1
|
Mildenberger J, Rebours C. Green ( Ulva fenestrata) and Brown ( Saccharina latissima) Macroalgae Similarly Modulate Inflammatory Signaling by Activating NF- κB and Dampening IRF in Human Macrophage-Like Cells. J Immunol Res 2024; 2024:8121284. [PMID: 38799117 PMCID: PMC11126347 DOI: 10.1155/2024/8121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/22/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Macroalgae are considered healthy food ingredients due to their content in numerous bioactive compounds, and the traditional use of whole macroalgae in Asian cuisine suggests a contribution to longevity. Although much information is available about the bioactivity of pure algal compounds, such as different polyphenols and polysaccharides, documentation of potential effects of whole macroalgae as part of Western diets is limited. Lifestyle- and age-related diseases, which have a high impact on population health, are closely connected to underlying chronic inflammation. Therefore, we have studied crude extracts of green (Ulva fenestrata) and brown (Saccharina latissima) macroalgae, as two of the most promising food macroalgae in the Nordic countries for their effect on inflammation in vitro. Human macrophage-like reporter THP-1 cells were treated with macroalgae extracts and stimulated with lipopolysaccharide (LPS) to induce inflammatory signalling. Effects of the macroalgae extracts were assessed on transcription factor activity of NF-κB and IRF as well as secretion and/or expression of the cytokines TNF-α and IFN-β and chemokines IL-8 and CXCL10. The crude macroalgae extracts were further separated into polyphenol-enriched and polysaccharide-enriched fractions, which were also tested for their effect on transcription factor activity. Interestingly, we observed a selective activation of NF-κB, when cells were treated with macroalgae extracts. On the other hand, pretreatment with macroalgae extracts selectively repressed IRF activation when inflammatory signaling was subsequently induced by LPS. This effect was consistent for both tested species as well as for polyphenol- and polysaccharide-enriched fractions, of which the latter had more pronounced effects. Overall, this is the first indication of how macroalgae could modulate inflammatory signaling by selective activation and subsequent repression of different pathways. Further in vitro and in vivo studies of this mechanism would be needed to understand how macroalgae consumption could influence the prevention of noncommunicable, lifestyle- and age-related diseases that are highly related to unbalanced inflammatory processes.
Collapse
|
2
|
Kim EY, Park H, Kim EJ, Lee SH, Choi JW, Kim J, Jung HS, Sohn Y. Efficacy of Trigonella foenum-graecum Linné in an animal model of particulate matter-induced asthma exacerbation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117228. [PMID: 37757990 DOI: 10.1016/j.jep.2023.117228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The seeds of Trigonella foenum-graecum Linné (TFG) has traditionally been used in Central Asia to relieve inflammation. AIM OF THE STUDY This study investigated the efficacy of TFG in a bronchial cell model and an animal model of asthma exacerbation caused by PM. METHODS BEAS-2B bronchial epithelial cells were simultaneously treated with tumor necrosis factor-α/interleukin (IL)-4 and PM, and the expression of inflammatory cytokines, DNA damage, and autophagy mechanisms were analyzed. In an animal model of asthma exacerbation, we analyzed changes in organ weight, distribution of inflammatory cytokines and inflammatory cells in the bronchoalveolar lavage fluid, and intra-tissue mucus production. RESULTS In the cell model, TFG suppressed the expression of the inflammatory cytokines IL-6, granulocyte-macrophage colony stimulating factor, monocyte chemoattractant protein-1, and IL-8; reactive oxygen species levels and DNA damage; and the phosphorylation of ERK, JNK, P38, AKT, and mTOR. In the animal model, TFG significantly reduced weight gain of the liver, lung, and spleen; IgE, IL-6, and IFN-γ levels; and bronchial mucus secretion and smooth muscle thickness. CONCLUSION TFG alleviated the PM-exacerbated inflammatory response by inhibiting the MAPK and autophagy signaling pathways; it is expected to be an effective treatment for asthma.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Hoyeon Park
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Eom Ji Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Seung Hoon Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Jun Won Choi
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Jonghyun Kim
- Department of Medical classics and history, College of Korean Medicine, Gachon University, 1342, Seongnamdaero, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, 13120, Republic of Korea.
