1
|
Zhang Z, Yang X, Gao Z, Zhang M, Mu S, Cheng Y, Qu K. Effects of modification methods on the structural characteristics and functional properties of dietary fiber from cucumber. Food Chem X 2024; 24:101808. [PMID: 39310882 PMCID: PMC11415858 DOI: 10.1016/j.fochx.2024.101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Cucumbers produce by-products such as cucumber pomace during processing and most of them are discarded without being utilized. To effectively utilize the waste, cucumber pomace is used to extract both insoluble and soluble dietary fibers (DFs) using compound enzyme method (ME), High pressure processing assisted ME (HPP-ME), and dynamic high-pressure microfluidization-assisted ME (DHPM-ME). The results showed that DHPM-ME improved the extraction rate of soluble DFs most effectively, increasing it from 1.74 % to 4.08 %. The modified DFs exhibited enhanced hydration properties and functional properties after HPP-ME- and DHPM-ME-mediated auxiliary treatment. Additionally, the modified DFs exhibited improved thermal stability, increased absorption peaks in the infrared spectra, decreased crystallinity, improved glucose and cholesterol adsorption ability, and delayed glucose adsorption. The cucumber pomace-derived modified DFs can be used as a functional food additive in bakery, meat, dairy products, and beverages, and their effective use can further enhance the economic benefits.
Collapse
Affiliation(s)
- Zhiwei Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| | - Xinyi Yang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| | - Zhenhong Gao
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| | - Meiyue Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| | - Shuaixue Mu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| | - Yuying Cheng
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| | - Kunsheng Qu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjing, China
| |
Collapse
|
2
|
Berktas S, Cam M. Effects of acid, alkaline and enzymatic extraction methods on functional, structural and antioxidant properties of dietary fiber fractions from quince (Cydonia oblonga Miller). Food Chem 2024; 464:141596. [PMID: 39413597 DOI: 10.1016/j.foodchem.2024.141596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
In this study, quince soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) were obtained by acid extraction, enzyme extraction and alkaline extraction methods. The acid extracted DF displayed higher results compared to enzyme and alkaline extraction methods in terms of water holding capacity (15.97 g/g SDF), oil holding capacity (1.05 g/g SDF) and nitrite ion adsorption capacity (92.83 mg/g SDF). The antioxidant activity and phenolic content of acid extracted IDF were significantly higher than the other quince DFs. In addition, quince DFs exhibited in vitro hypoglycaemic activity, exhibiting high glucose adsorption capacity (237 mg/g) and α-amylase inhibition activity (82 %). Similarly, acid extracted SDF of quince showed in vitro hypolipidemic activity, with cholesterol adsorption capacity of 155 mg/g and lipase inhibition activity of 36 %. The structures and thermal properties of quince DFs were characterized by FT-IR and TGA. Quince DFs with high functional properties might be suitable agents for functional food formulations, such as meat products, low-calorie fruit bars, flour mixtures, etc.
Collapse
Affiliation(s)
- Serap Berktas
- Institute of Natural Sciences, Erciyes University, 38039 Kayseri, Türkiye.
| | - Mustafa Cam
- Department of Food Engineering, Faculty of Engineering, Erciyes University, 38039 Kayseri, Türkiye
| |
Collapse
|
3
|
Ungureanu G, Enache IM, Cara IG, Motrescu I, Patras A. Insights into the environmental benefits of using apple pomace for biosorption of lead from contaminated water. Heliyon 2024; 10:e36811. [PMID: 39281575 PMCID: PMC11401127 DOI: 10.1016/j.heliyon.2024.e36811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
The apple processing industry generates large quantities of organic waste, presenting a major source of organic contamination. Consequently, finding an effective solution for valorizing this waste has become a pressing issue. This study aims to address two key concerns: (i) solving an agricultural problem by efficiently using agri-food residue, and (ii) removing lead, an extremely toxic element, from contaminated waters to mitigate environmental pollution. Two biosorbents were tested: raw apple waste (RA), obtained from a mixture of apple varieties, and the same material after extracting valuable bioactive and reusable components, extracted apple (EA). The study evaluated the influence of pH, initial biosorbent mass, adsorption kinetics, and equilibrium isotherms. The results are very promising, showing a lead removal efficiency of 82 % for RA and 100 % for EA at a low initial concentration of the solution of 20 mg Pb2⁺/L and an optimal pH of 5 ± 0.5. The Langmuir model predicted a maximum adsorption capacity of 44.6 mg/g for RA and 48.6 mg/g for EA. These findings demonstrate that apple waste, even after selective extraction of valuable bioactive components, can be effectively used for environmental remediation on a practical scale.
