1
|
Kothapalli Y, Jones RA, Chu CK, Singh US. Synthesis of Fluorinated Nucleosides/Nucleotides and Their Antiviral Properties. Molecules 2024; 29:2390. [PMID: 38792251 PMCID: PMC11124531 DOI: 10.3390/molecules29102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The FDA has approved several drugs based on the fluorinated nucleoside pharmacophore, and numerous drugs are currently in clinical trials. Fluorine-containing nucleos(t)ides offer significant antiviral and anticancer activity. The insertion of a fluorine atom, either in the base or sugar of nucleos(t)ides, alters its electronic and steric parameters and transforms the lipophilicity, pharmacodynamic, and pharmacokinetic properties of these moieties. The fluorine atom restricts the oxidative metabolism of drugs and provides enzymatic metabolic stability towards the glycosidic bond of the nucleos(t)ide. The incorporation of fluorine also demonstrates additional hydrogen bonding interactions in receptors with enhanced biological profiles. The present article discusses the synthetic methodology and antiviral activities of FDA-approved drugs and ongoing fluoro-containing nucleos(t)ide drug candidates in clinical trials.
Collapse
Affiliation(s)
| | | | - Chung K. Chu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA; (Y.K.); (R.A.J.)
| | - Uma S. Singh
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA; (Y.K.); (R.A.J.)
| |
Collapse
|
2
|
Podskoczyj K, Kuszczynska A, Dziergowska A, Leszczynska G. Protection-Free, Two-step Synthesis of C5-C Functionalized Pyrimidine Nucleosides. Curr Protoc 2024; 4:e984. [PMID: 38327099 DOI: 10.1002/cpz1.984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
A simple, reliable, and efficient method for the gram-scale chemical synthesis of pyrimidine nucleosides functionalized with C5-carboxyl, nitrile, ester, amide, or amidine, starting from unprotected uridine and cytidine, is described. The protocol involves the synthesis of 5-trifluoromethyluridine and 5-trifluoromethylcytidine with Langlois reagent (CF3 SO2 Na) in the presence of tert-butyl hydroperoxide and subsequent transformation of the CF3 group to the C5-C 'carbon substituents' under alkaline conditions. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Synthesis and characterization of 5-trifluoromethyluridine (5-CF3 U) and 5-trifluoromethylcytidine (5-CF3 C) Basic Protocol 2: Conversion of 5-CF3 U and 5-CF3 C to several C5-substituted ribonucleosides.
Collapse
Affiliation(s)
- Karolina Podskoczyj
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Anna Kuszczynska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Agnieszka Dziergowska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Grazyna Leszczynska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
3
|
Poškaitė G, Wheatley DE, Wells N, Linclau B, Sinnaeve D. Obtaining Pure 1H NMR Spectra of Individual Pyranose and Furanose Anomers of Reducing Deoxyfluorinated Sugars. J Org Chem 2023; 88:13908-13925. [PMID: 37754916 PMCID: PMC10563139 DOI: 10.1021/acs.joc.3c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 09/28/2023]
Abstract
Due to tautomeric equilibria, NMR spectra of reducing sugars can be complex with many overlapping resonances. This hampers coupling constant determination, which is required for conformational analysis and configurational assignment of substituents. Given that mixtures of interconverting species are physically inseparable, easy-to-use techniques that enable facile full 1H NMR characterization of sugars are of interest. Here, we show that individual spectra of both pyranoside and furanoside forms of reducing fluorosugars can be obtained using 1D FESTA. We discuss the unique opportunities offered by FESTA over standard sel-TOCSY and show how it allows a more complete characterization. We illustrate the power of FESTA by presenting the first full NMR characterization of many fluorosugars, including of the important fluorosugar 2-deoxy-2-fluoroglucose. We discuss in detail all practical considerations for setting up FESTA experiments for fluorosugars, which can be extended to any mixture of fluorine-containing species interconverting slowly on the NMR frequency-time scale.
Collapse
Affiliation(s)
- Gabija Poškaitė
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - David E. Wheatley
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Neil Wells
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Bruno Linclau
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
- Department
of Organic and Macromolecular Chemistry, Ghent University, Campus
Sterre, Krijgslaan 281-S4, Ghent 9000, Belgium
| | - Davy Sinnaeve
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France
| |
Collapse
|
4
|
Wei X, Wang P, Liu F, Ye X, Xiong D. Drug Discovery Based on Fluorine-Containing Glycomimetics. Molecules 2023; 28:6641. [PMID: 37764416 PMCID: PMC10536126 DOI: 10.3390/molecules28186641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Glycomimetics, which are synthetic molecules designed to mimic the structures and functions of natural carbohydrates, have been developed to overcome the limitations associated with natural carbohydrates. The fluorination of carbohydrates has emerged as a promising solution to dramatically enhance the metabolic stability, bioavailability, and protein-binding affinity of natural carbohydrates. In this review, the fluorination methods used to prepare the fluorinated carbohydrates, the effects of fluorination on the physical, chemical, and biological characteristics of natural sugars, and the biological activities of fluorinated sugars are presented.
