1
|
Yao Y, Feng S, Li X, Liu T, Ye S, Ma L, Man S. Litchi procyanidins inhibit colon cancer proliferation and metastasis by triggering gut-lung axis immunotherapy. Cell Death Dis 2023; 14:109. [PMID: 36774343 PMCID: PMC9922286 DOI: 10.1038/s41419-022-05482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 02/13/2023]
Abstract
Litchi chinensis seed, as a valuable by-product of the subtropical fruit litchi (Litchi chinensis Sonn.), has been confirmed to be rich in procyanidins (LPC). The anticarcinogenic properties of procyanidins has been primarily attributed to their antioxidant and anti-inflammatory activities. However, there is a comparative paucity of information on if and how LPC inhibits colon cancer. Here, LPC significantly inhibited CT26 colon cancer cells proliferation and metastasis in vivo and in vitro. In CT26 lung metastatic mice, the anti-metastatic effect of LPC relied on its regulation of gut microbiota such as increase of Lachnospiraceae UCG-006, Ruminococcus, and their metabolites such as acetic acid, propionic acid and butyric acid. In addition, LPC significantly inhibited CT26 colon cancer cells metastasis through increasing CD8+ cytotoxic T lymphocytes infiltration and decreasing the number of macrophages. Antibiotics treatment demonstrated that the therapeutic effect of LPC depended on the gut microbiota, which regulated T cells immune response. Taken together, LPC had strong inhibitory effects on colon cancer pulmonary metastasis by triggering gut-lung axis to influence the T cells immune response. Our research provides a novel finding for the utilization of procyanidins in the future, that is, supplementing more fruits and vegetables rich in procyanidins is beneficial to the treatment of colon cancer, or it can be used as an adjuvant drug in clinical anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Yuan Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Suya Feng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xuejiao Li
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Taohua Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shengying Ye
- Department of Pharmacy, The 983th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Tianjin, 300142, China.
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
2
|
Zhang X, Zhao L, Zhou W, Liu X, Hu Z, Wang K. Variations in the Multilevel Structure, Gelatinization and Digestibility of Litchi Seed Starches from Different Varieties. Foods 2022; 11:2821. [PMID: 36140947 PMCID: PMC9497979 DOI: 10.3390/foods11182821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Litchi seed starches from six varieties, as compared with maize starch, were studied for their multilevel structures, thermal and digestion properties to understand the distinct feather of each variety and provide guidance for their utilization in multi-industries. The results showed different varieties of litchi seed starch shared similar appearances with granules in oval shape and with a smooth surface. Starch granules of all the varieties exhibited typical bimodal size distributions consisting of small (<40 μm) and large granules (40−110 μm), although their relative proportions were largely dependent on variety. Huaizhi had the largest D50 value, whilst Guiwei showed the lowest. All the litchi seed starches had A-type crystalline with relative crystallinity varying from 20.67% (Huaizhi) to 26.76% (Guiwei). Similarly, the semi-crystalline structure varied apparently with variety. As to the chain-length distribution, only slight differences were observed among varieties, except Huaizhi displayed apparently higher amylose content (34.3%) and Guiwei showed the lowest (23.6%). Significant differences were also present in the gelatinization properties. Huaizhi seed starch showed significantly higher gelatinization temperatures and lower enthalpy change than the others. The digestibility of cooked litchi seed starches was only slightly different among varieties, suggesting variety is not the most critical factor regulating the digestibility of cooked litchi seed starch.
Collapse
Affiliation(s)
- Xin Zhang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou 510642, China
| | - Lei Zhao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou 510642, China
| | - Wanxia Zhou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangzhou Uniasia Cosmetics Technology Co., Ltd., Guangzhou 510640, China
| | - Xuwei Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou 510642, China
| | - Zhuoyan Hu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou 510642, China
| | - Kai Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou 510642, China
| |
Collapse
|
3
|
Lesser-Consumed Tropical Fruits and Their by-Products: Phytochemical Content and Their Antioxidant and Anti-Inflammatory Potential. Nutrients 2022; 14:nu14173663. [PMID: 36079920 PMCID: PMC9460136 DOI: 10.3390/nu14173663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Açaí, lychee, mamey, passion fruit and jackfruit are some lesser-consumed tropical fruits due to their low commercial production. In 2018, approximately 6.8 million tons of these fruits were harvested, representing about 6.35% of the total world production of tropical fruits. The present work reviews the nutritional content, profile of bioactive compounds, antioxidant and anti-inflammatory capacity of these fruits and their by-products, and their ability to modulate oxidative stress due to the content of phenolic compounds, carotenoids and dietary fiber. Açaí pulp is an excellent source of anthocyanins (587 mg cyanidin-3-glucoside equivalents/100 g dry weight, dw), mamey pulp is rich in carotenoids (36.12 mg β-carotene/100 g fresh weight, fw), passion fruit peel is rich in dietary fiber (61.16 g/100 dw). At the same time, jackfruit contains unique compounds such as moracin C, artocarpesin, norartocarpetin and oxyresveratrol. These molecules play an important role in the regulation of inflammation via activation of mitogen-activated protein kinases (including p38, ERK and JNK) and nuclear factor κB pathways. The properties of the bioactive compounds found in these fruits make them a good source for use as food ingredients for nutritional purposes or alternative therapies. Research is needed to confirm their health benefits that can increase their marketability, which can benefit the primary producers, processing industries (particularly smaller ones) and the final consumer, while an integral use of their by-products will allow their incorporation into the circular bioeconomy.
Collapse
|
4
|
Tian Z, Sun L, Chi B, Du Z, Zhang X, Liu Y, Zhou H. Affinity ultrafiltration and UPLC-HR-Orbitrap-MS based screening of neuraminidase inhibitors from Angelica pubescens. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1208:123398. [PMID: 35921697 DOI: 10.1016/j.jchromb.2022.123398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Traditional Chinese medicine is a rich source of natural products and has a long history of use because of its remarkable clinical efficacy. In the present study, the chemical constitutes of Angelica pubescens were studied by ultra high performance liquid chromatography and high-resolution Orbitrap mass spectrometry (UPLC-HR-Orbitrap-MS). A total of 78 compounds were identified and the main composition were coumarins and phenolic acids. Then, the neuraminidase was incubated with extract of Angelica pubescens to screen the neuraminidase inhibitors by affinity ultrafiltration methods. As a result, 13 small molecules were discovered to interact with neuraminidase for the first time. In vitro neuraminidase inhibitory activity of the screened compounds and extract of Angelica pubescens was tested, and isochlorogenic acid C, isochlorogenic acid B, osthole, chlorogenic acid, xanthotoxin, phellopterin and imperatorin were proved to have this activity. In addition, molecular docking analysis was conducted to predict the potential docking position. This study may provide a reference for the medical substance basis in Angelica and the clinical usage of this drug.