Collapse
Affiliation(s)
- Gabriela Ungureanu
- "Ion Ionescu de la Brad" Iasi University of Life Sciences, Faculty of Horticulture, 3 Mihail Sadoveanu Alley, 700490, Iasi, Romania
| | - Iuliana-Maria Enache
- "Ion Ionescu de la Brad" Iasi University of Life Sciences, Faculty of Horticulture, 3 Mihail Sadoveanu Alley, 700490, Iasi, Romania
| | - Irina Gabriela Cara
- "Ion Ionescu de la Brad" Iasi University of Life Sciences, Research Institute for Agriculture and Environment, 9 Mihail Sadoveanu Alley, 700490, Iasi, Romania
| | - Iuliana Motrescu
- "Ion Ionescu de la Brad" Iasi University of Life Sciences, Faculty of Horticulture, 3 Mihail Sadoveanu Alley, 700490, Iasi, Romania
- "Ion Ionescu de la Brad" Iasi University of Life Sciences, Research Institute for Agriculture and Environment, 9 Mihail Sadoveanu Alley, 700490, Iasi, Romania
| | - Antoanela Patras
- "Ion Ionescu de la Brad" Iasi University of Life Sciences, Faculty of Horticulture, 3 Mihail Sadoveanu Alley, 700490, Iasi, Romania
| |
Collapse
|
4
|
Kaur R, Panesar PS, Kaur B, Riar CS. Hydrothermal extraction of dietary fiber from pearl millet bran: optimization, physico-chemical, structural and functional characterization. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1536-1546. [PMID: 38966785 PMCID: PMC11219656 DOI: 10.1007/s13197-023-05921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/16/2023] [Accepted: 12/21/2023] [Indexed: 07/06/2024]
Abstract
Pearl millet bran is rich source of dietary fiber and several other bioactive compounds and is an unexploited by-product of millet processing industries. The utilization of pearl millet bran for extraction of dietary fiber can be an effective method for its valorization. Hydrothermal extraction of dietary fiber from pearl millet bran is a simple eco-friendly technique in terms of minimal consumption of toxic solvents, increased extraction yield, high purity and considered as an economically viable technique. In the present investigation, extraction and optimization of dietary fiber from pearl millet bran was performed using hydrothermal technique. The highest yield of dietary fiber (74.5%, w/w) was obtained under optimized conditions of water to solid ratio (20:1), temperature (90 °C) and time (15 min). The extracted dietary fiber from pearl millet bran was further assessed for its physico-chemical, functional and structural properties. The studies of functional and physico-chemical properties presented the water holding capacity (6.50 g/g and 3.99 g/g), swelling power (2.0 g/g and 2.05 g/g), oil holding capacity (4.91 g/g and 2.42 g/g), solubility (70%), total phenolic content of 4.24 mg GAE/g and 4.32 mg GAE/g, DPPH reduction of 86.6% and 83.9%, respectively. The results indicated that pearl millet bran can act as rich source of dietary fiber with health enhancing properties and can be utilized as potential food component in preparation of functional food products.
Collapse
Affiliation(s)
- Ravinderjit Kaur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106 India
| | - Parmjit S. Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106 India
| | - Brahmeet Kaur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106 India
| | - Charanjit Singh Riar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106 India
| |
Collapse
|
5
|
Zhang Z, Ruan Q, Sun X, Yuan J. Optimization of Enzymolysis Modification Conditions of Dietary Fiber from Bayberry Pomace and Its Structural Characteristics and Physicochemical and Functional Properties. Molecules 2024; 29:3415. [PMID: 39064993 PMCID: PMC11279638 DOI: 10.3390/molecules29143415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Bayberry pomace, a nutrient-rich material abundant in dietary fiber (DF), has historically been underutilized due to a lack of thorough research. This study aimed to investigate the physicochemical and functional properties of the DF. Ultrasonic enzymatic treatment was performed to extract the total DF, which was then optimized to produce modified soluble dietary fiber (MSDF) and insoluble dietary fiber (MIDF). The optimized conditions yielded 15.14% of MSDF with a water-holding capacity (WHC) of 54.13 g/g. The DFs were evaluated for their structural, physicochemical, and functional properties. The MSDF showed a higher (p < 0.05) WHC, oil-holding capacity (OHC), swelling capacity (SC), cation exchange capacity (CEC), and glucose adsorption capacity (GAC) (about 14.15, 0.88, 1.23, 1.22, and 0.34 times) compared to the DF. Additionally, the MSDF showed strong, superior radical scavenging and blood sugar-lowering capabilities, with a more porous surface morphology. A Fourier-transform infrared (FT-IR) spectroscopy analysis indicated that enzymatic modification degraded the cellulose and hemicellulose, reducing the DF crystallinity. Overall, the results demonstrated that cellulase hydrolysis could effectively improve the physicochemical and functional properties of DF, thereby paving the way for its development into functional food products.
Collapse
Affiliation(s)
- Zhaolin Zhang
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China; (Z.Z.); (Q.R.); (X.S.)
| | - Qin Ruan
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China; (Z.Z.); (Q.R.); (X.S.)
| | - Xiaoming Sun
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China; (Z.Z.); (Q.R.); (X.S.)
- Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Jianfeng Yuan
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China; (Z.Z.); (Q.R.); (X.S.)
- Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
6
|
Li X, Wang L, Tan B, Li R. Effect of structural characteristics on the physicochemical properties and functional activities of dietary fiber: A review of structure-activity relationship. Int J Biol Macromol 2024; 269:132214. [PMID: 38729489 DOI: 10.1016/j.ijbiomac.2024.132214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Dietary fibers come from a wide range of sources and have a variety of preparation methods (including extraction and modification). The different structural characteristics of dietary fibers caused by source, extraction and modification methods directly affect their physicochemical properties and functional activities. The relationship between structure and physicochemical properties and functional activities is an indispensable basic theory for realizing the directional transformation of dietary fibers' structure and accurately regulating their specific properties and activities. In this paper, since a brief overview about the structural characteristics of dietary fiber, the effect of structural characteristics on a variety of physicochemical properties (hydration, electrical, thermal, rheological, emulsifying property, and oil holding capacity, cation exchange capacity) and functional activities (hypoglycemic, hypolipidemic, antioxidant, prebiotic and harmful substances-adsorption activity) of dietary fiber explored by researchers in last five years are emphatically reviewed. Moreover, the future perspectives of structure-activity relationship are discussed. This review aims to provide theoretical foundation for the targeted regulation of properties and activities of dietary fiber, so as to improve the quality of their applied products and physiological efficiency, and then to realize high value utilization of dietary fiber resources.
Collapse
Affiliation(s)
- Xiaoning Li
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Liping Wang
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Bin Tan
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Ren Li
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
7
|
Cao J, Qin L, Zhang L, Wang K, Yao M, Qu C, Miao J. Protective effect of cellulose and soluble dietary fiber from Saccharina japonica by-products on regulating inflammatory responses, gut microbiota, and SCFAs production in colitis mice. Int J Biol Macromol 2024; 267:131214. [PMID: 38580029 DOI: 10.1016/j.ijbiomac.2024.131214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
This study aimed to investigate the physicochemical properties of soluble dietary fiber (SDF) and cellulose enriched in Saccharina japonica by-products and to evaluate their anti-colitis effects. The water-holding capacity (WHC), swelling capacity (SC), cation exchange capacity (CEC), and antioxidant properties of SDF were superior to cellulose. The ΔH of SDF and cellulose was 340.73 J/g and 134.56 J/g, and the average particle size of them was 43.858 μm and 97.350 μm. The viscosity of SDF was positively correlated with the content. SEM revealed that the microstructure of SDF was porous, whereas cellulose was folded. SDF contained seven monosaccharides such as mannuronic acid and mannose, while cellulose had a single glucose composition. It was also shown that both SDF and cellulose reversed the pathological process of colitis by inhibiting weight loss, preventing colon injury, balancing oxidative stress, and regulating the level of inflammation, with the optimal dose being 1.5 g/kg. The difference was that SDF inhibited the expression of NF-кB and TNF-α, while cellulose up-regulated the expression of PPAR-γ and IL-10. Additionally, SDF could more positively control the expression of ZO-1, whereas cellulose was superior in improving the expression of Occludin. Interestingly, SDF could restore the structure of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group to ameliorate ulcerative colitis (UC), whereas cellulose mainly regulated the abundance of norank_f_Muribaculaceae, Faecalibaculum, Bacteroides and unclassified_f__Lachnospiraceae. The production of short-chain fatty acids (SCFAs) was also found to be restored by SDF and cellulose. Overall, SDF and cellulose can be considered important dietary components for treating and preventing UC.
Collapse
Affiliation(s)
- Junhan Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Liping Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengke Yao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China.
| |
Collapse
|
8
|
Song Y, Sun G, Wang D, Chen J, Lv J, Jiang S, Zhang G, Yu S, Zheng H. Optimization of Composite Enzymatic Extraction, Structural Characterization and Biological Activity of Soluble Dietary Fiber from Akebia trifoliata Peel. Molecules 2024; 29:2085. [PMID: 38731576 PMCID: PMC11085559 DOI: 10.3390/molecules29092085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
In order to reduce the waste of Akebia trifoliata peel and maximize its utilization, in this study, on the basis of a single-factor experiment and the response surface method, the optimum technological conditions for the extraction of soluble dietary fiber from Akebia trifoliata peel with the compound enzyme method were obtained. The chemical composition, physical and chemical properties, structural characterization and biological activity of the purified soluble dietary fiber (AP-SDF) from the Akebia trifoliata peel were analyzed. We discovered that that the optimum yield was 20.87% under the conditions of cellulase addition 600 U/g, enzymolysis time 100 min, solid-liquid ratio 1:24 g/mL and enzymolysis temperature 51 °C. At the same time, AP-SDF was a porous network structure cellulose type I acidic polysaccharose mainly composed of arabinoxylan (36.03%), galacturonic acid (27.40%) and glucose (19.00%), which possessed the structural characteristic peaks of the infrared spectra of polysaccharides and the average molecular weight (Mw) was 95.52 kDa with good uniformity. In addition, the AP-SDF exhibited high oil-holding capacity (15.11 g/g), good water-holding capacity and swelling capacity, a certain antioxidant capacity in vitro, hypoglycemic activity in vitro for α-glucosidase inhibition and hypolipidemic activity in vitro for the binding ability of bile acids and cholesterol. These results will provide a theoretical basis for the development of functional products with antioxidant, hypoglycemic and hypolipidemic effects, which have certain application value in related industries.
