1
|
Singh A, Singh J, Kaur S, Gunjal M, Kaur J, Nanda V, Ullah R, Ercisli S, Rasane P. Emergence of microgreens as a valuable food, current understanding of their market and consumer perception: A review. Food Chem X 2024; 23:101527. [PMID: 38974201 PMCID: PMC11225695 DOI: 10.1016/j.fochx.2024.101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Green leafy vegetables, especially microgreens are gaining popularity due to their high nutritional profiles, rich phytochemical content, and intense flavors. This review explores the growing commercial market for microgreens, especially in upscale dining and premium grocery outlets, highlighting consumer perceptions and their effect on market dynamics. Apart from these, the effect of modern agricultural methods that maximize the growth of microgreens is also examined. The value is anticipated to increase significantly, according to market predictions, from $1.7 billion in 2022 to $2.61 billion by 2029. Positive consumer views on microgreens health benefits drive this growth, although challenges such as varying levels of consumer awareness and income disparities affect sales. The review underscores the need for targeted research and strategic initiatives to enhance consumer understanding and improve cultivation methods to support market expansion in upcoming years.
Collapse
Affiliation(s)
- Aishvina Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Mahendra Gunjal
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Jaspreet Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Vikas Nanda
- Sant Longowal Institute of Engineering and Technology, Sangrur, Punjab 148106, India
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center College of Pharmacy, King Saud University Riyadh, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye
| | - Prasad Rasane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, Punjab, India
| |
Collapse
|
2
|
Han Y, Chen H, Lai M, Lin Z, Huang Y, Tang W, Zhu Y, Zhang Y, Wang Z, Ni H, Chen X, Chen S. Nutritional and Phytochemical Composition and Antioxidant Activity of Edible Stems of Smooth Cordgrass ( Spartina alterniflora). Foods 2024; 13:3150. [PMID: 39410185 PMCID: PMC11475077 DOI: 10.3390/foods13193150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Smooth cordgrass (Spartina alterniflora) is a native salt marsh plant along the Atlantic coast but has become an invasive species in coastal regions in China, as well as other areas. Utilizing it for resources has become a control measure in reducing the spread of S. alterniflora. This study assesses the nutritional and phytochemical properties of the edible stems of S. alterniflora collected from three locations in Fujian province, China. The tender stems of S. alterniflora exhibit a rich nutritional profile, with high levels of protein, carbohydrates, and fats, and significant amounts of essential vitamins, minerals, and antioxidants, indicating their potential as a nutritious addition to the diet or forage. In addition, the levels of potential contaminants, including nitrate, nitrite, cadmium, lead, and chromium, are below the established safe thresholds for consumption. Our results provide valuable information for the sustainable utilization of S. alterniflora resources and will contribute to the integrated control of S. alterniflora.
Collapse
Affiliation(s)
- Yijuan Han
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian Provincial Universities Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Huiquan Chen
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian Provincial Universities Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meiling Lai
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian Provincial Universities Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongyuan Lin
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian Provincial Universities Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yongji Huang
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian Provincial Universities Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Weiqi Tang
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian Provincial Universities Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yanbing Zhu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yange Zhang
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian Provincial Universities Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Zonghua Wang
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian Provincial Universities Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiaofeng Chen
- Fujian Provincial Universities Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Songbiao Chen
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
3
|
Xu Y, Wang M, Abbas HMK, Xue S, Zhu J, Meng Q, Jin Q, Fu M, Qu S, Zhong Y. Comparing the differences in quality profiles and antioxidant activity in seven pumpkin cultivars ( Cucurbita moschata and Cucurbita maxima) at harvest and during postharvest storage. Food Chem X 2024; 22:101383. [PMID: 38665625 PMCID: PMC11043848 DOI: 10.1016/j.fochx.2024.101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Pumpkin, nutritious vegetable, is renowned for its extended shelf life. In this study, seven pumpkin cultivars from Cucurbita moschata and Cucurbita maxima were comparatively characterized for 25 physiochemical quality factors, starch granule structures, antioxidant activity, and correlations at 0-60 days of postharvest (dop). The findings revealed that sucrose and carotenoid contents increased in C. moschata, while they initially increased and then decreased in C. maxima. Additionally, acidity, primarily driven by malic acid, decreased in C. maxima but increased in C. maxima. The starch content of C. moschata and C. maxima reached its maximum value at 30 dop and 20 dop, respectively. The DPPH radical scavenging activity correlated with the carotenoid content in both pumpkin species. Conclusively, C. moschata demonstrated improved nutritional and quality at 20-30 dop, while C. maxima exhibited higher commercial suitability at 10-20 dop. The findings suggested that pumpkin storage was crucial for quality improvement.
Collapse
Affiliation(s)
- Yingchao Xu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Manman Wang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Jiangsu Yanjiang Institute of Agricultural Sciences, Jiangsu 226012, China
| | - Hafiz Muhammad Khalid Abbas
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shudan Xue
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jitong Zhu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qitao Meng
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qingmin Jin
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Manqin Fu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, College of Horticulture and Landscape, Northeast Agricultural University, Heilongjiang, Harbin 150030, China
| | - Yujuan Zhong
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
4
|
Yang J, Liao Y, Cao C, Yu Q, Zhang D, Yan C. Structural identification and anti-neuroinflammatory effects of a pectin-arabinoglucuronogalactan complex, AOPB-1-1, isolated from Asparagus officinalis. Int J Biol Macromol 2024; 268:131593. [PMID: 38631571 DOI: 10.1016/j.ijbiomac.2024.131593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Asparagus officinalis L. is a horticultural crop that contains a variety of bioactive compounds with anti-inflammatory effects. Aqueous extracts of A. officinalis can noticeably improve the learning and memory function of model mice. Herein, a pectin-arabinoglucuronogalactan complex (AOPB-1-1) with a relative molecular weight of 90.8 kDa was isolated from A. officinalis. The repeating structural unit of AOPB-1-1 was identified through monosaccharide composition, methylation analysis, uronic acid reduction, partial acid hydrolysis, and nuclear magnetic resonance spectroscopy. AOPB-1-1 contains the rhamnogalacturonan-I (RG-I) domain of pectin polysaccharides (PPs) and arabinoglucuronogalactan (AGG) regions. The backbone of the AGG region is composed of →3,6)-β-D-Galp-(1→ and →4)-β-D-Glcp-(1→ residues substituted at the 4-position to the →4)-α-D-GalAp-(1→ residues of the RG-I main chain. The anti-neuroinflammatory activity of AOPB-1-1 suggests that it can significantly reduce the content of inflammatory cytokines, including nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) and inhibit the expression of inflammatory genes including cyclooxygenase-2 (COX2), nitric oxide synthase (iNOS), TNF-α, IL-6, and interleukin-1β (IL-1β) in LPS-stimulated BV2 cells. Furthermore, its inhibitory effects on TNF-α and IL-6 levels were even better than those of minocycline. The significant anti-neuroinflammatory activity of AOPB-1-1 suggests its applicability as a therapeutic option for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Junqiang Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuechan Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chao Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Dawei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunyan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Stefanowicz-Hajduk J, Graczyk P, Hering A, Gucwa M, Nowak A, Hałasa R. An In Vitro Study on the Cytotoxic, Antioxidant, and Antimicrobial Properties of Yamogenin-A Plant Steroidal Saponin and Evaluation of Its Mechanism of Action in Gastric Cancer Cells. Int J Mol Sci 2024; 25:4627. [PMID: 38731847 PMCID: PMC11083171 DOI: 10.3390/ijms25094627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Yamogenin is a steroidal saponin occurring in plant species such as Asparagus officinalis, Dioscorea collettii, Trigonella foenum-graecum, and Agave sp. In this study, we evaluated in vitro cytotoxic, antioxidant, and antimicrobial properties of yamogenin. The cytotoxic activity was estimated on human colon cancer HCT116, gastric cancer AGS, squamous carcinoma UM-SCC-6 cells, and human normal fibroblasts with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The amount of apoptotic and dead AGS cells after treatment with yamogenin was estimated with flow cytometry. Also, in yamogenin-treated AGS cells we investigated the reactive oxygen species (ROS) production, mitochondrial membrane depolarization, activity level of caspase-8 and -9, and gene expression at mRNA level with flow cytometry, luminometry, and RT-PCR, respectively. The antioxidant properties of yamogenin were assessed with DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays. The antimicrobial potential of the compound was estimated on Staphylococcus aureus, Bacillus cereus, Klebsiella pneumoniae, Escherichia coli, Salmonella enterica, Helicobacter pylori, Campylobacter coli, Campylobacter jejuni, Listeria monocytogenes, Lactobacillus paracasei, and Lactobacillus acidophilus bacteria strains. Yamogenin showed the strongest cytotoxic effect on AGS cells (IC50 18.50 ± 1.24 µg/mL) among the tested cell lines. This effect was significantly stronger in combinations of yamogenin with oxaliplatin or capecitabine than for the single compounds. Furthermore, yamogenin induced ROS production, depolarized mitochondrial membrane, and increased the activity level of caspase-8 and -9 in AGS cells. RT-PCR analysis revealed that this sapogenin strongly up-regulated TNFRSF25 expression at the mRNA level. These results indicate that yamogenin induced cell death via the extrinsic and intrinsic way of apoptosis. Antioxidant study showed that yamogenin had moderate in vitro potential (IC50 704.7 ± 5.9 µg/mL in DPPH and 631.09 ± 3.51 µg/mL in ABTS assay) as well as the inhibition of protein denaturation properties (with IC50 1421.92 ± 6.06 µg/mL). Antimicrobial test revealed a weak effect of yamogenin on bacteria strains, the strongest one being against S. aureus (with MIC value of 350 µg/mL). In conclusion, yamogenin may be a potential candidate for the treatment and prevention of gastric cancers.