Collapse
Affiliation(s)
- Zhenhua Tian
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Luping Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Bingqing Chi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhen Du
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Xiumei Zhang
- Department of Quality Management, Shandong Drug and Food Vocational College, Weihai 264210, China.
| | - Yuecheng Liu
- Institute of Traditional Chinese Medicine Analysis, Shandong Academy of Chinese Medicine, Jinan 250014, China.
| | - Honglei Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
5
|
Xiang JY, Chi YY, Han JX, Kong P, Liang Z, Wang D, Xiang H, Xie Q. Litchi chinensis seed prevents obesity and modulates the gut microbiota and mycobiota compositions in high-fat diet-induced obese zebrafish. Food Funct 2022; 13:2832-2845. [DOI: 10.1039/d1fo03991a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obesity continues to be a global public health challenge. Litchi chinensis seed is rich in bioactive ingredients with pharmacological effects, such as hypoglycemic activity and anti-oxidation. This study aimed to...
Collapse
|
6
|
Contreras-Castro AI, Oidor-Chan VH, Bustamante-Camilo P, Pelayo-Zaldívar C, Díaz de León-Sánchez F, Mendoza-Espinoza JA. Chemical Characterization and Evaluation of the Antihyperglycemic Effect of Lychee ( Litchi chinensis Sonn.) cv. Brewster. J Med Food 2021; 25:61-69. [PMID: 34874786 DOI: 10.1089/jmf.2021.0098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lychee is a fruit of Asian origin with an exquisite flavor and an attractive reddish color. However, according to recent reports, the consumption of this fruit reduces the levels of blood glucose with adverse effects on human health such as encephalopathy and hypoglycemic. The objective of this work was to determine if the peel, pulp, and seed of "Brewster" lychee fruits harvested at two stages of maturity had antihyperglycemic effect. This effect was determined by an oral glucose tolerance test using Wistar rats. In addition, ultraviolet-visible spectrophotometry and high-resolution liquid chromatography were used to quantify phenolic compounds, flavonoids, organic acids (OAs), sugars, and antioxidant activity. Results indicated that stage I pulp (immature fruits) and stage II peel and seed (export mature fruits) reduced blood glucose levels, and the effects of the former two were synergistic with metformin. The pulp of mature fruits (stage II), however, lacked a hypoglycemic effect. Additionally, the peel and the seeds of these fruits presented a high antioxidant activity (as determined by DPPH [2,2-diphenyl-2-picryl-hydracyl] and ABTS+ [2,2-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid] methods), which correlated well with the total content of phenolic compounds. The highest content of polyphenolics, flavonoids, and OAs was found in the extracts of the peel and seeds of both stages of maturity. It was therefore concluded that "Brewster" mature lychees are safe for human consumption, and both the seed and the peel can be useful sources for obtaining new compounds with antihyperglycemic activity.
Collapse
Affiliation(s)
- Alexandra Ivette Contreras-Castro
- Laboratory of Post-harvest of Plant Genetic Resources and Natural Products, Department of Health Sciences, UAM-I, Ciudad de Mexico, Mexico
| | - Víctor Hugo Oidor-Chan
- Laboratory of Post-harvest of Plant Genetic Resources and Natural Products, Department of Health Sciences, UAM-I, Ciudad de Mexico, Mexico
| | - Patricia Bustamante-Camilo
- Department of Human Biology, College of Sciences and Humanities, Universidad Autónoma de la Ciudad de México (UACM), Ciudad de Mexico, Mexico
| | - Clara Pelayo-Zaldívar
- Postharvest Physiology Laboratory of Fruits and Vegetables, Department of Biotechnology, Universidad Autónoma Metropolitana (UAM) Unidad Iztapalapa, Ciudad de Mexico, Mexico
| | - Fernando Díaz de León-Sánchez
- Laboratory of Post-harvest of Plant Genetic Resources and Natural Products, Department of Health Sciences, UAM-I, Ciudad de Mexico, Mexico
| | - José Alberto Mendoza-Espinoza
- Department of Human Biology, College of Sciences and Humanities, Universidad Autónoma de la Ciudad de México (UACM), Ciudad de Mexico, Mexico
| |
Collapse
|
7
|
Tan S, Zhang H, Chen Q, Tang Y, Yang J, Zhang X, Li W, Shi S. Physical Characterization, Nutrient, Phenolic Profiles and Antioxidant Activities of 16 litchi Cultivars Grown in the Upper Yangtze River Region. Chem Biodivers 2021; 19:e202100713. [PMID: 34797035 DOI: 10.1002/cbdv.202100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022]
Abstract
Litchi grown in the upper Yangtze River region have the advantage of being late-maturing owing to the geographical location. This study aimed to evaluate the physical characteristics, nutritional values, phenolic composition and antioxidant activities of 16 litchi cultivars grown in the upper Yangtze River region. Litchi grown in this region had total soluble solid and ascorbic acid contents comparable with those of cultivars grown in other locations. The total polyphenol contents were determined using the Folin-Ciocalteu assay, and the phenolic profiles were determined using UPLC-QqQ-MS/MS. Nine phenolic compounds were identified and quantified in this study. Naringin, rutin and p-coumaric acid were the major phenolic compounds in all the litchi cultivars. Statistical analysis of all the physiochemical results was performed using principal component analysis. Our results indicated that litchi grown in the upper Yangtze River region not only showed the late-maturity characteristic but were also good dietary sources of phenolic compounds and antioxidants. In particular, 'Fei Zi Xiao' and 'Jing Gang Hong Nuo', characterized by high polyphenol contents and high antioxidant capacities, were of superior comprehensive quality. This study provides important information for the development of late-maturing litchi industry.
