1
|
Hernández-Pérez T, Paredes-López O. Ancient Latin-American food crops: An overview of their nutraceutical and antiobesity peptides. FOOD SCI TECHNOL INT 2025:10820132251319934. [PMID: 39981629 DOI: 10.1177/10820132251319934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Most of the plants used for human consumption comprise various peptides with health benefits, such as antihypertensive, antioxidant, anti-inflammatory, anticancer, and immunomodulatory capacity. The intake of plant-based bioactive peptides is important in the prevention of some chronic diseases. Also, peptides show positive effects on lipid metabolism and mineral absorption and act as analgesic, antithrombotic, antiatherosclerotic, and opioid agents; it is pertinent to mention that peptides quite often exhibit multiple bioactivities. Bioactive peptides are released by the hydrolysis of digestive enzymes, that is, pepsin, chymotrypsin, trypsin, or by in vitro producers using specific enzymes, pH, and temperature. These peptides comprise hydrophobic amino acids, positive charge and are resistant to digestive hydrolysis by peptidases and proteases. Small peptides with a dipeptide of proline-proline at their C terminal are more resistant to gastrointestinal enzymes; otherwise, large peptides are active outside the intestinal epithelium. This review is focused on three selected ancient crops from Latin America, amaranth, chia, and quinoa, because of their outstanding nutritional and agronomic characteristics that provide a broad of functional compounds with high antioxidant, anti-inflammatory, immunomodulatory, antidiabetic, antihypertensive, anticancer, and antiobesity capacity.
Collapse
Affiliation(s)
- Talía Hernández-Pérez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| | - Octavio Paredes-López
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| |
Collapse
|
2
|
Kiani S, Naghshi S, Saghafi-Asl M. Effects of chia (Salvia hispanica. L) on anthropometric measures and other cardiometabolic risk factors: A systematic review and dose-response meta-analysis. Complement Ther Med 2024; 86:103086. [PMID: 39299654 DOI: 10.1016/j.ctim.2024.103086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Findings of available randomized controlled trials (RCTs) on the effects of chia are inconsistent. Although previous meta-analyses summarized available findings in this regard, some limitations may distort their findings. Moreover, none of these meta-analyses examined the dose-response association of chia on cardiometabolic risk factors (CMRFs). Therefore, the present study aimed to evaluate the effect of chia consumption on CMRFs. METHODS Relevant RCTs were included by searching the ISI Web of Science, PubMed, and Scopus databases up to June 2, 2023. Mean differences (MD) and 95 % confidence intervals (CI) were pooled using random-effects model. RESULTS Ten publications were included in this systematic review and the meta-analysis. The results showed a significant reduction in systolic blood pressure (SBP) (MD = -7.87 mmHg; 95 % CI: - 12.92 to - 2.82; I2 = 71.3 %, P heterogeneity = 0.004), diastolic blood pressure (MD = -6.33 mmHg; 95 %CI: - 7.33 to - 5.34, I2 = 0 %, P heterogeneity = 0.42) and high-density lipoprotein cholesterol (HDL-c) (MD = -4.09 mg/dl; 95 %CI: - 6.76 to - 1.43, I2 = 12.4 %, P heterogeneity = 0.33). However, the effects of chia on the other risk factors were not significant. Based on the dose-response analysis, a 10-g/d increase in chia consumption significantly reduced SBP (MD = -2.20 mmHg; 95 %CI: - 3.75 to - 0.66, I2 = 78.9 %, P heterogeneity < 0.001) and HDL-c (MD = -1.10 mg/dl; 95 %CI: - 1.72 to - 0.49, I2 = 0 %, P heterogeneity = 0.52). CONCLUSION Chia consumption might have a beneficial effect on lowering blood pressure. Chia consumption can also lead to a slight reduction in HDL-c levels. As the quality of the included studies was mostly low, the findings should be interpreted with caution. Well-designed trials with larger sample sizes and longer duration of follow-up are needed to provide additional insight into the dose-dependent effects of chia consumption.