Collapse
Affiliation(s)
- Justyna Stefanowicz-Hajduk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (P.G.); (A.H.); (M.G.)
| | - Piotr Graczyk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (P.G.); (A.H.); (M.G.)
| | - Anna Hering
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (P.G.); (A.H.); (M.G.)
| | - Magdalena Gucwa
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (P.G.); (A.H.); (M.G.)
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Rafał Hałasa
- Department of Pharmaceutical Microbiology, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| |
Collapse
|
6
|
Liu W, Sun M, He Y, Guo Q, Zhang L, Wang Z, Zhang G. Quality Evaluation of Asparagus officinalis by Profile of Amino Acids and Mineral Elements in Different Parts Combined with Chemometrics Methods. Chem Biodivers 2024; 21:e202301754. [PMID: 38348931 DOI: 10.1002/cbdv.202301754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
Asparagus officinalis has a homologous value in medicine and vegetables. Its immature stem, commonly called asparagus, is a central edible part. Asparagus skin and leaf also contain rich nutrients. However, these parts are often discarded. This study investigated amino acid and mineral elements in immature stem, skinless asparagus, asparagus skin, and leaf. Their quality was further evaluated by chemometrics methods such as principal component analysis and neural network analysis. The results showed amino acid content was high in immature stem and skinless asparagus and low in leaf, whereas the mineral elements were in four parts. Quality evaluation results showed four parts were divided into three grades. Immature stem and skinless asparagus were grouped into cluster 1 with the best quality as high-quality raw materials in food and health-care products. Meanwhile, three AA (Cys, His, Arg) and two mineral elements (Na, Cr) were identified as quality evaluation iconic substances.
Collapse
Affiliation(s)
- Wei Liu
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| | - Mengyu Sun
- College of Life Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yinglong He
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| | - Qi Guo
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| | - Lixia Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R. China
| | - Zhihao Wang
- Henan Fengcai Agricultural Development Co. LTD., Sui County, 476900, P. R. China
| | - Guofeng Zhang
- Henan Huamiao Agricultural Development Co. LTD., Hebi, 458030, P. R. China
| |
Collapse
|
7
|
Liu W, Sun M, Yin D, Zhang G, Wang Z, Cui X. Nutritional Composition Profiles and Quality Evaluation of Different Cultivars of Asparagus Officinalis with Potential as Functional Foods and Health-Care Products. Chem Biodivers 2023; 20:e202300986. [PMID: 37559110 DOI: 10.1002/cbdv.202300986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023]
Abstract
Asparagus officinalis is a health-care vegetable with homology value of medicine and food. The quality of A. officinalis is greatly different from various cultivars. It is essential to reveal the relationship between the variety and quality. This study investigated six nutritional compositions in ten A. officinalis cultivars, including amino acid, mineral substance, carbohydrate, vitamin C, protein and total sugar. Five chemometrics methods were further employed to evaluate their quality. The results consistently showed that ten varieties were divided into three grades as nutritional composition differences. HuaMiaoF1, JinGuan and FeiCuiMingZhu were grouped into cluster3 with the best quality, and Atlas and Jersey Giant were grouped into cluster1 with the lowest quality. Therefore, HuaMiaoF1, JinGuan and FeiCuiMingZhu can be suggested as good raw materials for medicine, food and health-care products industries. Meanwhile, the comprehensive application of five chemometrics methods was confirmed as a reliable methodology for quality evaluation of A. officinalis.
Collapse
Affiliation(s)
- Wei Liu
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Mengyu Sun
- College of Life Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Dongxue Yin
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471003, P. R. China
| | - Guofeng Zhang
- Henan Huamiao Agricultural Development Co. LTD., Hebi, 458030, P. R. China
| | - Zhihao Wang
- Henan Fengcai Agricultural Development Co. LTD., Sui County, 476900, P. R. China
| | - Xiaoqiang Cui
- Agricultural Technology Promotion Service Center of, Luanchuan County Bureau of Agriculture and Rural Affairs, Luanchuan County, 471500, P. R. China
| |
Collapse
|
8
|
Chen J, Hou S, Zhang Q, Meng J, Zhang Y, Du J, Wang C, Liang D, Guo Y. Genome-Wide Identification and Analysis of the WRKY Gene Family in Asparagus officinalis. Genes (Basel) 2023; 14:1704. [PMID: 37761844 PMCID: PMC10530708 DOI: 10.3390/genes14091704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, the related research of the WRKY gene family has been gradually promoted, which is mainly reflected in the aspects of environmental stress and hormone response. However, to make the study of the WRKY gene family more complete, we also need to focus on the whole-genome analysis and identification of the family. In previous studies, the whole WRKY gene family of Arabidopsis, legumes and other plants has been thoroughly studied. However, since the publication of Asparagus officinalis genome-wide data, there has never been an analysis of the whole WRKY gene family. To understand more broadly the function of the WRKY gene family, the whole genome and salt stress transcriptome data of asparagus were used for comprehensive analysis in this study, including WRKY gene family identification, phylogenetic tree construction, analysis of conserved mods and gene domains, extraction of cis-acting elements, intron/exon analysis, species collinearity analysis, and WRKY expression analysis under salt stress. The results showed that a total of 70 genes were selected and randomly distributed on 10 chromosomes and one undefined chromosome. According to the functional classification of Arabidopsis thaliana, the WRKY family of asparagus was divided into 11 subgroups (C1-C9, U1, U2). It is worth considering that the distribution rules of gene-conserved motifs, gene domains and introns/exons in the same subfamily are similar, which suggests that genes in the same subfamily may regulate similar physiological processes. In this study, 11 cis-acting elements of WRKY family were selected, among which auxin, gibberellin, abscisic acid, salicylic acid and other hormone-regulated induction elements were involved. In addition, environmental stress (such as drought stress and low-temperature response) also accounted for a large proportion. Interestingly, we analyzed a total of two tandem duplicate genes and 13 segmental duplication genes, suggesting that this is related to the amplification of the WRKY gene family. Transcriptome data analysis showed that WRKY family genes could regulate plant growth and development by up-regulating and down-regulating gene expression under salt stress. Volcanic maps showed that 3 and 15 AoWRKY genes were significantly up-regulated or down-regulated in NI&NI+S and AMF&AMF+S, respectively. These results provide a new way to analyze the evolution and function of the WRKY gene family, and can provide a reference for the production and research of asparagus.