Collapse
Affiliation(s)
- Si Tan
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, P. R. China.,College of Food Science, Southwest University, Chongqing, 400715, P. R. China.,Chongqing Yudongnan Academy of Agricultural Sciences, Chongqing, 408000, P. R. China
| | - Hongna Zhang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, P. R. China
| | - Qin Chen
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, P. R. China
| | - Yuxin Tang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, P. R. China
| | - Jiaqi Yang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, P. R. China
| | - Xin Zhang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, P. R. China
| | - Wenfeng Li
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, P. R. China
| | - Shengyou Shi
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, P. R. China.,South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Guangdong, 524091, P. R. China
| |
Collapse
|
8
|
Zhang Y, Jin D, An X, Duan L, Duan Y, Lian F. Lychee Seed as a Potential Hypoglycemic Agent, and Exploration of its Underlying Mechanisms. Front Pharmacol 2021; 12:737803. [PMID: 34690773 PMCID: PMC8531476 DOI: 10.3389/fphar.2021.737803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Food is people's primal want. A reasonable diet and healthy food not only provide nutrients for human growth but also contribute to disease prevention and treatment, while following an unhealthy diet can lead to an increased risk of many diseases, especially metabolic disorders, such as diabetes. Nature is enriched with different food sources, and it seems that purely natural products are more in line with the current concept of health, which enhance the formation of the notion that "Food/Diet Supplements from Natural Sources as a Medicine." As a delicious fruit, the medicinal values such as anticancer, antibacterial, antioxidation, and antiglycating properties of lychee have been found. Lychee (Litchi in Chinese) is a subtropical fruit plant belonging to the family Sapindaceae. It has been widely cultivated in warm climates worldwide, particularly in China, for thousands of years. In recent years, various phytochemical components such as quercetin, procyanidin A2, and (2R)-naringenin-7-O-(3-O-αL-rhamnopyranosyl-β-D-glucopyranoside) have been identified in a lychee seed, which may lend a lychee seed as a relatively safe and inexpensive adjuvant treatment for diabetes and diabetic complications. In fact, accumulating evidence has shown that lychee seed, lychee seed extracts, and related compounds have promising antihyperglycemic activities, including improving insulin resistance, anti-inflammatory effect, lipid regulation, neuroprotection, antineurotoxic effect, and renoprotection effect. In this review, we summarized publications on antiglycemic effects and mechanisms of lychee seed, lychee seed extracts, and related compounds, which included their efficacies as a cure for diabetes and diabetic complications in cells, animals, and humans, attempting to obtain a robust evidence basis for the clinical application and value of lychee seed.
Collapse
Affiliation(s)
- Yuehong Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liyun Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Clinical department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fengmei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Yao P, Gao Y, Simal-Gandara J, Farag MA, Chen W, Yao D, Delmas D, Chen Z, Liu K, Hu H, Xiao J, Rong X, Wang S, Hu Y, Wang Y. Litchi ( Litchi chinensis Sonn.): a comprehensive review of phytochemistry, medicinal properties, and product development. Food Funct 2021; 12:9527-9548. [PMID: 34664581 DOI: 10.1039/d1fo01148k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Since ancient times, litchi has been well recognized as a functional food for the management of various ailments. Many bioactives, including flavanoids, anthocyanins, phenolics, sesquiterpenes, triterpenes, and lignans, have been identified from litchi with a myriad of biological properties both in vitro and in vivo. In spite of the extensive research progress, systemic reviews regarding the bioactives of litchi are rather scarce. Therefore, it is crucial to comprehensively analyze the pharmacological activities and the structure-activity relationships of the abundant bioactives of litchi. Besides, more and more studies have focused on litchi preservation and development of its by-products, which is significant for enhancing the economic value of litchi. Based on the analysis of published articles and patents, this review aims to reveal the development trends of litchi in the healthcare field by providing a systematic summary of the pharmacological activities of its extracts, its phytochemical composition, and the nutritional and potential health benefits of litchi seed, pulp and pericarp with structure-activity relationship analysis. In addition, its by-products also exhibited promising development potential in the field of material science and environmental protection. Furthermore, this study also provides an overview of the strategies of the postharvest storage and processing of litchi.
Collapse
Affiliation(s)
- Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini st., Cairo 11562, Egypt.,Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Weijie Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Dongning Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Dominique Delmas
- Université de Bourgogne Franche-Comté, Dijon, F-21000, France.,NSERM Research Center U1231 - Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health Research Group, F-21000, France.,Centre anticancéreux Georges François Leclerc Center, F-21000 Dijon, France
| | - Zhejie Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Kunmeng Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Hao Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.,Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Xianglu Rong
- Guangdong Metabolic Disease Research Centre of Integrated Chinese and Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong TCM Key Laboratory for Metabolic Diseases, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Yuanjia Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| |
Collapse
|
10
|
Sayago-Ayerdi S, García-Martínez DL, Ramírez-Castillo AC, Ramírez-Concepción HR, Viuda-Martos M. Tropical Fruits and Their Co-Products as Bioactive Compounds and Their Health Effects: A Review. Foods 2021; 10:foods10081952. [PMID: 34441729 PMCID: PMC8393595 DOI: 10.3390/foods10081952] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Tropical and subtropical fruits are recognized as a source of a high content of bioactive compounds and health promoting properties due to their nutritional composition. These beneficial health effects are related to the content of several of these bioactive compounds, mainly flavonoids and non-flavonoid phenolics. Many of these compounds are common in different tropical fruits, such as epicatechin in mango, pineapple, and banana, or catechin in pineapple, cocoa or avocado. Many studies of tropical fruits had been carried out, but in this work an examination is made in the current literature of the flavonoids and non-flavonoid phenolics content of some tropical fruits and their coproducts, comparing the content in the same units, as well as examining the role that these compounds play in health benefits.
