1
|
Ren X, Li Y, Feng T, Lei J, Cheng L. Removal of cefuroxime from aqueous solution by biochars derived from antibiotic mycelial residue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61049-61059. [PMID: 39402362 DOI: 10.1007/s11356-024-35296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
In China, antibiotic mycelial residue is categorized as hazardous waste. To achieve the harmless and resourceful disposal of cephalosporin, three types of biochars from cephalosporin mycelia residues, namely non-activated carbon (BC1), ZnCl2-activated carbon (BC2), and KOH-activated carbon (BC3), were respectively fabricated by high-temperature pyrolysis carbonization technology. These three kinds of biochars were characterized via iodine value, FTIR, and SEM, and the adsorption performance of the prepared biochars was investigated using cefuroxime (CXM) as the adsorption target. The results indicated that BC3 biochar possesses the most well-developed pores and the highest iodine value of 1367.41 mg/g; The most suitable dosage is 1.6 g/L, and the lower the pH, the more favorable the adsorption effect. The investigation of adsorption kinetics revealed that it conformed to the kinetic model of pseudo-second order, as well as the process of adsorption was governed by the chemical adsorption mechanism, the rate of adsorption was affected by the collective impact of the quantity of active sites present and the interaction strength between the CXM molecules and the biochar. The exploration of adsorption thermodynamics revealed that it aligned with the Langmuir model, the surface of biochar was relatively uniform, and the adsorption was mainly of low coverage; The calculation of thermodynamic parameters demonstrated that the adsorption was exothermic and spontaneous.
Collapse
Affiliation(s)
- Xiaoli Ren
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, No. 31, Xinlan Road, Jiancaoping District, Taiyuan, Shanxi Province, PR China.
| | - Yingfu Li
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, No. 31, Xinlan Road, Jiancaoping District, Taiyuan, Shanxi Province, PR China
| | - Tao Feng
- Sinopharm Weiqida Pharmaceutical Co., Ltd., Datong, Shanxi Province, PR China
| | - Juan Lei
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, No. 31, Xinlan Road, Jiancaoping District, Taiyuan, Shanxi Province, PR China
| | - Lijun Cheng
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, No. 31, Xinlan Road, Jiancaoping District, Taiyuan, Shanxi Province, PR China
| |
Collapse
|
2
|
Yan J, Guo X, Li Q, Yuan X, Zhang Z, Tremblay LA, Li Z. Biochar derivation at low temperature: A novel strategy for harmful resource usage of antibiotic mycelial dreg. ENVIRONMENTAL RESEARCH 2024; 250:118376. [PMID: 38354891 DOI: 10.1016/j.envres.2024.118376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/14/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Antibiotic mycelial dreg (AMD) has been categorized as hazardous waste due to the high residual hazardous contaminants. Inappropriate management and disposal of AMD can cause potential environmental and ecological risks. In this study, the potential of pleuromutilin mycelial dreg (PMD) as a novel feedstock for preparing tetracycline hydrochloride (TC) adsorbent was explored to achieve safe management of PMD. The results suggested that residual hazardous contaminants were completely eliminated after pyrolysis. With the increase of pyrolysis temperature, the yields, H/C, O/C, (O + N)/C, and pore size in PMD-derived biochars (PMD-BCs) decreased, while BET surface area and pore volume increased, resulting in the higher stability of the PMD-BCs prepared from higher temperatures. The TC adsorption of the PMD-BCs increased from 27.3 to 46.9 mg/g with the increase of the pyrolysis temperature. Surprisingly, pH value had a strong impact on the TC adsorption, the adsorption capacity of BC-450 increased from 6.5 to 71.1 mg/g when the solution pH value increased from 2 to 10. Lewis acid-base interaction, pore filling, π-π interaction, hydrophobic interaction, and charge-assisted hydrogen bond (CAHB) are considered to drive the adsorption. This work provides a novel pathway for the concurrent detoxification and reutilization of AMD.
Collapse
Affiliation(s)
- Jing Yan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueqi Guo
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjie Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xufeng Yuan
- College of Agronomy and Biotechnology, China Agriculture University, Beijing, 100193, China
| | - Zhenghai Zhang
- Shandong Shengli Bioengineering Co., LTD., Jining, 272000, Shandong, China
| | - Louis A Tremblay
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand; School of Biological Sciences, University of Auckland, PO Box 92019, Auckland, 1142, New Zealand
| | - Zhaojun Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Cheng J, Zhang L, Gao X, Shi T, Li G, Luo W, Qi C, Xu Z. Multi-stage aeration regime to regulate organic conversion toward gas alleviation and humification in food waste digestate composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120809. [PMID: 38583382 DOI: 10.1016/j.jenvman.2024.120809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Aerobic composting has been considered as a pragmatic technique to convert food waste digestate into high-quality biofertiliser. Nevertheless, massive gaseous emission and immature product remain the primary challenges in food waste digestate composting. Thus, the performance of multi-stage aeration regimes to improve gaseous emissions and organic humification during food waste digestate composting was investigated in this study. In addition to continuous aeration with a constant intensity of 0.3 L kg·dry mass (DM)-1·min-1, two multi-stage decreased aeration regimes were designed as "0.3-0.2-0.1" and "0.3-0.1-0.1" L·kg·DM-1·min-1 from the thermophilic to cooling and then mature stages, respectively. Results showed that the decreased aeration regimes could alleviate nitrous oxide (N2O) and ammonia (NH3) emission and slightly enhance humification during composting. The alleviated N2O and NH3 emission were mainly contributed by abiotically reducing gaseous release potential as well as biotically inactivating denitrifers (Pusillimonas and Pseudidiomarina) and proliferating Atopobium to reduce nitrate availability under lower aeration supply. The "0.3-0.2-0.1 L kg·DM-1·min-1" regime exhibited a more excellent performance to alleviate N2O and NH3 emission by 27.5% and 16.3%, respectively. Moreover, the decreased aeration regimes also favored the enrichment of functional bacteria (Caldicoprobacter and Syntrophomonas) to accelerate lignocellulosic biodegradation and thus humic acid synthesis by 6.5%-11.2%. Given its better performance to improve gaseous emissions and humification, the aeration regime of "0.3-0.2-0.1 L kg·DM-1·min-1" are recommended in food waste digestate composting in practice.
Collapse
Affiliation(s)
- Jingwen Cheng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lanxia Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Tong Shi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Sahoo A, Dwivedi A, Madheshiya P, Kumar U, Sharma RK, Tiwari S. Insights into the management of food waste in developing countries: with special reference to India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17887-17913. [PMID: 37271790 PMCID: PMC10239724 DOI: 10.1007/s11356-023-27901-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 05/21/2023] [Indexed: 06/06/2023]
Abstract
Up to one third of the food that is purposely grown for human sustenance is wasted and never consumed, with adverse consequences for the environment and socio-economic aspects. In India, managing food waste is a significant environmental concern. Food waste output is increasing in Indian cities and towns as a result of the country's urban expansion, modernization, and population growth. Poor management of food waste can have negative consequences for the environment and pose a risk to the public's health issues. This review focuses on the current challenges, management strategies, and future perspectives of food waste management in India. The efficient management of food waste involves a comprehensive study regarding the characterization of food waste and improved waste management methods. In addition, the government policies and rules for managing food waste that is in effect in India are covered in this review.