Collapse
Affiliation(s)
- Jing Chen
- College of Biological Science and Technology, Center for Computational Biology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; (J.C.); (S.H.); (J.M.); (Y.Z.); (J.D.); (C.W.)
| | - Sijia Hou
- College of Biological Science and Technology, Center for Computational Biology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; (J.C.); (S.H.); (J.M.); (Y.Z.); (J.D.); (C.W.)
| | - Qianqian Zhang
- Chinese Institute for Brain Research, Beijing 102206, China;
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianqiao Meng
- College of Biological Science and Technology, Center for Computational Biology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; (J.C.); (S.H.); (J.M.); (Y.Z.); (J.D.); (C.W.)
| | - Yingying Zhang
- College of Biological Science and Technology, Center for Computational Biology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; (J.C.); (S.H.); (J.M.); (Y.Z.); (J.D.); (C.W.)
| | - Junhong Du
- College of Biological Science and Technology, Center for Computational Biology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; (J.C.); (S.H.); (J.M.); (Y.Z.); (J.D.); (C.W.)
| | - Cong Wang
- College of Biological Science and Technology, Center for Computational Biology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; (J.C.); (S.H.); (J.M.); (Y.Z.); (J.D.); (C.W.)
| | - Dan Liang
- College of Biological Science and Technology, Center for Computational Biology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; (J.C.); (S.H.); (J.M.); (Y.Z.); (J.D.); (C.W.)
| | - Yunqian Guo
- College of Biological Science and Technology, Center for Computational Biology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; (J.C.); (S.H.); (J.M.); (Y.Z.); (J.D.); (C.W.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
9
|
Wei R, Qin X, Li Z. Comparison of the inedible parts of white and green asparagus based on metabolomics and network pharmacology. Food Funct 2023; 14:7478-7488. [PMID: 37497633 DOI: 10.1039/d3fo01797d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Asparagus is a perennial herb and is widely used as food and medicine in China. In this study, untargeted metabolomics analysis was applied to compare the chemical differences between the edible and inedible parts of asparagus, as well as the inedible parts of white and green asparagus. A total of 342 compounds were identified in the asparagus extracts, and 24 steroid saponins, 31 oxylipins and 36 LysoGPLs were identified for the first time in asparagus. Metabolomics analysis showed that the inedible part of white asparagus is rich in steroidal saponins, oxylipins and alkaloids, while the inedible part of green asparagus is rich in flavonoids, phenolic acids, LysoGPLs and amino acids. The inedible part of white asparagus showed significantly higher inhibitory effects on breast cancer 4T-1 cells than that of green asparagus. Network pharmacology analysis and molecular docking showed that the biological difference is related to higher levels of steroidal saponins and oxylipins in the inedible part of white asparagus. This study is useful for the wasted resource utilization of inedible parts of asparagus.
Collapse
Affiliation(s)
- Rui Wei
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, P. R. China.
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, P. R. China.
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, P. R. China.
| |
Collapse
|
10
|
Chileh Chelh T, Rincon-Cervera MA, Gomez-Mercado F, Lopez-Ruiz R, Gallon-Bedoya M, Ezzaitouni M, Guil-Guerrero JL. Wild Asparagus Shoots Constitute a Healthy Source of Bioactive Compounds. Molecules 2023; 28:5786. [PMID: 37570757 PMCID: PMC10421306 DOI: 10.3390/molecules28155786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Wild Asparagus shoots are consumed worldwide, although most species remain understudied. In this work, a total of four wild Asparagus species were collected from different locations and analyzed compared with farmed A. officinalis. Shoots were screened for (i) phenolic compounds by HPLC-DAD and LC-MS; (ii) total phenolic acids and total flavonoid content by the Folin-Ciocalteu and aluminum chloride methods; (iii) vitamin C by HPLC-DAD; (iv) antioxidant activity by the DPPH and ABTS•+ methods; and (v) the in vitro antiproliferative activities against HT-29 colorectal cancer cells by the MTT assay. Phenolics ranged from 107.5 (A. aphyllus) to 605.4 mg/100 g dry weight (dw) (A. horridus). Vitamin C ranged from 15.8 (A. acutifolius) to 22.7 mg/100 g fresh weight (fw) (A. officinalis). The antioxidant activity was similar in all species, standing out in A. officinalis with 5.94 (DPPH) and 4.64 (ABTS) mmol TE/100 g dw. Among phenolics, rutin reached the highest values (574 mg/100 g dw in A. officinalis), followed by quercetin, nicotiflorin, asterin, and narcissin. The MTT assay revealed the inhibitory effects of ethanol extracts against HT-29 cancer cells, highlighting the cell growth inhibition exercised by A. albus (300 µg/mL after 72 h exposure to cells). This work improves knowledge on the phytochemicals and bioactivities of the shoots of wild Asparagus species and confirms their suitability for use as functional foods.
Collapse
Affiliation(s)
- Tarik Chileh Chelh
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain; (T.C.C.); (M.A.R.-C.); (M.E.)
| | - Miguel A. Rincon-Cervera
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain; (T.C.C.); (M.A.R.-C.); (M.E.)
- Institute of Nutrition and Food Technology, University of Chile, Macul, Santiago 7830490, Chile
| | | | - Rosalia Lopez-Ruiz
- Chemical-Physical Department, Analytical Chemistry of Pollutants, University of Almeria, 04120 Almeria, Spain;
| | - Manuela Gallon-Bedoya
- Faculty of Agricultural Sciences, Department of Agricultural and Food Engineering, Medellín Campus, National University of Colombia, Medellin 050034, Colombia;
| | - Mohamed Ezzaitouni
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain; (T.C.C.); (M.A.R.-C.); (M.E.)
| | - Jose L. Guil-Guerrero
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain; (T.C.C.); (M.A.R.-C.); (M.E.)
| |
Collapse
|
11
|
Sala T, Puglisi D, Ferrari L, Salamone F, Tassone MR, Rotino GL, Fricano A, Losa A. Genome-wide analysis of genetic diversity in a germplasm collection including wild relatives and interspecific clones of garden asparagus. FRONTIERS IN PLANT SCIENCE 2023; 14:1187663. [PMID: 37476175 PMCID: PMC10354869 DOI: 10.3389/fpls.2023.1187663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023]
Abstract
The Asparagus genus includes approximately 240 species, the most important of which is garden asparagus (Asparagus officinalis L.), as this is a vegetable crop cultivated worldwide for its edible spear. Along with garden asparagus, other species are also cultivated (e.g., Asparagus maritimus L.) or have been proposed as untapped sources of variability in breeding programs (e.g., Asparagus acutifolius L.). In the present work, we applied reduced-representation sequencing to examine a panel of 378 diverse asparagus genotypes, including commercial hybrids, interspecific lines, wild relatives of garden asparagus, and doubled haploids currently used in breeding programs, which enabled the identification of more than 200K single-nucleotide polymorphisms (SNPs). These SNPs were used to assess the extent of linkage disequilibrium in the diploid gene pool of asparagus and combined with preliminary phenotypic information to conduct genome-wide association studies for sex and traits tied to spear quality and production. Moreover, using the same phenotypic and genotypic information, we fitted and cross-validated genome-enabled prediction models for the same set of traits. Overall, our analyses demonstrated that, unlike the diversity detected in wild species related to garden asparagus and in interspecific crosses, cultivated and wild genotypes of A. officinalis L. show a narrow genetic basis, which is a contributing factor hampering the genetic improvement of this crop. Estimating the extent of linkage disequilibrium and providing the first example of genome-wide association study and genome-enabled prediction in this species, we concluded that the asparagus panel examined in the present study can lay the foundation for determination of the genetic bases of agronomically important traits and for the implementation of predictive breeding tools to sustain breeding.
Collapse
Affiliation(s)
- Tea Sala
- Council for Agricultural Research and Economics – Research Centre for Genomics and Bioinformatics (CREA-GB), Montanaso Lombardo, LO, Italy
| | - Damiano Puglisi
- Council for Agricultural Research and Economics – Research Centre for Genomics and Bioinformatics (CREA-GB), Fiorenzuola d’Arda, PC, Italy
| | - Luisa Ferrari
- Council for Agricultural Research and Economics – Research Centre for Genomics and Bioinformatics (CREA-GB), Montanaso Lombardo, LO, Italy
| | - Filippo Salamone
- Council for Agricultural Research and Economics – Research Centre for Genomics and Bioinformatics (CREA-GB), Montanaso Lombardo, LO, Italy
| | - Maria Rosaria Tassone
- Council for Agricultural Research and Economics – Research Centre for Genomics and Bioinformatics (CREA-GB), Montanaso Lombardo, LO, Italy
| | - Giuseppe Leonardo Rotino
- Council for Agricultural Research and Economics – Research Centre for Genomics and Bioinformatics (CREA-GB), Montanaso Lombardo, LO, Italy
| | - Agostino Fricano
- Council for Agricultural Research and Economics – Research Centre for Genomics and Bioinformatics (CREA-GB), Fiorenzuola d’Arda, PC, Italy
| | - Alessia Losa
- Council for Agricultural Research and Economics – Research Centre for Genomics and Bioinformatics (CREA-GB), Montanaso Lombardo, LO, Italy
| |
Collapse
|
12
|
El Merzougui S, Benelli C, El Boullani R, Serghini MA. The Cryopreservation of Medicinal and Ornamental Geophytes: Application and Challenges. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112143. [PMID: 37299120 DOI: 10.3390/plants12112143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Nowadays, plant genetic resources are often at risk of loss and destruction. Geophytes are herbaceous or perennial species that are annually renewed by bulbs, rhizomes, tuberous roots, or tubers. They are often subject to overexploitation, which, combined with other biotic and abiotic stresses, can make these plants more vulnerable to a decline in their diffusion. As a result, multiple endeavors have been undertaken to establish better conservation strategies. Plant cryopreservation at ultra-low temperatures in liquid nitrogen (-196 °C) has proven to be an effective, long-term, low-cost, and suitable conservation method for many plant species. Over the last two decades, major advances in cryobiology studies have enabled successful explants of multiple genera and types, including pollen, shoot tips, dormant buds, and zygotic and somatic embryos. This review provides an update on recent advances and developments in cryopreservation and its application to medicinal and ornamental geophytes. In addition, the review includes a brief summary of factors limiting the success of bulbous germplasm conservation. The critical analysis underpinning this review will benefit biologists and cryobiologists in their further studies on the optimization of geophyte cryopreservation protocols and will support a more complete and wider application of knowledge in this area.