Collapse
Affiliation(s)
- Sevil Kiani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Sina Naghshi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Maryam Saghafi-Asl
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
3
|
Alarcón G, Valoy A, Alzogaray FM, Medina A, Van Nieuwenhove C, Medina M, Jerez S. Consumption of a Byproduct of Chia Seed Oil Extraction by Cold Pressing Ameliorates Cardiovascular Risks Factors in an Experimental Model of Metabolically Unhealthy Normal Weight. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:292-299. [PMID: 38775983 DOI: 10.1007/s11130-024-01193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
The byproduct of Salvia hispanica (chia) seed oil extraction by cold pressing, also known as expeller, possesses a high nutritional value. It is rich in proteins, fibers, minerals, and has a residual oil content of 7-11%, which is rich in omega 3 linolenic acid (ALA). However, this byproduct has been historically undervalued. Thus, the aim of current work was to study the effects of consuming of a rich in chia expeller diet on a rabbit model of metabolically unhealthy normal weight to validate their use as a functional food. Rabbits were fed different diets for a period of 6 weeks: a standard diet (CD), a high-fat diet (HFD), a rich in expeller CD (Exp-CD) and a rich in expeller HFD (Exp-HFD). The Exp-HFD attenuated the rise in basal glucose, TyG index, triglycerides, cholesterol and non-HDL cholesterol induced by the HFD. Both rich in expeller diets reduced mean arterial blood pressure (MAP) and increase liver and fat ALA levels compared to their respective controls. Furthermore, the angiotensin converting enzyme (ACE) activity was lower in the lungs of animals fed on rich in expeller diets compared to their respective controls. In vitro studies showed that ALA inhibited ACE activity. The evaluation of vascular reactivity revealed that rich in expeller diets improved angiotensin II affinity and reduced contractile response to noradrenaline. In conclusion, the consumption of rich in expeller diets showed beneficial effects in preventing cardiovascular risk factors such as insulin resistance, dyslipidemia and MAP. Therefore, its use as functional ingredient holds significant promise.
Collapse
Affiliation(s)
- Gabriela Alarcón
- Instituto Superior de Investigaciones Biológicas (INSIBIO, UNT-CONICET), Av. Independencia 1800, San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, San Miguel de Tucumán, Tucumán, Argentina
| | - Agostina Valoy
- Instituto Superior de Investigaciones Biológicas (INSIBIO, UNT-CONICET), Av. Independencia 1800, San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, San Miguel de Tucumán, Tucumán, Argentina
| | - Florencia Martin Alzogaray
- Instituto Superior de Investigaciones Biológicas (INSIBIO, UNT-CONICET), Av. Independencia 1800, San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, San Miguel de Tucumán, Tucumán, Argentina
| | - Analía Medina
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino (UNSTA), Av. Presidente Perón 2085, Yerba Buena, Tucumán, Argentina
| | - Carina Van Nieuwenhove
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, San Miguel de Tucumán, Tucumán, Argentina
- Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina
| | - Mirta Medina
- Instituto Superior de Investigaciones Biológicas (INSIBIO, UNT-CONICET), Av. Independencia 1800, San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, San Miguel de Tucumán, Tucumán, Argentina
| | - Susana Jerez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, UNT-CONICET), Av. Independencia 1800, San Miguel de Tucumán, Tucumán, Argentina.
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
4
|
Chen J, Wu G, Zhu L, Karrar E, Zhang H. A review of the functional activities of chia seed and the mechanisms of action related to molecular targets. Food Funct 2024; 15:1158-1169. [PMID: 38239106 DOI: 10.1039/d3fo02197a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
In recent years, as a functional potential pseudocereal, chia seed (Salvia hispanica L.) has been of great interest for its comprehensive nutritional profile and attractive qualities after ingestion. It is reported that a reasonable dietary supplementation of chia seed (CS) contributes to the prevention and treatment of acute and chronic diseases (inflammation, diabetes, hypertension, obesity, kidney stone, etc.). CS contains a variety of bioactive macromolecular substances, such as oil, protein and gum, which manifest distinguished health-promoting activities in both in vivo and in vitro research studies. This article provides a comprehensive compendium on the functional importance of CS, in the context of biological activities and mechanism of actions of CS. Specifically, CS and its components alleviate inflammation and regulate glucose and fatty acid metabolism by regulating key influencing factors in the adenosine 5'-monophosphate-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), nuclear factor kappa B (NF-κB), peroxisome-activated receptor gamma (PPAR-γ) and transforming growth factor-beta (TGF-β) pathways and the insulin receptor substrate (IRS)-mediated insulin signaling pathway. In the meantime, predictions of metabolic pathways of CS peptides based on the known tracks of newly researched active peptides were proposed, with the aim of emphasizing the enormous research space of CS peptides compared to other functional active peptides.