Collapse
Affiliation(s)
- Ansuman Sahoo
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Akanksha Dwivedi
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Parvati Madheshiya
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Umesh Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajesh Kumar Sharma
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Supriya Tiwari
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Noor RS, Shah AN, Tahir MB, Umair M, Nawaz M, Ali A, Ercisli S, Abdelsalam NR, Ali HM, Yang SH, Ullah S, Assiri MA. Recent Trends and Advances in Additive-Mediated Composting Technology for Agricultural Waste Resources: A Comprehensive Review. ACS OMEGA 2024; 9:8632-8653. [PMID: 38434807 PMCID: PMC10905604 DOI: 10.1021/acsomega.3c06516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Agriculture waste has increased annually due to the global food demand and intensive animal production. Preventing environmental degradation requires fast and effective agricultural waste treatment. Aerobic digestion or composting uses agricultural wastes to create a stabilized and sterilized organic fertilizer and reduces chemical fertilizer input. Indeed, conventional composting technology requires a large surface area, a long fermentation period, significant malodorous emissions, inferior product quality, and little demand for poor end results. Conventional composting loses a lot of organic nitrogen and carbon. Thus, this comprehensive research examined sustainable and adaptable methods for improving agricultural waste composting efficiency. This review summarizes composting processes and examines how compost additives affect organic solid waste composting and product quality. Our findings indicate that additives have an impact on the composting process by influencing variables including temperature, pH, and moisture. Compost additive amendment could dramatically reduce gas emissions and mineral ion mobility. Composting additives can (1) improve the physicochemical composition of the compost mixture, (2) accelerate organic material disintegration and increase microbial activity, (3) reduce greenhouse gas (GHG) and ammonia (NH3) emissions to reduce nitrogen (N) losses, and (4) retain compost nutrients to increase soil nutrient content, maturity, and phytotoxicity. This essay concluded with a brief summary of compost maturity, which is essential before using it as an organic fertilizer. This work will add to agricultural waste composting technology literature. To increase the sustainability of agricultural waste resource utilization, composting strategies must be locally optimized and involve the created amendments in a circular economy.
Collapse
Affiliation(s)
- Rana Shahzad Noor
- Department
of Agriculture, Biological, Environment and Energy Engineering, College
of Engineering, Northeast Agricultural University, Harbin 150030, China
- Faculty
of Agricultural Engineering and Technology, PMAS-Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Adnan Noor Shah
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
| | - Muhammad Bilal Tahir
- Institute
of Physics, Khwaja Fareed University of
Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
| | - Muhammad Umair
- Faculty
of Agricultural Engineering and Technology, PMAS-Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Muhammad Nawaz
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
| | - Amjed Ali
- Faculty
of Agriculture, Department of Agronomy, University of Sargodha, Sargodha 40100, Punjab, Pakistan
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkiye
| | - Nader R. Abdelsalam
- Agricultural
Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Hayssam M. Ali
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Seung Hwan Yang
- Department
of Biotechnology, Chonnam National University, Yeosu 59626, South Korea
| | - Sami Ullah
- Department
of Chemistry, College of Science, King Khalid
University, Abha 61413, Saudi Arabia
| | - Mohammed Ali Assiri
- Department
of Chemistry, College of Science, King Khalid
University, Abha 61413, Saudi Arabia
| |
Collapse
|
6
|
Rajeshkumar L, Kumar PS, Ramesh M, Sanjay MR, Siengchin S. Assessment of biodegradation of lignocellulosic fiber-based composites - A systematic review. Int J Biol Macromol 2023; 253:127237. [PMID: 37804890 DOI: 10.1016/j.ijbiomac.2023.127237] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Lignocellulosic fiber-reinforced polymer composites are the most extensively used modern-day materials with low density and better specific strength specifically developed to render better physical, mechanical, and thermal properties. Synthetic fiber-reinforced composites face some serious issues like low biodegradability, non-environmentally friendly, and low disposability. Lignocellulosic or natural fiber-reinforced composites, which are developed from various plant-based fibers and animal-based fibers are considered potential substitutes for synthetic fiber composites because they are characterized by lightweight, better biodegradability, and are available at low cost. It is very much essential to study end-of-life (EoL) conditions like biodegradability for the biocomposites which occur commonly after their service life. During biodegradation, the physicochemical arrangement of the natural fibers, the environmental conditions, and the microbial populations, to which the natural fiber composites are exposed, play the most influential factors. The current review focuses on a comprehensive discussion of the standards and assessment methods of biodegradation in aerobic and anaerobic conditions on a laboratory scale. This review is expected to serve the materialists and technologists who work on the EoL behaviour of various materials, particularly in natural fiber-reinforced polymer composites to apply these standards and test methods to various classes of biocomposites for developing sustainable materials.
Collapse
Affiliation(s)
- L Rajeshkumar
- Centre for Machining and Materials Testing, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - P Sathish Kumar
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| | - M Ramesh
- Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, India
| | - M R Sanjay
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand.
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| |
Collapse
|
7
|
Feng M, Liu Y, Yang L, Li Z. Antibiotics and antibiotic resistance gene dynamics in the composting of antibiotic fermentation waste - A review. BIORESOURCE TECHNOLOGY 2023; 390:129861. [PMID: 37863331 DOI: 10.1016/j.biortech.2023.129861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
Fate of antibiotics and antibiotic resistance genes (ARGs) during composting of antibiotic fermentation waste (AFW) is a major concern. This review article focuses on recent literature published on this subject. The key findings are that antibiotics can be removed effectively during AFW composting, with higher temperatures, appropriate bulking agents, and suitable pretreatments improving their degradation. ARGs dynamics during composting are related to bacteria and mobile genetic elements (MGEs). Higher temperatures, suitable bulking agents and an appropriate C/N ratio (30:1) lead to more efficient removal of ARGs/MGEs by shaping the bacterial composition. Keeping materials dry (moisture less than 30%) and maintaining pH stable around 7.5 after composting could inhibit the rebound of ARGs. Overall, safer utilization of AFW can be realized by optimizing composting conditions. However, further removal of antibiotics and ARGs at low levels, degradation mechanism of antibiotics, and spread mechanism of ARGs during AFW composting require further investigation.
Collapse
Affiliation(s)
- Minmin Feng
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yuanwang Liu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Lie Yang
- Wuhan University of Technology, School of Resources & Environmental Engineering, Wuhan 430070, China
| | - Zhaojun Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Feng L, Li Z, Hong C, Xing Y, Qin Y, Lü Y, Zhao X, Lü J. Characteristic analysis of bio-oil from penicillin fermentation residue by catalytic pyrolysis. ENVIRONMENTAL TECHNOLOGY 2023; 44:2481-2489. [PMID: 35107056 DOI: 10.1080/09593330.2022.2034980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/15/2022] [Indexed: 06/08/2023]
Abstract
The hazardous waste penicillin fermentation residue (PR) is a huge hazard to the environment. The bio-oil produced by the pyrolysis of the penicillin fermentation residue has the potential to become a biofuel in the future. This paper studied the pyrolysis characteristics of PR at 400°C ∼700°C. According to the weight loss and weight loss rate of PR, the whole process of pyrolysis can be divided into three stages for analysis: dehydration and volatilization, initial pyrolysis, and pyrolytic char formation. The experimental results showed that the yield of the liquid phase is the highest (33.11%) at 600°C. GC-MS analysis results showed that high temperature is beneficial to reduce the generation of oxygenated hydrocarbons (73%∼31%) and the yield of nitrogenous compounds gradually increased (19%∼43%); the yield of hydrocarbons was low in 400°C∼600°C pyrolysis (2%∼5%) but significantly increased around 700°C (22%). In the temperature range of 400°C to 700°C, the proportion of C5-C13 in bio-oil gradually increased (26%-64%), and the proportion of C14-C22 gradually decreased (47%-16%). The catalyst can increase the proportion of hydrocarbons in the bio-oil component. And the Fe2O3/HZSM-5 mixed catalyst has a significant reduction effect on oxygen-containing hydrocarbons and nitrogen-containing compounds.
