1
|
Schlag S, Schäfer S, Sommer K, Vetter W. A sterol database: GC/MS data and occurrence of 150 sterols in seventy-four oils. Food Chem 2024; 460:140778. [PMID: 39142207 DOI: 10.1016/j.foodchem.2024.140778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Comprehensive data on the occurrence of sterols in plant oils is currently hardly available since only a few sterols are obtainable as standard compounds. Accordingly, many peaks are rarely labeled in gas chromatograms due to missing or outdated information. This lack of information hampers the progress in sterol research. For this reason, gas chromatography with mass spectrometry in selected ion monitoring mode (GC/MS-SIM) was used to create a database that summarizes the occurrence and semi-quantitative levels of 150 sterols with 27-32 carbon atoms and 0-4 double bonds in 66 different vegetable oils and eight other matrices. The highest number of sterols was detected in rice bran and tamanu oil (40 sterols), eggplant (39 sterols), moringa, chili seed, and amaranth oil (37 sterols). Several sterols were detected in >60 of the 74 matrices. This detailed information in the database will serve users working in food authentication and the biosynthesis of sterols.
Collapse
Affiliation(s)
- Sarah Schlag
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany
| | - Sabrina Schäfer
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany
| | - Katrin Sommer
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany.
| |
Collapse
|
2
|
Zheng Y, Schlag S, Wernlein T, Vetter W. Comprehensive gas chromatography with mass spectrometry analysis of sterols in red goji berries (Lycium sp.). Food Chem 2024; 453:139640. [PMID: 38762945 DOI: 10.1016/j.foodchem.2024.139640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Gas chromatography with mass spectrometry (GC/MS) and fractionation steps were used to determine the sterol patterns of red goji berries in detail. Twenty-five sterols were detected in fresh berries of two species (Lycium barbarum and L. chinense) from bushes grown in the botanical garden of the University of Hohenheim, and 20 sterols were identified. The rarely occurring campesta-5,24(25)-dienol, β-sitosterol, Δ5-avenasterol, campesterol, and cycloartenol represented >60 % of the total sterol content. Maturity and drying of fresh red goji berries caused small changes but did not affect the characteristic sterol pattern. This was confirmed by analyzing various commercial dried red goji berry samples from different sources. Separated flesh and seed samples revealed pronounced differences in the sterol pattern. A new method of merging GC/MS chromatograms showed that ∼75 % of the sterols were present in seeds and ∼25 % in flesh. The unique sterol profile may be exploited to authenticate red goji berries.
Collapse
Affiliation(s)
- Yan Zheng
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany; University of Hohenheim, Institute of Food Chemistry (170a), Garbenstraße 28, D-70599 Stuttgart, Germany.
| | - Sarah Schlag
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany.
| | - Tanja Wernlein
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany.
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany.
| |
Collapse
|
3
|
Shiko G, Paulmann MJ, Feistel F, Ntefidou M, Hermann-Ene V, Vetter W, Kost B, Kunert G, Zedler JAZ, Reichelt M, Oelmüller R, Klein J. Occurrence and conversion of progestogens and androgens are conserved in land plants. THE NEW PHYTOLOGIST 2023; 240:318-337. [PMID: 37559351 DOI: 10.1111/nph.19163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/28/2023] [Indexed: 08/11/2023]
Abstract
Progestogens and androgens have been found in many plants, but little is known about their biosynthesis and the evolution of steroidogenesis in these organisms. Here, we show that the occurrence and biosynthesis of progestogens and androgens are conserved across the viridiplantae lineage. An UHPLC-ESI-MS/MS method allowed high-throughput analysis of the occurrence and chemical conversion of progestogens and androgens in 41 species across the green plant lineage. Dehydroepiandrosterone, testosterone, and 5α-dihydrotestosterone are plants' most abundant mammalian-like steroids. Progestogens are converted into 17α-hydroxyprogesterone and 5α-pregnane-3,20-dione. Androgens are converted into testosterone and 5α-dihydrotestosterone. 17,20-Lyases, essential for converting progestogens to androgens, seem to be most effective in monocot species. Our data suggest that the occurrence of progestogens and androgens is highly conserved in plants, and their biosynthesis might favor a route using the Δ4 pathway.