Collapse
Affiliation(s)
- Jinghui Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Wuxi 214122, China
| | - Ling Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Wuxi 214122, China
| | - Emad Karrar
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Wuxi 214122, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Wuxi 214122, China
| |
Collapse
|
5
|
Fernandes SS, Egea MB, Salas-Mellado MDLM, Segura-Campos MR. Chia Oil and Mucilage Nanoemulsion: Potential Strategy to Protect a Functional Ingredient. Int J Mol Sci 2023; 24:7384. [PMID: 37108546 PMCID: PMC10139160 DOI: 10.3390/ijms24087384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Nanoencapsulation can increase the stability of bioactive compounds, ensuring protection against physical, chemical, or biological degradations, and allows to control of the release of these biocompounds. Chia oil is rich in polyunsaturated fatty acids-8% corresponds to omega 3 and 19% to omega 6-resulting in high susceptibility to oxidation. Encapsulation techniques allow the addition of chia oil to food to maintain its functionality. In this sense, one strategy is to use the nanoemulsion technique to protect chia oil from degradation. Therefore, this review aims to present the state-of-the-art use of nanoemulsion as a new encapsulation approach to chia oil. Furthermore, the chia mucilage-another chia seed product-is an excellent material for encapsulation due to its good emulsification properties (capacity and stability), solubility, and water and oil retention capacities. Currently, most studies of chia oil focus on microencapsulation, with few studies involving nanoencapsulation. Chia oil nanoemulsion using chia mucilage presents itself as a strategy for adding chia oil to foods, guaranteeing the functionality and oxidative stability of this oil.
Collapse
Affiliation(s)
- Sibele Santos Fernandes
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros 96203-900, Brazil;
| | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Sul Goiana, Km 01, Rio Verde 75901-970, Brazil
| | | | - Maira Rubi Segura-Campos
- Faculty of Chemical Engineering, Autonomous University of Yucatán, Periférico Norte km 33.5, Tablaje Catastral 13615, Mexico;
| |
Collapse
|
6
|
Alarcon G, Sierra L, Roco J, Van Nieuwenhove C, Medina A, Medina M, Jerez S. Effects of Cold Pressed Chia Seed Oil Intake on Hematological and Biochemical Biomarkers in Both Normal and Hypercholesterolemic Rabbits. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:179-185. [PMID: 36515802 DOI: 10.1007/s11130-022-01036-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Most of the studies on the beneficial effects of chia have been conducted with its seeds. There is less evidence about the effects of cold pressed chia seeds oil on hypercholesterolemia-induced alterations. Thus, this study investigated the effects of cold pressed chia seed oil supplementation on certain hematological and biochemical biomarkers in both normal and hypercholesterolemic rabbits. Thirty two male rabbits were assigned to four different groups and fed on: 1) a regular diet (CD), 2) CD supplemented with 10% chia oil, 3) CD supplemented with 1% cholesterol, 4) CD supplemented with 1% cholesterol and 10% chia oil. After six weeks of dietary interventions, mean arterial blood pressure and visceral fat were measured and blood samples were analyzed for lipid profiles and hematological parameters while erythrocyte membranes and retroperitoneal fat were analyzed for fatty acids composition and biochemical biomarkers. Dietary intervention with chia oil achieved control of the hypercholesterolemia-induced increase of mean arterial blood pressure, neutrophil to lymphocytes ratio, erythrocyte membrane fluidity, and improved erythrocyte morphological alterations. With regard to inflammatory biomarkers, chia oil supplementation reduced omega-6/omega-3 polyunsaturated fatty acids ratios and arachidonic/linolenic fatty acids ratios both in erythrocytes and fat from normal and hypercholesterolemic rabbits. The increase of linolenic fatty acid into the retroperitoneal fat was about 9 times higher than its respective controls. These results provide support for the potential health benefits of chia oil intake on hypercholesterolemia-associated clinical, hematological and biochemical alterations.