Collapse
Affiliation(s)
- Lihui Feng
- University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Zaixing Li
- Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Chen Hong
- University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Yi Xing
- University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Yan Qin
- Chinese Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Yongtao Lü
- China North China Pharmaceutical Co., Ltd., Shijiazhuang, People's Republic of China
| | - Xiumei Zhao
- China North China Pharmaceutical Co., Ltd., Shijiazhuang, People's Republic of China
| | - Jianwei Lü
- China North China Pharmaceutical Co., Ltd., Shijiazhuang, People's Republic of China
| |
Collapse
|
9
|
Evaluation of bacterial diversity in a swine manure composting system contaminated with veterinary antibiotics (VAs). Arch Microbiol 2023; 205:85. [PMID: 36757625 DOI: 10.1007/s00203-022-03382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 11/18/2022] [Accepted: 12/18/2022] [Indexed: 02/10/2023]
Abstract
Composting has become an alternative for the treatment of organic effluents, due to its low cost, easy handling, and a great capacity for treating swine manure. As it is a biological process, many microorganisms are involved during the composting process and act in the degradation of organic matter and nutrients and also have the ability to degrade contaminants and accelerate the transformations during composting. The objective of this work was to identify microorganisms present in the swine effluent composting system, under the contamination by most used veterinary drugs in Brazil. The composting took place for 150 days, there was an addition of 200 L of manure (these 25 L initially contaminated with 17 antibiotics) in 25 kg of eucalyptus wood shavings. The microorganisms were measured at times (0 until 150 days) and were identified by the V3-V4 regions of the 16S rRNA for Bacteria, by means of next-generation sequencing (NSG). The results show seven different bacterial phyla (Proteobacteria, Bacteroidetes, Firmicutes, Acidobacteria, Actinobacteria, Spirochaetota and Tenericutes) and 70 bacterial genera (more than 1% significance), of which the most significant ones were Pseudomonas, Sphingobacterium, Devosia, Brucella, Flavisolibacter, Sphingomonas and Nitratireductor. The genus Brucella was found during mesophilic and thermophilic phases, and this genus has not yet been reported an in article involving composting process. With the results obtained, the potential for adaptation of the bacterial community was observed, being under the influence of antibiotics for veterinary use.
Collapse
|
10
|
Tang R, Liu Y, Ma R, Zhang L, Li Y, Li G, Lin J, Li Q, Yuan J. Effect of moisture content, aeration rate, and C/N on maturity and gaseous emissions during kitchen waste rapid composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116662. [PMID: 36347216 DOI: 10.1016/j.jenvman.2022.116662] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
To determine factors affecting compost maturity and gaseous emissions during the rapid composting of kitchen waste, an orthogonal test was conducted with three factors: moisture content (MC) (55%, 60%, 65%), aeration rate (AR) (0.3,0.6 and 0.9 L·kg-1DM·min-1) and C/N ratio (21, 24, 27). The results showed that the importance of factors affecting compost maturity was: C/N > AR > MC, optimal conditions were: C/N of 24, AR of 0.3 L·kg-1DM·min-1and MC of 65%. For gaseous emissions, the sequence of essential factors affecting NH3 emissions was: C/N > MC > AR, and the optimal parameters for NH3 reduction were: C/N of 27, MC of 65%, and AR of L·kg-1DM·min-1. The important factors affecting N2O and H2S emissions are both: MC > C/N > AR, while their best parameters were different. The optimal parameters for N2O emission reduction were MC of 60%, AR of 0.3 L·kg-1DM·min-1 and C/N of 24, while these for H2S were MC of 55%, AR of 0.3 L·kg-1DM·min-1 and C/N of 21. The C/N mainly affected the compost maturity and AR further affected the maturity and pollutant gas emissions by influencing the temperature and O2 content. Considering comprehensively the maturity and gaseous reduction, the optimal control parameters were: MC of 60%-65%, AR of L·kg-1DM·min-1, and C/N of 24-27.
Collapse
Affiliation(s)
- Ruolan Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Yan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Lanxia Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Yanming Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Jiacong Lin
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China.
| |
Collapse
|
11
|
Wan X, Li J, Xie L, Wei Z, Wu J, Wah Tong Y, Wang X, He Y, Zhang J. Machine learning framework for intelligent prediction of compost maturity towards automation of food waste composting system. BIORESOURCE TECHNOLOGY 2022; 365:128107. [PMID: 36243261 DOI: 10.1016/j.biortech.2022.128107] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Reactive composting is a promising technology for recovering valuable resources from food waste, while its manual regulation is laborious and time-consuming. In this study, machine learning (ML) technologies are adopted to enable automated composting by predicting compost maturity and providing process regulation. Four machine learning algorithms, namely random forest (RF), extreme gradient boosting (XGBoost), Light Gradient Boosting Machine (LightGBM) and Multilayer Perceptron (MLP) are employed to predict the seed germination index (GI) and C/N ratio. Based on the best fusion model with the highest R2 of 0.977 and 0.986 for the multi-task prediction of GI and C/N ratio, the critical factors and their interactions with maturity are identified. Moreover, the ML model is validated on a composting reactor and the ML-based prediction application can provide regulation to ensure food waste decompose within the required time. In conclusion, this compost maturity prediction system automates the reactive composting, thus reducing labor costs.
Collapse
Affiliation(s)
- Xin Wan
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Jie Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Heilongjiang 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Heilongjiang 150030, China
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Xiaonan Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China.
| |
Collapse
|
12
|
Cui H, Wang L, Zhang J. Synergistic influence on microbial communities ascribed to copper and tetracycline during aerobic composting: Insights into bacterial and fungal structures. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1019494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There are a considerable number of discussions aimed at analyzing microbial communities and their functions during the composting process. However, microbial succession under copper (Cu) and tetracycline (TCH)-stressed conditions has received less attention. Thus, this work analyzed the bacterial and fungal structures with high-throughput sequencing in Cu/TCH-amended composting (Cu: 0, 100, and 500 mg/kg; TCH: 0, 50, and 300 mg/kg), and the dominating controls on microbial diversity were identified using redundancy analysis (RDA) and structural equation models (SEMs). Low-concentration Cu increased the peak temperature (57°C) at the thermophilic phase. Composting phase-derived changes in bacterial and fungal communities were significant, while Cu and TCH showed a remarkable influence on fungi but not on bacteria. Cu and TCH inhibited Firmicutes' activity while promoting Actinobacteriota growth. Low-concentration Cu and TCH had a negative effect on Basidiomycota in the thermophilic phase and a positive influence on Chytridiomycota in the mature phase. TOC and TN were primary controls on the changes in microbial communities. NH4+-N and NO3--N were more beneficial to fungi with a contribution proportion of 42.13 and 16.85%, respectively. These findings could provide theoretical guidance for the directional research on microbial inoculants.
Collapse
|
13
|
Liu S, Hou X, Xin Q, Wang Y, Xin Y, Liu G, Zhou C, Liu H, Yan Q. Degradation of rifamycin from mycelial dreg by activated persulfate: Degradation efficiency and reaction kinetics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153229. [PMID: 35051483 DOI: 10.1016/j.scitotenv.2022.153229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Rifamycin mycelial dreg (RMD) is a biological waste, and its residual rifamycin (RIF) is potentially harmful to both the environment and human health. In this work, thermally activated persulfate (PDS) oxidative degradation of RIF in RMD was developed for the first time. The effects of reaction temperature, initial PDS concentration, and pH on RIF degradation in RMD were investigated, and the treatment conditions were optimized using response surface methodology (RSM). The results showed that 90 °C, 50 mg/g PDS, and pH = 5.3 were the optimal pretreatment conditions, and 100% degradation efficiency of RIF (734 mg/kg) was achieved. SEM and FTIR analyses confirmed that the RIF was destroyed and decomposed after the oxidation reaction. The possible degradation pathways of RIF in the thermally activated PDS system were discussed through HPLC/MS and ESR analyses. The intermediate product was identified, and the toxicity of the final product was predicted to be low or nontoxic. In this work, a degradation pathway of RMD was proposed by activating persulfate, which facilitates subsequent resource utilization and provides meaningful guidance for the practical treatment of antibiotic mycelium residue (AMR).