Collapse
Affiliation(s)
- Xingxing Wei
- Department of Pharmacy, Changzhi Medical College, No. 161, Jiefang East Street, Changzhi 046012, China
| | - Pengyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China (F.L.); (X.Y.)
| | - Fen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China (F.L.); (X.Y.)
| | - Xinshan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China (F.L.); (X.Y.)
| | - Decai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China (F.L.); (X.Y.)
| |
Collapse
|
5
|
Hou J, Peng Y, Liu B, Zhang Q, Wang JH, Yu W, Chang J. 4'-Ethynyl-2'-deoxy-2'-β-fluoro-2-fluoroadenosine: A Highly Potent and Orally Available Clinical Candidate for the Treatment of HIV-1 Infection. J Med Chem 2023; 66:11282-11293. [PMID: 37535016 DOI: 10.1021/acs.jmedchem.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
2'-Deoxy-2'-β-fluoroadenosines bearing 4'-azido or 4'-ethynyl groups designed for the treatment of HIV-1 infection have been synthesized. All these compounds possess nanomolar anti-HIV-1 activity, with the 4'-ethynyl-2-fluoroadenosine analog 1c (CL-197) being the most potent compound with low cytotoxicity (EC50 = 0.9 nM, CC50 > 100 μM). It also shows potent inhibitory activities on drug resistant and clinical HIV-1 strains. Oral administration of 1c to Beagle dogs resulted in high levels of its bioactive form 1c-TP in peripheral blood mononuclear cells, the HIV-1 target cells, where the resulting triphosphate exhibited a long-term intracellular retention and could prevent HIV-1 infection for an extended time. 1c displayed low in vivo toxicity and favorable pharmacokinetics profiles in Sprague-Dawley rats. The preclinical data support further development of 1c as a highly potent and orally bioavailable clinical candidate to treat HIV-1 infection. Currently, CL-197 is in clinical trials in China (registration number: CXHL2200529).
Collapse
Affiliation(s)
- Jiao Hou
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Youmei Peng
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Bingjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qianqian Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jian-Hua Wang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang 453007, China
| | - Wenquan Yu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang 453007, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Rodgers MT, Seidu YS, Israel E. Influence of 2'-Modifications (O-Methylation, Fluorination, and Stereochemical Inversion) on the Base Pairing Energies of Protonated Cytidine Nucleoside Analogue Base Pairs: Implications for the Stabilities of i-Motif Structures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37294839 DOI: 10.1021/jasms.3c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Naturally occurring and chemically engineered modifications are among the most powerful strategies explored for fine-tuning the conformational characteristics and intrinsic stability of nucleic acids topologies. Modifications at the 2'-position of the ribose or 2'-deoxyribose moieties differentiate nucleic acid structures and have a significant impact on their electronic properties and base-pairing interactions. 2'-O-Methylation, a common post-transcriptional modification of tRNA, is directly involved in modulating specific anticodon-codon base-pairing interactions. 2'-Fluorinated and arabino nucleosides possess novel and beneficial medicinal properties and find use as therapeutics for treating viral diseases and cancer. However, the potential to deploy 2'-modified cytidine chemistries for tuning i-motif stability is largely unknown. To address this knowledge gap, the effects of 2'-modifications including O-methylation, fluorination, and stereochemical inversion on the base-pairing interactions of protonated cytidine nucleoside analogue base pairs, the core stabilizing interactions of i-motif structures, are examined using complementary threshold collision-induced dissociation techniques and computational methods. The 2'-modified cytidine nucleoside analogues investigated here include 2'-O-methylcytidine, 2'-fluoro-2'-deoxycytidine, arabinofuranosylcytosine, 2'-fluoro-arabinofuranosylcytosine, and 2',2'-difluoro-2'-deoxycytidine. All five 2'-modifications examined here are found to enhance the base-pairing interactions relative to the canonical DNA and RNA cytidine nucleosides with the greatest enhancements arising from 2'-O-methylation and 2',2'-difluorination, suggesting that these modifications should well be tolerated in the narrow grooves of i-motif conformations.
Collapse
Affiliation(s)
- M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Yakubu S Seidu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - E Israel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
7
|
Thiele I, Yehia H, Krausch N, Birkholz M, Cruz Bournazou MN, Sitanggang AB, Kraume M, Neubauer P, Kurreck A. Production of Modified Nucleosides in a Continuous Enzyme Membrane Reactor. Int J Mol Sci 2023; 24:ijms24076081. [PMID: 37047056 PMCID: PMC10094030 DOI: 10.3390/ijms24076081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Nucleoside analogues are important compounds for the treatment of viral infections or cancers. While (chemo-)enzymatic synthesis is a valuable alternative to traditional chemical methods, the feasibility of such processes is lowered by the high production cost of the biocatalyst. As continuous enzyme membrane reactors (EMR) allow the use of biocatalysts until their full inactivation, they offer a valuable alternative to batch enzymatic reactions with freely dissolved enzymes. In EMRs, the enzymes are retained in the reactor by a suitable membrane. Immobilization on carrier materials, and the associated losses in enzyme activity, can thus be avoided. Therefore, we validated the applicability of EMRs for the synthesis of natural and dihalogenated nucleosides, using one-pot transglycosylation reactions. Over a period of 55 days, 2′-deoxyadenosine was produced continuously, with a product yield >90%. The dihalogenated nucleoside analogues 2,6-dichloropurine-2′-deoxyribonucleoside and 6-chloro-2-fluoro-2′-deoxyribonucleoside were also produced, with high conversion, but for shorter operation times, of 14 and 5.5 days, respectively. The EMR performed with specific productivities comparable to batch reactions. However, in the EMR, 220, 40, and 9 times more product per enzymatic unit was produced, for 2′-deoxyadenosine, 2,6-dichloropurine-2′-deoxyribonucleoside, and 6-chloro-2-fluoro-2′-deoxyribonucleoside, respectively. The application of the EMR using freely dissolved enzymes, facilitates a continuous process with integrated biocatalyst separation, which reduces the overall cost of the biocatalyst and enhances the downstream processing of nucleoside production.
Collapse
|
8
|
Lipid nanoparticles technology in vaccines: Shaping the future of prophylactic medicine. Colloids Surf B Biointerfaces 2023; 222:113111. [PMID: 36586237 DOI: 10.1016/j.colsurfb.2022.113111] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Throughout decades, the intrinsic power of the immune system to fight pathogens has inspired researchers to develop techniques that enable the prevention or treatment of infections via boosting the immune response against the target pathogens, which has led to the evolution of vaccines. The recruitment of Lipid nanoparticles (LNPs) as either vaccine delivery platforms or immunogenic modalities has witnessed a breakthrough recently, which has been crowned with the development of effective LNPs-based vaccines against COVID-19. In the current article, we discuss some principles of such a technology, with a special focus on the technical aspects from a translational perspective. Representative examples of LNPs-based vaccines against cancer, COVID-19, as well as other infectious diseases, autoimmune diseases, and allergies are highlighted, considering the challenges and promises. Lastly, the key features that can improve the clinical translation of this area of endeavor are inspired.