Collapse
Affiliation(s)
- Soumaya El Merzougui
- Laboratory of Biotechnology and Valorization of Natural Resources, Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir 8106, Morocco
| | - Carla Benelli
- Institute of BioEconomy, National Research Council (CNR/IBE), Sesto Fiorentino, 50019 Florence, Italy
| | - Rachida El Boullani
- Laboratory of Biotechnology and Valorization of Natural Resources, Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir 8106, Morocco
| | - Mohammed Amine Serghini
- Laboratory of Biotechnology and Valorization of Natural Resources, Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir 8106, Morocco
| |
Collapse
|
13
|
Çomaklı V, Sağlamtaş R, Kuzu M, Karagöz Y, Aydın T, Demirdağ R. Enzyme Inhibition and Antioxidant Activities of Asparagus officinalis L. and Analysis of Its Phytochemical Content by LC/MS/MS. Chem Biodivers 2023; 20:e202201231. [PMID: 37096958 DOI: 10.1002/cbdv.202201231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
In the study, water, ethanol, methanol, dichloromethane, and acetone extracts of Asparagus officinalis L. were obtained by maceration. DPPH⋅, ABTS⋅+ , FRAP, and CUPRAC methods determined the antioxidant capacities of all extracts. Moreover, the in vitro effects of extracts on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carbonic anhydrase (CA)-I, CA-II and α-Glycosidase were investigated. At a 10 μg/ml concentration, the extract with the highest Fe3+ reduction capacity was ethanol (AE), and the extract with the highest Cu2+ reduction capacity was acetone (AA). AE for AChE (IC50 =21.19 μg/ml) and α-Glycosidase (IC50 : 70.00 μg/ml), methanol (AM) for BChE (IC50 =17.33 μg/ml), CA-I and II (IC50 =79.65 and 36.09 μg/ml, respectively) showed the most potent inhibition effect. The content analysis of acetone extract was performed with LC/MS-MS, the first three phytochemicals found most were p-Coumaric acid, rutin, and 4-hydroxybenzoic acid (284.29±3.97, 135.39±8.19, and 102.06±5.51 μg analyte/g extract, respectively).
Collapse
Affiliation(s)
- Veysel Çomaklı
- Department of Nutrition and Dietetics, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - Rüya Sağlamtaş
- Department of Medical Services and Techniques, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - Müslüm Kuzu
- Department of Nutrition and Dietetics, Karabük University, Karabük, Türkiye
| | - Yalçın Karagöz
- Department of Pharmaceutical Botany, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - Tuba Aydın
- Department of Pharmacognosy, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - Ramazan Demirdağ
- Department of Nutrition and Dietetics, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| |
Collapse
|
14
|
Dilucia F, Rutigliano M, Libutti A, Quinto M, Spadaccino G, Liberatore MT, Lauriola M, di Luccia A, la Gatta B. Effect of a Novel Pretreatment Before Freeze-Drying Process on the Antioxidant Activity and Polyphenol Content of Malva sylvestris L., Calendula officinalis L., and Asparagus officinalis L. Infusions. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
15
|
Al-Shafie TA, Mahrous EA, Shukry M, Alshahrani MY, Ibrahim SF, Fericean L, Abdelkader A, Ali MA. A Proposed Association between Improving Energy Metabolism of HepG2 Cells by Plant Extracts and Increasing Their Sensitivity to Doxorubicin. TOXICS 2023; 11:182. [PMID: 36851057 PMCID: PMC9967676 DOI: 10.3390/toxics11020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Increasing cancer cell sensitivity to chemotherapy by amending aberrant metabolism using plant extracts represents a promising strategy to lower chemotherapy doses while retaining the same therapeutic outcome. Here, we incubated HepG2 cells with four plant extracts that were selected based on an earlier assessment of their cytotoxicity, viz asparagus, green tea, rue, and avocado, separately, before treatment with doxorubicin. MTT assays elucidated a significant decrease in doxorubicin-IC50 following HepG2 incubation with each extract, albeit to a variable extent. The investigated extract's ultra-performance liquid chromatography and gas chromatography coupled with mass spectrometry (UPLC/MS and GC/MS) revealed several constituents with anticancer activity. Biochemical investigation displayed several favorable effects, including the inhibition of hypoxia-inducible factor1α (HIF1α), c-Myc, pyruvate kinase-M2 (PKM2), lactate dehydrogenase-A (LDH-A), glucose-6-phosphate dehydrogenase (G6PD), and glutaminase by asparagus and rue extracts. To less extent, HIF1α, c-Myc, PKM2, and LDH-A were partially inhibited by green tea extract, and HIF1α and glutaminase activity was inhibited by avocado oil. Undesirably, green tea extract increased glutaminase; avocado oil rose c-Myc, and both increased G6PD. In conclusion, our study confirms the potential cytotoxic effects of these plant extracts. It highlights a strong association between the ability of asparagus, green tea, rue, and avocado to sensitize HepG2 cells to doxorubicin and their power to amend cell metabolism, suggesting their use as add-on agents that might aid in clinically lowering the doxorubicin dose.
Collapse
Affiliation(s)
- Tamer A. Al-Shafie
- Faculty of Dentistry, Biochemistry Department, Pharos University in Alexandria, Alexandria 21532, Egypt
| | - Engy A. Mahrous
- Faculty of Pharmacy, Pharmacognosy Department, Cairo University, Cairo 11435, Egypt
| | - Mustafa Shukry
- Faculty of Veterinary Medicine, Department of Physiology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohammad Y. Alshahrani
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Samah F. Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Liana Fericean
- Faculty of Agriculture, Department of Biology and Plant Protection, University of Life Sciences “King Michael I” from Timișoara, Calea Aradului 119, CUI 3487181, 300645 Timisoara, Romania
| | - Afaf Abdelkader
- Faculty of Medicine, Department of Forensic Medicine and Clinical Toxicology, Benha University, Benha 13518, Egypt
| | - Mennatallah A. Ali
- Faculty of Pharmacy, Pharmacology and Therapeutics Department, Pharos University in Alexandria, Alexandria 21532, Egypt
| |
Collapse
|
16
|
Liu P, Gao R, Gao L, Bi J, Jiang Y, Zhang X, Wang Y. Distinct Quality Changes of Asparagus during Growth by Widely Targeted Metabolomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15999-16009. [PMID: 36480912 DOI: 10.1021/acs.jafc.2c05743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Asparagus is a popular vegetable and traditional medicine consumed worldwide due to its health benefits. The quality of asparagus, mainly attributed to small components like flavonoids and steroid, is quite differential as a result of different environments and maturities. However, the accumulation pattern and regulatory mechanism of metabolites in asparagus remain unclear so far. Herein, widely targeted metabolomics analysis was employed to study the quality and chemical composition variances of four asparagus, including three green asparagus of different maturities and one white asparagus. A total of 1045 metabolites were annotated in asparagus in which flavonoids and phenolic acids accounted for 37.51% of the total. Green asparagus was found to be rich in flavonoids, while white asparagus contained more steroids. Additionally, 461 biomarkers were screened between matured green and white asparagus, which is much more than that filtered among three green asparagus at different growth stages. These results indicated that sunlight has a stronger effect on the metabolism of asparagus compared to the general development of asparagus. Linoleic acid metabolism and alpha-linolenic acid metabolism were active during green asparagus growth, while flavone and flavonol biosynthesis and flavonoid biosynthesis resulted as two of the most important pathways when asparagus was exposed to sunlight.