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
3
|
Kim HJ, Yang J, Herath KHINM, Jeon YJ, Son YO, Kwon D, Kim HJ, Jee Y. Oral Administration of Sargassum horneri Suppresses Particulate Matter-Induced Oxidative DNA Damage in Alveolar Macrophages of Allergic Airway Inflammation: Relevance to PM-Mediated M1/M2 AM Polarization. Mol Nutr Food Res 2023; 67:e2300462. [PMID: 37986167 DOI: 10.1002/mnfr.202300462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 11/22/2023]
Abstract
SCOPE Particulate matter (PM) can cause cellular oxidative damage and promote respiratory diseases. It has recently shown that Sargassum horneri ethanol extract (SHE) containing sterols and gallic acid reduces PM-induced oxidative stress in mice lung cells through ROS scavenging and metal chelating. In this study, the role of alveolar macrophages (AMs) is identified that are particularly susceptible to DNA damage due to PM-triggered oxidative stress in lungs of OVA-sensitized mice exposed to PM. METHODS AND RESULTS The study scrutinizes if PM exposure causes oxidative DNA damage to AMs differentially depending on their type of polarization. Further, SHE's potential is investigated in reducing oxidative DNA damage in polarized AMs and restoring AM polarization in PM-induced allergic airway inflammation. The study discovers that PM triggers prolonged oxidative stress to AMs, leading to lipid peroxidation in them and alveolar epithelial cells. Particularly, AMs are polarized to M2 phenotype (F4/80+ CD206+ ) with enhanced oxidative DNA damage when subject to PM-induced oxidative stress. However, SHE repairs oxidative DNA damage in M1- and M2-polarized AMs and reduces AMs polarization imbalance due to PM exposure. CONCLUSION These results suggest the possibility of SHE as beneficial foods against PM-induced allergic airway inflammation via suppression of AM dysfunction.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Department of Food Bioengineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jiwon Yang
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | | | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Young-Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Doyoung Kwon
- College of Pharmacy, Jeju National University, Jeju, 63243, Republic of Korea
- Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hyun Jung Kim
- Department of Food Bioengineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Youngheun Jee
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea
| |
Collapse
|
4
|
Jin J, Fan YJ, Nguyen TV, Yu ZN, Song CH, Lee SY, Shin HS, Chai OH. Fallopia japonica Root Extract Ameliorates Ovalbumin-Induced Airway Inflammation in a CARAS Mouse Model by Modulating the IL-33/TSLP/NF-κB Signaling Pathway. Int J Mol Sci 2023; 24:12514. [PMID: 37569890 PMCID: PMC10420321 DOI: 10.3390/ijms241512514] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Fallopia japonica (Asian knotweed) is a medicinal herb traditionally used to treat inflammation, among other conditions. However, the effects of F. japonica root extract (FJE) on airway inflammation associated with combined allergic rhinitis and asthma (CARAS) and the related mechanisms have not been investigated. This study examined the effect of FJE against CARAS in an ovalbumin (OVA)-induced CARAS mouse model. Six-week-old male BALB/c mice were randomly segregated into six groups. Mice were sensitized intraperitoneally with OVA on days 1, 8, and 15, and administered saline, Dexamethasone (1.5 mg/kg), or FJE (50, 100, or 200 mg/kg) once a day for 16 days. Nasal symptoms, inflammatory cells, OVA-specific immunoglobulins, cytokine production, mast cell activation, and nasal histopathology were assessed. Administration of FJE down-regulated OVA-specific IgE and up-regulated OVA-specific IgG2a in serum. FJE reduced the production of T helper (Th) type 2 cytokines, and the Th1 cytokine levels were enhanced in nasal and bronchoalveolar lavage fluid. Moreover, FJE positively regulated allergic responses by reducing the accumulation of inflammatory cells, improving nasal and lung histopathological characteristics, and inhibiting inflammation-associated cytokines. FJE positively modulated the IL-33/TSLP/NF-B signaling pathway, which is involved in regulating inflammatory cells, immunoglobulin levels, and pro-inflammatory cytokines at the molecular level.