Collapse
|
9
|
Lowe PT, O'Hagan D. 4'-Fluoro-nucleosides and nucleotides: from nucleocidin to an emerging class of therapeutics. Chem Soc Rev 2023; 52:248-276. [PMID: 36472161 DOI: 10.1039/d2cs00762b] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The history and development of 4'-fluoro-nucleosides is discussed in this review. This is a class of nucleosides which have their origin in the discovery of the rare fluorine containing natural product nucleocidin. Nucleocidin contains a fluorine atom located at the 4'-position of its ribose ring. From its early isolation as an unexpected natural product, to its total synthesis and bioactivity assessment, nucleocidin has played a role in inspiring the exploration of 4'-fluoro-nucleosides as a privileged motif for nucleoside-based therapeutics.
Collapse
Affiliation(s)
- Phillip T Lowe
- School of Chemistry and Biomedical Sciences Research Centre, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| | - David O'Hagan
- School of Chemistry and Biomedical Sciences Research Centre, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| |
Collapse
|
10
|
Tian Q, Yin X, Sun R, Wu X, Li Y. The lower the better: Efficient carbonylative reactions under atmospheric pressure of carbon monoxide. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Xu S, Del Pozo J, Romiti F, Fu Y, Mai BK, Morrison RJ, Lee K, Hu S, Koh MJ, Lee J, Li X, Liu P, Hoveyda AH. Diastereo- and enantioselective synthesis of compounds with a trifluoromethyl- and fluoro-substituted carbon centre. Nat Chem 2022; 14:1459-1469. [PMID: 36376387 PMCID: PMC9772297 DOI: 10.1038/s41557-022-01054-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Molecules that contain one or more fluorine atoms are crucial to drug discovery. There are protocols available for the selective synthesis of different organofluorine compounds, including those with a fluoro-substituted or a trifluoromethyl-substituted stereogenic carbon centre. However, approaches for synthesizing compounds with a trifluoromethyl- and fluoro-substituent stereogenic carbon centre are far less common. This potentially impactful set of molecules thus remains severely underdeveloped. Here we introduce a catalytic regio-, diastereo- and enantioselective strategy for the preparation of homoallylic alcohols bearing a stereogenic carbon centre bound to a trifluoromethyl group and a fluorine atom. The process, which involves a polyfluoroallyl boronate and is catalysed by an in situ-formed organozinc complex, can be used for diastereodivergent preparation of tetrafluoro-monosaccharides, including ribose core analogues of the antiviral drug sofosbuvir (Sovaldi). Unexpected reactivity/selectivity profiles, probably originating from the trifluoromethyl- and fluoro-substituted carbon site, are discovered, foreshadowing other unique chemistries that remain unknown.
Collapse
Affiliation(s)
- Shibo Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Juan Del Pozo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Filippo Romiti
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France
| | - Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan J Morrison
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - KyungA Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Shaowei Hu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Ming Joo Koh
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Jaehee Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Xinghan Li
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France.
| |
Collapse
|
12
|
Ismail MMF, Ayoup MS. Review on fluorinated nucleoside/non-nucleoside FDA-approved antiviral drugs. RSC Adv 2022; 12:31032-31045. [PMID: 36348998 PMCID: PMC9620415 DOI: 10.1039/d2ra05370e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
FDA-approved antiviral agents represent an important class that has attracted attention in recent years to combat current and future threats of viral pandemics. Fluorine ameliorates the electronic, lipophilic and steric problems of drugs. Additionally, fluorine can prolong drug activity and improve metabolic stability, thereby, modifying their pharmacodynamic and pharmacokinetic character. Herein, we summarized the fluorinated FDA-approved antiviral agents, dealing with biological aspects, mechanisms of action, and synthetic pathways.
Collapse
Affiliation(s)
- Magda M F Ismail
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
| | - Mohammed Salah Ayoup
- Department of Chemistry, Faculty of Science, Alexandria University P. O. Box 426 Alexandria 21321 Egypt
| |
Collapse
|
13
|
Abstract
Fluorinated carbohydrates have found many applications in the glycosciences. Typically, these contain fluorination at a single position. There are not many applications involving polyfluorinated carbohydrates, here defined as monosaccharides in which more than one carbon has at least one fluorine substituent directly attached to it, with the notable exception of their use as mechanism-based inhibitors. The increasing attention to carbohydrate physical properties, especially around lipophilicity, has resulted in a surge of interest for this class of compounds. This review covers the considerable body of work toward the synthesis of polyfluorinated hexoses, pentoses, ketosugars, and aminosugars including sialic acids and nucleosides. An overview of the current state of the art of their glycosidation is also provided.
Collapse
Affiliation(s)
- Kler Huonnic
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Bruno Linclau
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
- Department
of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S4, Ghent, 9000, Belgium
| |
Collapse
|
14
|
Neel AJ, Turnbull BWH, Carson WP, Benkovics T, Chung CK, Johnson HC, Liu Z, Peng F, Rummelt SM, Song ZJ, Tan L, Wang L, Xu F. A Unified Strategy to Fluorinated Nucleoside Analogues Via an Electrophilic Manifold. Org Lett 2022; 24:7701-7706. [PMID: 36227065 DOI: 10.1021/acs.orglett.2c03367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we present a strategy for the preparation of 3'-fluorinated nucleoside analogues via the aminocatalytic, electrophilic fluorination of readily accessible and bench-stable 2'-ketonucleosides. Initially developed to facilitate the manufacture of 3'-fluoroguanosine (3'-FG)─a substructure of anticancer therapeutic MK-1454─this strategy has been extended to the synthesis of a variety of 3'-fluoronucleosides. Finally, we demonstrate the utility of the 2'-ketonucleoside synthon as a platform for further diversification and suggest that this methodology should be broadly applicable to the discovery of novel nucleoside analogues.