Collapse
Affiliation(s)
- Glendis Shiko
- Department of Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Max-Jonas Paulmann
- Department of Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Felix Feistel
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Maria Ntefidou
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Vanessa Hermann-Ene
- Institute of Food Chemistry, University of Hohenheim, 70599, Stuttgart, Germany
| | - Walter Vetter
- Institute of Food Chemistry, University of Hohenheim, 70599, Stuttgart, Germany
| | - Benedikt Kost
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Grit Kunert
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Julie A Z Zedler
- Synthetic Biology of Photosynthetic Organisms, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Michael Reichelt
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Jan Klein
- Department of Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| |
Collapse
|
4
|
Tejedor-Calvo E, Morales D, Morillo L, Vega L, Caro M, Smiderle FR, Iacomini M, Marco P, Soler-Rivas C. Pressurized Liquid (PLE) Truffle Extracts Have Inhibitory Activity on Key Enzymes Related to Type 2 Diabetes (α-Glucosidase and α-Amylase). Foods 2023; 12:2724. [PMID: 37509816 PMCID: PMC10379309 DOI: 10.3390/foods12142724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
An optimized PLE method was applied to several truffle species using three different solvent mixtures to obtain bioactive enriched fractions. The pressurized water extracts contained mainly (1 → 3),(1 → 6)-β-D-glucans, chitins, and heteropolymers with galactose and mannose in their structures. The ethanol extracts included fatty acids and fungal sterols and others such as brassicasterol and stigmasterol, depending on the species. They also showed a different fatty acid lipid profile depending on the solvent utilized and species considered. Ethanol:water extracts showed interesting lipids and many phenolic compounds; however, no synergic extraction of compounds was noticed. Some of the truffle extracts were able to inhibit enzymes related to type 2 diabetes; pressurized water extracts mainly inhibited the α-amylase enzyme, while ethanolic extracts were more able to inhibit α-glucosidase. Tuber brumale var. moschatum and T. aestivum var. uncinatum extracts showed an IC50 of 29.22 mg/mL towards α-amylase and 7.93 mg/mL towards α-glucosidase. Thus, use of the PLE method allows o bioactive enriched fractions to be obtained from truffles with antidiabetic properties.
Collapse
Affiliation(s)
- Eva Tejedor-Calvo
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Forest Resources, Agrifood Research and Technology Centre of Aragon (CITA), Agrifood Institute of Aragón-IA2 (CITA-Zaragoza University), Av. Montañana 930, 50059 Zaragoza, Spain
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain
| | - Diego Morales
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departmental Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Laura Morillo
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laura Vega
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mercedes Caro
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain
| | - Fhernanda Ribeiro Smiderle
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80240-020, PR, Brazil
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba 81531-980, PR, Brazil
| | - Pedro Marco
- Department of Forest Resources, Agrifood Research and Technology Centre of Aragon (CITA), Agrifood Institute of Aragón-IA2 (CITA-Zaragoza University), Av. Montañana 930, 50059 Zaragoza, Spain
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
5
|
Vendruscolo RG, Wagner R. Analytical protocols applied to the analysis of microalgal biomass. HANDBOOK OF FOOD AND FEED FROM MICROALGAE 2023:577-592. [DOI: 10.1016/b978-0-323-99196-4.00021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Sommer K, Hillinger M, Eigenmann A, Vetter W. Characterization of various isomeric photoproducts of ergosterol and vitamin D2 generated by UV irradiation. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