Collapse
Affiliation(s)
- Shiqi Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiangting Hou
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuxin Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Guocheng Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Chengzhi Zhou
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Huiling Liu
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
14
|
Decentralized Processing Performance of Fruit and Vegetable Waste Discarded from Retail, Using an Automated Thermophilic Composting Technology. SUSTAINABILITY 2022. [DOI: 10.3390/su14052835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Food waste generation is increasing at an exponential rate, affecting the environment, food security, and causing major economic issues worldwide. The main aim of the current research is to investigate a novel composting technology that is still in its early stages of development. The proposed composting technology combining thermophilic composting with the use of advanced automated processing reactors. Starting from a qualitative and quantitative analysis of the waste generated at retail-stores, the most significant difficulties associated to waste management as well as the main characteristics of the discarded waste were identified. The findings allowed to design and evaluate the real operating performance of an automated thermophilic composting prototype (working in a decentralized regime), with the goal of delivering a faster processing system, improving operational efficiency, reducing expenses, and lowering environmental impacts. The proposed operating technique showed a high capacity for pathogens and seeds removal, the waste input mass reduction of 88%, and efficiency in food processing (2235 kg of fruits and vegetables in a 14-days timeframe).
Collapse
|
15
|
Wang Y, Tang Y, Li M, Yuan Z. Aeration rate improves the compost quality of food waste and promotes the decomposition of toxic materials in leachate by changing the bacterial community. BIORESOURCE TECHNOLOGY 2021; 340:125716. [PMID: 34385125 DOI: 10.1016/j.biortech.2021.125716] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The effect of aeration rates on maturity, leachate and bacterial community succession during a pilot-scale food waste composting were evaluated. Out of the four aeration rates (0.44, 3.25, 6.50 and 11.65 L kg-1 DM initial min-1 for T1, T2, T3 and T4, respectively) that were conducted, results found T2 to be the recommended ventilation rate considering the quality of compost and the leachate utilization. Higher ventilation increased germination index of diluted leachate. The abundance of Proteobacteria in mesophilic stage (35.5%) and Actinobacteria in cooling stage (30.6%) in T4 were higher than in other groups (7.9%-17.5%), suggesting the formation of a select community categorized by the capacity of degrading the organic matter and promoting maturity. The key bacteria of aeration-shaped bacterial communities such as Sporosarcina, Pseudomonas and Thermobifida were identified and they could be manipulated by increasing NH4+, NO3- contents and pH in the initial stage of composting.
Collapse
Affiliation(s)
- Yumei Wang
- Department of Environment, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ya Tang
- Department of Environment, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Mengyao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zengwei Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
16
|
Yang W, Fan X, Li S, Ma Z, Cheng Y, Kou J. Can white clover facilitate apple orchard residue composting? ENVIRONMENTAL TECHNOLOGY 2021; 42:2428-2437. [PMID: 31825742 DOI: 10.1080/09593330.2019.1703822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Aiming to assess the efficiency of white clove (WC) as an alternative nitrogen source for composting and to facilitate the utilization of orchard waste, WC as compared with chicken manure (CM) was aerobically composted with apple tree leaves (ATL) in initial C/N ratios of 25(R25), 30(R30) and 35(R35). The results show that WC facilitated the rapid and harmless treatment of ATL with the compost temperature above 55°C for more than 3 days. After composting, for all final products, organic matter content was 69.9%-72.9%, electrical conductivity (EC) 1.48-2.31 ms cm-1, germination index (GI) more than 80% and C/N ratios less than 20. Among all treatments, the product from R30 was most nutrient-rich. Compared with CM, WC facilitated the harmless treatment of ATL and required less time for high quality compost production. It is concluded that WC is an excellent replacement for animal manure as a nitrogen source in field composting of orchard waste in areas with limited transportation. WC and ATL can produce high quality organic fertilizer and initial C/N ratio of 30 is recommended.
Collapse
Affiliation(s)
- Wenquan Yang
- College of Life Sciences, Northwest A & F University, Yangling, People's Republic of China
| | - Xiaolong Fan
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Shangwei Li
- Gulang Grassland Station, Agriculture and Animal Husbandry Bureau of Gulang County, Gulang, People's Republic of China
| | - Zhenzhu Ma
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Yuyang Cheng
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Jiancun Kou
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
17
|
Chen Y, Du L, Li S, Song W, Jensen PA, Lin W. Pyrolysis of antibiotic mycelial dreg and characterization of obtained gas, liquid and biochar. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123826. [PMID: 33254808 DOI: 10.1016/j.jhazmat.2020.123826] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/22/2020] [Indexed: 06/12/2023]
Abstract
The disposal and utilization of antibiotic mycelial dreg (AMD), which has been identified as a hazardous waste in China, are a serious concern because of the residual antibiotic and huge annual output. Pyrolysis is a promising technology to treat AMD. However, the pyrolysis of AMD is not studied in an adequate degree, particularly no attention has been paid to the release and distribution of the phosphorus in AMD during pyrolysis. Therefore, the present work studied the pyrolysis of AMD more comprehensively. The influence of pyrolysis temperature on product yields and characteristics, together with the release and distribution of nitrogen and phosphorus, and the antibiotic residue in products, were investigated. The results suggested that residual antibiotic was eliminated after pyrolysis. Nitrogen was mainly contained in the biochar and liquid products, while phosphorus was mainly retained in the biochar. Liquid products were characterized by abundant oxygen and nitrogen-containing compounds, while biochar was featured of both abundant nitrogen and inorganic phosphate groups. Pyrolysis temperature showed a significant effect on product yields and characteristics, and a low pyrolysis temperature is recommended considering the recycling of nitrogen and phosphorus. The disposal of AMD through pyrolysis conforms to the principles of AMD disposal.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China; Sino-Danish College, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lin Du
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
| | - Songgeng Li
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China; Sino-Danish College, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenli Song
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China; Sino-Danish College, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Peter Arendt Jensen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Weigang Lin
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China; Sino-Danish College, University of Chinese Academy of Sciences, 100049, Beijing, China; Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark.
| |
Collapse
|
18
|
Liu H, Huang Y, Duan W, Qiao C, Shen Q, Li R. Microbial community composition turnover and function in the mesophilic phase predetermine chicken manure composting efficiency. BIORESOURCE TECHNOLOGY 2020; 313:123658. [PMID: 32540690 DOI: 10.1016/j.biortech.2020.123658] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work was to study the influence of inoculation with microbial inoculants (MI) or mature compost (MC) by comparing the resultant composting efficiency with that in a noninoculated (CK) treatment. MI and MC application both accelerated the composting process according to fluorescence excitation-emission matrix (EEM) detection and germination index testing. Bacterial and fungal community composition both differed significantly over the composting period. However, the turnover of the initial bacterial community played a significant role in the composting process, and the key operational taxonomic units (OTUs) of MI (OTU_26, Thermicanus) and MC (OTU_48, Tepidimicrobium) showed significant explanatory power for the formation of humic acid-like and fulvic acid-like substances, respectively, during the stage of composting. Thus, our results indicate that microbial inoculation accelerates the composting process by stimulating key resident microbes in the initial stage.