Collapse
Affiliation(s)
- Ya Song
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Guoshun Sun
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Dian Wang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Jin Chen
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Jun Lv
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Sixia Jiang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Guoqiang Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
- Engineering Technology Research Center of Health Wine Brewing, Renhuai 564507, China
| | - Huayan Zheng
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
- Talent Cultivation Center of Moutai Institute on Characteristic Food Resource Utilization, Renhuai 564507, China
| |
Collapse
|
9
|
Fan R, Wang L, Cao H, Du R, Yang S, Yan Y, Zheng B. Characterization of the Structure and Physicochemical Properties of Soluble Dietary Fiber from Peanut Shells Prepared by Pulsed Electric Fields with Three-Phase Partitioning. Molecules 2024; 29:1603. [PMID: 38611882 PMCID: PMC11013324 DOI: 10.3390/molecules29071603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
This study evaluated the impact of pulsed electric fields (PEFs) combined with three-phase partitioning (TPP) extraction methods on the physicochemical properties, functional properties, and structural characterization of the soluble dietary fiber (SDF) derived from peanut shells (PS). The findings of this study indicated that the application of a PEF-TPP treatment leads to a notable improvement in both the extraction yield and purity of SDF. Consequently, the PEF-TPP treatment resulted in the formation of more intricate and permeable structures, a decrease in molecular weight, and an increase in thermal stability compared to SDFs without TPP treatment. An analysis revealed that the PEF-TPP method resulted in an increase in the levels of arabinose and galacturonic acid, leading to enhanced antioxidant capacities. Specifically, the IC50 values were lower in SDFs which underwent PEF-TPP (4.42 for DPPH and 5.07 mg/mL for ABTS) compared to those precipitated with 40% alcohol (5.54 mg/mL for DPPH, 5.56 mg/mL for ABTS) and PEF75 (6.60 mg/mL for DPPH, 7.61 mg/mL for ABTS), respectively. Notably, the SDFs which underwent PEF-TPP demonstrated the highest water- and oil-holding capacity, swelling capacity, emulsifying activity, emulsion stability, glucose adsorption, pancreatic lipase inhibition, cholesterol adsorption, nitric ion adsorption capacity, and the least gelation concentration. Based on the synthesis scores obtained through PCA (0.536 > -0.030 > -0.33), which indicated that SDFs which underwent PEF-TPP exhibited the highest level of quality, the findings indicate that PEF-TPP exhibits potential and promise as a method for preparing SDFs.
Collapse
Affiliation(s)
- Rui Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China;
| | - Lei Wang
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan 063000, China; (L.W.); (H.C.); (R.D.); (S.Y.)
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan 063000, China
- Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan 063000, China
| | - Huihui Cao
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan 063000, China; (L.W.); (H.C.); (R.D.); (S.Y.)
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan 063000, China
- Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan 063000, China
| | - Ruihuan Du
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan 063000, China; (L.W.); (H.C.); (R.D.); (S.Y.)
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan 063000, China
- Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan 063000, China
| | - Shuo Yang
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan 063000, China; (L.W.); (H.C.); (R.D.); (S.Y.)
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan 063000, China
- Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan 063000, China
| | - Yanhua Yan
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan 063000, China; (L.W.); (H.C.); (R.D.); (S.Y.)
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan 063000, China
- Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan 063000, China
| | - Baiqin Zheng
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan 063000, China; (L.W.); (H.C.); (R.D.); (S.Y.)