Collapse
Affiliation(s)
- Sonia Sayago-Ayerdi
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Diana Laura García-Martínez
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Ailin Cecilia Ramírez-Castillo
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Heidi Rubí Ramírez-Concepción
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Agro-Food Technology Department, Miguel Hernández University, Orihuela, 03312 Alicante, Spain
- Correspondence: ; Tel.: +34-966-749-661
| |
Collapse
|
11
|
Yu JD, Chen YP, Shao YT, Zhou XR, Zhao X, Li YP. Chemical constituents of Bulbophyllum wendlandianum (Kraenzl.) Dammer and their chemotaxonomic significance. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Ultrasound-assisted osmotic dehydration of litchi: effect of pretreatment on mass transfer and quality attributes during frozen storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00931-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Nascimento Fraga L, Karoline de Souza Oliveira A, Pinheiro Aragão B, Alves de Souza D, Willian Propheta Dos Santos E, Alves Melo J, Mara de Oliveira E Silva A, Wisniewski Junior A, Bani Corrêa C, Regina Silva de Andrade Wartha E, Bacci L, Maria Montezano de Carvalho I. Mass spectrometry characterization, antioxidant activity, and cytotoxicity of the peel and pulp extracts of Pitomba. Food Chem 2021; 340:127929. [PMID: 32920302 DOI: 10.1016/j.foodchem.2020.127929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/06/2020] [Accepted: 08/23/2020] [Indexed: 11/25/2022]
Abstract
The fruit of the Talisia esculenta tree, is largely consumed and appreciated for its bittersweet taste; however, detailed information on its constituent bioactive compounds is still scarce. Therefore, this study aims to screen the antioxidant activity by six methods and determine the chemical profile of the pitomba fruit peel and pulp by electrospray ionization-Fourier transform-mass spectrometry. This is the first study attempting to identify the bioactive compounds in the pitomba fruit peel. Consequently, 19 and 14 compounds were identified in the ethanolic and hexanic peel extracts, while 7 and 10 compounds were detected in the ethanolic and hexanic pulp extracts, respectively. The common compounds across the board were citric acid, ascorbic acid, and shikimic acid. In addition, the ethanolic peel extract exhibited a high 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (54.21-81.41%). The obtained results highlight the importance the pitomba fruit as a promising source of natural compounds with high antioxidant activities.
Collapse
Affiliation(s)
- Layanne Nascimento Fraga
- Post-Graduate Program in in Nutrition Science, Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil.
| | - Anne Karoline de Souza Oliveira
- Post-Graduate Program in Health Science, Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| | - Bruna Pinheiro Aragão
- Post-Graduate Program in in Nutrition Science, Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| | - Daniel Alves de Souza
- Post-Graduate Program in in Nutrition Science, Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| | - Edmilson Willian Propheta Dos Santos
- Department of Morphology, Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| | - Josué Alves Melo
- Post-Graduate Program in Chemistry, Petroleum and Energy from Biomass Research Group (PEB), Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| | - Ana Mara de Oliveira E Silva
- Post-Graduate Program in in Nutrition Science, Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| | - Alberto Wisniewski Junior
- Post-Graduate Program in Chemistry, Petroleum and Energy from Biomass Research Group (PEB), Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| | - Cristiane Bani Corrêa
- Department of Morphology, Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| | - Elma Regina Silva de Andrade Wartha
- Post-Graduate Program in in Nutrition Science, Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| | - Leandro Bacci
- Department of Agronomic Engineering, Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| | - Izabela Maria Montezano de Carvalho
- Post-Graduate Program in in Nutrition Science, Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| |
Collapse
|
14
|
Yao Y, Liu T, Yin L, Man S, Ye S, Ma L. Polyphenol-Rich Extract from Litchi chinensis Seeds Alleviates Hypertension-Induced Renal Damage in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2138-2148. [PMID: 33470120 DOI: 10.1021/acs.jafc.0c07046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Litchi chinensis seed is a valuable byproduct of the subtropical fruit litchi (L. chinensis Sonn.), whose extract (LSE) has been confirmed to ameliorate dyslipidemia, hyperglycemia, and oxidative stress caused by type 2 diabetes. However, if LSE exerts an effect on anti-hypertension and hypertensive renal damage remains unknown. In this study, 13 polyphenols and one fatty acid were identified by UPLC-Q/TOF-MS. Network pharmacological analysis revealed that the therapeutic effects of LSE may be involved in multitargets and multipathways, such as the TNF signaling pathway, interleukin (IL)-6-mediated signaling pathway, NF-kappa B signaling pathway, removal of superoxide radicals, negative regulation of blood pressure, and so forth. Moreover, spontaneously hypertensive rats (SHRs) were daily gavaged with LSE (60 mg/kg) for 10 weeks. LSE remarkably reduced systolic blood pressure (SBP). The hypertension-induced renal damage was improved by suppressing inflammation and oxidative stress, which was consistent with the prediction of network pharmacology. In addition, LSE treatment remarkably increased the relative abundances of Lactobacillus and the production of short-chain fatty acids in the intestine. Our study indicated that a byproduct of litchi, namely, litchi seed, may be effective in reducing SBP and alleviating hypertensive renal damage.
Collapse
Affiliation(s)
- Yuan Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Taohua Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lijuan Yin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shengying Ye
- Department of Pharmacy, The 983th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Tianjin 300142, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
15
|
Sandhu KS, Kaur M, Punia S, Ahmed J. Rheological, thermal, and structural properties of high-pressure treated Litchi (Litchi chinensis) kernel starch. Int J Biol Macromol 2021; 175:229-234. [PMID: 33571583 DOI: 10.1016/j.ijbiomac.2021.02.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 11/29/2022]
Abstract
Starch isolated from litchi kernel was subjected to high-pressure (HP) treatment at selected pressures (300, 450 and 600 MPa) for 10 min, and evaluated for its rheological, morphological, thermal and structural properties. The amylose content of native litchi kernel starch (LKS) was 17.4%, which increased significantly upon pressurization. The temperature sweep test of the untreated starch sample resulted in the peak G' and G″ values of 3417 and 283 Pa, respectively, and those values decreased after pressurization. Oscillatory rheological measurements showed the frequency dependency of tested starch pastes. Furthermore, the mechanical rigidity of the starch pastes improved with pressure treatment. Morphological studies revealed that starch granule structure remained intact after pressurization; however, pressure >450 MPa resulted in surface roughness and small cavities. HP treatment significantly influenced thermal properties of LKS, in particular at 450 and 600 MPa, where a significant drop in the transition temperatures and enthalpy values were recorded. The HP-treated starch samples exhibited distinct X-ray diffraction pattern of native LKS i.e. the blend of A- and B-type allomorphs with a predominating A-type crystalline structure. Upon pressure treatment, the disappearance of 2θ peak at 5.6° and significant changes in peak intensities confirmed the structural change in the starch matrix.
