in the environment.
Collapse
Affiliation(s)
- Hongru Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Science , Beijing 100085 , China
- College of Resource and Environment , University of Chinese Academy of Sciences , Beijing 100190 , China
- State Key Laboratory in Marine Pollution , City University of Hong Kong , Hong Kong , China
| | - Haiyan Zhang
- College of Environment , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Huiming Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Science , Beijing 100085 , China
| | - Yuzhen Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Science , Beijing 100085 , China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Science , Beijing 100085 , China
- College of Resource and Environment , University of Chinese Academy of Sciences , Beijing 100190 , China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Science , Beijing 100085 , China
| |
Collapse
|
32
|
Kovacevic V, Simpson AJ, Simpson MJ. Evaluation of Daphnia magna metabolic responses to organic contaminant exposure with and without dissolved organic matter using 1H nuclear magnetic resonance (NMR)-based metabolomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:189-200. [PMID: 30118952 DOI: 10.1016/j.ecoenv.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Previous studies have shown that contaminant toxicity to target organisms is altered by the presence of dissolved organic matter (DOM). Contaminants can bind to DOM and this may alter the bioavailability and subsequent toxicity of the contaminants. However, molecular-level techniques are needed to more closely evaluate the impact of DOM on the sub-lethal biochemical responses to emerging contaminants. To investigate how DOM may alter the metabolic response to organic contaminant exposure, 1H nuclear magnetic resonance (NMR)-based metabolomics was used to investigate how the metabolome of Daphnia magna changes when Suwannee River DOM (5 mg organic carbon/L) is included in the acute exposure of four contaminants with varying hydrophobicity. Sub-lethal concentrations of the hydrophobic contaminant 17α-ethynylestradiol (EE2), the relatively more polar compounds carbamazepine and imidacloprid, or the anionic contaminant perfluorooctane sulfonate (PFOS) were used. A 48-h exposure to DOM alone had a minor impact on the metabolome of D. magna. There were significant increases in amino acids from EE2 exposure which were reduced in the presence of DOM, suggesting that DOM may alleviate the sub-lethal metabolic response from EE2 exposure through sorption and a reduction in freely dissolved EE2. The metabolome was relatively unaltered with exposure to carbamazepine and imidacloprid in the presence of DOM which is likely because these contaminants are water soluble and did not strongly interact with DOM. PFOS exposure resulted in a more significant metabolic response with DOM suggesting that DOM enhanced the uptake and bioavailability of PFOS in D. magna. As such, the presence of DOM should be considered when determining sensitive molecular-level changes in organisms to sub-lethal organic contaminant exposure.
Collapse
Affiliation(s)
- Vera Kovacevic
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - André J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4.
| |
Collapse
|
33
|
Campos Pereira H, Ullberg M, Kleja DB, Gustafsson JP, Ahrens L. Sorption of perfluoroalkyl substances (PFASs) to an organic soil horizon - Effect of cation composition and pH. CHEMOSPHERE 2018; 207:183-191. [PMID: 29793030 DOI: 10.1016/j.chemosphere.2018.05.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 05/28/2023]
Abstract
Accurate prediction of the sorption of perfluoroalkyl substances (PFASs) in soils is essential for environmental risk assessment. We investigated the effect of solution pH and calculated soil organic matter (SOM) net charge on the sorption of 14 PFASs onto an organic soil as a function of pH and added concentrations of Al3+, Ca2+ and Na+. Often, the organic C-normalized partitioning coefficients (KOC) showed a negative relationship to both pH (Δlog KOC/ΔpH = -0.32 ± 0.11 log units) and the SOM bulk net negative charge (Δlog KOC = -1.41 ± 0.40 per log unit molc g-1). Moreover, perfluorosulfonic acids (PFSAs) sorbed more strongly than perfluorocarboxylic acids (PFCAs) and the PFAS sorption increased with increasing perfluorocarbon chain length with 0.60 and 0.83 log KOC units per CF2 moiety for C3-C10 PFCAs and C4, C6, and C8 PFSAs, respectively. The effects of cation treatment and SOM bulk net charge were evident for many PFASs with low to moderate sorption (C5-C8 PFCAs and C6 PFSA). However for the most strongly sorbing and most long-chained PFASs (C9-C11 and C13 PFCAs, C8 PFSA and perfluorooctane sulfonamide (FOSA)), smaller effects of cations were seen, and instead sorption was more strongly related to the pH value. This suggests that the most long-chained PFASs, similar to other hydrophobic organic compounds, are preferentially sorbed to the highly condensed domains of the humin fraction, while shorter-chained PFASs are bound to a larger extent to humic and fulvic acid, where cation effects are significant.