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan 063000, China
- Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan 063000, China
| |
Collapse
|
10
|
Tang S, Dong X, Ma Y, Zhou H, He Y, Ren D, Li X, Cai Y, Wang Q, Wu L. Highly crystalline cellulose microparticles from dealginated seaweed waste ameliorate high fat-sugar diet-induced hyperlipidemia in mice by modulating gut microbiota. Int J Biol Macromol 2024; 263:130485. [PMID: 38423434 DOI: 10.1016/j.ijbiomac.2024.130485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
The effects of seaweed cellulose (SC) on high fat-sugar diet (HFSD)-induced glucolipid metabolism disorders in mice and potential mechanisms were investigated. SC was isolated from dealginated residues of giant kelp (Macrocystis pyrifera), with a crystallinity index of 85.51 % and an average particle size of 678.2 nm. Administering SC to C57BL/6 mice at 250 or 500 mg/kg BW/day via intragastric gavage for six weeks apparently inhibited the development of HFSD-induced obesity, dyslipidemia, insulin resistance, oxidative stress and liver damage. Notably, SC intervention partially restored the structure and composition of the gut microbiota altered by the HFSD, substantially lowering the Firmicutes to Bacteroidetes ratio, and greatly increasing the relative abundance of Lactobacillus, Bifidobacterium, Oscillospira, Bacteroides and Akkermansia, which contributed to improved short-chain fatty acid (SCFA) production. Supplementing with a higher dose of SC led to more significant increases in total SCFA (67.57 %), acetate (64.56 %), propionate (73.52 %) and butyrate (66.23 %) concentrations in the rectal contents of HFSD-fed mice. The results indicated that highly crystalline SC microparticles could modulate gut microbiota dysbiosis and ameliorate HFSD-induced obesity and related metabolic syndrome in mice. Furthermore, particle size might have crucial impact on the prebiotic effects of cellulose as insoluble dietary fiber.
Collapse
Affiliation(s)
- Shiying Tang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Xiuyu Dong
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Yueyun Ma
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Hui Zhou
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| | - Yunhai He
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| | - Xiang Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yidi Cai
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| | - Long Wu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
11
|
Su X, Jin Q, Xu Y, Wang H, Huang H. Subcritical water treatment to modify insoluble dietary fibers from brewer's spent grain for improved functionality and gut fermentability. Food Chem 2024; 435:137654. [PMID: 37820401 DOI: 10.1016/j.foodchem.2023.137654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
Lactic acid (LA)-assisted subcritical water treatment (SWT) was applied to modify the insoluble dietary fiber (IDF) from brewer's spent grain (BSG) for enhancing its functionality and gut fermentability. Modified IDFs were thoroughly characterized for their chemical and structural properties. The results revealed that increasing the treatment temperature and LA concentration reduced hemicellulose content in IDFs from 38.4 % to 0.7 %, alongside a decreased yield (84.8 %-51.4 %), reduced particle size (519.8-288.6 μm), and more porous structure of IDFs. These modifications were linked to improved functionalities, evidenced by the highest water and oil holding capacity increasing by 36 % and 67 %, respectively. Remarkably, the highest glucose adsorption capacity increased by 6.5 folds. Notably, modified IDFs exhibited slower in-vitro fermentation, elevated short-chain fatty acids (SCFAs) production, and a higher proportion of butyrate in SCFAs. These findings highlight the potential of LA-assisted SWT in transforming BSG-derived IDF into a valuable functional food ingredient.
Collapse
Affiliation(s)
- Xueqian Su
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg VA 24061, USA.
| | - Qing Jin
- School of Food and Agriculture, The University of Maine, 5763 Rogers Hall, Orono, ME 04469, USA.
| | - Yixiang Xu
- Healthy Processed Foods Research Unit, United States Department of Agriculture, Agricultural Research Station, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Hengjian Wang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg VA 24061, USA.
| | - Haibo Huang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg VA 24061, USA.
| |
Collapse
|
12
|
Salari S, Ferreira J, Lima A, Sousa I. Effects of Particle Size on Physicochemical and Nutritional Properties and Antioxidant Activity of Apple and Carrot Pomaces. Foods 2024; 13:710. [PMID: 38472822 DOI: 10.3390/foods13050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The food processing industry is growing rapidly and producing large amounts of by-products, such as pomaces, which are considered as no-value waste and cause significant environmental pollution. The main by-products of fruit juice processing companies are apple and carrot pomaces, which can be used to create new functional food products. In the present study, the effects of particle size (PS) on the proximate composition, nutritional properties, and antioxidant activity of apple pomace flour (APF) and carrot pomace flour (CPF) were determined. Four different PS fractions, PS > 1 mm, 1 > PS > 0.71 mm, 0.71 > PS > 0.18 mm, and 0.18 > PS > 0.075 mm were used for the present study. Their vitamin, carotenoid, organic acid, and reducing sugar contents were determined using HPLC. The proximate compositions of each PS fraction of the AP and CP flours were determined using recommended international standard methods. DPPH, FRAP, and Folin-Ciocalteu methods were used to measure their antioxidant activity and total phenolic compounds, respectively. The moisture content (around 12.1 mg/100 g) was similar in all PS fractions and in both flours. The APF had lower protein (4.3-4.6 g/100 g dw) and ash (1.7-2.0 g/100 g dw) contents compared to the CPF, with protein contents ranging from 6.4-6.8 g/100 g dw and ash contents ranging from 5.8-6.1 g/100 g dw. Smaller particles, regardless of flour type, exhibited higher sugar and phenolic contents and antioxidant activity, while vitamins were more abundant in particles larger than 1 mm. In the APF, larger particles had a higher fiber content than smaller particles, while their fat content was the lowest. PS also had an impact on the results of the carotenoid contents. This study underscores the direct impact of PS on the distribution of sugars, crude fiber, fat, carotenoids, vitamins, total phenolic compounds, and antioxidant activity in pomaces.