Collapse
Affiliation(s)
- Kawaljit Singh Sandhu
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Maninder Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, India.
| | - Sneh Punia
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, India
| | - Jasim Ahmed
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| |
Collapse
|
16
|
Punia S, Kumar M. Litchi (Litchi chinenis) seed: Nutritional profile, bioactivities, and its industrial applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Sun Y, Wu A, Li X, Qin D, Jin B, Liu J, Tang Y, Wu J, Yu C. The seed of Litchi chinensis fraction ameliorates hippocampal neuronal injury in an Aβ 25-35-induced Alzheimer's disease rat model via the AKT/GSK-3β pathway. PHARMACEUTICAL BIOLOGY 2020; 58:35-43. [PMID: 31881157 PMCID: PMC6968628 DOI: 10.1080/13880209.2019.1697298] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/27/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Context: The seed of Litchi chinensis Sonn., a famous traditional Chinese medicine, was recently reported to enhance cognitive function by inhibiting neuronal apoptosis in rats.Objective: We determined whether the seed of Litchi chinensis fraction (SLF) can ameliorate hippocampal neuronal injury via the AKT/GSK-3β pathway.Materials and methods: We established Alzheimer's disease (AD) model by infusing Aβ25-35 into the lateral ventricle of Sprague-Dawley (SD) rats and randomly divided into five groups (n = 10): sham, donepezil and SLF (120, 240 and 480 mg/kg/d). Rats were treated by intragastric administration for 28 consecutive days. Spatial learning and memory were evaluated with Morris water maze, while protein expression of AKT, GSK-3β and tau in the hippocampal neurons was measured by Western blotting and immunohistochemistry.Results: On the fifth day, escape latency of the AD model group was 45.78 ± 2.52 s and that of the sham operative group was 15.98 ± 2.32 s. SLF could improve cognitive functions by increasing the number of rats that crossed the platform (p < 0.01), and their platform quadrant dwell time (p < 0.05). The protein expression level of AKT was upregulated (p < 0.001), while that of GSK-3β and tau (p < 0.01) was remarkably downregulated in the hippocampal CA1 area.Discussion and conclusions: To our knowledge, the present study is the first to show that SLF may exert neuroprotective effect in AD rats via the AKT/GSK-3β signalling pathway, thereby serving as evidence for the potential utility of SLF as an effective drug against AD.
Collapse
Affiliation(s)
- Yueshan Sun
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou, China
| | - Xiu Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu, China
| | - Dalian Qin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou, China
| | - Bingjin Jin
- Department of Human Anatomy, Chengdu Medical Collage, Chengdu, China
| | - Jian Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou, China
| | - Yong Tang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou, China
| | - Chonglin Yu
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou, China
| |
Collapse
|
18
|
Zhao L, Wang K, Wang K, Zhu J, Hu Z. Nutrient components, health benefits, and safety of litchi (Litchi chinensis Sonn.): A review. Compr Rev Food Sci Food Saf 2020; 19:2139-2163. [PMID: 33337091 DOI: 10.1111/1541-4337.12590] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/17/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022]
Abstract
Litchi (Litchi chinensis Sonn.) is a tropical to subtropical fruit that is widely cultivated in more than 20 countries worldwide. It is normally consumed as fresh or processed and has become one of the most popular fruits because it has a delicious flavor, attractive color, and high nutritive value. Whole litchi fruits have been used not only as a food source but also for medicinal purposes. As a traditional Chinese medicine, litchi has been used for centuries to treat stomach ulcers, diabetes, cough, diarrhea, and dyspepsia, as well as to kill intestinal worms. Both in vitro and in vivo studies have indicated that whole litchi fruits exhibit antioxidant, hypoglycemic, hepatoprotective, hypolipidemic, and antiobesity activities and show anticancer, antiatherosclerotic, hypotensive, neuroprotective, and immunomodulatory activities. The health benefits of litchi have been attributed to its wide range of nutritional components, among which polysaccharides and polyphenols have been proven to possess various beneficial properties. The diversity and composition of litchi polysaccharides and polyphenols have vital influences on their biological activities. In addition, consuming fresh litchi and its products could lead to some adverse reactions for some people such as pruritus, urticaria, swelling of the lips, swelling of the throat, dyspnea, or diarrhea. These safety problems are probably caused by the soluble protein in litchi that could cause anaphylactic and inflammatory reactions. To achieve reasonable applications of litchi in the food, medical and cosmetics industries, this review focuses on recent findings related to the nutrient components, health benefits, and safety of litchi.
Collapse
Affiliation(s)
- Lei Zhao
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou, China
| | - Kun Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou, China
| | - Jie Zhu
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Zhuoyan Hu
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou, China
| |
Collapse
|
19
|
Sari R, Conterno P, da Silva LD, de Lima VA, Oldoni TLC, Thomé GR, Carpes ST. Extraction of Phenolic Compounds from Tabernaemontana catharinensis Leaves and Their Effect on Oxidative Stress Markers in Diabetic Rats. Molecules 2020; 25:E2391. [PMID: 32455579 PMCID: PMC7288081 DOI: 10.3390/molecules25102391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/19/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to evaluate the most effective extraction condition (temperature, solvent type and time) for recovery of high-value phytochemicals present in the Tabernaemontana catharinensis leaves (TC) and to assess their effect on biochemical parameters in streptozotocin-induced diabetic rats. The extraction of phenolic compounds from TC using a factorial design (FD) 2³, high performance liquid chromatography (HPLC), response surface methodology (RSM) and principal component analysis (PCA) were studied. It was found that the optimal conditions for extraction of phenolics were higher temperature (65 °C) and time (60 min) using ethanol as extractor solvent. In this condition of extraction (A8), total phenolic compounds (TPC) and antioxidant activity (AA) were determined. Additionally, this extract was used to evaluate their effect on antioxidant enzyme activities (superoxide dismutase (SOD) and catalase (CAT)) as well as lipid peroxidation (LP) and protein thiols level (PSH) in the liver and kidneys of normal and diabetic rats. As result, T. catharinensis extract presented TPC content of 23.34 mg EAG/g (equivalent gallic acid) and AA of 34.26 μmol Trolox/g. Phenolic acids (ferulic acid and coumaric acid) and flavonoids (quercetin, rutin and pinocembrin) could be recovered and identified by HPLC. This study indicated an important role of the T. catharinensis extract on free radical inactivation and on the antioxidant defense system in diabetic rats. In fact, the use of T. catharinensis extract restored the normal activity of SOD (p < 0.05) and suppressed malondialdehyde levels in liver and kidney tissues. Thus, the T. catharinensis extract, rich in phenolic compounds, can be responsible for the recover the enzymatic changes in the liver and kidney tissues provoked by diabetes in rats. In addition, the lipid peroxidation rate decreased in the diabetic rats treated with T. catharinensis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Solange Teresinha Carpes
- Department of Chemistry, Federal University of Technology—Paraná (UTFPR), P.O. Box 591, 85503-390 Pato Branco, Brazil; (R.S.); (P.C.); (L.D.d.S.); (V.A.d.L.); (T.L.C.O.); (G.R.T.)