AbstractVitamin D2 is produced from its precursor ergosterol under the impact of ultraviolet (UV) light which is also commercially carried out to increase vitamin D2 contents in mushrooms (‘Novel Food’). However, this process is accompanied by the formation of various isomers that partly co-elute with the target compound and are currently difficult to analyze. For this reason, vitamin D2 and ergosterol were irradiated with the goal to generate and characterize various isomeric photoproducts with three analytical methods. High-performance liquid chromatography with ultraviolet detection (HPLC–UV) was accompanied by using a chiral detector (CD) which was serially linked with the UV detector. Applied for the first time in this research area, HPLC-CD chromatograms provided complementary information which was crucial for the identification of several co-elutions that would have been overlooked without this approach. Additional information was derived from gas chromatography with mass spectrometry analysis. Diagnostic fragment ions in the GC/MS spectra allowed to distinguish four classes of tri- (n = 2), tetra-, and pentacyclic isomer groups. Despite several drawbacks of each of the applied methods, the shared evaluation allowed to characterize more than ten isomeric photoproducts of vitamin D2 including previtamin D2, lumisterol2, tachysterol2,trans-vitamin D2 isomers, and two pentacyclic isomers (suprasterols2 I and II), which were isolated and characterized by proton magnetic resonance spectroscopy (1H NMR).
Collapse
|
7
|
Schlag S, Götz S, Rüttler F, Schmöckel SM, Vetter W. Quantitation of 20 Phytosterols in 34 Different Accessions of Quinoa ( Chenopodium quinoa). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9856-9864. [PMID: 35926102 DOI: 10.1021/acs.jafc.2c03374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phytosterols were analyzed in 34 different quinoa accessions, which were obtained from the same field trial. Twenty different sterols were detected, and 17 could be structurally assigned by means of gas chromatography with mass spectrometry. Sterols were quantitated in selected ion monitoring mode (GC/MS-SIM) with the novel internal standard 3-O-tert-butyldimethylsilyl-cholestanol (cholestanyl-TBDMS). GC/MS-SIM response factors of minor sterols were determined after enrichment by countercurrent chromatography. The total sterol contents varied from 120 to 180 mg/100 g of seeds, which is higher than has been described in quinoa before. This was due to the fact that Δ7-sterols (e.g., Δ7-sitosterol, spinasterol, and Δ7-avenasterol) were quantitated for the first time in quinoa and contributed ∼64% to the total sterol content. Clustering allowed distributing of the 34 different quinoa accessions into four distinct groups on the basis of the different sterol patterns.
Collapse
Affiliation(s)
- Sarah Schlag
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany
| | - Sören Götz
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany
| | - Felix Rüttler
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany
| | - Sandra M Schmöckel
- University of Hohenheim, Institute of Crop Science, Department Physiology of Yield Stability (340k), Fruwirthstraße 21, D-70599 Stuttgart, Germany
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany
| |
Collapse
|
8
|
Tejedor-Calvo E, García-Barreda S, Sánchez S, Morte A, Siles-Sánchez MDLN, Soler-Rivas C, Santoyo S, Marco P. Application of Pressurized Liquid Extractions to Obtain Bioactive Compounds from Tuber aestivum and Terfezia claveryi. Foods 2022; 11:foods11030298. [PMID: 35159450 PMCID: PMC8834127 DOI: 10.3390/foods11030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
A PLE (pressurized liquid extraction) method was adjusted following a full-factorial experimental design to obtain bioactive-enriched fractions from Tuber aestivum and Terfezia claveryi. Temperature, time and solvent (water, ethanol and ethanol–water 1:1) parameters were investigated. The response variables investigated were: obtained yield and the levels of total carbohydrate (compounds, β-glucans, chitin, proteins, phenolic compounds and sterols). Principal component analysis indicated water solvent and high temperatures as more adequate parameters to extract polysaccharide-rich fractions (up to 68% of content), whereas ethanol was more suitable to extract fungal sterols (up to 12.5% of content). The fractions obtained at optimal conditions (16.7 MPa, 180 °C, 30 min) were able to protect Caco2 cells from free radical exposure, acting as antioxidants, and were able to reduce secretion of pro-inflammatory cytokines in vitro: IL-6 (50%), and TNFα (80% only T. claveryi ethanol extract), as well as reduce high inhibitory activity (T. aestivum IC50: 9.44 mG/mL).