Collapse
Affiliation(s)
- Saeed Salari
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Joana Ferreira
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana Lima
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal
| | - Isabel Sousa
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
13
|
Yu C, Dong Q, Chen M, Zhao R, Zha L, Zhao Y, Zhang M, Zhang B, Ma A. The Effect of Mushroom Dietary Fiber on the Gut Microbiota and Related Health Benefits: A Review. J Fungi (Basel) 2023; 9:1028. [PMID: 37888284 PMCID: PMC10608147 DOI: 10.3390/jof9101028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Mushroom dietary fiber is a type of bioactive macromolecule derived from the mycelia, fruiting bodies, or sclerotia of edible or medicinal fungi. The use of mushroom dietary fiber as a prebiotic has recently gained significant attention for providing health benefits to the host by promoting the growth of beneficial microorganisms; therefore, mushroom dietary fiber has promising prospects for application in the functional food industry and in drug development. This review summarizes methods for the preparation and modification of mushroom dietary fiber, its degradation and metabolism in the intestine, its impact on the gut microbiota community, and the generation of short-chain fatty acids (SCFAs); this review also systematically summarizes the beneficial effects of mushroom dietary fiber on host health. Overall, this review aims to provide theoretical guidance and a fresh perspective for the prebiotic application of mushroom dietary fiber in the development of new functional foods and drugs.
Collapse
Affiliation(s)
- Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Qin Dong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Ruihua Zhao
- School of Life Sciences, Yan’an University, Yan’an 716000, China;
| | - Lei Zha
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Mengke Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Baosheng Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Wang Y, He B, Zhang L, Zhu R, Huang L. Physicochemical properties of superfine grinding-microwave modified artichoke soluble dietary fiber and their alleviation of alcoholic fatty liver in mice. Front Nutr 2023; 10:1253963. [PMID: 37662596 PMCID: PMC10473878 DOI: 10.3389/fnut.2023.1253963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
The effects of superfine grinding (SG) and microwave treatment (MT) on the structure and physicochemical properties of artichoke soluble dietary fiber (ASDF) and its protective effects on mice with alcoholic fatty liver (AFL) were studied. We compared the changes in structural characteristics and physicochemical properties of ASDF, SG-ASDF (ASDF treated by SG), MT-ASDF (ASDF treated by MT), and CM-ASDF (ASDF treated by SG and MT). Moreover, we evaluated the effects of the obtained ASDF on the growth characteristics, blood lipid levels, and liver of mice with AFL. Our results of the study showed that CM-ASDF had a more concentrated and uniform particle size, a higher extraction rate of ASDF and significantly improved water-holding capacity (WHC), oil-holding capacity (OHC) and water swelling capacity (WSC) of ASDF (p < 0.05). After the ASDF intervention, mice with AFL exhibited a significant improvement in body lipid levels and reduce liver inflammation. Specifically, aspartate aminotransferase (AST), alanine aminotransferase (ALT), malonaldehyde (MDA), Tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6) were significantly decreased, while superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) were significantly increased (p < 0.05). And the hematoxylin-eosin (HE) staining results showed significant improvement of hepatic steatosis in mice with AFL. In summary, our study found that both SG and MT could improve the structure and physicochemical properties of ASDF, with CM-ASDF being the most effective. Additionally, CM-ASDF was selected to continue the investigation and demonstrated an excellent protective effect on mice with AFL, with the high dose group (H-ASDF) showing the greatest benefit. These findings provided some new insights for future comprehensive utilization of ASDF and drug development for the treatment of AFL.
Collapse
Affiliation(s)
- Yayi Wang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
| | - Bian He
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
| | - Linwei Zhang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
| | - Renwei Zhu
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
| | - Liang Huang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha, China
| |
Collapse
|
15
|
Zheng H, Sun Y, Zeng Y, Zheng T, Jia F, Xu P, Xu Y, Cao Y, He K, Yang Y. Effects of Four Extraction Methods on Structure and In Vitro Fermentation Characteristics of Soluble Dietary Fiber from Rape Bee Pollen. Molecules 2023; 28:4800. [PMID: 37375355 DOI: 10.3390/molecules28124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, soluble dietary fibers (SDFs) were extracted from rape bee pollen using four methods including acid extraction (AC), alkali extraction (AL), cellulase extraction (CL) and complex enzyme extraction (CE). The effects of different extraction methods on the structure of SDFs and in vitro fermentation characteristics were further investigated. The results showed that the four extraction methods significantly affected the monosaccharide composition molar ratio, molecular weight, surface microstructure and phenolic compounds content, but showed little effect on the typical functional groups and crystal structure. In addition, all SDFs decreased the Firmicutes/Bacteroidota ratio, promoted the growth of beneficial bacteria such as Bacteroides, Parabacteroides and Phascolarctobacterium, inhibited the growth of pathogenic bacteria such as Escherichia-Shigella, and increased the total short-chain fatty acids (SCFAs) concentrations by 1.63-2.45 times, suggesting that the bee pollen SDFs had a positive regulation on gut microbiota. Notably, the SDF obtained by CE exhibited the largest molecular weight, a relatively loose structure, higher extraction yield and phenolic compounds content and the highest SCFA concentration. Overall, our results indicated that CE was an appropriate extraction method of high-quality bee pollen SDF.