Collapse
Affiliation(s)
- Pingxiang Liu
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Rui Gao
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Lei Gao
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Jingxiu Bi
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Yuying Jiang
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Xiao Zhang
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Yutao Wang
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| |
Collapse
|
17
|
Aliomrani M, Rezaei M, Dinani MS, Mesripour A. Effects of Asparagus officinalis on immune system mediated EAE model of multiple sclerosis. Toxicol Res (Camb) 2022; 11:931-939. [PMID: 36569489 PMCID: PMC9773056 DOI: 10.1093/toxres/tfac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/13/2022] [Accepted: 10/03/2022] [Indexed: 12/27/2022] Open
Abstract
Background About 5 to 10 percent of the population in developed countries are affected by autoimmune diseases. One of the most important autoimmune disease with high prevalence rate is Multiple sclerosis in which there is currently no definitive cure for it, and most medications such as interferons are used only to limit the disease. The present study aims to investigate the effect of using Asparagus Officinalis fractions in an immune system mediated model of multiple sclerosis. Material and Methods Fractionation was performed by maceration using n-hexane, chloroform, chloroform-methanol (9: 1), n-Butanol and methanol solvents from aerial parts of Asparagus Officinalis. Thin layer chromatography, NMR and phenolic component measurement were done and two fractions were selected for checking in MS induced in vivo model. Results It was observed that chloroform-methanolic and N-Butanol fractions had higher content of saponin in comparison of other extracts. Also, it was showed that the methanolic and n-Butanol extracts contains the highestportion of glycosylic steroid saponins in comparison to other fractions. Regarding experimental autoimmune encephalomyelitis (EAE) score, Butanolic and methanolic fractions with doses higher that 100mg/kg showed a potent supportive effects as long as locomotor activity protection even in lower dose in comparison to phosphate buffered saline (PBS) group. Conclusion Considering the proved different effects of saponin compounds on the immune system we observed that those fractions altered the circulatory peripheral blood cells and also remit the clinical signs after EAE induction along with enhanced myelin sheath content in the median region of corpus callusom. It could be inferred that this fractions are promising candidates for further investigation as dose-dependent immune system regulating compounds in multiple sclerosis patients.
Collapse
Affiliation(s)
- Mehdi Aliomrani
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan 8174673461, Iran
- Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan 8174673461, Iran
| | - Mina Rezaei
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan 8174673461, Iran
| | - Masoud Sadeghi Dinani
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan 8174673461, Iran
| | - Azadeh Mesripour
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan 8174673461, Iran
| |
Collapse
|
18
|
Phenylpropanoid Derivatives from the Tuber of Asparagus cochinchinensis with Anti-Inflammatory Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227676. [PMID: 36431777 PMCID: PMC9697020 DOI: 10.3390/molecules27227676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Three undescribed phenylpropanoid derivatives, including two new bibenzyl constituents (1-2), one new stilbene constituent (3), together with five known compounds stilbostemin F (4), dihydropinosylvin (5), 2-(4-hydroxyphenyl)ethyl benzoate (6), 1-(4-hydroxybenzoyl)ethanone (7), and 4-hydroxy-3-prenylbenzoic acid (8), were isolated from the tuber of Asparagus cochinchinensis. The structures of 1-8 were elucidated according to UV, IR, HRMS, 1D and 2D-NMR methods together with the published literature. All of the isolated compounds were assessed for anti-inflammatory activity by acting on lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells in vitro. The results showed that compounds 2 and 5 were found to inhibit the production of nitric oxide (NO) with the IC50 value of 21.7 and 35.8 µM, respectively. In addition, further studies found that compound 2 demonstrated concentration-dependent suppression of the protein expression of iNOS and exerted anti-inflammatory activity via the NF-κB signalling pathway. The present data suggest that phenylpropanoid derivatives from the tuber of A. cochinchinensis might be used as a potential source of natural anti-inflammatory agents.
Collapse
|
19
|
Grohar MC, Medic A, Ivancic T, Veberic R, Jogan J. Color Variation and Secondary Metabolites' Footprint in a Taxonomic Complex of Phyteuma sp. (Campanulaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:2894. [PMID: 36365351 PMCID: PMC9658285 DOI: 10.3390/plants11212894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In the genus Phyteuma, the taxonomic delimitation of some species is difficult since a high variability of morphological traits, such as flower color, is present, probably due to high levels of hybridization. Historic descriptions and the morphological traits used in the taxonomic keys are sometimes unclear and lead to misinterpretations. Here, a detailed analysis of flower color variability in different populations of sympatric P. spicatum, P. ovatum, and P. persicifolium constitutes a new approach to clarifying the taxonomic statuses. The numeric analysis of color, providing colorimetric variables, together with the detailed description of the metabolic profiles of populations with different flower colors, constitute a unique chemical fingerprint that identifies species and subspecies with clear markers. This study is the most complete metabolic research on genus Phyteuma, since we identified and quantified 44 phenolic compounds using HPLC-MS, comprising 14 phenolic acids, 23 flavonols and flavones, and, for the first time in the genus, 7 anthocyanins involved in flower color variability. This approach contributes to clarifying the differences between species, which is particularly relevant in taxonomic complexes such as the present, where morphology fails to clearly differentiate taxa at specific and intraspecific levels.
Collapse
Affiliation(s)
- Mariana Cecilia Grohar
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Aljaz Medic
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Tea Ivancic
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Robert Veberic
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Jernej Jogan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
20
|
Wu J, Zhang L, Fan K. Recent advances in polysaccharide-based edible coatings for preservation of fruits and vegetables: A review. Crit Rev Food Sci Nutr 2022; 64:3823-3838. [PMID: 36263979 DOI: 10.1080/10408398.2022.2136136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Harvested fruits and vegetables are prone to decay and quality deterioration during storage. Although traditional packaging and chemical treatments are effective, they are harmful to the environment and human health. Hence, higher requirements for food preservation technology are increasingly proposed. Nontoxic, renewable, degradable, and edible packaging for fruits and vegetables has become a research hotspot in recent years. Chitosan, alginate, cellulose, pectin, starch, and other polysaccharides as coating materials have been widely used. Compared with traditional plastic packaging and chemical treatment, these coatings exhibited a better preservation effect and higher safety. In this paper, the preservation mechanism of fruits and vegetables by edible coatings treatment was described, and the research on edible coatings used in fruits and vegetables was summarized. The effects polysaccharide-based edible coatings on physicochemical quality and antimicrobial effect of fruits and vegetables were reviewed.
Collapse
Affiliation(s)
- Jiaxin Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Liang Zhang
- Yichang Anji Agriculture Co., Ltd, Zhijiang, Hubei, China
| | - Kai Fan
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
- Institute of Food Science and Technology, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
21
|
Mounika A, Ilangovan B, Mandal S, Shraddha Yashwant W, Priya Gali S, Shanmugam A. Prospects of ultrasonically extracted food bioactives in the field of non-invasive biomedical applications - A review. ULTRASONICS SONOCHEMISTRY 2022; 89:106121. [PMID: 35987106 PMCID: PMC9403563 DOI: 10.1016/j.ultsonch.2022.106121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 05/15/2023]
Abstract
Foods incorporated with bioactive compounds, called nutraceuticals, can fight or prevent or alleviate diseases. The contribution of nutraceuticals or phytochemicals to non-invasive biomedical applications is increasing. Although there are many traditional methods for extracting bioactive compounds or secondary metabolites, these processes come with many disadvantages like lower yield, longer process time, high energy consumption, more usage of solvent, yielding low active principles with low efficacy against diseases, poor quality, poor mass transfer, higher extraction temperature, etc. However, nullifying all these disadvantages of a non-thermal technology, ultrasound has played a significant role in delivering them with higher yield and improved bio-efficacy. The physical and chemical effects of acoustic cavitation are the crux of the output. This review paper primarily discusses the ultrasound-assisted extraction (USAE) of bioactives in providing non-invasive prevention and cure to diseases and bodily dysfunctions in human and animal models. The outputs of non-invasive bioactive components in terms of yield and the clinical efficacy in either in vitro or in vitro conditions are discussed in detail. The non-invasive biomedical applications of USAE bioactives providing anticancer, antioxidant, cardiovascular health, antidiabetic, and antimicrobial benefits are analyzed in-depth and appraised. This review additionally highlights the improved performance of USAE compounds against conventionally extracted compounds. In addition, an exhaustive analysis is performed on the role and application of the food bioactives in vivo and in vitro systems, mainly for promoting these efficient USAE bioactives in non-invasive biomedical applications. Also, the review explores the recovery of bioactives from the less explored food sources like cactus pear fruit, ash gourd, sweet granadilla, basil, kokum, baobab, and the food processing industrial wastes like peel, pomace, propolis, wine residues, bran, etc., which is rare in literature.