Collapse
Affiliation(s)
- Juan Jin
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.); (T.V.N.)
| | - Yan Jing Fan
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.); (T.V.N.)
| | - Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.); (T.V.N.)
| | - Zhen Nan Yu
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.); (T.V.N.)
| | - Chang Ho Song
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.); (T.V.N.)
- Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - So-Yong Lee
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea (H.S.S.)
- Department of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Hee Soon Shin
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea (H.S.S.)
- Department of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.); (T.V.N.)
- Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| |
Collapse
|
5
|
Qin Y, Zhang H, Jiang B, Chen J, Zhang T. Food bioactives lowering risks of chronic diseases induced by fine particulate air pollution: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7811-7836. [PMID: 35317688 DOI: 10.1080/10408398.2022.2051162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Airborne particulate matter (PM) exerts huge negative impacts on human health worldwide, not only targeting the respiratory system but more importantly inducing and aggravating associated chronic diseases like asthma, lung cancer, atherosclerosis, diabetes mellitus and Alzheimer diseases. Food-derived bioactive compounds like vitamins, dietary polyphenols, omega-3 polyunsaturated fatty acids and sulforaphane are feasible alternative therapeutic approaches against PM-mediated potential health damages, drawing great attention in recent years. In this review, the association between PM exposure and risks of developing chronic diseases, and the detailed mechanisms underlying the detrimental effects of PM will be discussed. Subsequently, principal food-derived bioactive compounds, with emphasize on the preventative or protective effects against PM, along with potential mechanisms will be elucidated. This comprehensive review will discuss and present current research findings to reveal the nutritional intervention as a preventative or therapeutic strategy against ambient air pollution, thereby lowering the risk of developing chronic diseases.
Collapse
Affiliation(s)
- Yang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Hua Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Fujiati F, Haryati H. Anti-Inflammatory and Anti-Remodelling Potential of Ethanol Extract Rhodomyrtus Tomentosa in Combination of Asthma and Coal Dust Models. Rep Biochem Mol Biol 2022; 10:686-696. [PMID: 35291615 PMCID: PMC8903364 DOI: 10.52547/rbmb.10.4.686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Combination of asthma and coal dust is a chronic and recurring airway disease related to inflammation cell activation. The Rhodomyrtus tomentosa flowering plants native to South Kalimantan exhibit a broad therapeutic potential, like anti-inflammatory and anti-remodelling properties. This study aims to analyze the effect of ethanol extract of R. tomentosa leaves (EERTL) nebulizer on the number of inflammatory cells and histomorphometry of lung tissue in a mice-like model of a combination of asthma and coal dust. METHODS The 24 BALB/c mice were divided into four treatment groups (n= 6 per group), were sensitized with normal saline (K), OVA + coal dust (P1), OVA + coal dust + salbutamol (P2), and OVA + coal dust + EERTL (P3). Eosinophil cells, neutrophils, lymphocytes, epithelial thickness, smooth muscle, fibrosis subepithelial bronchioles, and the number of goblet cells as indicators of anti-inflammatory and anti-remodelling airways. RESULTS The number of eosinophils, neutrophils, and lymphocytes cells are given salbutamol or EERTL was significantly lower than the OVA-sensitized and coal dust exposure group only. There are meaningful differences in the average thickness of the epithelium, smooth muscle, and subepithelial fibrosis of bronchiolus. The histopathology picture of goblet cells showed an increase in the number and size (hyperplasia) in OVA-sensitized and coal dust exposure compared to another group. CONCLUSION It was concluded that the EERTL nebulizer could reduce inflammatory cells and remodelling process from bronchoalveolar lavage in the mice combination of asthma and coal dust models.