Collapse
Affiliation(s)
- Hui Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Yan Sun
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Yiqiong Zeng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Tao Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Fan Jia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Pan Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Yao Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Yuxin Cao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua 418000, China
| | - Yong Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| |
Collapse
|
16
|
Zhou L, Luo J, Xie Q, Huang L, Shen D, Li G. Dietary Fiber from Navel Orange Peel Prepared by Enzymatic and Ultrasound-Assisted Deep Eutectic Solvents: Physicochemical and Prebiotic Properties. Foods 2023; 12:foods12102007. [PMID: 37238825 DOI: 10.3390/foods12102007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Dietary fiber (DF) was extracted from navel orange peel residue by enzyme (E-DF) and ultrasound-assisted deep eutectic solvent (US-DES-DF), and its physicochemical and prebiotic properties were characterized. Based on Fourier-transform infrared spectroscopy, all DF samples exhibited typical polysaccharide absorption spectra, indicating that DES could separate lignin while leaving the chemical structure of DF unchanged, yielding significantly higher extraction yields (76.69 ± 1.68%) compared to enzymatic methods (67.27 ± 0.13%). Moreover, ultrasound-assisted DES extraction improved the properties of navel orange DFs by significantly increasing the contents of soluble dietary fiber and total dietary fiber (3.29 ± 1.33% and 10.13 ± 0.78%, respectively), as well as a notable improvement in the values of water-holding capacity, oil-holding capacity, and water swelling capacity. US-DES-DF outperformed commercial citrus fiber in stimulating the proliferation of probiotic Bifidobacteria strains in vitro. Overall, ultrasound-assisted DES extraction exhibited potential as an industrial extraction method, and US-DES-DF could serve as a valuable functional food ingredient. These results provide a new perspective on the prebiotic properties of dietary fibers and the preparation process of prebiotics.
Collapse
Affiliation(s)
- Liling Zhou
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Jiaqian Luo
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Qiutao Xie
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Lvhong Huang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Dan Shen
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| |
Collapse
|
17
|
Villacís-Chiriboga J, Zaldumbide E, Raes K, Elst K, Van Camp J, Ruales J. Comparative assessment of physicochemical, structural and functional properties of dietary fiber extracted from mango (Mangifera indica L.) and soursop (Annona muricata) peels. Int J Biol Macromol 2023; 238:124116. [PMID: 36958454 DOI: 10.1016/j.ijbiomac.2023.124116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
The potential of soursop, a less well-known tropical fruit, was assessed as a source of dietary fiber (DF) and compared to mango. After optimizing the conditions to maximize the extraction yield of soluble and insoluble DF, their structural, physicochemical, and functional properties were evaluated. The results showed that soursop excelled in total and insoluble DF content (50 % higher than mango). The antioxidant response and reducing sugar content obtained for soursop were significantly higher than in mango. Yet, the insoluble fraction in both fruits was characterized by higher antioxidant activity and phenolic content. The chemical composition of both fruits revealed that glucose and potassium were the main sugar and mineral, respectively. Lactic, formic, and acetic acids were the main short-chain fatty acids produced after in vitro colonic fermentation with Lacticaseibacillus casei and Lacticaseibacillus rhamnosus, and negligible amounts of butyric, propionic, and valeric acids were detected after 48-h-fermentation, independent of the fruit. Soursop is a promising rich source of DF that can be used together with mango to develop and enhance foods' textural and nutritional characteristics.
Collapse
Affiliation(s)
- José Villacís-Chiriboga
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Ecuador; Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium; Campus Rubén Orellana, Ladrón de Guevara E11-253, P.O.BOX 17, 012759 Quito, Ecuador
| | - Edy Zaldumbide
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Ecuador; Campus Rubén Orellana, Ladrón de Guevara E11-253, P.O.BOX 17, 012759 Quito, Ecuador
| | - Katleen Raes
- Research Unit VEG-I-TEC, Department of Food Technology, Safety and Health, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium
| | - Kathy Elst
- Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium
| | - John Van Camp
- Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jenny Ruales
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Ecuador; Campus Rubén Orellana, Ladrón de Guevara E11-253, P.O.BOX 17, 012759 Quito, Ecuador.
