1
|
Kitala-Tańska K, Socha K, Juśkiewicz J, Krajewska-Włodarczyk M, Majewski M. The Effect of an Elevated Dietary Copper Level on the Vascular Contractility and Oxidative Stress in Middle-Aged Rats. Nutrients 2024; 16:1172. [PMID: 38674863 PMCID: PMC11054332 DOI: 10.3390/nu16081172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Copper (Cu), being an essential mineral, plays a crucial role in maintaining physiological homeostasis across multiple bodily systems, notably the cardiovascular system. However, an increased Cu level in the body may cause blood vessel dysfunction and oxidative stress, which is unfavorable for the cardiovascular system. Middle-aged (7-8 months old) male Wistar rats (n/group = 12) received a diet supplemented with 6.45 mg Cu/kg (100% of the recommended daily dietary quantity of copper) for 8 weeks (Group A). The experimental group received 12.9 mg Cu/kg of diet (200%-Group B). An ex vivo study revealed that supplementation with 200% Cu decreased the contraction of isolated aortic rings to noradrenaline (0.7-fold) through FP receptor modulation. Vasodilation to sodium nitroprusside (1.10-fold) and acetylcholine (1.13-fold) was potentiated due to the increased net effect of prostacyclin derived from cyclooxygenase-1. Nitric oxide (NO, 2.08-fold), superoxide anion (O2•-, 1.5-fold), and hydrogen peroxide (H2O2, 2.33-fold) measured in the aortic rings increased. Blood serum antioxidant status (TAS, 1.6-fold), Cu (1.2-fold), Zn (1.1-fold), and the Cu/Zn ratio (1.4-fold) increased. An increase in Cu (1.12-fold) and the Cu/Zn ratio (1.09-fold) was also seen in the rats' livers. Meanwhile, cyclooxygenase-1 (0.7-fold), cyclooxygenase-2 (0.4-fold) and glyceraldehyde 3-phosphate dehydrogenase (0.5-fold) decreased. Moreover, a negative correlation between Cu and Zn was found (r = -0.80) in rat serum. Supplementation with 200% Cu did not modify the isolated heart functioning. No significant difference was found in the body weight, fat/lean body ratio, and organ weight for either the heart or liver, spleen, kidney, and brain. Neither Fe nor Se, the Cu/Se ratio, the Se/Zn ratio (in serum and liver), heme oxygenase-1 (HO-1), endothelial nitric oxide synthase (eNOS), or intercellular adhesion molecule-1 (iCAM-1) (in serum) were modified. Supplementation with 200% of Cu potentiated pro-oxidant status and modified vascular contractility in middle-aged rats.
Collapse
Affiliation(s)
- Klaudia Kitala-Tańska
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Białystok, 15-222 Białystok, Poland;
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Magdalena Krajewska-Włodarczyk
- Department of Mental and Psychosomatic Diseases, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | - Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| |
Collapse
|
2
|
Sokoła-Wysoczańska E, Czyż K, Wyrostek A. Different Sources of Omega-3 Fatty Acid Supplementation vs. Blood Lipid Profiles-A Study on a Rat Model. Foods 2024; 13:385. [PMID: 38338520 PMCID: PMC10855811 DOI: 10.3390/foods13030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Dyslipidemia is a serious condition affecting an increasing number of people, and thus, preventive measures, including supplementation, are being developed. We aimed to compare the effect of linseed oil, its ethyl esters and fish oil supplementation on the serum lipid profiles of rats fed a high-fat diet. Wistar rats were divided into nine groups. Four of them were fed a high-fat diet for the whole experiment, four groups were fed a high-fat diet before the supplementation period and then the control one with supplements, and one was fed a control diet without supplements. The whole experiment lasted 12 weeks. A significant reduction in blood triglycerides, total cholesterol and the LDL fraction was noted in supplemented groups compared to the controls, especially in groups supplemented with ethyl esters of linseed oil and linseed oil compared to fish oil groups. The results were also more beneficial in groups where, in addition to supplementation, there was also a diet change from a high-fat diet to a control diet during the supplementation period. We may conclude that supplementation with omega-3 fatty acids, combined with a healthy diet, may be a good way of preventing or alleviating dyslipidemia.