| |
Collapse
|
20
|
Xiong R, Wang XL, Wu JM, Tang Y, Qiu WQ, Shen X, Teng JF, Pan R, Zhao Y, Yu L, Liu J, Chen HX, Qin DL, Yu CL, Wu AG. Polyphenols isolated from lychee seed inhibit Alzheimer's disease-associated Tau through improving insulin resistance via the IRS-1/PI3K/Akt/GSK-3β pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112548. [PMID: 31917277 DOI: 10.1016/j.jep.2020.112548] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lychee seed, the seed of Litchi chinensis Sonn. is one of the commonly used in traditional Chinese medicine (TCM). It possesses many pharmacological effects such as blood glucose and lipid-lowering effects, liver protection, and antioxidation. Our preliminary studies have proven that an active fraction derived from lychee seed (LSF) can significantly decrease the blood glucose level, inhibit amyloid-β (Aβ) fibril formation and Tau hyperphosphorylation, and improve the cognitive function and behavior of Alzheimer's disease (AD) model rats. AIM OF THE STUDY The aim of this study was to identify the main active components in LSF that can inhibit the hyperphosphorylation of Tau through improving insulin resistance (IR) in dexamethasone (DXM)-induced HepG2 and HT22 cells. MATERIALS AND METHODS The isolation was guided by the bioactivity evaluation of the improvement effect of IR in HepG2 and HT22 cells. The mRNA and protein expressions of IRS-1, PI3K, Akt, GSK-3β, and Tau were measured by RT-PCR, Western blotting, and immunofluorescence methods, respectively. RESULTS After extraction, isolation, and elucidation using chromatography and spectrum technologies, three polyphenols including catechin, procyanidin A1 and procyanidin A2 were identified from fractions 3, 5, and 9 derived from LSF. These polyphenols inhibit hyperphosphorylated Tau via the up-regulation of IRS-1/PI3K/Akt and down-regulation of GSK-3β. Molecular docking result further demonstrate that these polyphenols exhibit good binding property with insulin receptor. CONCLUSIONS catechin, procyanidin A1, and procyanidin A2 are the main components in LSF that inhibit Tau hyperphosphorylation through improving IR via the IRS-1/PI3K/Akt/GSK-3β pathway. Therefore, the findings in the current study provide novel insight into the anti-AD mechanism of the components in LSF derived from lychee seed, which is valuable for the further development of a novel drug or nutrient supplement for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Rui Xiong
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Xiu-Ling Wang
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Department of Pharmacy, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Jian-Ming Wu
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, China.
| | - Yong Tang
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Wen-Qiao Qiu
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Xin Shen
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Jin-Feng Teng
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Rong Pan
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| | - Ya Zhao
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Lu Yu
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Jian Liu
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Hai-Xia Chen
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Da-Lian Qin
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, China.
| | - Chong-Lin Yu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| | - An-Guo Wu
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
21
|
Comparative Study of Crude and Wine-Processing Corni Fructus on Chemical Composition and Antidiabetic Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3986964. [PMID: 31885645 PMCID: PMC6915029 DOI: 10.1155/2019/3986964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/27/2022]
Abstract
Wine processing is a specialized technology which involves sautéing crude herbal medicine using Chinese rice wine. Herein, we identified the changes in chemical profiles and antidiabetic effects of Corni Fructus (CF) after wine processing in high-fat diet (HFD) streptozotocin- (STZ-) induced diabetic mice. A novel high-efficiency method for simultaneously quantifying gallic acid, 5-hydroxymethylfurfural, morroniside, loganin, sweroside, and cornuside by UPLC was developed, and validating crude and wine-processing CF was done for the first time. Mice were randomly divided into the following groups and orally given different solutions for 4 weeks: normal group (NC, 0.4% (w/v) CMC-Na), model group (DM, 0.4% (w/v) CMC-Na), crude CF group (CP, 3.87 g/kg), and wine-processing CF group (PP, 3.87 g/kg) followed by HFD and multiple subcutaneous injection of STZ (40 mg/kg) to induce the diabetes model except the NC group. Biochemical indexes (body weight, fasting blood glucose level, lipid level, insulin, and free fatty acid) and other parameters involving liver toxicity were measured with commercial kits and immunohistochemical method. Comparative studies on pharmacology showed that the crude extracts possess higher efficacy on hypoglycemia and hypolipidemia, while wine-processing products exhibit better effects on liver preservation. Our data suggested that wine processing was recommended when CF was used for protecting the liver; however, crude products should be used as antidiabetic drugs.
Collapse
|
22
|
Tan S, Tang J, Shi W, Wang Z, Xiang Y, Deng T, Gao X, Li W, Shi S. Effects of three drying methods on polyphenol composition and antioxidant activities of Litchi chinensis Sonn. Food Sci Biotechnol 2019; 29:351-358. [PMID: 32257518 DOI: 10.1007/s10068-019-00674-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/11/2019] [Accepted: 08/21/2019] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to investigate the effects of three different drying methods, freeze drying (FD), vacuum drying (VD) and oven drying (OD) on phenolic contents and antioxidant activities of litchi fruits. 20 polyphenols were exactly identified in the litchi fruits by UPLC-QqQ/MS. Significant losses were observed in the contents of total polyphenols and antioxidant activities in the dried litchi when compared with the fresh litchi. Principle component analysis indicated that there was significant difference of phenolic component between the use of thermal drying (VD and OD) and FD. Our results suggest that FD is the optimum drying method for litchi fruits considering the content of total polyphenols and antioxidant activities.