| |
Collapse
|
18
|
Fidriyanto R, Singh BP, Manju KM, Widyastuti Y, Goel G. Multivariate analysis of structural and functional properties of fibres from apple pomace using different extraction methods. FOOD PRODUCTION, PROCESSING AND NUTRITION 2023. [DOI: 10.1186/s43014-022-00119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AbstractIn recent years, diets rich in fibres have become more popular due to their well-documented beneficial health effects. This has driven exploration of novel dietary fibres from various bioresources. Apple pomace, an industrial waste rich in fibres was used in this study to extract the insoluble dietary fibres. The effect of various extraction methods (hot water, acid, and alkali) on the physico-chemical, structural and functional properties, and prebiotic activity of dietary fibres was evaluated. Hot water extraction resulted in highest yield of dietary fibres in comparison to other methods (p < 0.05). All the fractions resulted in different organization of fibrous components as depicted by scanning electron micrographs, Fourier Transform Infrared spectroscopy (FTIR), X-Ray Diffraction (XRD) pattern and Thermo Gravimetric Analysis (TGA). The acid extracted fibre fraction was observed to be amorphous with loose and porous structure whereas the alkali extracted fraction was more thermal stable based on TGA profile. Among the functional properties, acid extracted dietary fibres fraction possessed highest water and oil holding capacity (p < 0.05). The hot water extracted dietary fraction resulted in maximum increase in viable cell count of standard probiotic strains Lactobacillus sporogenes and Streptococcus faecalis. The Principal Component Analysis revealed that acid extracted fraction possessed better functional activity which also correlates with the structural properties whereas for prebiotic activities, the fibre obtained from hot water extraction method served the best method. These results indicate that dietary fibres extracted through hot water can be employed as a potential prebiotic substrate for the probiotic cultures and could be further explored in foods to improve textural, functional, and bioactive properties of foods.
Graphical Abstract
Collapse
|
19
|
NI Z, LI J, WANG Y, Wendi LV, ZHANG S, PENG G, LU Y, SUN H, DONG Y. Physicochemical properties, antioxidant activities and hypoglycemic effects of soluble dietary fibers purified from Lentinula edodes. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.131122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
| | | | | | - LV Wendi
- Xuzhou University of Technology, China
| | | | | | - Yuhan LU
- Xuzhou University of Technology, China
| | | | | |
Collapse
|
20
|
Liu H, Liang J, Liang C, Liang G, Lai J, Zhang R, Wang Q, Xiao G. Physicochemical properties of dietary fiber of bergamot and its effect on diabetic mice. Front Nutr 2022; 9:1040825. [PMID: 36407540 PMCID: PMC9674159 DOI: 10.3389/fnut.2022.1040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Bergamot (Citrus medica L. var. sarcodactylis) contains different bioactive compounds, and their effects remain unclear. Therefore, the structural and bio-function of bergamot dietary fiber were investigated. A sequential extraction procedure was utilized to obtain soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) from bergamot. The main monosaccharide in SDF and IDF is arabinose. SDF had a porous structure, which enhanced the water and oil holding capacity, as well as the cholesterol and glucose adsorption capacity, which was superior to that of IDF. In db/db diabetic mice, SDF and IDF regulated glucose tolerance and controlled blood glucose levels. Reduction of serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol in SDF and IDF could be observed. In summary, SDF and IDF from bergamot effectively promoted health in patients with diabetes.
Collapse
Affiliation(s)
- Huifan Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, China
| | - Jiaxi Liang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Churong Liang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Guiqiang Liang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jiacong Lai
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Renying Zhang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qin Wang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, China
- *Correspondence: Qin Wang
| | - Gengsheng Xiao
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, China
- Gengsheng Xiao
| |
Collapse
|
21
|
The Influence of Different Extraction Methods on the Structure, Rheological, Thermal and Functional Properties of Soluble Dietary Fiber from Sanchi (Panax notoginseng) Flower. Foods 2022; 11:foods11141995. [PMID: 35885237 PMCID: PMC9318018 DOI: 10.3390/foods11141995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
The influence of different extraction methods, such as acidic (AC), enzymatic (EN), homogenization (H), ultrsonication (U) and alkali (AL), on structure, rheological, thermal and functional properties of soluble dietary fiber (SDF) from Sanchi flower was evaluated in this study. The highest extraction yield (23.14%) was obtained for AL-SDF extract. Glucose (Glc) and galactose (Gal) were found to be the major constituents in Sanchi SDF. Homogenization and Ultrsonication treatments caused significant compaction of pores in the microstructures. FTIR analysis showed increased hydrolysis of pectin and hemicellulose in U, AL and AC-SDF extracts. H-SDF and AC-SDF exhibited similar shear rate change with the rise in shear stress. H-SDF was thermally more stable than other SDF extracts. Among all extraction methods, H-SDF and U-SDF exhibited the highest water holding capacity (WHC), oil-holding capacity (OHC), Bile acid-adsorption capacity (BAC), Cholesterol-adsorption capacity (CAC) and Glucose adsorption capacity (GAC). Thus, Sanchi flower SDF with improved functional properties could be utilized as a functional food ingredient in the development of various food products.
Collapse
|