Collapse
Affiliation(s)
| | - Katarzyna Czyż
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38c, 51-630 Wrocław, Poland;
| | - Anna Wyrostek
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38c, 51-630 Wrocław, Poland;
| |
Collapse
|
3
|
Majewski M, Gromadziński L, Cholewińska E, Ognik K, Fotschki B, Juśkiewicz J. The Interaction of Dietary Pectin, Inulin, and Psyllium with Copper Nanoparticle Induced Changes to the Cardiovascular System. Nutrients 2023; 15:3557. [PMID: 37630746 PMCID: PMC10457830 DOI: 10.3390/nu15163557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
We aimed to analyze how supplementation with a standard (recommended, 6.5 mg/kg) or enhanced (two-times higher, 13 mg/kg) dose of copper (Cu), in the form of nanoparticles (NPs) along with dietary intervention via the implementation of diverse types of fiber, affects the cardiovascular system in rats. Nine-week-old male Wistar Han rats (n/group = 10) received, for an additional 6 weeks, a controlled diet with cellulose as dietary fiber and ionic Cu (in the form of carbonate salt). The experimental groups received cellulose, pectin, inulin, and psyllium as dietary fiber, together with CuNPs (6.5 or 13 mg/kg diet). After the experimental feeding, samples of blood, hearts, and thoracic arteries were collected for further analysis. Compared to pectin, and under a standard dose of CuNPs, inulin and psyllium beneficially increased the antioxidant capacity of lipid- and water-soluble compounds in the blood, and decreased heart malondialdehyde. Moreover, pectin decreased heart catalase (CAT) and cyclooxygenase (COX)-2 in the aortic rings compared to inulin and psyllium under standard and enhanced doses of copper. When the dose of CuNPs was enhanced, inulin and psyllium potentiated vasodilation to acetylcholine by up-regulation of COX-2-derived vasodilator prostanoids compared to both cellulose and pectin, and this was modulated with selective inducible nitric oxide synthase (iNOS) inhibitor for psyllium only. Moreover, inulin decreased heart CAT compared to psyllium. Our results suggest that supplementation with dietary fiber may protect the vascular system against potentially harmful metal NPs by modulating the antioxidant mechanisms.
Collapse
Affiliation(s)
- Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Leszek Gromadziński
- Department of Cardiology and Internal Medicine, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | - Ewelina Cholewińska
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (E.C.); (K.O.)
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (E.C.); (K.O.)
| | - Bartosz Fotschki
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| |
Collapse
|
4
|
Kitala K, Tanski D, Godlewski J, Krajewska-Włodarczyk M, Gromadziński L, Majewski M. Copper and Zinc Particles as Regulators of Cardiovascular System Function-A Review. Nutrients 2023; 15:3040. [PMID: 37447366 DOI: 10.3390/nu15133040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Copper and zinc are micronutrients that play a crucial role in many cellular pathways, act as cofactors in enzymatic systems, and hence, modulate enzyme activity. The regulation of these elements in homeostasis is precisely controlled by various mechanisms. Superoxide dismutase (SOD) is an enzyme requiring both copper and zinc for proper functioning. Additionally, there is an interaction between the concentrations of copper and zinc. Dietary ingestion of large amounts of zinc augments intestinal absorption of this trace element, resulting in copper deficiency secondary to zinc excess. The presence of an overabundance of copper and zinc has a detrimental impact on the cardiovascular system; however, the impact on vascular contractility varies. Copper plays a role in the modulation of vascular remodeling in the cardiac tissue, and the phenomenon of cuproptosis has been linked to the pathogenesis of coronary artery disease. The presence of copper has an observable effect on the vasorelaxation mediated by nitric oxide. The maintenance of proper levels of zinc within an organism influences SOD and is essential in the pathogenesis of myocardial ischemia/reperfusion injury. Recently, the effects of metal nanoparticles have been investigated due to their unique characteristics. On the other hand, dietary introduction of metal nanoparticles may result in vascular dysfunction, oxidative stress, and cellular DNA damage. Copper and zinc intake affect cardiovascular function, but more research is needed.