Collapse
Affiliation(s)
- Hugo Campos Pereira
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, SE-75007 Uppsala, Sweden.
| | - Malin Ullberg
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, SE-75007 Uppsala, Sweden
| | - Dan Berggren Kleja
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, SE-75007 Uppsala, Sweden; Swedish Geotechnical Institute, Kornhamnstorg 61, SE-11127 Stockholm, Sweden
| | - Jon Petter Gustafsson
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, SE-75007 Uppsala, Sweden; Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, 10044 Stockholm, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-75007 Uppsala, Sweden
| |
Collapse
|
34
|
Rosa LMT, Botero WG, Santos JCC, Cacuro TA, Waldman WR, do Carmo JB, de Oliveira LC. Natural organic matter residue as a low cost adsorbent for aluminum. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 215:91-99. [PMID: 29567556 DOI: 10.1016/j.jenvman.2018.03.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
The contamination of aquatic and terrestrial environments by potentially toxic metals is highlighted by the possible impacts that their high availability can have on the environment. Thus, the development of alternative absorbents that can be used in the remediation of contaminated areas is of great environmental interest. Humin, one of the fractions of natural organic matter, is a promising alternative in studies on the retention of different metals that are environmentally toxic. In this study, the influence of the organic and inorganic humin constituents that are involved in the retention of aluminum species was evaluated. After extraction and calcination to obtain the ashes (inorganic constituents), humin and ash samples were structurally characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Interaction studies between aluminum-humin and ash-humin were performed in the pH range of 4.0-8.0 and with various contact times. The results of the characterization of humin and ash showed different functional groups present in the structures of these materials. Based on the results of the interaction between humin-aluminum and ash-aluminum, it can be inferred that both the organic and inorganic components of humin are efficient at absorbing aluminum. However, the adsorption isotherms showed that humin and the ashes have different adsorption behaviors. Humin is the only fraction of natural organic matter with a significant inorganic constituent content; it is the fraction least used by researchers in this field and is often discarded as waste. In light of this, the results obtained in this work highlight the importance of humin as a natural adsorbent material. Humin may be promising for the removal of aluminum species in contaminated environments due to the presence of organic and inorganic constituents.
Collapse
Affiliation(s)
- Luana Maria Tavares Rosa
- Federal University of São Carlos, Sorocaba Campus, Graduate Program in Biotechnology and Environmental Monitoring, São Paulo 18052-780, Brazil
| | - Wander Gustavo Botero
- Federal University of Alagoas, Graduate Program in Chemistry and Biotechnology, Alagoas 57072-900, Brazil
| | | | - Thiago Aguiar Cacuro
- Federal University of São Carlos, Sorocaba Campus, Graduate Program in Biotechnology and Environmental Monitoring, São Paulo 18052-780, Brazil
| | - Walter Ruggeri Waldman
- Federal University of São Carlos, Sorocaba Campus, Graduate Program in Biotechnology and Environmental Monitoring, São Paulo 18052-780, Brazil
| | - Janaina Braga do Carmo
- Federal University of São Carlos, Sorocaba Campus, Graduate Program in Biotechnology and Environmental Monitoring, São Paulo 18052-780, Brazil
| | - Luciana Camargo de Oliveira
- Federal University of São Carlos, Sorocaba Campus, Graduate Program in Biotechnology and Environmental Monitoring, São Paulo 18052-780, Brazil.
