1
|
Yan X, Huang W, Suo X, Pan S, Li T, Liu H, Tan B, Zhang S, Yang Y, Dong X. Integrated analysis of microbiome and host transcriptome reveals the damage/protective mechanism of corn oil and olive oil on the gut health of grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu). Int J Biol Macromol 2023; 253:127550. [PMID: 37865354 DOI: 10.1016/j.ijbiomac.2023.127550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
As digestive and immune organs of animals, the gut was frequently used to evaluate the health status of aquatic animals. In previous oil source alternatives study, corn oil (CO) had been found to induce gut inflammation, while olive oil (OO) had been found to be effective in protecting intestinal health. Three diets with different oil sources (fish oil, CO, OO) were formulated for an 8-week culture experiment, and it was proposed to combine 16S sequencing and transcriptome sequencing analysis to preliminarily elucidate the damage/protection mechanism of CO and OO on the gut health of grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu). We found that CO indeed damaged to gut health and destroyed the gut structure, while OO had a positive outcome in protecting the gut structure, promoting digestibility and relieving enteritis. Photobacterium, Romboutsia and Epulopiscium were significantly enriched in OO group and Staphylococcus were significantly enriched in CO group. Transcriptome sequencing further revealed CO could activated Complement and coagulation cascades, Staphylococcus aureus infection, Systemic lupus erythematosus, and Tuberculosis pathways; conversely, OO activated B-cell signaling receptors, promoted B-cell proliferation and apoptosis, and thus activated B-cell signaling pathways to enhance immunity, whereas OO can regulate IL17 signaling pathway and TNF signaling pathway to inhibit NF-κB signaling pathway to reduce pro-inflammatory response. By integrating the microbiome and transcriptome, further identified all differential microorganisms were directly and significantly correlated with differential genes, and Clostridium_sensu_stricto_1, Romboutsia, Staphylococcus might as the core regulates the expression of differential gene in the organism. These results reveal that different oil sources alter gut gene expression mainly by modulating the composition and abundance of gut microbiota, further regulating the health status of the gut. Gut microbiota could be used as biomarkers to provide reference and solutions for the mitigation of inflammation in aquatic animals.
Collapse
Affiliation(s)
- Xiaobo Yan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Weibin Huang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Xiangxiang Suo
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Simiao Pan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Tao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Hao Liu
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China
| | - Yuanzhi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, Guangdong 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong 524000, China.
| |
Collapse
|
2
|
Karimi N. Approaches in line with human physiology to prevent skin aging. Front Physiol 2023; 14:1279371. [PMID: 37954446 PMCID: PMC10634238 DOI: 10.3389/fphys.2023.1279371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Skin aging is a complex process that is influenced by intrinsic and extrinsic factors that impact the skin's protective functions and overall health. As the body's outermost layer, the skin plays a critical role in defending it against external threats, regulating body temperature, providing tactile sensation, and synthesizing vitamin D for bone health, immune function, and body homeostasis. However, as individuals age, the skin undergoes structural and functional changes, leading to impairments in these essential functions. In contemporary society, there is an increasing recognition of skin health as a significant indicator of overall wellbeing, resulting in a growing demand for anti-aging products and treatments. However, these products often have limitations in terms of safety, effective skin penetration, and potential systemic complications. To address these concerns, researchers are now focusing on approaches that are safer and better aligned with physiology of the skin. These approaches include adopting a proper diet and maintaining healthy lifestyle habits, the development of topical treatments that synchronize with the skin's circadian rhythm, utilizing endogenous antioxidant molecules, such as melatonin and natural products like polyphenols. Moreover, exploring alternative compounds for sun protection, such as natural ultraviolet (UV)-absorbing compounds, can offer safer options for shielding the skin from harmful radiation. Researchers are currently exploring the potential of adipose-derived stem cells, cell-free blood cell secretome (BCS) and other endogenous compounds for maintaining skin health. These approaches are more secure and more effective alternatives which are in line with human physiology to tackle skin aging. By emphasizing these innovative strategies, it is possible to develop effective treatments that not only slow down the skin aging process but also align better with the natural physiology of the skin. This review will focus on recent research in this field, highlighting the potential of these treatments as being safer and more in line with the skin's physiology in order to combat the signs of aging.