Collapse
Affiliation(s)
- Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Yan Huang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Wandong Duan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Cece Qiao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
19
|
Voběrková S, Maxianová A, Schlosserová N, Adamcová D, Vršanská M, Richtera L, Gagić M, Zloch J, Vaverková MD. Food waste composting - Is it really so simple as stated in scientific literature? - A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138202. [PMID: 32224413 DOI: 10.1016/j.scitotenv.2020.138202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 06/10/2023]
Abstract
Food waste has recently gained much worldwide interest due to its influence on the environment, economy and society. Gathering and recycling of food waste is the essential issue in the waste management and the interest in processing food waste arises mainly out of influence of the processes of food putrefaction on the environment. Composting of food waste encounters a number of technical challenges, arising weak physical structure of food waste with weak porosity, high content of water, low carbon-to-nitrogen relation and fast hydrolysis and accumulation of organic acids during composting. Therefore, the aim of this study was to investigate the challenges facing installations intended for food waste composting, with the purpose to their optimization with use of appropriate additives. Physico-chemical, biochemical characteristics and phytotoxicity of the produced compost has been measured. Two additives (20% biochar and 20% sawdust) were chosen from experimental variants I-XII containing different additives (biochar, Devonian sand, sawdust) in diverse concentration. The use of selected additives seems to slightly increase potential of hydrogen value and carbon-to-nitrogen ratio, while decreasing electrical conductivity in comparison with control sample. The results obtained also show that the addition of biochar leads to an increase dehydrogenase, phosphatase and arylsulphatase activities and addition of sawdust has a positive effect on beta-D-glucosidase, protease, phosphatase and arylsulphatase activities. The phytotoxicity test shows that the compost made of food waste (control sample) and with addition of biochar is toxic to plants. By contrast, the addition of sawdust shows that the compost was not phytotoxic. In conclusion, the addition of additives does not provide unambiguous results in terms of the quality of the final product in all monitored parameters. Therefore, we can state that food waste was reduced and hygienized, and that the final product does not meet conditions for mature compost.
Collapse
Affiliation(s)
- Stanislava Voběrková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| | - Alžbeta Maxianová
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Nikola Schlosserová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Dana Adamcová
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Martina Vršanská
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| | - Lukáš Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| | - Milica Gagić
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| | - Jan Zloch
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Magdalena Daria Vaverková
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776 Warsaw, Poland.
| |
Collapse
|
20
|
Ruggero F, Gori R, Lubello C. Methodologies to assess biodegradation of bioplastics during aerobic composting and anaerobic digestion: A review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2019; 37:959-975. [PMID: 31218932 DOI: 10.1177/0734242x19854127] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bioplastics are emerging on the market as sustainable materials which rise to the challenge to improve the lifecycle of plastics from the perspective of the circular economy. The article aims at providing a critical insight of research studies carried out in the last 20 years on the degradation of bioplastics under aerobic composting and anaerobic digestion conditions. It mainly focuses on the various and different methodologies which have been proposed and developed to monitor the process of biodegradation of several bioplastic materials: CO2 and CH4 measurements, mass loss and disintegration degree, spectroscopy, visual analysis and scanning electron microscopy. Moreover, across the wide range of studies, the process conditions of the experimental setup, such as temperature, test duration and waste composition, often vary from author to author and in accordance with the international standard followed for the test. The different approaches, in terms of process conditions and monitoring methodologies, are pointed out in the review and highlighted to find significant correlations between the results obtained and the experimental procedures. These observed correlations allow critical considerations to be reached about the efficiency of the methodologies and the influence of the main abiotic factors on the process of biodegradation of bioplastics.
Collapse
Affiliation(s)
- Federica Ruggero
- Department of Civil and Environmental Engineering, University of Firenze, Italy
| | - Riccardo Gori
- Department of Civil and Environmental Engineering, University of Firenze, Italy
| | - Claudio Lubello
- Department of Civil and Environmental Engineering, University of Firenze, Italy
| |
Collapse
|
21
|
Qiao C, Ryan Penton C, Liu C, Shen Z, Ou Y, Liu Z, Xu X, Li R, Shen Q. Key extracellular enzymes triggered high-efficiency composting associated with bacterial community succession. BIORESOURCE TECHNOLOGY 2019; 288:121576. [PMID: 31176934 DOI: 10.1016/j.biortech.2019.121576] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 05/22/2023]
Abstract
A consortium of key bacterial taxa plays critical roles in the composting process. In order to elucidate the identity and mechanisms by which specific bacterial species drive high-efficiency composting, the succession of key bacterial consortia and extracellular enzymes produced during the composting process were monitored in composting piles with varying initial C/N ratios. Results showed that C/N ratios of 25 and 35 enhanced composting efficiency through elevated temperatures, higher germination indices, enhanced cellulose and hemicellulose degradation, and higher cellulase and dehydrogenase activities. The activities of cellulase and β-glucosidase, cellulase and protease, and cellulase and β-glucosidase exhibited significant relationships with bacterial community composition within the mesophilic, thermophilic, and mature phases, respectively. Putative key taxa, linked to a higher composting efficiency, such as Nonomuraea, Desemzia, Cellulosimicrobium, Virgibacillus, Clostridium, and Achromobacter, exhibited significantly positive relationships with extracellular enzyme activities, suggesting a significant contribution to these taxa to the development of composting maturity.
Collapse
Affiliation(s)
- Cece Qiao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; College of Integrative Sciences and Arts, Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Mesa, AZ, USA
| | - C Ryan Penton
- College of Integrative Sciences and Arts, Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Mesa, AZ, USA
| | - Chao Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Yannan Ou
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Zhengyang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xu Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| |
Collapse
|
22
|
Alkoaik FN. Integrating aeration and rotation processes to accelerate composting of agricultural residues. PLoS One 2019; 14:e0220343. [PMID: 31344136 PMCID: PMC6657913 DOI: 10.1371/journal.pone.0220343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/13/2019] [Indexed: 11/18/2022] Open
Abstract
The active phase of conventional static composting systems varies dramatically, ranging from several weeks to several months. Therefore, this study was to examine the effect of a combined continuous aeration-rotation process on shortening the active phase of composted material. A mixture of tomato plant residues with 20%-chicken manure (v/v) was composted in two identical pilot-scale bioreactors. One of them was static, and the other was continuously rotated at 3 rpm; each was supplied with continuous aeration. Compost temperatures (Tc) were measured throughout the composting process; the moisture content (MC) and carbon/nitrogen ratio (C/N) were measured at the beginning and end of the experiment. The quality and stage of compost were evaluated at the end of the experiment using Dewar, Solvita, and visual tests. Continuous aeration-rotation significantly reduced the active phase period to 4.5 days, increased the compost temperature (Tc) to 60°C after 3 days of operation, and remained at 50-65°C for approximately 3 consecutive days (thermophilic stage). In contrast, compost in the static bioreactor remained in the mesophilic stage (Tc < 45°C). During the composting process, the C/N ratio was reduced from 30/1 to 23/1 in the rotating bioreactor, while it remained at 30/1 in the static bioreactor, indicating that the nitrogen content was not a limiting factor affecting the composting process. The MC was within the optimum range for microorganisms (58-61%) for both bioreactors. After the active phase had ended in the rotating bioreactor, the compost was inactive and ready for further maturation, while compost from the static bioreactor was still immature and active. These results show that the proposed method can be done on a commercial scale to significantly reduce the composting period and to enhance the compost stability and productivity.