| |
Collapse
|
35
|
Sun Z, Zhang C, Chen P, Zhou Q, Hoffmann MR. Impact of humic acid on the photoreductive degradation of perfluorooctane sulfonate (PFOS) by UV/Iodide process. WATER RESEARCH 2017; 127:50-58. [PMID: 29031799 DOI: 10.1016/j.watres.2017.10.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Iodide photolysis under UV illumination affords an effective method to produce hydrated electrons (eaq-) in aqueous solution. Therefore, UV/Iodide photolysis can be utilized for the reductive degradation of many recalcitrant pollutants. However, the effect of naturally occurring organic matter (NOM) such as humic and fulvic acids (HA/FA), which may impact the efficiency of UV/Iodide photoreduction, is poorly understood. In this study, the UV photoreductive degradation of perfluorooctane sulfonate (PFOS) in the presence of I- and HA is studied. PFOS undergoes a relatively slow direct photoreduction in pure water, a moderate level of degradation via UV/Iodide, but a rapid degradation via UV/Iodide/HA photolysis. After 1.5 h of photolysis, 86.0% of the initial [PFOS] was degraded in the presence of both I- and HA with a corresponding defluorination ratio of 55.6%, whereas only 51.7% of PFOS was degraded with a defluorination ratio of 4.4% via UV/Iodide illumination in the absence of HA. The relative enhancement in the presence of HA in the photodegradation of PFOS can be attributed to several factors: a) HA enhances the effective generation of eaq- due to the reduction of I2, HOI, IO3- and I3- back to I-; b) certain functional groups of HA (i.e., quinones) enhance the electron transfer efficiency as electron shuttles; c) a weakly-bonded association of I- and PFOS with HA increases the reaction probability; and d) absorption of UV photons by HA itself produces eaq-. The degradation and defluorination efficiency of PFOS by UV/Iodide/HA process is dependent on pH and HA concentration. As pH increases from 7.0 to 10.0, the enhancement effect of HA improves significantly. The optimal HA concentration for the degradation of 0.03 mM PFOS is 1.0 mg L-1.
Collapse
Affiliation(s)
- Zhuyu Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chaojie Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Pei Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qi Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Michael R Hoffmann
- Linde-Robinson Laboratories, California Institute of Technology, Pasadena, CA 91125, United States
| |
Collapse
|
36
|
Feng H, Lin Y, Sun Y, Cao H, Fu J, Gao K, Zhang A. In silico approach to investigating the adsorption mechanisms of short chain perfluorinated sulfonic acids and perfluorooctane sulfonic acid on hydrated hematite surface. WATER RESEARCH 2017; 114:144-150. [PMID: 28237782 DOI: 10.1016/j.watres.2017.02.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 02/01/2017] [Accepted: 02/11/2017] [Indexed: 06/06/2023]
Abstract
Short chain perfluorinated sulfonic acids (PFSAs) that were introduced as alternatives for perfluorooctane sulfonic acid (PFOS) have been widely produced and used. However, few studies have investigated the environmental process of short chain PFSAs, and the related adsorption mechanisms still need to be uncovered. The water-oxide interface is one of the major environmental interfaces that plays an important role in affecting the adsorption behaviour and transport potential of the environmental pollutant. In this study, we performed molecular dynamics simulations and quantum chemistry calculations to investigate the adsorption mechanisms of five PFSAs and their adsorption on hydrated hematite surface as well. Different to the vertical configuration reported for PFOS on titanium oxide, all PFSAs share the same adsorption configuration as the long carbon chains parallel to the surface. The formation of hydrogen bonds between F and inter-surface H helps to stabilize the unique configuration. As a result, the sorption capacity increases with increasing C-F chain length. Moreover, both calculated adsorption energy and partial density of states (PDOS) analysis demonstrate a PFSAs adsorption mechanism in between physical and chemical adsorption because the hydrogen bonds formed by the overlap of F (p) orbital and H (s) orbital are weak intermolecular interactions while the physical adsorption are mainly ascribed to the electrostatic interactions. This massive calculation provides a new insight into the pollutant adsorption behaviour, and in particular, may help to evaluate the environmental influence of pollutants.