Collapse
Affiliation(s)
- Nazli Karimi
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
3
|
C de S Ribeiro B, V de C Faria R, de S Nogueira J, Santos Valença S, Chen L, Romana-Souza B. Olive oil promotes the survival and migration of dermal fibroblasts through Nrf2 pathway activation. Lipids 2023; 58:59-68. [PMID: 36289559 DOI: 10.1002/lipd.12363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/27/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022]
Abstract
Olive oil has beneficial effects on skin wound healing due to its anti-inflammatory and antioxidant properties; however, the mechanism by which olive oil promotes wound healing is unclear. We evaluated the mechanisms involved in Nrf2 pathway activation by olive oil and its role in cell survival and migration in mouse dermal fibroblasts in a short-term exposition. Our data demonstrated that olive oil and oleic acid promoted reactive oxygen species (ROS) production, while olive oil and hydroxytyrosol stimulated nuclear factor erythroid 2-related factor 2 (Nrf2) activation. Olive oil-mediated ROS production increased nuclear factor kappa B p65 expression, while olive oil-stimulated reactive nitrogen species production augmented the levels of Nrf2. Olive oil augmented cell proliferation, cell migration, and AKT phosphorylation, but decreased apoptotic cell number and cleaved caspase-3 levels. The effect of olive oil on cell migration and protein levels of AKT, BCL-2, and Nrf2 were reversed by an Nrf2 inhibitor. In conclusion, the activation of the Nrf2 pathway by olive oil promotes the survival and migration of dermal fibroblasts that are essential for the resolution of skin wound healing.
Collapse
Affiliation(s)
- Bianca C de S Ribeiro
- Department of Histology and Embryology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Regina V de C Faria
- Department of Histology and Embryology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Jeane de S Nogueira
- Histocompatibility and Cryopreservation Laboratory, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Samuel Santos Valença
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago, Chicago, Illinois, USA
| | - Bruna Romana-Souza
- Department of Histology and Embryology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Donato-Trancoso A, Correa Atella G, Romana-Souza B. Dietary olive oil intake aggravates psoriatic skin inflammation in mice via Nrf2 activation and polyunsaturated fatty acid imbalance. Int Immunopharmacol 2022; 108:108851. [PMID: 35588658 DOI: 10.1016/j.intimp.2022.108851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 01/12/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease, which does not have effective treatment options. However, olive oil has been suggested as an alternative to treat psoriasis, but no study has evaluated the mechanisms involved in the effects of olive oil on psoriasis. Thus, the current study investigated whether olive oil could ameliorate psoriasiform skin inflammation. To test this, mice received topical application of imiquimod to induce inflammation and were treated orally with olive oil. Human immortalized keratinocytes were also treated with imiquimod and olive oil. Epidermal thickness and keratinocyte proliferation were increased in imiquimod-induced lesions of olive-oil-treated animals. In both in vitro and in vivo studies, protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) were elevated following imiquimod and olive oil administration. Inhibition of Nrf2 abolished the increased proliferation of keratinocytes treated with imiquimod and olive oil, demonstrating the role of Nrf2 in olive oil-mediated exacerbation of psoriasiform skin inflammation. In addition, lower levels of linoleic acid and higher levels of oleic acid were observed in imiquimod- and olive-oil-treated animals, which may also contribute to the adverse effects of olive oil on psoriasis. In conclusion, dietary intake of olive oil aggravates the symptoms of psoriatic skin lesions through the overexpression of Nrf2 and an imbalance in oleic and linoleic acids levels, suggesting that a diet rich in olive oil may have significant negative effects on psoriasis.