Collapse
Affiliation(s)
- Gabriela Alarcon
- Instituto Superior de Investigaciones Biológicas (INSIBIO, UNT-CONICET), Av. Independencia 1800, 4000, San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Ciencias Naturales, Universidad Nacional de Tucumán (UNT), Miguel Lillo 298, San Miguel de Tucumán, Tucumán, Argentina
| | - Liliana Sierra
- Facultad de Ciencias Naturales, Universidad Nacional de Tucumán (UNT), Miguel Lillo 298, San Miguel de Tucumán, Tucumán, Argentina
| | - Julieta Roco
- Instituto Superior de Investigaciones Biológicas (INSIBIO, UNT-CONICET), Av. Independencia 1800, 4000, San Miguel de Tucumán, Tucumán, Argentina
| | - Carina Van Nieuwenhove
- Facultad de Ciencias Naturales, Universidad Nacional de Tucumán (UNT), Miguel Lillo 298, San Miguel de Tucumán, Tucumán, Argentina
- Centro de Referencia Para Lactobacilos (CERELA-CONICET), Chacabuco 145, 4000, San Miguel de Tucumán, Tucumán, Argentina
| | - Analia Medina
- Facultad de Ciencias Naturales, Universidad Nacional de Tucumán (UNT), Miguel Lillo 298, San Miguel de Tucumán, Tucumán, Argentina
| | - Mirta Medina
- Facultad de Ciencias Naturales, Universidad Nacional de Tucumán (UNT), Miguel Lillo 298, San Miguel de Tucumán, Tucumán, Argentina
| | - Susana Jerez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, UNT-CONICET), Av. Independencia 1800, 4000, San Miguel de Tucumán, Tucumán, Argentina.
- Facultad de Ciencias Naturales, Universidad Nacional de Tucumán (UNT), Miguel Lillo 298, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
7
|
Rodríguez Lara A, Mesa-García MD, Medina KAD, Quirantes Piné R, Casuso RA, Segura Carretero A, Huertas JR. Assessment of the Phytochemical and Nutrimental Composition of Dark Chia Seed ( Salvia hispánica L.). Foods 2021; 10:3001. [PMID: 34945556 PMCID: PMC8702123 DOI: 10.3390/foods10123001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Chia seeds are rich sources of different macro and micronutrients associated with health benefits; thus, they may be considered as a functional food. However, the composition depends on the variety, origin, climate and soil. Here, we show a comprehensive characterization of extractable and non-extractable phenolic compounds of dark chia seed Salvia hispanica L. using high-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight (HPLC-ESI-QTOF) and discuss potential health benefits associated with the presence of a number of nutritional and bioactive compounds. We report that dark chia from Jalisco is a high-fiber food, containing omega-3 polyunsaturated fatty acids, essential amino acids (phenylalanine and tryptophan), and nucleosides (adenosine, guanidine and uridine), and rich in antioxidant phenolic compounds, mainly caffeic acid metabolites. Our data suggest that chia seeds may be used as ingredients for the development of functional foods and dietary supplements.
Collapse
Affiliation(s)
- Avilene Rodríguez Lara
- Department of Physiology, Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18100 Granada, Spain; (A.R.L.); (R.A.C.)
| | - María Dolores Mesa-García
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18100 Granada, Spain;
- Ibs.GRANADA, Biosanitary Research Institute of Granada, 18012 Granada, Spain
| | - Karla Alejandra Damián Medina
- University Center of Tonala, University of Guadalajara, Av 555 Ejido San José Tateposco, Nuevo Periferico Oriente, Tonala 45425, Mexico;
| | - Rosa Quirantes Piné
- Technological Centre for Research and Development of Functional Foods, Avenida del Conocimiento, 37, 18100 Granada, Spain; (R.Q.P.); (A.S.C.)
| | - Rafael A. Casuso
- Department of Physiology, Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18100 Granada, Spain; (A.R.L.); (R.A.C.)
| | - Antonio Segura Carretero
- Technological Centre for Research and Development of Functional Foods, Avenida del Conocimiento, 37, 18100 Granada, Spain; (R.Q.P.); (A.S.C.)
| | - Jesús Rodríguez Huertas
- Department of Physiology, Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18100 Granada, Spain; (A.R.L.); (R.A.C.)