Collapse
Affiliation(s)
- Fujiati Fujiati
- Department Biochemistry and Biomolecular, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia.
| | - Haryati Haryati
- Department Pulmonology and Respiratory Medicine, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia.
| |
Collapse
|
7
|
Brown Seaweed Food Supplementation: Effects on Allergy and Inflammation and Its Consequences. Nutrients 2021; 13:nu13082613. [PMID: 34444774 PMCID: PMC8398742 DOI: 10.3390/nu13082613] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple health benefits have been ascribed to brown seaweeds that are used traditionally as dietary component mostly in Asia. This systematic review summarizes information on the impact of brown seaweeds or components on inflammation, and inflammation-related pathologies, such as allergies, diabetes mellitus and obesity. We focus on oral supplementation thus intending the use of brown seaweeds as food additives. Despite the great diversity of experimental systems in which distinct species and compounds were tested for their effects on inflammation and immunity, a remarkably homogeneous picture arises. The predominant effects of consumption of brown seaweeds or compounds can be classified into three categories: (1) inhibition of reactive oxygen species, known to be important drivers of inflammation; (2) regulation, i.e., in most cases inhibition of proinflammatory NF-κB signaling; (3) modulation of adaptive immune responses, in particular by interfering with T-helper cell polarization. Over the last decades, several inflammation-related diseases have increased substantially. These include allergies and autoimmune diseases as well as morbidities associated with lifestyle and aging. In this light, further development of brown seaweeds and seaweed compounds as functional foods and nutriceuticals might contribute to combat these challenges.
Collapse
|
8
|
Xue Z, Wang Y, Yu W, Zhang Z, Kou X. Research Advancement of Natural Active Components in Alleviating Lung Damage Induced by PM2.5. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1938602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yumeng Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Zhijun Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products; Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin, China
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Herath KHINM, Kim HJ, Lee JH, Je JG, Yu HS, Jeon YJ, Kim HJ, Jee Y. Sargassum horneri (Turner) C. Agardh containing polyphenols attenuates particulate matter-induced inflammatory response by blocking TLR-mediated MYD88-dependent MAPK signaling pathway in MLE-12 cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113340. [PMID: 32891815 DOI: 10.1016/j.jep.2020.113340] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sargassum horneri (Turner) C. Agardh (S. horneri), an edible brown marine algae, is known to have immunomodulatory effects and has been used in oriental medicine to treat inflammatory diseases. It is well known that ambient particulate matter (PM) is closely related to increased respiratory diseases inducing lung inflammation. AIM Considering the use of Sargassum horneri in traditional medicine to treat inflammatory diseases, we hypothesized and investigated the use of Sargassum horneri containing polyphenols against PM-induced inflammatory responses. MATERIALS AND METHODS In this study, we evaluated the impact of PM (majority <2.5 μm in diameter) on deep bronchial penetration ability upon inhalation and a therapeutic approach to mitigate its harmful effects using an ethanol extract of Sargassum horneri, an edible brown algae, containing polyphenols on a type II alveolar epithelial cell line, MLE-12. RESULTS PM triggered mRNA expression of toll-like receptors (TLRs) TLR2/4/7, and those TLRs were significantly attenuated by Sargassum horneri extract (SHE). SHE further attenuated the phosphorylation of mitogen-activated protein kinase (MAPK) p38, extracellular signal-regulated kinase 1/2 (Erk1/2), and c-Jun NH (2)-terminal kinase (JNK), which were also activated in PM-exposed cells. Altogether, SHE subdued the PM-induced mRNA expression of pro-inflammatory cytokines (interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6) and lung epithelial cell derived-chemokines (IL-8, monocyte chemoattractant protein-1 (MCP-1), and chemokine (C-C motif) ligand 5 (CCL5)). SHE also suppressed the mRNA expression of PM-induced pro-allergic cytokines thymic stromal lymphopoietin (TSLP) and interleukin (IL)-33. Furthermore, we showed that SHE suppressed the MAPK-dependent signaling pathway by attenuating receptor-associated factor (TRAF) 6 activation of proteins MyD88 and TNF. CONCLUSION Taking all the data together, we suggest that the anti-inflammatory potential of SHE on PM-exposed MLE-12 cells is mediated by the inhibition of PM-triggered downstream signaling along the TLR2/4/7-MyD88-TRAF6 axis of MAPK signaling.