Collapse
Affiliation(s)
- Si Tan
- 1School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100 Chongqing, China
| | - Jianmin Tang
- 2Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing Engineering Research Center for Special Plant Seedling, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160 China
| | - Wenjing Shi
- 3Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Zhuwei Wang
- 1School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100 Chongqing, China
| | - Yuanyuan Xiang
- 1School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100 Chongqing, China
| | - Tingwei Deng
- 1School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100 Chongqing, China
| | - Xiaoxu Gao
- 1School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100 Chongqing, China
| | - Wenfeng Li
- 1School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100 Chongqing, China
| | - Shengyou Shi
- 1School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100 Chongqing, China
- 4Institute of China Southern Subtropical Crop Research, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Guangdong, 524091 China
| |
Collapse
|
23
|
Abstract
In this study, No.Ganpi4 of barley was steeped and malted to investigate the changes of phenolic compounds during malting process. The free phenolic extract from raw barley (FPEB) was analyzed by HPLC and predominant compounds were (+)-catechin, protocatechuate and quercetin. The FPEB was evaluated for hepatoprotective effect in vivo and in vitro. Intragastric administration of FPEB (100, 200 and 400 mg/kg/bw) to mice significantly weakened the effects of hepatic damage induced by CCl4 toxicity on serum markers, including serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total-bilirubin, total cholesterol and total triglycerides. FPEB administration also increased the hepatic levels of antioxidant enzymes, such as superoxide dismutase, catalase and glutathione peroxidase. Histopathological examinations further confirmed that FPEB could protect the liver from CCl4-induced damage. In vitro, the experimental results demonstrated that FPEB could reduce BRL hepatocyte apoptosis and damage induced by CCl4. These results suggest that FPEB exerts an effective protection for hepatic injury, and barley has the potential as a functional food to prevent hepatic injury.
Collapse
|
24
|
Comparison of structural and functional properties of starches from five fruit kernels. Food Chem 2018; 257:75-82. [PMID: 29622233 DOI: 10.1016/j.foodchem.2018.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 01/12/2023]
Abstract
Starch was isolated from the kernels of jackfruit, longan, loquat, litchi, and mango fruits, which contained approximately 56, 59, 71, 53, and 64% starch, respectively, indicating that these fruit kernels are good starch sources. The structural and functional properties of these isolated starches were investigated and compared. The starches had irregular, truncated, spherical, and elliptical shapes with central hila and exhibited different sizes, with mango starch being the largest and jackfruit and longan starches being the smallest. The five starches had similar amylose contents but exhibited significantly different crystalline properties including crystalline type, relative crystallinity, short-range ordered structure, and lamellar intensity. Among the five starches, the jackfruit and loquat starches had the highest and lowest gelatinization temperature and enthalpy, respectively, and the litchi and mango starches had the highest and lowest pasting viscosity, respectively. The longan and loquat starches were more susceptible to enzyme hydrolysis than the other starches.
Collapse
|
25
|
Chen Z, Wang C, Pan Y, Gao X, Chen H. Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice. Food Funct 2018; 9:426-439. [PMID: 29220052 DOI: 10.1039/c7fo00983f] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Black soybean seed coat extract (BSSCE) is a rich source of anthocyanins with multiple health effects. This study was aimed at investigating the composition and hypoglycemic and hypolipidemic effects of BSSCE in vitro and in a high-fat diet and streptozotocin (STZ)-induced diabetic mice. The anthocyanins of BSSCE were identified as cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, and peonidin-3-O-glucoside by HPLC-MS. Results demonstrated that BSSCE exhibited strong inhibitory activities for α-amylase, potent inhibition activity against lipid accumulation in HepG2 cells and protection effect on H2O2-induced oxidative stress-damaged HepG2 cells. The food and water intake, body weight loss, blood glucose and insulin level of BSSCE treatment group were found to be significantly reduced when compared with those of diabetic mice group (p < 0.05). The fasting blood glucose level and insulin level of the BSSCE 400 mg kg-1 group mice significantly decreased by 47.97% and 46.49%, respectively. The oral glucose tolerance and activities of antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) notably improved (p < 0.05). BSSCE could also ameliorate the atherogenic dyslipidaemia of diabetic mice by remarkably decreasing the content of total cholesterol (T-CHO), total triglyceride (TG), and non-esterified fatty acid (NEFA) and increasing the content of high-density lipoprotein cholesterol (HDL-c) (p < 0.05). BSSCE could protect against liver, kidney and pancreas damages in diabetic mice. This study suggested that cyanidin-3-O-glucoside contributed to BSSCE-induced hypoglycemia and hypolipidemia effects in type 2 diabetes mellitus (T2DM), and BSSCE might be a promising functional food or medicine for T2DM treatment.
Collapse
Affiliation(s)
- Zhongqin Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | | | | | | | | |
Collapse
|
26
|
Man S, Ma J, Yao J, Cui J, Wang C, Li Y, Ma L, Lu F. Systemic Perturbations of Key Metabolites in Type 2 Diabetic Rats Treated by Polyphenol Extracts from Litchi chinensis Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7698-7704. [PMID: 28793771 DOI: 10.1021/acs.jafc.7b02206] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Our previous research obtained Litchi chinensis Sonn. seeds extract (LSE) which showed hypoglycaemic effects on type 2 diabetes (T2D) rats. In order to understand the detailed pathogenesis of diabetes intervened by LSE, the metabonomics strategy was used. As a result, LSE decreased the insulin resistance index and the levels of glucose in urine through elevating the mRNA level of insulin, while decreasing the expression of glucagon to enhance the function of the pancreas. Meanwhile, LSE regulated the glucose and fatty acid metabolisms via increasing the expression of glucose transporter (Glu) 2, Glu4, insulin receptor (IR), and IR substrate-2 (IRS2). LSE effectively restored the impairment of the IRS2/PI3K/Akt/mTOR insulin signaling in the livers. All in all, LSE played a pivotal role in the treatment of T2D through regulation of broad-spectrum metabolic changes and inhibition of the glycogenesis, proteolysis, and lipogenesis in T2D rats.