Collapse
Affiliation(s)
- Klaudia Kitala
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Damian Tanski
- Department of Human Histology and Embryology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Janusz Godlewski
- Department of Human Histology and Embryology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Magdalena Krajewska-Włodarczyk
- Department of Mental and Psychosomatic Diseases, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Leszek Gromadziński
- Department of Cardiology and Internal Medicine, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
5
|
Munteanu C, Mihai M, Dulf F, Ona A, Muntean L, Ranga F, Urdă C, Pop D, Mihaiescu T, Mârza SM, Papuc I. Biochemical Changes Induced by the Administration of Cannabis sativa Seeds in Diabetic Wistar Rats. Nutrients 2023; 15:2944. [PMID: 37447270 DOI: 10.3390/nu15132944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The present pilot study investigates the blood biochemical changes induced by hemp seeds in rats with diabetes. The composition of industrial hemp seeds, antioxidant activity, identification and quantification of phenols and fatty acids from hemp oil were determined. The Wistar adult rats used in the experiment were divided into three groups (n = 6) and kept under standard conditions. Group one, the control group (individuals without diabetes), and group two (diabetic individuals) received water and normal food ad libitum, while the third group, also including diabetic individuals, received specific food (hemp seeds) and water ad libitum. Subsequent blood biochemical parameters were determined. Hemp seeds had higher phenol (14 compounds), flavonoids and PUFA contents compared to other plants seeds. In addition, the antioxidant activity in Cannabis sativa was also increased. Moreover, the ratio between n-6 and n-3 was 4.41, ideal for different diseases. Additionally, all biochemical parameters showed significant changes following the treatment. It was shown that high doses of hemp seeds decreased diabetes-induced biochemical damage in rats most probably due to the high content of active compounds. In order to use these seeds in humans, it is essential to find out which hemp compounds are particularly responsible for these effects. Moreover, for the objective investigation of their effects, longer-term studies are needed.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Mihaela Mihai
- Department of Transversal Competencies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Francisc Dulf
- Department of Environmental and Plant Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Andreea Ona
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Leon Muntean
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Floricuța Ranga
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Camelia Urdă
- Agricultural Research Development Station Turda, 27 Agriculturii Street, 401100 Turda, Romania
| | - Daria Pop
- Clinic of Obstetrics and Gynecology II "Dominic Stanca", University of Medicine and Pharmacy "Iuliu Hațieganu" Cluj-Napoca, Victor Babeș 8, 400347 Cluj-Napoca, Romania
| | - Tania Mihaiescu
- Department of Environmental and Plant Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Sorin Marian Mârza
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Ionel Papuc
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Rolnik A, Olas B, Szablińska-Piernik J, Lahuta LB, Rynkiewicz A, Cygański P, Socha K, Gromadziński L, Thoene M, Majewski M. Beneficial In Vitro Effects of a Low Myo-Inositol Dose in the Regulation of Vascular Resistance and Protein Peroxidation under Inflammatory Conditions. Nutrients 2022; 14:1118. [PMID: 35268093 PMCID: PMC8912744 DOI: 10.3390/nu14051118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress induces functional changes in arteries. Therefore, the effect of myo-inositol, a possible anti-inflammatory/antioxidant agent was studied on human plasma and rat thoracic arteries. Aortic rings from male Wistar rats (3 months of age) were incubated with myo-inositol (1, 10 and 100 μM, 120 min) and analyzed using the gas chromatography (GC) method. In another experiment, aortic rings were protected first with myo-inositol (1 µM, 60 min) and then subjected to a thromboxane receptor agonist (U-46619, 0.1 nM, 60 min). Therefore, these four groups under the following conditions were studied: (i) the control in the vehicle; (ii) myo-inositol; (iii) the vehicle plus U-46619; (iv) myo-inositol plus U-46619. The hemostatic parameters of human plasma and an H2O2/Fe2+ challenge for lipid and protein peroxidation were also performed. Myo-inositol was not absorbed into the pre-incubated aortic rings as measured by the GC method (0.040 µg/mg, p ≥ 0.8688). The effect of myo-inositol was more significant in the impaired arteries due to U-46619 incubation, which resulted in an improved response to acetylcholine (% Emax: 58.47 vs. 86.69), sodium nitroprusside (logEC50: −7.478 vs. −8.076), CORM-2 (% Emax: 44.08 vs. 83.29), pinacidil (logEC50: −6.489 vs. −6.988) and noradrenaline (logEC50: −7.264 vs. −6.525). This was most likely a possible response to increased nitric oxide release (×2.6-fold, p < 0001), and decreased hydrogen peroxide production (×0.7-fold, p = 0.0012). KCl-induced membrane depolarization was not modified (p ≥ 0.4768). Both the plasma protein carbonylation (×0.7-fold, p = 0.0006), and the level of thiol groups (×3.2-fold, p = 0.0462) were also improved, which was not significant for TBARS (×0.8-fold, p = 0.0872). The hemostatic parameters were also not modified (p ≥ 0.8171). A protective effect of myo-inositol was demonstrated against prooxidant damage to human plasma and rat thoracic arteries, suggesting a strong role of this nutraceutical agent on vasculature which may be of benefit against harmful environmental effects.