Collapse
Affiliation(s)
| | - Hyo Jin Kim
- Department of Food Bioengineering, Jeju National University, 102 JeJudaehakro, Jeju, 63243, Republic of Korea.
| | - Ju Hee Lee
- Department of Food Bioengineering, Jeju National University, 102 JeJudaehakro, Jeju, 63243, Republic of Korea.
| | - Jun Geon Je
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hak-Sun Yu
- Department of Parasitology, Pusan National University School of Medicine, Yangsan, Republic of Korea.
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Hyun Jung Kim
- Department of Food Bioengineering, Jeju National University, 102 JeJudaehakro, Jeju, 63243, Republic of Korea.
| | - Youngheun Jee
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea; Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
10
|
Herath KHINM, Kim HJ, Mihindukulasooriya SP, Kim A, Kim HJ, Jeon YJ, Jee Y. Sargassum horneri extract containing mojabanchromanol attenuates the particulate matter exacerbated allergic asthma through reduction of Th2 and Th17 response in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114094. [PMID: 32806433 DOI: 10.1016/j.envpol.2020.114094] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 06/11/2023]
Abstract
Airborne particulate matter (PM) has become a serious health issue causing pulmonary diseases such as asthma. Due to the side effects and non-specificity of conventional drugs, there is a need to develop natural-product-based alternative treatments. Sargassum horneri is a brown alga shown to have anti-oxidant, anti-inflammatory, and anti-allergic effects. Thus, we sought to determine whether ethanol extract of Sargassum horneri (SHE) mitigates the effect of PM exposure on asthma development. To establish a mouse model of asthma, BALB/c mice were sensitized with ovalbumin (OVA, 10 μg) and challenged with PM (5 mg/m3) for 7 days consecutively. SHE (200, 400 mg/kg), Prednisone (5 mg/kg), or PBS was daily administrated orally before PM exposure. SHE mitigated PM exacerbated dendritic cell activation. More importantly, SHE restrained Th2 polarization by attenuating transcription factors GATA3 and STAT5, which further mitigated the expression of Th2 cytokines interleukin (IL)-4, IL-5, and IL-13 in the lung homogenates of PM-exacerbated asthmatic mice. SHE further attenuated PM-exacerbated eosinophil infiltration in the lung, trachea, and BALF. In addition, SHE markedly mitigated the activation of mast cells and the IgE level in serum. Concomitantly, SHE further restrained the Th17 cell response in PM-exposed allergic mice through attenuating expression of transcription factors RORγT, STAT3 and expression of relevant effector cytokines IL-17a. This resulted in mitigated neutrophil infiltration in the lung. Taken together, SHE significantly suppressed PM-exacerbated hypersecretion of mucus in asthmatic mice. These results suggest that SHE has therapeutic potential for treating PM-exacerbated allergic asthma through concomitantly inhibiting Th2/Th17 responses.