Collapse
Affiliation(s)
- Aline Donato-Trancoso
- Department of Histology and Embryology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Geórgia Correa Atella
- Laboratory of Lipid and Lipoprotein Biochemistry, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Romana-Souza
- Department of Histology and Embryology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Boosting the Photoaged Skin: The Potential Role of Dietary Components. Nutrients 2021; 13:nu13051691. [PMID: 34065733 PMCID: PMC8156873 DOI: 10.3390/nu13051691] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Skin photoaging is mainly induced by ultraviolet (UV) irradiation and its manifestations include dry skin, coarse wrinkle, irregular pigmentation, and loss of skin elasticity. Dietary supplementation of nutraceuticals with therapeutic and preventive effects against skin photoaging has recently received increasing attention. This article aims to review the research progress in the cellular and molecular mechanisms of UV-induced skin photoaging. Subsequently, the beneficial effects of dietary components on skin photoaging are discussed. The photoaging process and the underlying mechanisms are complex. Matrix metalloproteinases, transforming growth factors, skin adipose tissue, inflammation, oxidative stress, nuclear and mitochondrial DNA, telomeres, microRNA, advanced glycation end products, the hypothalamic-pituitary-adrenal axis, and transient receptor potential cation channel V are key regulators that drive the photoaging-associated changes in skin. Meanwhile, mounting evidence from animal models and clinical trials suggests that various food-derived components attenuate the development and symptoms of skin photoaging. The major mechanisms of these dietary components to alleviate skin photoaging include the maintenance of skin moisture and extracellular matrix content, regulation of specific signaling pathways involved in the synthesis and degradation of the extracellular matrix, and antioxidant capacity. Taken together, the ingestion of food-derived functional components could be an attractive strategy to prevent skin photoaging damage.
Collapse
|
6
|
Hernandez DF, Cervantes EL, Luna-Vital DA, Mojica L. Food-derived bioactive compounds with anti-aging potential for nutricosmetic and cosmeceutical products. Crit Rev Food Sci Nutr 2020; 61:3740-3755. [PMID: 32772550 DOI: 10.1080/10408398.2020.1805407] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Besides providing essential nutrients for humans, food contains bioactive compounds that exert diverse biological activities such as anti-microbial, anti-cancerogenic, anti-viral, anti-inflammatory and antioxidant. The cosmetic industry is interested in natural bioactive compounds for their use in nutricosmetic and cosmeceutical products. These products aimed to reduce skin aging, inflammation or provide photoprotection against UV radiation. As a result, nutricosmetics and cosmeceuticals are becoming innovative self-care products in the beauty market. These products contain phytochemicals as active compounds obtained from fruits, vegetables, legumes, medicinal herbs and plants with anti-aging potential. This review summarizes the information within the last 5 years related to bioactive compounds present in fruits, vegetables, herbs and spices commonly used for human consumption. Their antioxidant and biological potential for modulating molecular markers involved in the aging process, as well as their mechanism of action. Diverse natural foods and their byproducts could be used as a source of bioactive compounds for developing cosmeceutical and nutricosmetic products.
Collapse
Affiliation(s)
- David Fonseca Hernandez
- Tecnología Alimentaria. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. CIATEJ, Unidad Zapopan, Zapopan, Jalisco, México
| | - Eugenia Lugo Cervantes
- Tecnología Alimentaria. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. CIATEJ, Unidad Zapopan, Zapopan, Jalisco, México
| | - Diego A Luna-Vital
- Tecnologico de Monterrey, Department of Bioengineering and Science, Puebla, Puebla, Mexico
| | - Luis Mojica
- Tecnología Alimentaria. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. CIATEJ, Unidad Zapopan, Zapopan, Jalisco, México
| |
Collapse
|
7
|
Cao C, Xiao Z, Wu Y, Ge C. Diet and Skin Aging-From the Perspective of Food Nutrition. Nutrients 2020; 12:E870. [PMID: 32213934 PMCID: PMC7146365 DOI: 10.3390/nu12030870] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
We regularly face primary challenges in deciding what to eat to maintain young and healthy skin, defining a healthy diet and the role of diet in aging. The topic that currently attracts maximum attention is ways to maintain healthy skin and delay skin aging. Skin is the primary barrier that protects the body from external aggressions. Skin aging is a complex biological process, categorized as chronological aging and photo-aging, and is affected by internal factors and external factors. With the rapid breakthrough of medicine in prolonging human life and the rapid deterioration of environmental conditions, it has become urgent to find safe and effective methods to treat skin aging. For diet, as the main way for the body to obtain energy and nutrients, people have gradually realized its importance to the skin. Therefore, in this review, we discuss the skin structure, aging manifestations, and possible mechanisms, summarize the research progress, challenges, possible directions of diet management, and effects of foodborne antioxidants on skin aging from the perspective of food and nutrition.