Collapse
Affiliation(s)
- Andrew J Neel
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ben W H Turnbull
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - William P Carson
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tamas Benkovics
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Cheol K Chung
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Heather C Johnson
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Zhuqing Liu
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Feng Peng
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Stephan M Rummelt
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Zhiguo Jake Song
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Lushi Tan
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Lu Wang
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Feng Xu
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
15
|
Yoo YJ, Choi KH, Kim BK, Choi SS, Kim ES. Isolation and Characterization of Engineered Nucleoside Deoxyribosyltransferase with Enhanced Activity Toward 2'-Fluoro-2'-Deoxynucleoside. J Microbiol Biotechnol 2022; 32:1041-1046. [PMID: 35791073 PMCID: PMC9628941 DOI: 10.4014/jmb.2204.04041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023]
Abstract
Nucleoside deoxyribosyltransferase (NDT) is an enzyme that replaces the purine or pyrimidine base of 2'-deoxyribonucleoside. This enzyme is generally used in the nucleotide salvage pathway in vivo and synthesizes many nucleoside analogs in vitro for various biotechnological purposes. Since NDT is known to exhibit relatively low reactivity toward nucleoside analogs such as 2'-fluoro-2'-deoxynucleoside, it is necessary to develop an enhanced NDT mutant enzyme suitable for nucleoside analogs. In this study, molecular evolution strategy via error-prone PCR was performed with ndt gene derived from Lactobacillus leichmannii as a template to obtain an engineered NDT with higher substrate specificity to 2FDU (2'-fluoro-2'-deoxyuridine). A mutant library of 214 ndt genes with different sequences was obtained and performed for the conversion of 2FDU to 2FDA (2'-fluoro-2'-deoxyadenosine). The E. coli containing a mutant NDT, named NDTL59Q, showed 1.7-fold (at 40°C) and 4.4-fold (at 50°C) higher 2FDU-to-2FDA conversions compared to the NDTWT, respectively. Subsequently, both NDTWT and NDTL59Q enzymes were over-expressed and purified using a His-tag system in E. coli. Characterization and enzyme kinetics revealed that the NDTL59Q mutant enzyme containing a single point mutation of leucine to glutamine at the 59th position exhibited superior thermal stability with enhanced substrate specificity to 2FDU.
Collapse
Affiliation(s)
- Yeon-Jin Yoo
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Kang-Hyun Choi
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea,Division of Bioprocess Discovery, ST Pharm, Gyeonggi-do 15610, Republic of Korea
| | - Byoung-Kyun Kim
- Division of Bioprocess Discovery, ST Pharm, Gyeonggi-do 15610, Republic of Korea
| | - Si-Sun Choi
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Eung-Soo Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea,Corresponding author Phone: +82-32-860-8318 Fax: +82-32-872-4046 E-mail:
| |
Collapse
|
16
|
Gong Y, Zhang W, Chen L, Lin R, Zhou R, Salter R. Nitro-Activated Nucleobase Exchange in the Synthesis of 2'-Fluoro-2'-Deoxyribonucleosides. J Org Chem 2022; 87:9330-9342. [PMID: 35759615 DOI: 10.1021/acs.joc.2c01093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Functionalized nucleosides bearing pyrimidine or purine bases can be prepared by activation of accessible pyrimidine nucleosides and subsequent transglycosylation. Nitration of lumicitabine, a 2'-fluoro-2'-deoxycytidine class antiviral agent, and its 2'-fluoro-2'-deoxyuridine precursor produce the same 5-nitro-2'-fluoro-2'-deoxyuridine. Under Vorbrüggen conditions, 5-nitrouracil serves as the leaving nucleobase and enables exchange with pyrimidine and purine nucleobases to anomeric 2'-fluoro-2'-deoxyribonucleosides in favor of β-anomers generally. The strategy is also applied in the isotopic labeling of 2'-fluoro-2'-deoxyuridines.
Collapse
Affiliation(s)
- Yong Gong
- Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Wei Zhang
- Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Lu Chen
- Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Ronghui Lin
- Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Ronghui Zhou
- Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Rhys Salter
- Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
17
|
Shet H, Sahu R, Sanghvi YS, Kapdi AR. Strategies for the Synthesis of Fluorinated Nucleosides, Nucleotides and Oligonucleotides. CHEM REC 2022; 22:e202200066. [PMID: 35638251 DOI: 10.1002/tcr.202200066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Fluorinated nucleosides and oligonucleotides are of specific interest as probes for studying nucleic acids interaction, structures, biological transformations, and its biomedical applications. Among various modifications of oligonucleotides, fluorination of preformed nucleoside and/or nucleotides have recently gained attention owing to the unique properties of fluorine atoms imparting medicinal properties with respect to the small size, electronegativity, lipophilicity, and ability for stereochemical control. This review deals with synthetic protocols for selective fluorination either at sugar or base moiety in a preformed nucleosides, nucleotides and nucleic acids using specific fluorinating reagents.