Collapse
Affiliation(s)
- Fahad N. Alkoaik
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| |
Collapse
|
23
|
Qasim W, Moon BE, Okyere FG, Khan F, Nafees M, Kim HT. Influence of aeration rate and reactor shape on the composting of poultry manure and sawdust. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:633-645. [PMID: 30640581 DOI: 10.1080/10962247.2019.1569570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
To achieve successful composting, all the biological, chemical, and physical characteristics need to be considered. The investigation of our study was based on various physicochemical properties, i.e., temperature, ammonia concentration, carbon dioxide concentration, pH, electrical conductivity (EC), carbon/nitrogen (C/N) ratio, organic matter (OM) content, moisture content, bacterial population, and seed germination index (GI), during the composting of poultry manure and sawdust for different aeration rates and reactor shapes. Three cylindrical-shaped and three rectangular-shaped pilot-scale 60-L composting reactors were used in this study, with aeration rates of 0.3 (low), 0.6 (medium), and 0.9 (high) L min-1 kg-1 DM (dry matter). All parameters were monitored over 21 days of composting. Results showed that the low aeration rate (0.3 L min-1 kg-1 DM) corresponded to a higher and longer thermophilic phase than did the high aeration rate (0.9 L min-1 kg-1 DM). Ammonia and carbon dioxide volatilization were directly related to the temperature profile of the substrate, with significant differences between the low and high aeration rates during weeks 2 and 3 of composting but no significant difference observed during week 1. At the end of our study, the final values of pH, EC, moisture content, C/N ratio, and organic matter in all compost reactors were lower than those at the start. The growth rates of mesophilic and thermophilic bacteria were directly correlated with mesophilic and thermophilic conditions of the compost. The final GI of the cylindrical reactor with an airflow rate of 0.3 L min-1 kg-1 DM was 82.3%, whereas the GIs of the other compost reactors were below 80%. In this study, compost of a cylindrical reactor with a low aeration rate (0.3 L min-1 kg-1 DM) was more stable and mature than the other reactors. Implications: The poultry industry is growing in South Korea, but there are problems associated with the management of poultry manure, and composting is one solution that could be valuable for crops and forage if managed properly. For high-quality composting, the aeration rate in different reactor shapes must be considered. The objective of this study was to investigate various physicochemical properties with different aeration rates and rector shapes. Results showed that aeration rate of 0.3 L min-1 kg-1 DM in a cylindrical reactor provides better condition for maturation of compost.
Collapse
Affiliation(s)
- Waqas Qasim
- a Department of Bio-systems Engineering , Gyeongsang National University (Institute of Agriculture & Life Science) , Jinju , Korea
| | - Byeong Eun Moon
- a Department of Bio-systems Engineering , Gyeongsang National University (Institute of Agriculture & Life Science) , Jinju , Korea
| | - Frank Gyan Okyere
- a Department of Bio-systems Engineering , Gyeongsang National University (Institute of Agriculture & Life Science) , Jinju , Korea
| | - Fawad Khan
- a Department of Bio-systems Engineering , Gyeongsang National University (Institute of Agriculture & Life Science) , Jinju , Korea
| | - Mohammad Nafees
- b Department of Environmental Science , University of Peshawar , Khyber Pakhtunkhwa , Pakistan
| | - Hyeon Tae Kim
- a Department of Bio-systems Engineering , Gyeongsang National University (Institute of Agriculture & Life Science) , Jinju , Korea
| |
Collapse
|
24
|
Wang X, Zheng G, Chen T, Shi X, Wang Y, Nie E, Liu J. Effect of phosphate amendments on improving the fertilizer efficiency and reducing the mobility of heavy metals during sewage sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 235:124-132. [PMID: 30682664 DOI: 10.1016/j.jenvman.2019.01.048] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/23/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Composting has been globally applied as an effective and cost-efficient process to manage and reuse sewage sludge. In the present study, four different phosphates as well as a mixture of ferrous sulfate and monopotassium phosphate were used in sewage sludge composting. The results showed that these phosphate amendments promoted an increase in temperature and the degradation of organic matter as well as reduction on nitrogen loss during 18 days of composting. In addition, ferrous sulfate and phosphate had a synergistic effect on reducing nitrogen loss. The contents of total phosphorus and available phosphorus in the compost with addition of 1% phosphate were 40.9% and 66.1% higher than the compost with control treatment. Using the BCR (Community Bureau of Reference) sequential extraction procedure, the addition of calcium magnesium phosphate significantly reduced the mobility factor of Cd, Zn and Cu by 24.2%, 1.7% and 18.8%, respectively. The mobility factors of Pb were increased in all samples, but the monopotassium phosphate treated sample exhibited the greatest Pb passivation ability with the lowest mobility factor increase (1.8%) among all treatments. The X-ray diffraction patterns of compost samples indicated that the passivation mechanism of Cu and Zn may be the forming CuFeS2 and ZnCu(P2O7) crystals during sewage sludge composting. The germination index showed that the compost of all treatments was safe for agricultural application; the germination index of the calcium magnesium phosphate treatment was 99.9 ± 11.8%, which was the highest among all treatments.
Collapse
Affiliation(s)
- Xiankai Wang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Shi
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuewei Wang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Erqi Nie
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwan Liu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Ren S, Lu A, Guo X, Zhang Q, Wang Y, Guo X, Wang L, Zhang B. Effects of co-composting of lincomycin mycelia dregs with furfural slag on lincomycin degradation, degradation products, antibiotic resistance genes and bacterial community. BIORESOURCE TECHNOLOGY 2019; 272:83-91. [PMID: 30316195 DOI: 10.1016/j.biortech.2018.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
This study explored the effects of co-composting of lincomycin mycelia dregs (LMDs) with furfural slag on variations in antibiotic resistance genes (ARGs) and the bacterial community. The results showed that more than 99% lincomycin was reduced after composting. Moreover, the total absolute and relative abundance of ARGs increased by 180 and 5 times, respectively. The gene lnuA was detected in the LMDs compost and it was proved to participate in lincomycin biodegradation based on the analysis of Pearson's correlation and the lincomycin degradation byproducts. Redundancy analysis showed the succession of the bacterial community had a greater influence than the environmental parameters (residual lincomycin, C/N, pH and temperature) on the variation of ARGs during composting. Composting was not effective in reducing most of the ARGs and intI1 and thus the LMDs compost is dangerous to the ecological environment.
Collapse
Affiliation(s)
- Shengtao Ren
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Aqian Lu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Xiaoying Guo
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Qianqian Zhang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Yan Wang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Xiali Guo
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, PR China.
| | - Lianzhong Wang
- Henan Xinxiang Hua Xing Pharmaceutical Factory, Xinxiang 453731, Henan, PR China
| | - Baobao Zhang
- Henan Xinxiang Hua Xing Pharmaceutical Factory, Xinxiang 453731, Henan, PR China
| |
Collapse
|
26
|
Zhao J, Sun X, Awasthi MK, Wang Q, Ren X, Li R, Chen H, Wang M, Liu T, Zhang Z. Performance evaluation of gaseous emissions and Zn speciation during Zn-rich antibiotic manufacturing wastes and pig manure composting. BIORESOURCE TECHNOLOGY 2018; 267:688-695. [PMID: 30071460 DOI: 10.1016/j.biortech.2018.07.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
In this study, the co-composting performance of Zn-rich antibiotic manufacturing wastes (AMW) and pig manure (PM) was evaluated. Four treatments, representing 2.5%, 5%, 10% and 20% of AMW (of PM dry weight) and control without AMW, were established during composting. Results suggested that the temperature, pH, electrical conductivity, NH4+-N and germination index in end product met the maturity and sanitation requirement. More than 99% of residual antibiotic was removed. Compared with PM composting alone, the cumulative CH4 and N2O emissions in AMW composting increased by 13.46-79.00% and 10.78-65.12%, respectively. While the higher mixing ratios of AMW (10% and 20%) presented a negative impact on composing by inhibiting organic matter (OM) degradation and higher NH3 emissions. The AMW had highly bioavailable Zn, but the exchangeable faction of Zn significantly decreased with the composting progress.