Collapse
Affiliation(s)
- Agata Rolnik
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236 Łódź, Poland; (A.R.); (B.O.)
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236 Łódź, Poland; (A.R.); (B.O.)
| | - Joanna Szablińska-Piernik
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (J.S.-P.); (L.B.L.)
| | - Lesław Bernard Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (J.S.-P.); (L.B.L.)
| | - Andrzej Rynkiewicz
- Department of Cardiology and Internal Medicine, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.R.); (P.C.); (L.G.)
| | - Piotr Cygański
- Department of Cardiology and Internal Medicine, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.R.); (P.C.); (L.G.)
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Białystok, 15-222 Białystok, Poland;
| | - Leszek Gromadziński
- Department of Cardiology and Internal Medicine, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.R.); (P.C.); (L.G.)
| | - Michael Thoene
- Department of Medical Biology, Faculty of Health Sciences, University of Warmia and Mazury in Olsztyn, 10-561 Olsztyn, Poland;
| | - Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
7
|
Majewski M, Juśkiewicz J, Krajewska-Włodarczyk M, Gromadziński L, Socha K, Cholewińska E, Ognik K. The Role of 20-HETE, COX, Thromboxane Receptors, and Blood Plasma Antioxidant Status in Vascular Relaxation of Copper-Nanoparticle-Fed WKY Rats. Nutrients 2021; 13:nu13113793. [PMID: 34836047 PMCID: PMC8623823 DOI: 10.3390/nu13113793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, the addition of copper nanoparticles (NPs) in a daily diet (6.5 mg/kg) was studied in different animal models as a possible alternative to ionic forms. Male Wistar-Kyoto rats (24-week-old, n = 11) were fed with copper, either in the form of carbonate salt (Cu6.5) or metal-based copper NPs (NP6.5), for 8 weeks. The third group was fed with a half dose of each (NP3.25 + Cu3.25). The thoracic aorta and blood plasma was studied. Supplementation with NP6.5 decreased the Cu (×0.7), Cu/Zn-ratio (×0.6) and catalase (CAT, ×0.7), and increased Zn (×1.2) and superoxide dismutase (SOD, ×1.4). Meanwhile, NP3.25 + Cu3.25 decreased the Cu/Zn-ratio (×0.7), and CAT (×0.7), and increased the daily feed intake (×1.06). Preincubation with either the selective cyclooxygenase (COX)-2 inhibitor, or the non-selective COX-1/2 inhibitor attenuated vasodilation of rat thoracic aorta in the NP6.5 group exclusively. However, an increased vasodilator response was observed in the NP6.5 and NP3.25 + Cu3.25 group of rats after preincubation with an inhibitor of 20-hydroxyeicosatetraenoic acid (20-HETE) formation, and the thromboxane receptor (TP) antagonist. Significant differences were observed between the NP6.5 and NP3.25 + Cu3.25 groups of rats in: dietary intake, acetylcholine-induced vasodilation, and response to COX-inhibitors. Copper NPs in a standard daily dose had more significant effects on the mechanism(s) responsible for the utilization of reactive oxygen species in the blood plasma with the participation of prostanoids derived from COX-2 in the vascular relaxation. Dietary copper NPs in both doses modified vasodilation through the vasoconstrictor 20-HETE and the TP receptors.
Collapse
Affiliation(s)
- Michał Majewski
- Department of Pharmacology and Toxicology, UWM, 10-082 Olsztyn, Poland
- Correspondence: ; Tel.: +48-89-524-56-68
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | | | - Leszek Gromadziński
- Department of Cardiology and Internal Medicine, Faculty of Medicine, UWM, 10-082 Olsztyn, Poland;
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Białystok, 15-222 Białystok, Poland;
| | - Ewelina Cholewińska
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, 20-950 Lublin, Poland; (E.C.); (K.O.)