Collapse
Affiliation(s)
| | - Hyo Jin Kim
- Department of Food Bioengineering, Jeju National University, 102 JeJudaehakno, Jeju, 63243, Republic of Korea
| | | | - Areum Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hyun Jung Kim
- Department of Food Bioengineering, Jeju National University, 102 JeJudaehakno, Jeju, 63243, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju, 690-756, Republic of Korea
| | - Youngheun Jee
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea; Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
11
|
Han EJ, Fernando IPS, Kim HS, Jeon YJ, Madusanka DMD, Dias MKHM, Jee Y, Ahn G. Oral Administration of Sargassum horneri Improves the HDM/DNCB-Induced Atopic Dermatitis in NC/Nga Mice. Nutrients 2020; 12:E2482. [PMID: 32824648 PMCID: PMC7468899 DOI: 10.3390/nu12082482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022] Open
Abstract
The present study investigated the protective effects of Sargassum horneri (S. horneri) ethanol extract (SHE) against atopic dermatitis (AD), known as an abnormal immune response in house dust mite (HDM)/2,4-dinitrochlorobenzene (DNCB)-stimulated NC/Nga mice. The oral administration of SHE attenuated the AD symptoms, including the skin dermatitis severity, transepidermal water loss (TEWL), and ear edema in HDM/DNCB-stimulated mice. Moreover, the histological analysis revealed that SHE improved epidermal hyperplasia and hyperkeratosis, and reduced the dermal infiltrations of mast cells and eosinophils. Moreover, SHE downregulated the expression levels of cytokines (interleukin (IL)-6, IL-10, and interferon (IFN)-γ) and chemokines (Regulated on Activation, Normal T Cell Expressed and Secreted (RANTES), Eotaxin, and Thymus and activation-regulated chemokine (TARC)) by decreasing the expression levels of atopic initiators (IL-25 and IL-33) in HDM/DNCB-stimulated skin. The oral administration of SHE decreased the spleen size, reducing expression levels of AD-related cytokines (IL-4, IL-5, IL-6, IL-10, IL-13, IFN-γ, and TARC) by regulating the expressions of Tbx21 (T-bet), GATA Binding Protein 3 (GATA-3), and Signal transducer and activator of transcription 3 (STAT3). Moreover, SHE significantly attenuated the serum immunoglobulin (Ig)G1 and IgG2a levels in HDM/DNCB-stimulated mice. Collectively, these results suggest that S. horneri could be an ingredient of functional food against abnormal immune response.
Collapse
Affiliation(s)
- Eui Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (E.J.H.); (D.M.D.M.); (M.K.H.M.D.)
| | | | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea;
| | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea;
| | | | | | - Youngheun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (E.J.H.); (D.M.D.M.); (M.K.H.M.D.)
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea;
| |
Collapse
|
12
|
Herath KHINM, Kim HJ, Kim A, Sook CE, Lee BY, Jee Y. The Role of Fucoidans Isolated from the Sporophylls of Undaria pinnatifida against Particulate-Matter-Induced Allergic Airway Inflammation: Evidence of the Attenuation of Oxidative Stress and Inflammatory Responses. Molecules 2020; 25:E2869. [PMID: 32580518 PMCID: PMC7356913 DOI: 10.3390/molecules25122869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023] Open
Abstract
Ambient particulate matter (PM) is a critical environment pollutant that promotes the onset and aggravation of respiratory diseases such as asthma through airway inflammation and hypersecretion of mucus. In this study, we aimed to identify the effects of fucoidans isolated from sporophylls of Undaria pinnatifida on asthma symptoms such as the inflammatory response and mucus secretion using a mouse model. Balb/c mice, intraperitoneally sensitized with ovalbumin (OVA, 10 μg) dissolved in 200 µL saline and 2 mg Al(OH)3, were exposed to PM (5 mg/m3) for 7 consecutive days. In parallel, along with PM exposure, we orally administrated fucoidans (100, 400 mg/Kg) or prednisone (5 mg/Kg), an anti-inflammatory drug. We found that oral administration of fucoidans significantly attenuated PM-induced lipid peroxidation and infiltration of inflammatory cells like F4/80+ macrophages, Gr-1+ granulocytes, and CD4+ T lymphocytes. Fucoidans also attenuated the level of PM-exacerbated IL-4, a primitive cytokine released in Th2 mediated eosinophilic asthma. This further suppressed mast cell activation, degranulation and IgE synthesis of PM exposed mice. Interestingly, fucoidans attenuated PM-exacerbated mucus hypersecretion and goblet cell hyperplasia. Therefore, our results suggest that fucoidans are effective at alleviating PM-exacerbated allergic asthma symptoms by attenuating the airway inflammatory response and mucus hypersecretion.
Collapse
Affiliation(s)
| | - Hyo Jin Kim
- Department of Food Bioengineering, Jeju National University, 102 JeJudaehakno, Jeju 63243, Korea;
| | - Areum Kim
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea; (K.H.I.N.M.H.); (A.K.)
| | | | - Boo-Yong Lee
- Department of Biomedical Science, CHA University, Seongnam 463-836, Korea;
| | - Youngheun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea; (K.H.I.N.M.H.); (A.K.)
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
| |
Collapse
|