Collapse
Affiliation(s)
- Addanki Mounika
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Bhaargavi Ilangovan
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Sushmita Mandal
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Waghaye Shraddha Yashwant
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Swetha Priya Gali
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Akalya Shanmugam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India; Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India.
| |
Collapse
|
22
|
Xiao M, Jia X, Wang N, Kang J, Hu X, Goff HD, Cui SW, Ding H, Guo Q. Therapeutic potential of non-starch polysaccharides on type 2 diabetes: from hypoglycemic mechanism to clinical trials. Crit Rev Food Sci Nutr 2022; 64:1177-1210. [PMID: 36036965 DOI: 10.1080/10408398.2022.2113366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-starch polysaccharides (NSPs) have been reported to exert therapeutic potential on managing type 2 diabetes mellitus (T2DM). Various mechanisms have been proposed; however, several studies have not considered the correlations between the anti-T2DM activity of NSPs and their molecular structure. Moreover, the current understanding of the role of NSPs in T2DM treatment is mainly based on in vitro and in vivo data, and more human clinical trials are required to verify the actual efficacy in treating T2DM. The related anti-T2DM mechanisms of NSPs, including regulating insulin action, promoting glucose metabolism and regulating postprandial blood glucose level, anti-inflammatory and regulating gut microbiota (GM), are reviewed. The structure-function relationships are summarized, and the relationships between NSPs structure and anti-T2DM activity from clinical trials are highlighted. The development of anti-T2DM medication or dietary supplements of NSPs could be promoted with an in-depth understanding of the multiple regulatory effects in the treatment/intervention of T2DM.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Nifei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | | | - Steve W Cui
- Guelph Research and Development Centre, AAFC, Guelph, Ontario, Canada
| | | | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
23
|
Garcia-Alonso A, Sánchez-Paniagua López M, Manzanares-Palenzuela CL, Redondo-Cuenca A, López-Ruíz B. Edible plant by-products as source of polyphenols: prebiotic effect and analytical methods. Crit Rev Food Sci Nutr 2022; 63:10814-10835. [PMID: 35658778 DOI: 10.1080/10408398.2022.2084028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Polyphenols with high chemical diversity are present in vegetables both in the edible parts and by-products. A large proportion of them remains unabsorbed along the gastrointestinal tract, being accumulated in the colon, where they are metabolized by the intestinal microbiota. These polyphenols have been found to have "prebiotic-like" effects. The edible plant industry generates tons of residues called by-products, which consist of unutilized plant tissues (peels, husks, calyxes and seeds). Their disposal requires special and costly treatments to avoid environmental complications. Reintroducing these by-products into the value chain using technological and biotechnological practices is highly appealing since many of them contain nutrients and bioactive compounds, such as polyphenols, with many health-promoting properties. Edible plant by-products as a source of polyphenols highlights the need for analytical methods. Analytical methods are becoming increasingly selective, sensitive and precise, but the great breakthrough lies in the pretreatment of the sample and in particular in the extraction methods. This review shows the importance of edible plant by-products as a source of polyphenols, due to their prebiotic effect, and to compile the most appropriate analytical methods for the determination of the total content of phenolic compounds as well as the detection and quantification of individual polyphenols.
Collapse
Affiliation(s)
- Alejandra Garcia-Alonso
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | - Marta Sánchez-Paniagua López
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | | | - Araceli Redondo-Cuenca
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | - Beatríz López-Ruíz
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
24
|
Symes A, Shavandi A, Bekhit AEA. Effects of ionic liquids and pulsed electric fields on the extraction of antioxidants from green asparagus roots. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Abbey Symes
- Department of Food Science University of Otago PO Box 56 Dunedin New Zealand
| | - Amin Shavandi
- Université libre de Bruxelles (ULB) École Polytechnique de Bruxelles 3BIO‐BioMatter Avenue F.D. Roosevelt, 50 ‐ CP 165/61 Brussels 1050 Belgium
| | | |
Collapse
|
25
|
Huang Y, Sridhar K, Tsai P. Enzymatically hydrolysed asparagus (
Asparagus officinalis
L.) hard‐stem exhibits the ability to inhibit angiotensin‐converting enzyme (ACE). Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu‐Chun Huang
- Department of Food Science National Pingtung University of Science and Technology Neipu Pingtung Taiwan
| | - Kandi Sridhar
- UMR1253 Science et Technologie du Lait et de l’œuf INRAE, L'Institut Agro Rennes‐Angers Rennes France
| | - Pi‐Jen Tsai
- Department of Food Science National Pingtung University of Science and Technology Neipu Pingtung Taiwan
| |
Collapse
|
26
|
Herbals and Plants in the Treatment of Pancreatic Cancer: A Systematic Review of Experimental and Clinical Studies. Nutrients 2022; 14:nu14030619. [PMID: 35276978 PMCID: PMC8839014 DOI: 10.3390/nu14030619] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Pancreatic cancer represents the most lethal malignancy among all digestive cancers. Despite the therapeutic advances achieved during recent years, the prognosis of this neoplasm remains disappointing. An enormous amount of experimental (mainly) and clinical research has recently emerged referring to the effectiveness of various plants administered either alone or in combination with chemotherapeutic agents. Apart from Asian countries, the use of these plants and herbals in the treatment of digestive cancer is also increasing in a number of Western countries as well. The aim of this study is to review the available literature regarding the efficacy of plants and herbals in pancreatic cancer. Methods: The authors have reviewed all the experimental and clinical studies published in Medline and Embase, up to June 2021. Results: More than 100 plants and herbals were thoroughly investigated. Favorable effects concerning the inhibition of cancer cell lines in the experimental studies and a favorable clinical outcome after combining various plants with established chemotherapeutic agents were observed. These herbals and plants exerted their activity against pancreatic cancer via a number of mechanisms. The number and severity of side-effects are generally of a mild degree. Conclusion: A quite high number of clinical and experimental studies confirmed the beneficial effect of many plants and herbals in pancreatic cancer. More large, double-blind clinical studies assessing these natural products, either alone or in combination with chemotherapeutic agents should be conducted.
Collapse
|
27
|
Xue J, Zhang X, Cheng C, Sun C, Yang S. The aroma analysis of asparagus tea processed from different parts of green asparagus (
Asparagus officinalis
L.). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Junxiu Xue
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao) Ministry of Agriculture and Rural Affairs Qingdao City China
- College of Horticulture Qingdao Agricultural University Qingdao City China
| | - Xinfu Zhang
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao) Ministry of Agriculture and Rural Affairs Qingdao City China
- College of Horticulture Qingdao Agricultural University Qingdao City China
| | - Chenxia Cheng
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao) Ministry of Agriculture and Rural Affairs Qingdao City China
- College of Horticulture Qingdao Agricultural University Qingdao City China
| | - Chao Sun
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao) Ministry of Agriculture and Rural Affairs Qingdao City China
- College of Horticulture Qingdao Agricultural University Qingdao City China
| | - Shaolan Yang
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao) Ministry of Agriculture and Rural Affairs Qingdao City China
- College of Horticulture Qingdao Agricultural University Qingdao City China
| |
Collapse
|
28
|
OUP accepted manuscript. Nutr Rev 2022; 80:2017-2028. [DOI: 10.1093/nutrit/nuac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
29
|
Zhang Y, Pan L, Fang Y, Wang X, Gu S. Inhibition effect of preservatives or disinfectants on
F. concentricum
from postharvest asparagus (
Asparagus officinalis
L.) spear in vitro and in vivo. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yuanyuan Zhang
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou PR China
| | - Lixiu Pan
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou PR China
| | - Yonggang Fang
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou PR China
| | - Xiangyang Wang
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou PR China
| | - Shuang Gu
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou PR China
| |
Collapse
|
30
|
Zhang M, Yao M, Jia A, Shi Y, Bai X, Liu X, Cui T, Liu X, Liu C. Hypolipidemic effect of soluble dietary fibers prepared from Asparagus officinalis and their effects on the modulation of intestinal microbiota. Food Sci Biotechnol 2021; 30:1721-1731. [PMID: 34925946 DOI: 10.1007/s10068-021-01001-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
The soluble dietary fiber from Asparagus officinalis (ASDF) was successively prepared using enzymolysis combined with spray-drying technology. High-performance liquid chromatography analysis showed that ASDF contained two polysaccharide fractions with the average molecular weight of 2.77 × 105 and 6.44 × 103 Da, and was composed of mannose, rhamnose, galacturonic acid, glucose, galactose, and arabinose with a molecular ratio of 19.93:1.02:1.94:32.17:1.00:1.91, respectively. ASDF showed potential in vitro antioxidant activities. The oral administration of ASDF significantly reduced the levels of total cholesterol, triglyceride, and low-density lipoprotein cholesterol in HD-induced mice serum. Furthermore, 16S rRNA gene sequencing analysis showed that ASDF significantly affected the composition of intestinal microbiota, especially reducing the Firmicutes/Bacteroidotetes ratio and the relative abundances of Desulfobacterota, Proteobacteria, Actinobacteriota and increasing that of Muribaculaceae, Bacteroides, and Alloprevotella. These results demonstrated that the intake of ASDF could regulate intestinal microbiota and serum lipid levels in hyperlipidemic conditions.