Collapse
Affiliation(s)
- Harshita Shet
- Department of Chemistry, Institute of Chemical Technology -, Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar, Odisha-751013, India.,Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| | - Rajesh Sahu
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802, Crystal Ridge, Encinitas, CA92024-6615, California, USA
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-400019, India
| |
Collapse
|
18
|
Malik P, Jain S, Jain P, Kumawat J, Dwivedi J, Kishore D. A comprehensive update on the structure and synthesis of potential drug targets for combating the coronavirus pandemic caused by SARS-CoV-2. Arch Pharm (Weinheim) 2022; 355:e2100382. [PMID: 35040187 PMCID: PMC9011541 DOI: 10.1002/ardp.202100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 01/18/2023]
Abstract
The outbreak of the coronavirus pandemic COVID-19 created by its severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) variant, known for producing a very severe acute respiratory syndrome, has created an unprecedented situation by its continual assault around the world. The crisis caused by the SARS-CoV-2 variant has been a global challenge, calling to mitigate this unprecedented pandemic that has engulfed the whole world. Since the outbreak and spread of COVID-19, many researchers globally have been grappling to find new clinically trialed active drugs with anti-COVID-19 activity, from antimalarial drugs to JAK inhibitors, antiviral drugs, immune suppressants, and so forth. This article presents a brief discussion on the activity and synthesis of some active molecules such as favipiravir, hydroxychloroquine, pirfenidone, remdesivir, lopinavir, camostat, chloroquine, baricitinib, molnupiravir, and so forth, which are under trial.
Collapse
Affiliation(s)
- Prerna Malik
- Department of ChemistryBanasthali VidyapithJaipurIndia
| | - Sonika Jain
- Department of ChemistryBanasthali VidyapithJaipurIndia
| | - Pankaj Jain
- Department of PharmacyBanasthali VidyapithJaipurIndia
| | - Jyoti Kumawat
- Department of ChemistryBanasthali VidyapithJaipurIndia
| | - Jaya Dwivedi
- Department of ChemistryBanasthali VidyapithJaipurIndia
| | | |
Collapse
|
19
|
Parameterization and Application of the General Amber Force Field to Model Fluoro Substituted Furanose Moieties and Nucleosides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092616. [PMID: 35565967 PMCID: PMC9101125 DOI: 10.3390/molecules27092616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
Molecular mechanics force field calculations have historically shown significant limitations in modeling the energetic and conformational interconversions of highly substituted furanose rings. This is primarily due to the gauche effect that is not easily captured using pairwise energy potentials. In this study, we present a refinement to the set of torsional parameters in the General Amber Force Field (gaff) used to calculate the potential energy of mono, di-, and gem-fluorinated nucleosides. The parameters were optimized to reproduce the pseudorotation phase angle and relative energies of a diverse set of mono- and difluoro substituted furanose ring systems using quantum mechanics umbrella sampling techniques available in the IpolQ engine in the Amber suite of programs. The parameters were developed to be internally consistent with the gaff force field and the TIP3P water model. The new set of angle and dihedral parameters and partial charges were validated by comparing the calculated phase angle probability to those obtained from experimental nuclear magnetic resonance experiments.
Collapse
|
20
|
Amano M, Yedidi RS, Salcedo-Gómez PM, Hayashi H, Hasegawa K, Martyr CD, Ghosh AK, Mitsuya H. Fluorine Modifications Contribute to Potent Antiviral Activity against Highly Drug-Resistant HIV-1 and Favorable Blood-Brain Barrier Penetration Property of Novel Central Nervous System-Targeting HIV-1 Protease Inhibitors In Vitro. Antimicrob Agents Chemother 2022; 66:e0171521. [PMID: 34978889 PMCID: PMC8846478 DOI: 10.1128/aac.01715-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
To date, there are no specific treatment regimens for HIV-1-related central nervous system (CNS) complications, such as HIV-1-associated neurocognitive disorders (HAND). Here, we report that two newly generated CNS-targeting HIV-1 protease (PR) inhibitors (PIs), GRL-08513 and GRL-08613, which have a P1-3,5-bis-fluorophenyl or P1-para-monofluorophenyl ring and P2-tetrahydropyrano-tetrahydrofuran (Tp-THF) with a sulfonamide isostere, are potent against wild-type HIV-1 strains and multiple clinically isolated HIV-1 strains (50% effective concentration [EC50]: 0.0001 to ∼0.0032 μM). As assessed with HIV-1 variants that had been selected in vitro to propagate at a 5 μM concentration of each HIV-1 PI (atazanavir, lopinavir, or amprenavir), GRL-08513 and GRL-08613 efficiently inhibited the replication of these highly PI-resistant variants (EC50: 0.003 to ∼0.006 μM). GRL-08513 and GRL-08613 also maintained their antiviral activities against HIV-2ROD as well as severely multidrug-resistant clinical HIV-1 variants. Additionally, when we assessed with the in vitro blood-brain barrier (BBB) reconstruction system, GRL-08513 and GRL-08613 showed the most promising properties of CNS penetration among the evaluated compounds, including the majority of FDA-approved combination antiretroviral therapy (cART) drugs. In the crystallographic analysis of compound-PR complexes, it was demonstrated that the Tp-THF rings at the P2 moiety of GRL-08513 and GRL-08613 form robust hydrogen bond interactions with the active site of HIV-1 PR. Furthermore, both the P1-3,5-bis-fluorophenyl- and P1-para-monofluorophenyl rings sustain greater contact surfaces and form stronger van der Waals interactions with PR than is the case with darunavir-PR complex. Taken together, these results strongly suggest that GRL-08513 and GRL-08613 have favorable features for patients infected with wild-type/multidrug-resistant HIV-1 strains and might serve as candidates for a preventive and/or therapeutic agent for HAND and other CNS complications.