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, 20-950 Lublin, Poland; (E.C.); (K.O.)
| |
Collapse
|
8
|
Liu H, Deng H, Jian Z, Cui H, Guo H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L, Zhu Y. Copper exposure induces hepatic G0/G1 cell-cycle arrest through suppressing the Ras/PI3K/Akt signaling pathway in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112518. [PMID: 34271501 DOI: 10.1016/j.ecoenv.2021.112518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Copper (Cu), as a common chemical contaminant in environment, is known to be toxic at high concentrations. The current research demonstrates the effects of copper upon hepatocyte cell-cycle progression (CCP) in mice. Institute of cancer research (ICR) mice (n = 240) at an age of four weeks were divided randomly into groups treated with different doses of Cu (0, 4, 8, and 16 mg/kg) for 21 and 42 days. Results showed that high Cu exposure caused hepatocellular G0/G1 cell-cycle arrest (CCA) and reduced cell proportion in the G2/M phase. G0/G1 CCA occurred with down-regulation (p < 0.05) of Ras, p-PI3K (Tyr458), p-Akt (Thr308), p-forkhead box O3 (FOXO3A) (Ser253), p-glycogen synthase kinase 3-β (GSK3-β) (Ser9), murine double minute 2 (MDM2) protein, and mRNA expression levels, and up-regulation (p < 0.05) of PTEN, p-p53 (Ser15), p27, p21 protein, and mRNA expression levels, which subsequently suppressed (p < 0.05) the protein and mRNA expression levels of CDK2/4 and cyclin E/D. These results indicate that Cu exposure suppresses the Ras/PI3K/Akt signaling pathway to reduce the level of CDK2/4 and cyclin E/D, which are essential for the G1-S transition, and finally causes hepatocytes G0/G1 CCA.
Collapse
Affiliation(s)
- Huan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China; Key Laboratory of Agricultural information engineering of Sichuan Province, Sichuan Agriculture University, Yaan, Sichuan 625014, China.
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
9
|
Majewski M, Jurgoński A. The Effect of Hemp ( Cannabis sativa L.) Seeds and Hemp Seed Oil on Vascular Dysfunction in Obese Male Zucker Rats. Nutrients 2021; 13:nu13082575. [PMID: 34444734 PMCID: PMC8398088 DOI: 10.3390/nu13082575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
Seeds of industrial hemp (Cannabis sativa L.) contain a large amount of protein (26.3%), dietary fiber (27.5%), and fatty acids (33.2%), including linoleic, α-linolenic, and some amount of γ-linolenic acid. In our study, obese male Zucker rats (n = 6) at 8 weeks of age were supplemented for a further 4 weeks with either ground hemp seeds (12% diet) or lipid fractions in the form of hemp seed oil (4% diet). Hemp oil decreased blood plasma HDL-cholesterol (x0.76, p ≤ 0.0001), triglycerides (x0.55, p = 0.01), and calculated atherogenic parameters. Meanwhile, hemp seeds decreased HDL-cholesterol (x0.71, p ≤ 0.0001) and total cholesterol (x0.81, p = 0.006) but not the atherogenic index. The plasma antioxidant capacity of water-soluble compounds was decreased by the seeds (x0.30, p = 0.0015), which in turn was associated with a decrease in plasma uric acid (x0.18, p = 0.03). Dietary hemp seeds also decreased plasma urea (x0.80, p = 0.02), while the oil decreased the plasma total protein (x0.90, p = 0.05). Hemp seeds and the oil decreased lipid peroxidation in the blood plasma and in the heart (reflected as malondialdehyde content), improved contraction to noradrenaline, and up-regulated the sensitivity of potassium channels dependent on ATP and Ca2+. Meanwhile, acetylcholine-induced vasodilation was improved by hemp seeds exclusively. Dietary supplementation with ground hemp seeds was much more beneficial than the oil, which suggests that the lipid fractions are only partially responsible for this effect.
Collapse
Affiliation(s)
- Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, UWM, 10-082 Olsztyn, Poland
- Correspondence: (M.M.); (A.J.); Tel.: +48-89-524-56-68 (M.M.); +48-89-523-46-01 (A.J.)
| | - Adam Jurgoński
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
- Correspondence: (M.M.); (A.J.); Tel.: +48-89-524-56-68 (M.M.); +48-89-523-46-01 (A.J.)