Collapse
Affiliation(s)
- Miansong Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103 Shandong People's Republic of China
| | - Mengke Yao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103 Shandong People's Republic of China
| | - Airong Jia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103 Shandong People's Republic of China
| | - Yaping Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103 Shandong People's Republic of China
| | - Xinfeng Bai
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103 Shandong People's Republic of China
| | - Xue Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103 Shandong People's Republic of China
| | - Tingting Cui
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103 Shandong People's Republic of China
| | - Xin Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103 Shandong People's Republic of China
| | - Changheng Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103 Shandong People's Republic of China
| |
Collapse
|
31
|
Liu C, Jin T, Liu W, Hao W, Yan L, Zheng L. Effects of hydroxyethyl cellulose and sodium alginate edible coating containing asparagus waste extract on postharvest quality of strawberry fruit. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Antihypertensive Effects of the Methanol Extract and the Ethyl Acetate Fraction from Crinum zeylanicum (Amaryllidaceae) Leaves in L-NAME-Treated Rat. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2656249. [PMID: 34285699 PMCID: PMC8275409 DOI: 10.1155/2021/2656249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022]
Abstract
Arterial hypertension (AHT) is a leading cardiovascular disease, with a high negative impact on the quality of life. Crinum zeylanicum (C. zeylanicum) leaves extract is used in the West region of Cameroon to treat AHT and heart problems. This study aimed to investigate the antihypertensive effect of C. zeylanicum extract in Nω-nitro-L‐arginine methyl ester- (L‐NAME-) induced hypertensive rats. The aqueous extract of C. zeylanicum (LAE) was obtained by lyophilizing the juice of triturated fresh leaves. The methanol extract (LME) prepared by maceration of the dried leaves was further partitioned to chloroform (LCF), ethyl acetate (LEAF), and residual (LRF) fractions. The total polyphenol, flavonoid content, and antiradical potentials of these extracts were determined. The curative antihypertensive and renal function protective effects of LME and LEAF were evaluated in vivo on L-NAME-induced hypertensive rats. Hypertension was induced in rats by oral administration of L-NAME (30 mg/kg/day) for 3 consecutive weeks. Thereafter, plant extracts were administered orally at the doses of 30, 60, and 120 mg/kg/day, concomitantly with L-NAME for three other weeks. Body weight, heart rate, and arterial blood pressure were measured at the end of each week throughout the experimental period. At the end of the treatment, 24-hour urine and plasma were collected to assay nitric oxide (NO), creatinine, and protein. The results revealed that LEAF has the higher content of total polyphenol and flavonoid and exhibited the best antiradical potential. Moreover, treatment of hypertensive rats with LME and LEAF significantly (p < 0.001) reduced AHT and heart rate. LME and LEAF significantly increased rat's body mass, plasmatic NO, and urinary creatinine and reduced urine NO and protein contents as compared to the L-NAME group. LME and its LEAF possess potent antihypertensive effects and further protect the renal function in L-NAME-induced hypertensive rats, thus supporting the use of C. zeylanicum in the management of AHT.
Collapse
|
33
|
Sriyab S, Laosirisathian N, Punyoyai C, Anuchapreeda S, Tima S, Chiampanichayakul S, Chaiyana W. Nutricosmetic effects of Asparagus officinalis: a potent matrix metalloproteinase-1 inhibitor. Sci Rep 2021; 11:8772. [PMID: 33888836 PMCID: PMC8062454 DOI: 10.1038/s41598-021-88340-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/12/2021] [Indexed: 11/08/2022] Open
Abstract
This study aimed to investigate the nutricosmetic effect of Asparagus officinalis extracts. The tip and spear of A. officinalis were successively extracted with 95% ethanol. The rutin, phenolic, and flavonoid contents of A. officinalis extracts were investigated. The antioxidant activities were determined by 2,2-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) and a ferric reducing antioxidant power assay. Matrix metalloproteinase-1 (MMP-1), elastase, and hyaluronidase inhibition were determined by in vitro enzyme reaction assay. The cytotoxicity was analyzed on peripheral blood mononuclear cellss. Findings revealed that drying temperature and drying duration had significant effects on the chemical composition and biological activity of A. officinalis extract. A. officinalis tips dried at 50 °C for 24 h contained the (significantly) highest flavonoid and rutin content. The most potent extract was from A. officinalis spears since it possessed the (significantly) highest MMP-1, elastase, and hyaluronidase inhibition rates of 83.4 ± 1.5%, 70.4 ± 4.1%, and 75.2 ± 1.0%, respectively. Interestingly, at the same concentration, the A. officinalis spear extract was more potent in MMP-1 inhibition than oleanolic acid and epigallocatechin gallate, the well-known natural MMP-1 inhibitors. The results show that A. officinalis extract is an attractive source of natural anti-skin-wrinkle ingredients.
Collapse
Affiliation(s)
- Suwannee Sriyab
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nachtharinee Laosirisathian
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chanun Punyoyai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Songyot Anuchapreeda
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Singkome Tima
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sawitree Chiampanichayakul
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
34
|
Yu Q, Fan L. Improving the bioactive ingredients and functions of asparagus from efficient to emerging processing technologies: A review. Food Chem 2021; 358:129903. [PMID: 33933971 DOI: 10.1016/j.foodchem.2021.129903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022]
Abstract
Historically, asparagus is a vegetable with abundant phytochemicals (polyphenols, saponins, asparagusic acid, and alkaloids) and crucial bioactivities (neuroprotective, antianxiety, antityrosinase, antioxidant, antibacterial, and antiasthma effects). Numerous investigations indicated that processing technologies have a significant influence on the physicochemical, functional, and microstructural characteristics of asparagus. This review presents an updated overview of novel applications of processing technologies, including ultrasound treatments (in terms of extraction, purification, and preservation), heating treatments (hydrothermal treatments, thermal treatments, and combination heating treatments), high-pressure processing, representative shelf-life extension technologies, and green extraction technologies. These physical technologies enhance the yields of bioactive substances, bioactivities and product quality. In addition, utilizing the novel technologies (ohmic heating, cold plasma, pulsed electric fields, membrane processing) and conventional technologies with novel effects to fully develop the potential of asparagus should also be taken into consideration in the future.
Collapse
Affiliation(s)
- Qun Yu
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborat Innovat Ctr Food Safety & Qual Control, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
35
|
Soteriou GA, Antoniou C, Rouphael Y, Kyratzis AC, Kyriacou MC. Changes in the primary and secondary metabolome of male green asparagus (Asparagus officinalis L.) as modulated by sequential harvesting. Food Chem 2021; 358:129877. [PMID: 33984656 DOI: 10.1016/j.foodchem.2021.129877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 11/20/2022]
Abstract
Rising temperature and solar radiation drive the mobilization and depletion of crown-deposited metabolites harnessed for asparagus spear regeneration during the spring harvest season. We presently examined how successive same-season harvests impact the sensory, nutritive and bioactive composition of select green asparagus genotypes. Soluble carbohydrates were analyzed by HPLC-RI, organic acids and polyphenols by HPLC-DAD and metals by ion chromatography. Higher sugars and lower acids accentuated sweetness and lower polyphenols contributed to reduced astringency at the beginning of the harvest season. This trend was reversed as the season advanced and spear sensory quality was compromised by declining sugars and rising acids; however, functional quality improved as antioxidant capacity increased along with the concentrations of quercetin-3-O-rutinoside (rutin) and ascorbic acid. The compositional changes presently described were uniform across all genotypes examined and thus contribute toward our understanding of seasonal variation in the sensory and functional quality of this acclaimed health-promoting product.