| |
Collapse
|
8
|
Alarcon G, Medina A, Martin Alzogaray F, Sierra L, Roco J, Van Nieuwenhove C, Medina M, Jerez S. Partial replacement of corn oil with chia oil into a high fat diet produces either beneficial and deleterious effects on metabolic and vascular alterations in rabbits. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Enes BN, Moreira LPD, Silva BP, Grancieri M, Lúcio HG, Venâncio VP, Mertens-Talcott SU, Rosa COB, Martino HSD. Chia seed (Salvia hispanica L.) effects and their molecular mechanisms on unbalanced diet experimental studies: A systematic review. J Food Sci 2020; 85:226-239. [PMID: 31972052 DOI: 10.1111/1750-3841.15003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/05/2019] [Accepted: 11/22/2019] [Indexed: 01/06/2023]
Abstract
The aim of this review was to compile evidence and understand chia seed effects on unbalanced diet animal studies and the molecular mechanisms on metabolic biomarker modulation. A systematic review was conducted in electronic databases, following PRISMA recommendations. Risk of bias and quality was assessed using SYRCLE toll and ARRIVE guidelines. Seventeen articles were included. Throughout the studies, chia's main effects are associated with AMPK modulation: improvement of glucose and insulin tolerance, lipogenesis, antioxidant activity, and inflammation. Details about randomization and allocation concealment were insufficient, as well as information about blind protocols. Sample size, chia dose, and number of animals evaluated for each parameter were found to be lacking information among the studies. Based on experimental study data, chia has bioactive potential, and its daily consumption may reduce the risk of chronic disease development, mainly due to the antioxidant, anti-inflammatory, hypoglycemic, and hypolipidemic effects of the seed. PRACTICAL APPLICATION: The consumption of chia seeds may improve lipid profile, insulin and glucose tolerance, and reduce risk of cardiovascular disease. Whole seed or its oil presents positive effect, but the effects of chia oil can act faster than the seed.
Collapse
Affiliation(s)
- Bárbara N Enes
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Luiza P D Moreira
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Bárbara P Silva
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Mariana Grancieri
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Haira G Lúcio
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Vinícius P Venâncio
- Dept. of Nutrition and Food Science, Texas A&M Univ., College Station, TX, 77843, USA
| | | | - Carla O B Rosa
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Hércia S D Martino
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| |
Collapse
|
10
|
da Silva BP, Toledo RCL, Mishima MDV, Moreira MEDC, Vasconcelos CM, Pereira CER, Favarato LSC, Costa NMB, Martino HSD. Effects of chia (Salvia hispanica L.) on oxidative stress and inflammation in ovariectomized adult female Wistar rats. Food Funct 2020; 10:4036-4045. [PMID: 31219482 DOI: 10.1039/c9fo00862d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present study investigated the influence of chia consumption on inflammation, oxidative stress, and lipid profiles in adult female ovariectomized rats fed a high-fat diet. Forty ovariectomized and 40 intact (SHAM) rats were allocated into 8 groups (n = 10), and each rat received one of the following four diets: standard diet (ST); standard diet + chia (STC); high-fat diet (HF); and high-fat diet + chia (HFC) for 126 days. Biochemical parameters and biomarkers of lipid peroxidation, inflammation, and oxidative stress were evaluated. The mRNA expression levels of PPAR-α, NFκB, TNF-α and Zn-SOD1 were analyzed, as well as those of TNF-α and IL-1β. Chia intake increased HDL cholesterol (HDL-c) and reduced LDL cholesterol (LDL-c) levels. Plasma catalase activity was elevated in the STC group. Concentrations of TBARS were higher in all groups fed HF. PPAR-α mRNA expression was elevated, and levels of NFκB mRNA expression were reduced in the STC group. mRNA expression and protein levels of TNF-α were lower in rats fed the standard diet. Protein levels of IL-1β were reduced in rats fed the standard diet, and the high fat diet with chia. In general, ovariectomy did not influence the inflammatory and oxidative stress parameters. Chia intake improved antioxidant activity by increasing SOD expression, PPAR-α expression, catalase activity, and HDL-c levels. In addition, chia consumption decreased the concentrations of the inflammatory markers IL-1β and LDL-c.