| |
Collapse
|
10
|
Majewski M, Kucharczyk E, Kaliszan R, Markuszewski M, Fotschki B, Juśkiewicz J, Borkowska-Sztachańska M, Ognik K. The Characterization of Ground Raspberry Seeds and the Physiological Response to Supplementation in Hypertensive and Normotensive Rats. Nutrients 2020; 12:E1630. [PMID: 32492905 PMCID: PMC7352221 DOI: 10.3390/nu12061630] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
This study aimed to evaluate the protective role of ground raspberry seeds (RBS) as a source of polyphenols and essential fatty acids on blood plasma enzymatic antioxidant status, lipid profile, and endothelium-intact vasodilation during physiological and pathological conditions. Young normotensive Wistar-Kyoto rats (WKYs) and spontaneously hypertensive rats (SHRs) at ten weeks of age were fed with either a control diet or were supplemented with added 7% RBS for six weeks (n = 6). The main component of RBS was dietary fiber (64%) and the main polyphenols were ellagitannins (1.2%) and flavan-3-ols (0.45%). Irrespective of the rat model, ground RBS decreased liver enzyme aspartate aminotransferase (0.9-fold) and hydrogen peroxide scavenging capacity (Catalase, 0.9-fold). In supplemented SHRs, preincubation with inducible nitric oxide synthase (iNOS) inhibitor 1400W, nonselective cyclooxygenase (COX) inhibitor indomethacin, selective COX-2 inhibitor NS-398, prostacyclin (PGI2) synthesis inhibitor tranylcypromine (TCP), thromboxane receptor (TP) antagonist SQ-29548, thromboxane synthesis inhibitor furegrelate, and 20-HETE synthesis inhibitor HET0016 induced the same relaxant response to acetylcholine as in the nonsupplemented control group. In supplemented WKYs, atherogenic index was decreased (0.8-fold), while iNOS and COX-2-derived PGI2 increased acetylcholine-induced vasodilation. These effects of ground RBS may constitute a potential mechanism for preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, UWM, 10-082 Olsztyn, Poland;
| | - Ewa Kucharczyk
- Department of Pharmacology and Toxicology, Faculty of Medicine, UWM, 10-082 Olsztyn, Poland;
| | - Roman Kaliszan
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland; (R.K.); (M.M.)
| | - Michał Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland; (R.K.); (M.M.)
| | - Bartosz Fotschki
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-748 Olsztyn, Poland; (B.F.); (J.J.)
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-748 Olsztyn, Poland; (B.F.); (J.J.)
| | | | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, 20-950 Lublin, Poland;
| |
Collapse
|
11
|
Majewski M, Lis B, Juśkiewicz J, Ognik K, Borkowska-Sztachańska M, Jedrejek D, Stochmal A, Olas B. Phenolic Fractions from Dandelion Leaves and Petals as Modulators of the Antioxidant Status and Lipid Profile in an In Vivo Study. Antioxidants (Basel) 2020; 9:antiox9020131. [PMID: 32028583 PMCID: PMC7071135 DOI: 10.3390/antiox9020131] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 02/06/2023] Open
Abstract
Alcoholic leaf and petal fractions of Taraxacum officinale (dandelion) were previously demonstrated to exert in vitro antioxidant and antithrombotic activities in blood plasma and platelets. Eight-week-old male Wistar rats (n = 6) were supplemented for four weeks with dandelion fractions (694 mg/kg of diet = 11.9 ± 0.6 mg daily). Dandelion leaf and petal fractions, which delivered daily 4.10 ± 0.05 and 1.41 ± 0.07 mg l-chicoric acid, respectively, were shown to exert antioxidative actions, measured as decreased levels of thiobarbituric acid-reactive substances (TBARS) in the spleen (≈0.8-fold, leaves and petals), brain (0.53-fold, leaves) and thoracic arteries (0.59-fold, petals). Moreover, petal fraction increased thiols in the blood plasma (1.58-fold), while leaf fraction decreased protein carbonylation levels (0.59-fold). Additionally, dandelion leaf fractions modified the lipid profile: decreased triglyceride (0.44-fold), total cholesterol (0.73-fold), lipoprotein combine index (0.32-fold) and the atherogenic index of plasma (0.62-fold). Dandelion fractions showed a beneficial decrease effect in the participation of cyclooxygenase products in the noradrenaline-induced vascular contractions of thoracic arteries. Meanwhile, only the dandelion leaf fraction augmented acetylcholine-induced vasodilation and upregulated KATP channels. The heart rate and blood pressure were not modified. Dandelion leaf and petal phenolic fractions, enriched with l-chicoric acid, are promising plant materials that may exert in vivo beneficial antioxidant effects.
Collapse
Affiliation(s)
- Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
- Correspondence: ; Tel.: +48-668-342-965
| | - Bernadetta Lis
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236 Łódź, Poland; (B.L.); (B.O.)
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, 20-950 Lublin, Poland;
| | | | - Dariusz Jedrejek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (D.J.); (A.S.)
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (D.J.); (A.S.)
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236 Łódź, Poland; (B.L.); (B.O.)
| |
Collapse
|