Collapse
Affiliation(s)
- Junchao Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xining Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Hongyu Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Meijing Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
27
|
Ren S, Guo X, Lu A, Guo X, Wang Y, Sun G, Guo W, Ren C, Wang L. Effects of co-composting of lincomycin mycelia dregs with furfural slag on lincomycin degradation, maturity and microbial communities. BIORESOURCE TECHNOLOGY 2018; 265:155-162. [PMID: 29890440 DOI: 10.1016/j.biortech.2018.05.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
This paper investigated the effect of co-composting of lincomycin mycelia dregs (LMDs) with furfural slag on the degradation of lincomycin, maturity and microbial communities. Results showed that after 66 days composting, the concentration of lincomycin was removed above 99%. The final pH, C/N and germination index (GI) all met the national standards in maturity. Enumeration of total cultivable microbes showed the composting process was not inhibited by the addition of LMDs. Microbial diversity suggested that co-composting was beneficial to increase the abundance and diversity of bacterial communities for LMDs' treatment. Canonical correlation analysis (CCA) indicated the bacteria communities were strongly affected by residual lincomycin, with lincomycin reduced greatly, microbial communities of T and CK became similar at the end of composting. The potential bacteria to degrade lincomycin were Anaerococcus, Peptostreptococcus, and Lactobacillus. Based on these results, this research indicated that the co-composting was a feasible treatment for LMDs.
Collapse
Affiliation(s)
- Shengtao Ren
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Xiali Guo
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Aqian Lu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Xiaoying Guo
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Yan Wang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, PR China.
| | - Guoping Sun
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Weiwei Guo
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Chaobin Ren
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Lianzhong Wang
- Henan Xinxiang Hua Xing Pharmaceutical Factory, Xinxiang 453731, Henan, PR China
| |
Collapse
|
28
|
Wang B, Li G, Cai C, Zhang J, Liu H. Assessing the safety of thermally processed penicillin mycelial dreg following the soil application: Organic matter's maturation and antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:1463-1469. [PMID: 29913606 DOI: 10.1016/j.scitotenv.2018.04.288] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 05/18/2023]
Abstract
To degrade the residual penicillin G in penicillin mycelial dreg (PMD), thermal treatment was used as a pretreatment for practical disposal. Given that the characteristics of treated-PMD aren't adequately clear, a lab-scale experiment was conducted to verify its safety assessment for land application under the following points: (i) variation of penicillin G residue (ii) maturity of organic matter (OM) (iii) phytotoxicity (iv) abundance of antibiotic resistance genes (ARGs). A high-throughput quantitative polymerase chain reaction (HT-qPCR) method was used to perform an overall investigation of soil ARGs. The results show that heat treatment effectively degrades 98% of penicillin in PMD within 120 min. After thermal treatment, the treated-PMD was applied to soil. The original penicillin level was considerably lower and completely degraded within 4 days. Variation of germination index (GI) implied that the created phytotoxicity was significantly reduced. Furthermore, compared with PMD, the addition of treated-PMD didn't cause enrichment of soil ARGs in diversity and abundance. Therefore, heat treatment can be considered as an effective pretreatment for PMD practical application.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Guomin Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Chen Cai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jian Zhang
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Huiling Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
29
|
Jeong KH, Kim JK, Ravindran B, Lee DJ, Wong JWC, Selvam A, Karthikeyan OP, Kwag JH. Evaluation of pilot-scale in-vessel composting for Hanwoo manure management. BIORESOURCE TECHNOLOGY 2017; 245:201-206. [PMID: 28892692 DOI: 10.1016/j.biortech.2017.08.127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 06/07/2023]
Abstract
The study investigated the effect of in-vessel composting process on Hanwoo manure in two different South Korea regions (Pyeongchang and Goechang) with sawdust using vertical cylindrical in-vessel bioreactor for 42days. The stability and quality of Hanwoo manure in both regions were improved and confirmed through the positive changes in physico-chemical and phytotoxic properties using different commercial seed crops. The pH and electrical conductivity (EC, ds/m) of composted manure in both regions were slightly increased. At the same time, carbon:nitrogen (C:N) ratio and ammonium nitrogen:nitrate nitrogen (NH4+-N:NO3--N) ratio decreased to 13.4-16.1 and 0.36-0.37, respectively. The germination index (GI, %) index was recorded in the range of 67.6-120.9%, which was greater than 50%, indicating phytotoxin-free compost. Although, composted manure values in Goechang region were better in significant parameters, overall results confirmed that the composting process could lead to complete maturation of the composted product in both regions.
Collapse
Affiliation(s)
- Kwang-Hwa Jeong
- Animal Environment Division, Department of Animal Biotechnology and Environment, National Institute of Animal Science (NIAS), RDA, Wanju-Gun, Jeonju, South Korea
| | - Jung Kon Kim
- Animal Environment Division, Department of Animal Biotechnology and Environment, National Institute of Animal Science (NIAS), RDA, Wanju-Gun, Jeonju, South Korea
| | - Balasubramani Ravindran
- Animal Environment Division, Department of Animal Biotechnology and Environment, National Institute of Animal Science (NIAS), RDA, Wanju-Gun, Jeonju, South Korea.
| | - Dong Jun Lee
- Animal Environment Division, Department of Animal Biotechnology and Environment, National Institute of Animal Science (NIAS), RDA, Wanju-Gun, Jeonju, South Korea
| | - Jonathan Woon-Chung Wong
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, and Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Ammaiyappan Selvam
- Department of Plant Science, Manonmaniam Sundaranar University, Tamil Nadu, India
| | - Obuli P Karthikeyan
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, and Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Jung-Hoon Kwag
- Animal Environment Division, Department of Animal Biotechnology and Environment, National Institute of Animal Science (NIAS), RDA, Wanju-Gun, Jeonju, South Korea
| |
Collapse
|
30
|
Wang B, Cai C, Li G, Liu H. Assessing the stability in dry mycelial fertilizer of Penicillium chrysogenum as soil amendment via fluorescence excitation-emission matrix spectra: organic matter's transformation and maturity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:28258-28267. [PMID: 29027076 DOI: 10.1007/s11356-017-0086-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
Utilization as dry mycelial fertilizer (DMF) produced from penicillin fermentation fungi mycelium (PFFM) with an acid-heating pretreatment is a potential way. To study the transformation and stability of water-extractable organic matter in DMF-amended soil via fluorescence regional integration (FRI) of fluorescence excitation-emission matrix (EEM), a soil experiment in pot was carried out. The results showed that residual penicillin (about 32 mg/kg) was almost degraded in the first 5 days, indicating that the drug pollution was in control. The pH value, DOC, DON, and DOC/DON presented a classical profile, but germination index (GI) leveled off about 0.13 till day 13 in DMF-12% treatment due to the severe phytotoxicity. The addition of DMF significantly increased the soil microbial populations in contrast to the CON treatment. The EEM showed that the protein-like and microbial byproduct-like matters vanished on the 25th and 33rd days, whereas the fulvic-like substances appeared on the 7th day. The humic-like substances existed in original samples but their content greatly enhanced finally. The FRI results showed that P V, n/P III, n reached the highest value of 1.84 on the 25th day, suggesting that DMF maintained stable in amended soil. Because of its consistency with the results of GI and DOC/DON, the EEM-FRI has a potential to evaluate the stability of DMF in soil.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Chen Cai
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Guomin Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Huiling Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
31
|
Cai C, Liu H, Wang B. Performance of microwave treatment for disintegration of cephalosporin mycelial dreg (CMD) and degradation of residual cephalosporin antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2017; 331:265-272. [PMID: 28273576 DOI: 10.1016/j.jhazmat.2017.02.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
Significant amounts of cephalosporin mycelial dreg (CMD) are still being generated from biopharmaceutical processes, representing both an economic and environmental burden for pharmaceutical factories. This study investigates the microwave (MW) treatment of CMD at a relatively mild temperature (100°C) within 15min. The results reveal that the MW treatment disintegrates the CMD efficiently and that the residual cephalosporin C (CPC) is almost degraded after sufficient irradiation. MW heating temperature strongly influences the polymer's release. SCOD (soluble chemical oxygen demand), soluble proteins and carbohydrates have significant positive correlations to the temperature (r=0.993, 0.983 and 0.992, respectively; p<0.01). 3D-EEM fluorescence spectra indicate that the key organic matters relate to temperature as well as microwave energies. Furthermore, more than 99.9% of the residual antibiotics in CMD are degraded by MW irradiation without antibacterial activities that are proven by the possible degradation pathway we elucidate. These results suggest that microwave irradiation treatment not only disintegrates CMD and destroys mycelial cells but also degrades the residual cephalosporin antibiotics, which implies the possibility for practical applications.