Collapse
Affiliation(s)
- Georgios A Soteriou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Chrystalla Antoniou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Angelos C Kyratzis
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Marios C Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus.
| |
Collapse
|
36
|
Root-Associated Endophytic Bacterial Community Composition of Asparagus officinalis of Three Different Varieties. Indian J Microbiol 2021; 61:160-169. [PMID: 33927457 DOI: 10.1007/s12088-021-00926-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/11/2021] [Indexed: 10/21/2022] Open
Abstract
Asparagus (Asparagus officinalis L) is an economically important crop, rich in nutrients, and is also conducive to solving ecological and environmental problems. Plants may acquire benefits from root-associated endophytic bacteria. However, the composition of the endophytic bacterial community associated with the roots of asparagus is poorly elucidated. In this study, the nine root samples of asparagus from three different varieties including Asparagus officinalis var. Grande (GLD), A. officinalis var. Jinglvlu3 (JL3) and A. officinalis var. Jingzilu2 (JZL) were investigated by high-throughput sequencing technology of the 16S rDNA V5-V7 hypervariable region of endophytic bacteria. A total of 16 phyla, 29 classes, 90 orders, 171 families, and 312 genera were identified. Endophytic bacteria diversity and bacteria structure was different among the three varieties and was influenced by rhizosphere soil properties and varieties. In the GLD variety, the main phyla were Proteobacteria, Actinobacteria, and Firmicutes. The main phylum in JL3 and JZL varieties was Proteobacteria. The observations showed that GLD had the highest diversity of endophytes as indicated by the Shannon index (GLD > JZL > JL3). The order of the endophytes richness was GLD > JL3 > JZL. The PCA and PCoA analysis revealed the microbial communities were different between three different asparagus varieties, and the microbial composition of GLD and JZL was more similar. This report provides an important reference for the study of endophytic microorganisms of asparagus. Supplementary information The online version contains supplementary material available at (10.1007/s12088-021-00926-6) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Wang N, Jia G, Wang X, Liu Y, Li Z, Bao H, Guo Q, Wang C, Xiao D. Fractionation, structural characteristics and immunomodulatory activity of polysaccharide fractions from asparagus (Asparagus officinalis L.) skin. Carbohydr Polym 2021; 256:117514. [DOI: 10.1016/j.carbpol.2020.117514] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/15/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023]
|
38
|
Woźniak M, Krajewski R, Makuch S, Agrawal S. Phytochemicals in Gynecological Cancer Prevention. Int J Mol Sci 2021; 22:1219. [PMID: 33530651 PMCID: PMC7865323 DOI: 10.3390/ijms22031219] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Gynecological cancer confers an enormous burden among women worldwide. Accumulating evidence points to the role of phytochemicals in preventing cervical, endometrial, and ovarian cancer. Experimental studies emphasize the chemopreventive and therapeutic potential of plant-derived substances by inhibiting the early stages of carcinogenesis or improving the efficacy of traditional chemotherapeutic agents. Moreover, a number of epidemiological studies have investigated associations between a plant-based diet and cancer risk. This literature review summarizes the current knowledge on the phytochemicals with proven antitumor activity, emphasizing their effectiveness and mechanism of action in gynecological cancer.
Collapse
Affiliation(s)
- Marta Woźniak
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
| | - Rafał Krajewski
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
| | - Siddarth Agrawal
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
39
|
Klunklin W, Jantanasakulwong K, Phimolsiripol Y, Leksawasdi N, Seesuriyachan P, Chaiyaso T, Insomphun C, Phongthai S, Jantrawut P, Sommano SR, Punyodom W, Reungsang A, Ngo TMP, Rachtanapun P. Synthesis, Characterization, and Application of Carboxymethyl Cellulose from Asparagus Stalk End. Polymers (Basel) 2020; 13:polym13010081. [PMID: 33379203 PMCID: PMC7795991 DOI: 10.3390/polym13010081] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Cellulose from Asparagus officinalis stalk end was extracted and synthesized to carboxymethyl cellulose (CMCas) using monochloroacetic acid (MCA) via carboxymethylation reaction with various sodium hydroxide (NaOH) concentrations starting from 20% to 60%. The cellulose and CMCas were characterized by the physical properties, Fourier Transform Infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), Scanning electron microscopy (SEM) and X-ray diffraction (XRD). In addition, mechanical properties of CMCas films were also investigated. The optimum condition for producing CMCas was found to be 30% of NaOH concentration for the carboxymethylation reaction, which provided the highest percent yield of CMCas at 44.04% with the highest degree of substitution (DS) at 0.98. The melting point of CMCas decreased with increasing NaOH concentrations. Crystallinity of CMCas was significantly deformed (p < 0.05) after synthesis at a high concentration. The L* value of the CMCas was significantly lower at a high NaOH concentration compared to the cellulose. The highest tensile strength (44.59 MPa) was found in CMCas film synthesized with 40% of NaOH concentration and the highest percent elongation at break (24.99%) was obtained in CMCas film treated with 30% of NaOH concentration. The applications of asparagus stalk end are as biomaterials in drug delivery system, tissue engineering, coating, and food packaging.
Collapse
Affiliation(s)
- Warinporn Klunklin
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (N.L.); (P.S.); (T.C.); (C.I.); (S.P.)
| | - Kittisak Jantanasakulwong
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (N.L.); (P.S.); (T.C.); (C.I.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (S.R.S.); (W.P.)
| | - Yuthana Phimolsiripol
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (N.L.); (P.S.); (T.C.); (C.I.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (S.R.S.); (W.P.)
| | - Noppol Leksawasdi
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (N.L.); (P.S.); (T.C.); (C.I.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (S.R.S.); (W.P.)
| | - Phisit Seesuriyachan
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (N.L.); (P.S.); (T.C.); (C.I.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Thanongsak Chaiyaso
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (N.L.); (P.S.); (T.C.); (C.I.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chayatip Insomphun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (N.L.); (P.S.); (T.C.); (C.I.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Suphat Phongthai
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (N.L.); (P.S.); (T.C.); (C.I.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pensak Jantrawut
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (S.R.S.); (W.P.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarana Rose Sommano
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (S.R.S.); (W.P.)
- Plant Bioactive Compound Laboratory (BAC), Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (S.R.S.); (W.P.)
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand;
- Research Group for Development of Microbial Hydrogen Production Process, Khon Kaen University, Khon Kaen 40002, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand
| | - Thi Minh Phuong Ngo
- Department of Chemical Technology and Environment, The University of Danang—University of Technology and Education, Danang 550000, Vietnam;
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.K.); (K.J.); (Y.P.); (N.L.); (P.S.); (T.C.); (C.I.); (S.P.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; (P.J.); (S.R.S.); (W.P.)
- Correspondence:
| |
Collapse
|
40
|
Zhao L, Wang K, Wang K, Zhu J, Hu Z. Nutrient components, health benefits, and safety of litchi (Litchi chinensis Sonn.): A review. Compr Rev Food Sci Food Saf 2020; 19:2139-2163. [PMID: 33337091 DOI: 10.1111/1541-4337.12590] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/17/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022]
Abstract
Litchi (Litchi chinensis Sonn.) is a tropical to subtropical fruit that is widely cultivated in more than 20 countries worldwide. It is normally consumed as fresh or processed and has become one of the most popular fruits because it has a delicious flavor, attractive color, and high nutritive value. Whole litchi fruits have been used not only as a food source but also for medicinal purposes. As a traditional Chinese medicine, litchi has been used for centuries to treat stomach ulcers, diabetes, cough, diarrhea, and dyspepsia, as well as to kill intestinal worms. Both in vitro and in vivo studies have indicated that whole litchi fruits exhibit antioxidant, hypoglycemic, hepatoprotective, hypolipidemic, and antiobesity activities and show anticancer, antiatherosclerotic, hypotensive, neuroprotective, and immunomodulatory activities. The health benefits of litchi have been attributed to its wide range of nutritional components, among which polysaccharides and polyphenols have been proven to possess various beneficial properties. The diversity and composition of litchi polysaccharides and polyphenols have vital influences on their biological activities. In addition, consuming fresh litchi and its products could lead to some adverse reactions for some people such as pruritus, urticaria, swelling of the lips, swelling of the throat, dyspnea, or diarrhea. These safety problems are probably caused by the soluble protein in litchi that could cause anaphylactic and inflammatory reactions. To achieve reasonable applications of litchi in the food, medical and cosmetics industries, this review focuses on recent findings related to the nutrient components, health benefits, and safety of litchi.
Collapse
Affiliation(s)
- Lei Zhao
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou, China
| | - Kun Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou, China
| | - Jie Zhu
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Zhuoyan Hu
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou, China
| |
Collapse
|
41
|
Grown to be Blue-Antioxidant Properties and Health Effects of Colored Vegetables. Part II: Leafy, Fruit, and Other Vegetables. Antioxidants (Basel) 2020; 9:antiox9020097. [PMID: 31979214 PMCID: PMC7070715 DOI: 10.3390/antiox9020097] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 01/21/2023] Open
Abstract
The current trend for substituting synthetic compounds with natural ones in the design and production of functional and healthy foods has increased the research interest about natural colorants. Although coloring agents from plant origin are already used in the food and beverage industry, the market and consumer demands for novel and diverse food products are increasing and new plant sources are explored. Fresh vegetables are considered a good source of such compounds, especially when considering the great color diversity that exists among the various species or even the cultivars within the same species. In the present review we aim to present the most common species of colored vegetables, focusing on leafy and fruit vegetables, as well as on vegetables where other plant parts are commercially used, with special attention to blue color. The compounds that are responsible for the uncommon colors will be also presented and their beneficial health effects and antioxidant properties will be unraveled.
Collapse
|