Collapse
Affiliation(s)
- Masayuki Amano
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Hospital, Kumamoto, Kumamoto, Japan
| | - Ravikiran S. Yedidi
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- The Center for Advanced-Applied Biological Sciences & Entrepreneurship (TCABS-E), Visakhapatnam, Andhra Pradesh, India
- Department of Zoology, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | - Pedro Miguel Salcedo-Gómez
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Hospital, Kumamoto, Kumamoto, Japan
| | - Hironori Hayashi
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Hospital, Kumamoto, Kumamoto, Japan
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuya Hasegawa
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, Kouto, Japan
| | - Cuthbert D. Martyr
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Arun K. Ghosh
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Hiroaki Mitsuya
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Hospital, Kumamoto, Kumamoto, Japan
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| |
Collapse
|
21
|
Zhou J, Ventura CJ, Fang RH, Zhang L. Nanodelivery of STING agonists against cancer and infectious diseases. Mol Aspects Med 2022; 83:101007. [PMID: 34353637 PMCID: PMC8792206 DOI: 10.1016/j.mam.2021.101007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/03/2023]
Abstract
Vaccination is a modality that has been widely explored for the treatment of various diseases. To increase the potency of vaccine formulations, immunostimulatory adjuvants have been regularly exploited, and the stimulator of interferon genes (STING) signaling pathway has recently emerged as a remarkable therapeutic target. STING is an endogenous protein on the endoplasmic reticulum that is a downstream sensor to cytosolic DNA. Upon activation, STING initiates a series of intracellular signaling cascades that ultimately generate potent type I interferon-mediated immune responses. Both natural and synthetic agonists have been used to stimulate the STING pathway, but they are usually administered locally due to low bioavailability, instability, and difficulty in bypassing the plasma membrane. With excellent pharmacokinetic profiles and versatility, nanocarriers can address many of these challenges and broaden the application of STING vaccines. Along these lines, STING-inducing nanovaccines are being developed to address a wide range of diseases. In this review, we discuss the recent advances in STING nanovaccines for anticancer, antiviral, and antibacterial applications.
Collapse
Affiliation(s)
- Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christian J Ventura
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
22
|
Teng H, Wu Z, Wang Z, Jin Z, Yang Y, Jin Q. Site-directed mutation of purine nucleoside phosphorylase for synthesis of 2'-deoxy-2'-fluoroadenosine. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Al-Ardhi FM, Novotny L, Alhunayan A, Al-Tannak NF. Comparison of remdesivir and favipiravir - the anti-Covid-19 agents mimicking purine RNA constituents. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 166:12-20. [PMID: 34782799 DOI: 10.5507/bp.2021.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
By December 2019, humanity was challenged by a new infectious respiratory disease named coronavirus disease of 2019 or COVID-19. This is a viral infection based on the presence of the previously non-problematic coronavirus with assigned number 2. This virus causes severe acute respiratory distress and is known now as SARS-CoV2. Since SARS-CoV2 is an RNA virus, remdesivir and favipiravir, both broad-spectrum RNA polymerase inhibitors, were repurposed for treating COVID-19 patients. Remdesivir and favipiravir are antimetabolites, and they are structurally related to the naturally occurring structural elements of RNA. Both agents are prodrugs and must be activated intracellularly to exert their effects through numerous and different mechanisms of action. Efforts have been exerted to determine their efficacy and safety against COVID-19 through clinical trials. Clinical trials have shown an association of remdesivir with increased frequency of adverse effects (in comparison to favipiravir). Nevertheless, the data obtained with remdesivir resulted in its approval by the FDA on the 22nd of October 2020 for COVID-19 treatment. At present, remdesivir is being recommended by several treatment guidelines for the treatment of COVID-19 patients. The evidence in favor of favipiravir is compromised by the small number and low-quality of trials conducted. Favipiravir has shown various benefits when administered in mild and moderate cases of COVID-19, while remdesivir was more beneficial in more severe cases of the disease. Since the two agents are suitable for different groups of patients, both drugs can play a significant role in fighting this pandemic. The goal of this work is to summarize the information available on two antimetabolites - remdesivir and favipiravir - and to compare clinical experience obtained so far with these two agents in COVID-19 patients.
Collapse
Affiliation(s)
- Faiha M Al-Ardhi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Health Science Center, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Ladislav Novotny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Health Science Center, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Adel Alhunayan
- Faculty of Medicine, Health Science Center, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Naser F Al-Tannak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Health Science Center, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| |
Collapse
|
24
|
Panda S, Poudel TN, Hegde P, Aldrich CC. Innovative Strategies for the Construction of Diverse 1'-Modified C-Nucleoside Derivatives. J Org Chem 2021; 86:16625-16640. [PMID: 34756029 DOI: 10.1021/acs.joc.1c01920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modified C-nucleosides have proven to be enormously successful as chemical probes to understand fundamental biological processes and as small-molecule drugs for cancer and infectious diseases. Historically, the modification of the glycosyl unit has focused on the 2'-, 3'-, and 4'-positions as well as the ribofuranosyl ring oxygen. By contrast, the 1'-position has rarely been studied due to the labile nature of the anomeric position. However, the improved chemical stability of C-nucleosides allows the modification of the 1'-position with substituents not found in conventional N-nucleosides. Herein, we disclose new chemistry for the installation of diverse substituents at the 1'-position of C-nucleosides, including alkyl, alkenyl, difluoromethyl, and fluoromethyl substituents, using the 4-amino-7-(1'-hydroxy-d-ribofuranosyl)pyrrolo[2,1-f][1,2,4]triazine scaffold as a representative purine nucleoside mimetic.
Collapse
Affiliation(s)
- Subhankar Panda
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tej Narayan Poudel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
25
|
Tvrdoňová M, Elečko J, Gonda J. A convenient synthesis of branched-chain nucleoside isothiocyanates via aza-Claisen rearrangement. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:943-967. [PMID: 34455922 DOI: 10.1080/15257770.2021.1966799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Stereocontrolled introduction of a nitrogen atom at either C-2' or C-3' positions of nucleosides derived from uridine, 4-N-benzoylcytidine and adenosine was investigated. An efficient and rapid procedure was employed for creating new chiral centers at C-2' and C-3' positions using [3,3]-sigmatropic aza-Claisen rearrangement of allyl thiocyanates under conventional and microwave conditions. Structure of isothiocyanate products was confirmed by 1-D and 2-D NMR spectral analyses including selective 1H 1-D-NOE experiments.