Collapse
Affiliation(s)
- Chen Cai
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Huiling Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Bing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
32
|
Onwosi CO, Igbokwe VC, Odimba JN, Eke IE, Nwankwoala MO, Iroh IN, Ezeogu LI. Composting technology in waste stabilization: On the methods, challenges and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 190:140-157. [PMID: 28040590 DOI: 10.1016/j.jenvman.2016.12.051] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/18/2016] [Accepted: 12/20/2016] [Indexed: 05/22/2023]
Abstract
Composting technology has become invaluable in stabilization of municipal waste due to its environmental compatibility. In this review, different types of composting methods reportedly applied in waste management were explored. Further to that, the major factors such as temperature, pH, C/N ratio, moisture, particle size that have been considered relevant in the monitoring of the composting process were elucidated. Relevant strategies to improve and optimize process effectiveness were also addressed. However, during composting, some challenges such as leachate generation, gas emission and lack of uniformity in assessing maturity indices are imminent. Here in, these challenges were properly addressed and some strategies towards ameliorating them were proffered. Finally, we highlighted some recent technologies that could improve composting.
Collapse
Affiliation(s)
- Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Victor C Igbokwe
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Joyce N Odimba
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ifeanyichukwu E Eke
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Mary O Nwankwoala
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ikemdinachi N Iroh
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Lewis I Ezeogu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
33
|
Wang B, Liu H, Cai C, Thabit M, Wang P, Li G, Duan Z. Effect of dry mycelium of Penicillium chrysogenum fertilizer on soil microbial community composition, enzyme activities and snap bean growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20728-20738. [PMID: 27473622 DOI: 10.1007/s11356-016-7251-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
The dry mycelium fertilizer (DMF) was produced from penicillin fermentation fungi mycelium (PFFM) following an acid-heating pretreatment to degrade the residual penicillin. In this study, it was applied into soil as fertilizer to investigate its effects on soil properties, phytotoxicity, microbial community composition, enzyme activities, and growth of snap bean in greenhouse. As the results show, pH, total nitrogen, total phosphorus, total potassium, and organic matter of soil with DMF treatments were generally higher than CON treatment. In addition, the applied DMF did not cause heavy metal and residual drug pollution of the modified soil. The lowest GI values (<0.3) were recorded at DMF8 (36 kg DMF/plat) on the first days after applying the fertilizer, indicating that severe phytotoxicity appeared in the DMF8-modified soil. Results of microbial population and enzyme activities illustrated that DMF was rapidly decomposed and the decomposition process significantly affected microbial growth and enzyme activities. The DMF-modified soil phytotoxicity decreased at the late fertilization time. DMF1 was considered as the optimum amount of DMF dose based on principal component analysis scores. Plant height and plant yield of snap bean were remarkably enhanced with the optimum DMF dose.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Huiling Liu
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China.
| | - Chen Cai
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Mohamed Thabit
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Pu Wang
- School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Guomin Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Ziheng Duan
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
34
|
Chen Z, Wang Y, Wen Q, Zhang S, Yang L. Feasibility study of recycling cephalosporin C fermentation dregs using co-composting process with activated sludge as co-substrate. ENVIRONMENTAL TECHNOLOGY 2016; 37:2222-2230. [PMID: 26828961 DOI: 10.1080/09593330.2016.1146340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Composting is a potential alternative for cephalosporin C fermentation dregs (CCFDs) compared with incineration process or landfill because of its advantage of recovering nutrients. In this research, CCFDs and activated sludge (AS) were co-composted to analyze the feasibility of recycling the nutrients in CCFDs. A pilot-scale aerobic composting system with an auto-control system was used in this research, and the maturity and security of the compost product were evaluated. The temperature of the composting mixtures was maintained above 55°C for more than 3 days during the composting, indicating that co-composting of CCFDs and AS could reach the compost maturity standard, and the seeds germination index (GI) increased from 17.61% to 68.93% by the end of the composting process (28 days). However, the degradation rate of cephalosporin C (CPC) was only 6.58% during the composting process. Monitoring the quality of antibiotic resistance genes (ARGs) in the composts showed that the log copy of blaTEM in the composts increased from 2.15 in the initial phase to 6.37 after 28 days. Long-term investigation of CPC degradation and ARGs variation was conducted for the composts; CPC could still be detected after the maturity phases. A removal efficiency of 49.10% could be achieved in 110 days, while the log copy of ARGs increased to 7.93. Although a higher GI value (>80.00%) was observed, the risk of recycling the CCFDs compost product into land is still high.
Collapse
Affiliation(s)
- Zhiqiang Chen
- a State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology (SKLUWRE, HIT) , Harbin , People's Republic of China
| | - Yao Wang
- a State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology (SKLUWRE, HIT) , Harbin , People's Republic of China
| | - Qinxue Wen
- a State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology (SKLUWRE, HIT) , Harbin , People's Republic of China
| | - Shihua Zhang
- a State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology (SKLUWRE, HIT) , Harbin , People's Republic of China
| | - Lian Yang
- a State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology (SKLUWRE, HIT) , Harbin , People's Republic of China
| |
Collapse
|
35
|
Yang L, Zhang S, Chen Z, Wen Q, Wang Y. Maturity and security assessment of pilot-scale aerobic co-composting of penicillin fermentation dregs (PFDs) with sewage sludge. BIORESOURCE TECHNOLOGY 2016; 204:185-191. [PMID: 26799590 DOI: 10.1016/j.biortech.2016.01.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/31/2015] [Accepted: 01/05/2016] [Indexed: 05/05/2023]
Abstract
In this work, penicillin fermentation dregs (PFDs) and sewage sludge (SWS) were co-composted to analyze the possibility of recycling nutrients in PFDs. The temperature was maintained above 55°C for more than 3 days, and the final electrical conductivity (EC), pH and C/N all met the national standards in maturity. A nearly 100% removal of the residual penicillin was achieved, and the seed germination index (GI) increased from 0.02% to 83.54±3.1% by the end of the composting process. However, monitoring the quantity of antibiotic resistance genes (ARGs) showed that the logarithm of the number of copies of blaTEM increased from 4.17±0.19 at the initial phase to 8.92±0.27 by the end of the composting process, which means that there is a high risk for land use when using PFD compost products.
Collapse
Affiliation(s)
- Lian Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Shihua Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China.
| | - Yao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| |
Collapse
|