Collapse
Affiliation(s)
- Bárbara Pereira da Silva
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa, MG 36.570-900, Brazil.
| | - Renata Celi Lopes Toledo
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa, MG 36.570-900, Brazil.
| | - Marcella Duarte Villas Mishima
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa, MG 36.570-900, Brazil.
| | - Maria Eliza de Castro Moreira
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa, MG 36.570-900, Brazil. and Faculdade Dinamica do Vale do Piranga - FADIP Rua G, 205, Bairro Paraiso, Ponte Nova CEP 35430-302, MG, Brazil
| | - Christiane Mileib Vasconcelos
- Plant Biotechnology Program, Vila Velha University, Av. Comissário José Dantas de Melo, n 21, Vila Velha, ES 29102-623, Brazil
| | | | - Lukiya Silva Campos Favarato
- Department of Veterinary Medicine, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa, MG 36.570-900, Brazil
| | - Neuza Maria Brunoro Costa
- Department of Nutrition, Federal University of Espírito Santo, Alto Universitário, s/n, Alegre, ES 29.500-000, Brazil
| | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa, MG 36.570-900, Brazil.
| |
Collapse
|
11
|
Melo D, Machado TB, Oliveira MBPP. Chia seeds: an ancient grain trending in modern human diets. Food Funct 2019; 10:3068-3089. [PMID: 31086922 DOI: 10.1039/c9fo00239a] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Currently, in order to ensure adequate intake of nutrients to complement the normal diet, the consumption of seeds such as Salvia hispanica L. (commonly known as chia seeds) is increasing. For this reason, investigations concerning the composition and potential health effects of chia seeds are being carried out. Moreover, the recent approval of chia seeds as a Novel Food by the European Parliament allows its consumption and incorporation in a wide range of foods; thus, they have become widely available. Concerning their nutritional aspects, chia seeds are an excellent source of fat (20% to 34%), particularly polyunsaturated fatty acids such as α-linolenic (60%) and linoleic (20%) acids. Moreover, high levels of protein (16% to 26%), mainly prolamins, and dietary fibre contents (23% to 41%) have been reported. Vitamins (mostly B complex) and minerals (calcium, phosphorus, and potassium, among others) have also been described in appreciable amounts. Additionally, due to the absence of gluten, these seeds are appropriate for coeliac patients. Regarding other bioactive compounds, chia seeds are also a source of antioxidants, such as chlorogenic and caffeic acids, quercetin and kaempferol. Due to their described composition, chia seeds have been related to different medicinal effects, particularly anti-inflammatory and antidiabetic activities and positive effects on cardiovascular disease and hypertension. The aim of this paper is to perform a systematic review of chia seeds to provide an update of the knowledge about their morphology, nutritional and chemical composition, possible human health benefits and role as a functional food.
Collapse
Affiliation(s)
- Diana Melo
- LAQV-REQUIMTE, Dep. Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | | | | |
Collapse
|
12
|
Abstract
Background:
Chia seed is not a new food for humanity. The seed has been used in many
different areas since the Aztecs, especially the food items. The chia seed is -becoming increasingly
important because of its nutritional and functional properties and it is described as “the seed of the
21st century” and “new gold and super nutrient”.
Background:
In this review, general characteristics, nutritional composition, fields of usage, effects on
health and importance in human nutrition of the chia seed have been evaluated.
Conclusion:
This seed is shown as an important source of dietary fiber (soluble and insoluble), omega-
3 fatty acids, proteins, bioactive and polyphenolic compounds. It also has many physicochemical
and functional properties that make it more suitable for the food industry. Chia seed is a good thickener,
gel forming and chelating agent, foam enhancer, emulsifier, suspending agent and rehydration factor.
Foods such as frozen products, bakery products, beverages, sweets, pasta, and sausages can be enriched
with seeds and chia oil can be used as fat replacer for these products. Some studies have shown
that consumption of the seed is beneficial for health problems such as dyslipidemia, inflammation,
cardiovascular diseases and insulin resistance. However, the results of studies demonstrating the effect
of the seeds on diseases have been controversial and many of the studies on this subject are animal
studies. There is a need for further studies to reveal the effects of chia seed on human health and its
importance in the food industry.