Collapse
Affiliation(s)
- Changwei Cao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (C.C.); (Z.X.)
- College of Food Science, Sichuan Agricultural University, Ya’ an, Sichuan 625014, China;
| | - Zhichao Xiao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (C.C.); (Z.X.)
- College of Food Science and technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yinglong Wu
- College of Food Science, Sichuan Agricultural University, Ya’ an, Sichuan 625014, China;
| | - Changrong Ge
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (C.C.); (Z.X.)
| |
Collapse
|
8
|
Romana-Souza B, Saguie BO, Pereira de Almeida Nogueira N, Paes M, Dos Santos Valença S, Atella GC, Monte-Alto-Costa A. Oleic acid and hydroxytyrosol present in olive oil promote ROS and inflammatory response in normal cultures of murine dermal fibroblasts through the NF-κB and NRF2 pathways. Food Res Int 2020; 131:108984. [PMID: 32247459 DOI: 10.1016/j.foodres.2020.108984] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/28/2019] [Accepted: 01/05/2020] [Indexed: 12/27/2022]
Abstract
Few studies have evaluated the effects of olive oil on normal tissues like skin and its components. Hence, we investigated whether olive oil could increase the production of ROS and oxidative damage in murine dermal fibroblast cultures in a short-term exposition. In addition, we evaluated the role of oleic acid and hydroxytyrosol, which are the two most important components of olive oil, in the associated mechanisms of action, and the metabolism of long-chain fatty acids from olive oil. To study this, neonatal murine dermal fibroblasts (NMDF) were incubated with olive oil, oleic acid, or hydroxytyrosol for 24 or 72 h. The NMDF incubated with olive oil or oleic acid showed an increase in the production of ROS after 24 h, lipid peroxidation, and protein carbonylation after 72 h, as well as increased expression of nuclear factor-kappa B (NF-κB) p65 and cyclooxygenase-2 (COX-2) after 72 h. However, NMDF treated with olive oil or hydroxytyrosol demonstrated an increase in the expression of nuclear factor-erythroid2-related factor 2 (NRF2) and heme oxygenase-1 (HO-1) after 72 h. In addition, NMDF treated with olive oil also showed an increase in the protein expression of diacylglycerol acyltransferase1 (DGAT1), which promotes triacylglycerol synthesis, and in the levels of triacylglycerols. The microscopic analysis showed Nile red-positive lipid droplets inside olive oil-treated NMDF after 72 h. Moreover, gas chromatography-mass spectrometry demonstrated high levels of oleic acid in the olive oil-treated NMDF after 72 h. In conclusion, oleic acid present in the olive oil promotes the production of ROS and oxidative damage in murine dermal fibroblasts, which leads to NF-κB p65 and COX-2 expression, while hydroxytyrosol promotes NRF2 and HO-1 expression. In addition, NMDF area capable of absorbing long-chain fatty acids derived from olive oil, which promotes the synthesis and the accumulation of triacylglycerols into cytoplasm of NMDF through DGAT1 activation.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Tissue Repair Laboratory, Department of Histology and Embryology, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Bianca Oliveira Saguie
- Tissue Repair Laboratory, Department of Histology and Embryology, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcia Paes
- Laboratory of Trypanosomatids and Vectores Interection, Department of Biochemistry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Georgia Correa Atella
- Laboratory of Lipid and Lipoprotein Biochemistry, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andréa Monte-Alto-Costa
- Tissue Repair Laboratory, Department of Histology and Embryology, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|