Collapse
Affiliation(s)
- Monika Tvrdoňová
- Department of Organic Chemistry, Institute of Chemical Sciences, Faculty of Science, P. J. Šafárik University, Košice, Slovak Republic
| | - Ján Elečko
- Department of Organic Chemistry, Institute of Chemical Sciences, Faculty of Science, P. J. Šafárik University, Košice, Slovak Republic
| | - Jozef Gonda
- Department of Organic Chemistry, Institute of Chemical Sciences, Faculty of Science, P. J. Šafárik University, Košice, Slovak Republic
| |
Collapse
|
26
|
Kawagoe F, Mototani S, Kittaka A. Design and Synthesis of Fluoro Analogues of Vitamin D. Int J Mol Sci 2021; 22:ijms22158191. [PMID: 34360956 PMCID: PMC8348876 DOI: 10.3390/ijms22158191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
The discovery of a large variety of functions of vitamin D3 and its metabolites has led to the design and synthesis of a vast amount of vitamin D3 analogues in order to increase the potency and reduce toxicity. The introduction of highly electronegative fluorine atom(s) into vitamin D3 skeletons alters their physical and chemical properties. To date, many fluorinated vitamin D3 analogues have been designed and synthesized. This review summarizes the molecular structures of fluoro-containing vitamin D3 analogues and their synthetic methodologies.
Collapse
Affiliation(s)
| | | | - Atsushi Kittaka
- Correspondence: ; Tel.: +81-3-3964-8109; Fax: +81-3-3964-8117
| |
Collapse
|
27
|
Wu YJ, Meanwell NA. Geminal Diheteroatomic Motifs: Some Applications of Acetals, Ketals, and Their Sulfur and Nitrogen Homologues in Medicinal Chemistry and Drug Design. J Med Chem 2021; 64:9786-9874. [PMID: 34213340 DOI: 10.1021/acs.jmedchem.1c00790] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acetals and ketals and their nitrogen and sulfur homologues are often considered to be unconventional and potentially problematic scaffolding elements or pharmacophores for the design of orally bioavailable drugs. This opinion is largely a function of the perception that such motifs might be chemically unstable under the acidic conditions of the stomach and upper gastrointestinal tract. However, even simple acetals and ketals, including acyclic molecules, can be sufficiently robust under acidic conditions to be fashioned into orally bioavailable drugs, and these structural elements are embedded in many effective therapeutic agents. The chemical stability of molecules incorporating geminal diheteroatomic motifs can be modulated by physicochemical design principles that include the judicious deployment of proximal electron-withdrawing substituents and conformational restriction. In this Perspective, we exemplify geminal diheteroatomic motifs that have been utilized in the discovery of orally bioavailable drugs or drug candidates against the backdrop of understanding their potential for chemical lability.
Collapse
Affiliation(s)
- Yong-Jin Wu
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A Meanwell
- Department of Discovery and Chemistry and Molecular Technologies, Bristol-Myers Squibb PRI, PO Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
28
|
Chrominski M, Kowalska J, Jemielity J. Efficient Synthesis of Trifluoromethylated Purine Ribonucleosides and Ribonucleotides. ACTA ACUST UNITED AC 2021; 83:e118. [PMID: 32991077 DOI: 10.1002/cpnc.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The protocols presented in this article describe highly detailed synthesis of trifluoromethylated purine nucleotides and nucleosides (G and A). The procedure involves trifluoromethylation of properly protected (acetylated) nucleosides, followed by deprotection leading to key CF3 -containing nucleosides. This gives synthetic access to 8-CF3 -substituted guanosine derivatives and three adenosine derivatives (8-CF3 , 2-CF3 , and 2,8-diCF3 ). In further steps, phosphorylation and phosphate elongation (for selected examples) result in respective trifluoromethylated nucleoside mono-, di-, and triphosphates. Support protocols are included for compound handling, purification procedures, analytical sample preparation, and analytical techniques used throughout the performance of the basic protocols. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of trifluoromethylated guanosine and adenosine derivatives Basic Protocol 2: Synthesis of trifluoromethylated guanosine and adenosine monophosphates Basic Protocol 3: Synthesis of phosphorimidazolides of 8-CF3 GMP and 8-CF3 AMP Basic Protocol 4: Synthesis of trifluoromethylated guanosine and adenosine oligophosphates Support Protocol 1: TLC sample preparation and analysis Support Protocol 2: Purification protocol for Basic Protocol 1 Support Protocol 3: HPLC analysis and preparative HPLC Support Protocol 4: Ion-exchange chromatography.