Collapse
Affiliation(s)
- Ahmet H. Dinçoğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mehmet Akif Ersoy University, 15100, Burdur, Turkey
| | - Özge Yeşildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mehmet Akif Ersoy University, 15100, Burdur, Turkey
| |
Collapse
|
13
|
Kulczyński B, Kobus-Cisowska J, Taczanowski M, Kmiecik D, Gramza-Michałowska A. The Chemical Composition and Nutritional Value of Chia Seeds-Current State of Knowledge. Nutrients 2019; 11:E1242. [PMID: 31159190 PMCID: PMC6627181 DOI: 10.3390/nu11061242] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/26/2022] Open
Abstract
Chia (Salvia hispanica) is an annual herbaceous plant, the seeds of which were consumed already thousands of years ago. Current research results indicate a high nutritive value for chia seeds and confirm their extensive health-promoting properties. Research indicates that components of chia seeds are ascribed a beneficial effect on the improvement of the blood lipid profile, through their hypotensive, hypoglycaemic, antimicrobial and immunostimulatory effects. This article provides a review of the most important information concerning the potential application of chia seeds in food production. The chemical composition of chia seeds is presented and the effect of their consumption on human health is discussed. Technological properties of chia seeds are shown and current legal regulations concerning their potential use in the food industry are presented.
Collapse
Affiliation(s)
- Bartosz Kulczyński
- Department of Gastronomy Sciences and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Joanna Kobus-Cisowska
- Department of Gastronomy Sciences and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Maciej Taczanowski
- Department of Food Quality and Management, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Dominik Kmiecik
- Department of Gastronomy Sciences and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Anna Gramza-Michałowska
- Department of Gastronomy Sciences and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| |
Collapse
|
14
|
da Silva BP, Toledo RCL, Grancieri M, Moreira MEDC, Medina NR, Silva RR, Costa NMB, Martino HSD. Effects of chia (Salvia hispanica L.) on calcium bioavailability and inflammation in Wistar rats. Food Res Int 2019; 116:592-599. [DOI: 10.1016/j.foodres.2018.08.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/16/2018] [Accepted: 08/25/2018] [Indexed: 12/24/2022]
|
15
|
VEGGI N, VOLTARELLI FA, PEREIRA JMN, SILVA WC, NAVALTA JW, CAVENAGHI DFLDC, BARROS WMD. Quality of high-protein diet bar plus chia (Salvia hispanica L.) grain evaluated sensorially by untrained tasters. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1590/fst.22317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Natalie VEGGI
- Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso, Brasil
| | | | | | | | | | | | | |
Collapse
|
16
|
Rubio C, González-Weller D, Caballero JM, Romano AR, Paz S, Hardisson A, Gutiérrez ÁJ, Revert C. Metals in food products with rising consumption (brewer’s yeast, wheat bran, oat bran, sesame seeds, flaxseeds, chia seed). A nutritional and toxicological evaluation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
17
|
|
18
|
Xing X, Hsieh YSY, Yap K, Ang ME, Lahnstein J, Tucker MR, Burton RA, Bulone V. Isolation and structural elucidation by 2D NMR of planteose, a major oligosaccharide in the mucilage of chia (Salvia hispanica L.) seeds. Carbohydr Polym 2017; 175:231-240. [PMID: 28917861 DOI: 10.1016/j.carbpol.2017.07.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/20/2017] [Indexed: 12/26/2022]
Abstract
An oligosaccharide was isolated in high purity and excellent yield from the water-extractable mucilage of chia (Salvia hispanica L.) seeds using an optimized solid-phase extraction method. LC-MS analysis showed that the compound presents a molecular mass of 504Da and trifluoroacetic acid hydrolysis revealed that it consists of galactose, glucose and fructose. Glycosidic linkage analysis showed that the oligosaccharide contains two non-reducing ends corresponding to terminal glucopyranose and terminal galactopyranose, respectively. The oligosaccharide was identified as planteose by the complete assignment of a series of 2D NMR spectra (COSY, TOCSY, ROESY, HSQC, and HMBC). The significance of the presence of planteose in chia seeds is discussed in the context of nutrition and food applications.
Collapse
Affiliation(s)
- Xiaohui Xing
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, SE 10691, Sweden
| | - Yves S Y Hsieh
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, SE 10691, Sweden; Wallenberg Wood Science Center, Royal Institute of Technology (KTH), Stockholm, SE 10044, Sweden
| | - Kuok Yap
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Main E Ang
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Jelle Lahnstein
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Matthew R Tucker
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Vincent Bulone
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, SE 10691, Sweden; Wallenberg Wood Science Center, Royal Institute of Technology (KTH), Stockholm, SE 10044, Sweden.
| |
Collapse
|