Collapse
Affiliation(s)
- Eva Tejedor-Calvo
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sergi García-Barreda
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Sergio Sánchez
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Asunción Morte
- Departamento de Biología Vegetal, Facultad de Biología, Campus de Espinardo, Universidad de Murcia, 30100 Murcia, Spain
| | - María de Las Nieves Siles-Sánchez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Susana Santoyo
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pedro Marco
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
| |
Collapse
|
9
|
Schlag S, Huang Y, Vetter W. GC/EI-MS method for the determination of phytosterols in vegetable oils. Anal Bioanal Chem 2021; 414:1061-1071. [PMID: 34716783 PMCID: PMC8724214 DOI: 10.1007/s00216-021-03730-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022]
Abstract
Sterols are a highly complex group of lipophilic compounds present in the unsaponifiable matter of virtually all living organisms. In this study, we developed a novel gas chromatography with mass spectrometry selected ion monitoring (GC/MS-SIM) method for the comprehensive analysis of sterols after saponification and silylation. A new referencing system was introduced by means of a series of saturated fatty acid pyrrolidides (FAPs) as internal standards. Linked with retention time locking (RTL), the resulting FAP retention indices (RIFAP) of the sterols could be determined with high precision. The GC/MS-SIM method was based on the parallel measurement of 17 SIM ions in four time windows. This set included eight molecular ions and seven diagnostic fragment ions of silylated sterols as well as two abundant ions of FAPs. Altogether, twenty molecular ions of C27- to C31-sterols with 0-3 double bonds were included in the final method. Screening of four common vegetable oils (sunflower oil, hemp oil, rapeseed oil, and corn oil) enabled the detection of 30 different sterols and triterpenes most of which could be identified.
Collapse
Affiliation(s)
- Sarah Schlag
- Institute of Food Chemistry (170B), University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Yining Huang
- Institute of Food Chemistry (170B), University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Walter Vetter
- Institute of Food Chemistry (170B), University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany.
| |
Collapse
|
10
|
Sommer K, Krauß S, Vetter W. Differentiation of European and Chinese Truffle ( Tuber sp.) Species by Means of Sterol Fingerprints. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14393-14401. [PMID: 33138362 DOI: 10.1021/acs.jafc.0c06011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The increasing demand of valuable truffles (Tuber sp.) has prompted new areas of naturally growing truffles entering the market. Hence, the identification of valueless Tuber species is an important task to prevent food fraud. Here, we show that sterol patterns are suited to differentiate five Tuber species (Tuber magnatum, Tuber melanosporum, Tuber aestivum, Tuber albidum, and Tuber indicum varieties) from each other. Next to the known main sterols of Tuber, ergosterol and brassicasterol, occurrence of minor sterols in differing shares resulted in characteristic fingerprints in the five Tuber species, irrespective of the country of origin. A total of 27 sterols were evaluated, and we proposed assignment criteria of main sterol relations as well as eight distinct biomarkers within the minor compounds for the differentiation of European and Chinese truffles.
Collapse
Affiliation(s)
- Katrin Sommer
- Institute of Food Chemistry (170b), University of Hohenheim, Garbenstraße 28, D-70599 Stuttgart, Germany
| | - Stephanie Krauß
- Institute of Food Chemistry (170b), University of Hohenheim, Garbenstraße 28, D-70599 Stuttgart, Germany
| | - Walter Vetter
- Institute of Food Chemistry (170b), University of Hohenheim, Garbenstraße 28, D-70599 Stuttgart, Germany
| |
Collapse
|