Collapse
Affiliation(s)
- Hongru Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuzhen Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huiming Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ke Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
37
|
Zhao L, Zhu L, Zhao S, Ma X. Sequestration and bioavailability of perfluoroalkyl acids (PFAAs) in soils: Implications for their underestimated risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:169-176. [PMID: 27497034 DOI: 10.1016/j.scitotenv.2016.07.196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Different from typical hydrophobic organic contaminants (HOCs), perfluoroalkyl acids (PFAAs) are more soluble in water and less partitioned to soil than the HOCs. It remains unclear whether and to what extent PFAAs could be sequestrated in soil. In this study, sequential extraction of PFAAs in soil and bioaccumulation of PFAAs in earthworm were carried out to understand the sequestration and bioavailability of PFAAs in soils with different soil organic matter (SOM) and aged for different time periods (7 and 47d). Sequestration occurred in different degrees depending on the amount and compositions of SOM in soil, structural properties of PFAAs and aging time. Surprisingly, in one peat soil with high fraction of organic carbon (foc, 59%), the PFAAs were completely sequestrated in the soil. Aging might lead to further sequestration of PFAAs in soil with relatively lower foc. As a consequence of sequestration, the bioavailability of PFAAs in peat soils was reduced 3-10 times compared to that in the plain farmland soil. However, the sequestrated PFAAs were still bioaccumulative in earthworms to some extent. The results indicated that the risk of PFAAs in field soil with high content of SOM could be underestimated if only free PFAAs using mild solvent extraction were monitored.
Collapse
Affiliation(s)
- Lixia Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Institute of Agro-Environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Shuyan Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xinxin Ma
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
38
|
Gong Y, Wang L, Liu J, Tang J, Zhao D. Removal of aqueous perfluorooctanoic acid (PFOA) using starch-stabilized magnetite nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:191-200. [PMID: 27100000 DOI: 10.1016/j.scitotenv.2016.03.100] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
Fully stabilized magnetite (Fe3O4) nanoparticles were prepared with a water-soluble starch as a stabilizer and tested for removal of aqueous perfluorooctanoic acid (PFOA). The presence of starch at ≥0.2wt% can fully stabilize 0.1g/L as Fe of the Fe3O4 nanoparticles. The particle stabilization technique resulted in 2.4 times higher PFOA uptake. Fourier transform infrared spectra suggested that the main PFOA removal mechanism was inner-sphere complexation. Batch kinetic experiments revealed that the starch-stabilized nanoparticles facilitated a rapid PFOA uptake with a sorption equilibrium time of 30min, and the sorption process followed a pseudo-second-order kinetic model. The Langmuir model was able to well interpret the adsorption isotherm, with a maximum adsorption capacity of 62.5mg/g. Increasing pH from 4.7 to 9.6 led to a sharp increase (by 2.6 times) in PFOA uptake. The presence of 12mg/L humic acid inhibited PFOA uptake by 96%, while effect of ionic strength (CaCl2=0-2mmol/L) was negligible. The nanoparticles significantly reduced the biological toxicity of PFOA. The results demonstrated promise of starch-stabilized Fe3O4 nanoparticles as a "green" adsorbent for effective removal of PFOA in soil and groundwater.
Collapse
Affiliation(s)
- Yanyan Gong
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Lin Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Juncheng Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Dongye Zhao
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|