Collapse
Affiliation(s)
- Shuli Man
- Tianjin Key Laboratory of Industry Microbiology, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Jiang Ma
- Tianjin Key Laboratory of Industry Microbiology, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Jingwen Yao
- Tianjin Key Laboratory of Industry Microbiology, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Jingxia Cui
- Tianjin Key Laboratory of Industry Microbiology, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Chunxia Wang
- Tianjin Key Laboratory of Industry Microbiology, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Yu Li
- Tianjin Key Laboratory of Industry Microbiology, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Long Ma
- Tianjin Key Laboratory of Industry Microbiology, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| | - Fuping Lu
- Tianjin Key Laboratory of Industry Microbiology, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, China
| |
Collapse
|
27
|
Li W, Yuan G, Pan Y, Wang C, Chen H. Network Pharmacology Studies on the Bioactive Compounds and Action Mechanisms of Natural Products for the Treatment of Diabetes Mellitus: A Review. Front Pharmacol 2017; 8:74. [PMID: 28280467 PMCID: PMC5322182 DOI: 10.3389/fphar.2017.00074] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/06/2017] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus (DM) is a kind of chronic and metabolic disease, which can cause a number of diseases and severe complications. Network pharmacology approach is introduced to study DM, which can combine the drugs, target proteins and disease and form drug-target-disease networks. Network pharmacology has been widely used in the studies of the bioactive compounds and action mechanisms of natural products for the treatment of DM due to the multi-components, multi-targets, and lower side effects. This review provides a balanced and comprehensive summary on network pharmacology from current studies, highlighting different bioactive constituents, related databases and applications in the investigations on the treatment of DM especially type 2. The mechanisms related to type 2 DM, including α-amylase and α-glucosidase inhibitory, targeting β cell dysfunction, AMPK signal pathway and PI3K/Akt signal pathway are summarized and critiqued. It suggests that the network pharmacology approach cannot only provide a new research paradigm for natural products, but also improve the current antidiabetic drug discovery strategies. Furthermore, we put forward the perspectives on the reasonable applications of network pharmacology for the therapy of DM and related drug discovery.
Collapse
Affiliation(s)
| | | | | | | | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin UniversityTianjin, China
| |
Collapse
|
28
|
Ye R, Fan YH, Ma CM. Identification and Enrichment of α-Glucosidase-Inhibiting Dihydrostilbene and Flavonoids from Glycyrrhiza uralensis Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:510-515. [PMID: 28019719 DOI: 10.1021/acs.jafc.6b04155] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To exploit Glycyrrhiza uralensis resources, we examined the bioactive constituents of G. uralensis leaves. Seven chemical components were isolated by repeat column chromatography, and using spectroscopic methods, their structures were determined to be a novel prenylated dihydrostilbene, α,α'-dihydro-3,5,3',4'-tetrahydroxy-2,5'-diprenylstilbene (1); a methylated flavonoid, quercetin-3-Me ether (4); and 5 prenylated flavonoids: 5'-prenylquercetin (3), 8-[(E)-3-hydroxymethyl-2-butenyl]eriodictyol (7), 6-prenyleriodictyol (5), 5'-prenyleriodictyol (6), and 6-prenylquercetin-3-Me ether (2). Compounds 1-7 and their unprenylated counterparts, glycosides, and other related compounds (8-13) were quantitatively analyzed. Using a macroporous resin column, most of these compounds could be enriched in the 40% to 60% ethanol-eluted fractions. Compounds 1-7 showed strong radical scavenging activity toward DPPH, and most of them demonstrated greater inhibitory activity against α-glucosidase than their unprenylated counterparts.
Collapse
Affiliation(s)
- Rigui Ye
- School of Life Sciences, Inner Mongolia University , Huhhot, China 010021
| | - Yu-Hong Fan
- School of Life Sciences, Inner Mongolia University , Huhhot, China 010021
| | - Chao-Mei Ma
- School of Life Sciences, Inner Mongolia University , Huhhot, China 010021
| |
Collapse
|
29
|
Salvador ÂC, Król E, Lemos VC, Santos SAO, Bento FPMS, Costa CP, Almeida A, Szczepankiewicz D, Kulczyński B, Krejpcio Z, Silvestre AJD, Rocha SM. Effect of Elderberry (Sambucus nigra L.) Extract Supplementation in STZ-Induced Diabetic Rats Fed with a High-Fat Diet. Int J Mol Sci 2016; 18:ijms18010013. [PMID: 28025494 PMCID: PMC5297648 DOI: 10.3390/ijms18010013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 01/08/2023] Open
Abstract
Elderberry (Sambucus nigra L.) lipophilic and polar extract dietary supplementation effects were evaluated according to diabetes management indices, using an in vivo model. A research pipeline was constructed, that ranged from extract preparation, partial chemical characterization and toxicity evaluation, to examining the elderberry extract dietary supplementation effects on biofluid and tissues. Extracts toxicity was screened using an Aliivibrio fischeri bioluminescence model. A concentration of up to 60 mg/L was selected, and rat doses for oral supplementation were computed applying the interspecies correlation between A. fischeri and rats. Wistar type 2 diabetic rats, induced by streptozotocin (STZ), were fed a high-fat diet and supplemented for 4 weeks at doses of 190 and 350 mg/kg body weight/day of lipophilic and polar extract, respectively. As far as we know, lipophilic elderberry extract supplementation was assessed for the first time, while polar extract was administrated at higher doses and for a shorter period compared to previous studies, aiming to evaluate subacute supplementation effects. The polar extract modulated glucose metabolism by correcting hyperglycemia, while the lipophilic extract lowered insulin secretion. Both extracts lowered insulin resistance, without remarkable alterations to hematological indices, sera lipids and sera and tissular trace element homeostasis. In conclusion, elderberries are a potential source of bioactive compounds for formulations to be used as co-adjuvants in diabetes management.
Collapse
Affiliation(s)
- Ângelo C Salvador
- Organic Chemistry, Natural Products and Food Stuffs Research Unit, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
- Aveiro Institute of Materials, CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ewelina Król
- Human Nutrition and Hygiene, Poznan University of Life Sciences, Wojska Polskiego 31, 60-637 Poznan, Poland.
| | - Virgínia C Lemos
- Organic Chemistry, Natural Products and Food Stuffs Research Unit, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sónia A O Santos
- Aveiro Institute of Materials, CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Fernanda P M S Bento
- Organic Chemistry, Natural Products and Food Stuffs Research Unit, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Carina P Costa
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Adelaide Almeida
- Centre for Environmental and Marine Studies, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Dawid Szczepankiewicz
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wojska Polskiego 35, 60-637 Poznan, Poland.
| | - Bartosz Kulczyński
- Human Nutrition and Hygiene, Poznan University of Life Sciences, Wojska Polskiego 31, 60-637 Poznan, Poland.
| | - Zbigniew Krejpcio
- Human Nutrition and Hygiene, Poznan University of Life Sciences, Wojska Polskiego 31, 60-637 Poznan, Poland.
| | - Armando J D Silvestre
- Aveiro Institute of Materials, CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sílvia M Rocha
- Organic Chemistry, Natural Products and Food Stuffs Research Unit, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|