Collapse
Affiliation(s)
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
29
|
Siler DA, Calimsiz S, Doxsee IJ, Kwong B, Ng JD, Sarma K, Shen J, Curl JW, Davy JA, Garber JAO, Ha S, Lapina O, Lee J, Lin L, Park S, Rosario M, St-Jean O, Yu G. Synthesis of Rovafovir Etalafenamide (Part IV): Evolution of the Synthetic Process to the Fluorinated Nucleoside Fragment. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David A. Siler
- Department of Process Chemistry, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Selcuk Calimsiz
- Department of Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Ian J. Doxsee
- Department of Process Chemistry, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Bernard Kwong
- Department of Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Jeffrey D. Ng
- Department of Process Chemistry, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Keshab Sarma
- Department of Process Chemistry, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jinyu Shen
- Department of Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Jonah W. Curl
- Department of Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Jason A. Davy
- Department of Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Jeffrey A. O. Garber
- Department of Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Sura Ha
- Pharmaceutical Process R&D Team, Research Institute, Yuhan Corporation, 25, Tapsil-ro 35beon-gil, Giheung-gu, Yongin-si 17084, Gyeonggi-do, South Korea
| | - Olga Lapina
- Department of Process Chemistry, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jisung Lee
- Pharmaceutical Process R&D Team, Research Institute, Yuhan Corporation, 25, Tapsil-ro 35beon-gil, Giheung-gu, Yongin-si 17084, Gyeonggi-do, South Korea
| | - Lennie Lin
- Department of Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Sangsun Park
- Pharmaceutical Process R&D Team, Research Institute, Yuhan Corporation, 25, Tapsil-ro 35beon-gil, Giheung-gu, Yongin-si 17084, Gyeonggi-do, South Korea
| | - Mary Rosario
- Department of Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| | - Olivier St-Jean
- Department of Process Chemistry, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Guojun Yu
- Department of Process Development, Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta T6S 1A1, Canada
| |
Collapse
|
30
|
Vincent É, Brioche J. Synthesis of Alkyl Fluorides by Silver‐Catalyzed Radical Decarboxylative Fluorination of Cesium Oxalates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Émilie Vincent
- INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) Normandie University 76000 Rouen France
| | - Julien Brioche
- INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) Normandie University 76000 Rouen France
| |
Collapse
|
31
|
Kayushin AL, Tokunova JA, Fateev IV, Arnautova AO, Berzina MY, Paramonov AS, Lutonina OI, Dorofeeva EV, Antonov KV, Esipov RS, Mikhailopulo IA, Miroshnikov AI, Konstantinova ID. Radical Dehalogenation and Purine Nucleoside Phosphorylase E. coli: How Does an Admixture of 2',3'-Anhydroinosine Hinder 2-fluoro-cordycepin Synthesis. Biomolecules 2021; 11:biom11040539. [PMID: 33917025 PMCID: PMC8067715 DOI: 10.3390/biom11040539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/03/2023] Open
Abstract
During the preparative synthesis of 2-fluorocordycepin from 2-fluoroadenosine and 3′-deoxyinosine catalyzed by E. coli purine nucleoside phosphorylase, a slowdown of the reaction and decrease of yield down to 5% were encountered. An unknown nucleoside was found in the reaction mixture and its structure was established. This nucleoside is formed from the admixture of 2′,3′-anhydroinosine, a byproduct in the preparation of 3-′deoxyinosine. Moreover, 2′,3′-anhydroinosine forms during radical dehalogenation of 9-(2′,5′-di-O-acetyl-3′-bromo- -3′-deoxyxylofuranosyl)hypoxanthine, a precursor of 3′-deoxyinosine in chemical synthesis. The products of 2′,3′-anhydroinosine hydrolysis inhibit the formation of 1-phospho-3-deoxyribose during the synthesis of 2-fluorocordycepin. The progress of 2′,3′-anhydroinosine hydrolysis was investigated. The reactions were performed in D2O instead of H2O; this allowed accumulating intermediate substances in sufficient quantities. Two intermediates were isolated and their structures were confirmed by mass and NMR spectroscopy. A mechanism of 2′,3′-anhydroinosine hydrolysis in D2O is fully determined for the first time.
Collapse
Affiliation(s)
- Alexey L. Kayushin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 GSP, B-437 Moscow, Russia; (A.L.K.); (J.A.T.); (I.V.F.); (A.O.A.); (M.Y.B.); (A.S.P.); (O.I.L.); (E.V.D.); (K.V.A.); (R.S.E.); (A.I.M.)
| | - Julia A. Tokunova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 GSP, B-437 Moscow, Russia; (A.L.K.); (J.A.T.); (I.V.F.); (A.O.A.); (M.Y.B.); (A.S.P.); (O.I.L.); (E.V.D.); (K.V.A.); (R.S.E.); (A.I.M.)
| | - Ilja V. Fateev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 GSP, B-437 Moscow, Russia; (A.L.K.); (J.A.T.); (I.V.F.); (A.O.A.); (M.Y.B.); (A.S.P.); (O.I.L.); (E.V.D.); (K.V.A.); (R.S.E.); (A.I.M.)
| | - Alexandra O. Arnautova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 GSP, B-437 Moscow, Russia; (A.L.K.); (J.A.T.); (I.V.F.); (A.O.A.); (M.Y.B.); (A.S.P.); (O.I.L.); (E.V.D.); (K.V.A.); (R.S.E.); (A.I.M.)
| | - Maria Ya. Berzina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 GSP, B-437 Moscow, Russia; (A.L.K.); (J.A.T.); (I.V.F.); (A.O.A.); (M.Y.B.); (A.S.P.); (O.I.L.); (E.V.D.); (K.V.A.); (R.S.E.); (A.I.M.)
| | - Alexander S. Paramonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 GSP, B-437 Moscow, Russia; (A.L.K.); (J.A.T.); (I.V.F.); (A.O.A.); (M.Y.B.); (A.S.P.); (O.I.L.); (E.V.D.); (K.V.A.); (R.S.E.); (A.I.M.)
| | - Olga I. Lutonina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 GSP, B-437 Moscow, Russia; (A.L.K.); (J.A.T.); (I.V.F.); (A.O.A.); (M.Y.B.); (A.S.P.); (O.I.L.); (E.V.D.); (K.V.A.); (R.S.E.); (A.I.M.)
| | - Elena V. Dorofeeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 GSP, B-437 Moscow, Russia; (A.L.K.); (J.A.T.); (I.V.F.); (A.O.A.); (M.Y.B.); (A.S.P.); (O.I.L.); (E.V.D.); (K.V.A.); (R.S.E.); (A.I.M.)
| | - Konstantin V. Antonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 GSP, B-437 Moscow, Russia; (A.L.K.); (J.A.T.); (I.V.F.); (A.O.A.); (M.Y.B.); (A.S.P.); (O.I.L.); (E.V.D.); (K.V.A.); (R.S.E.); (A.I.M.)
| | - Roman S. Esipov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 GSP, B-437 Moscow, Russia; (A.L.K.); (J.A.T.); (I.V.F.); (A.O.A.); (M.Y.B.); (A.S.P.); (O.I.L.); (E.V.D.); (K.V.A.); (R.S.E.); (A.I.M.)
| | - Igor A. Mikhailopulo
- Institute of Bioorganic Chemistry, National Academy of Sciences, Acad. Kuprevicha 5/2, 220141 Minsk, Belarus;
| | - Anatoly I. Miroshnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 GSP, B-437 Moscow, Russia; (A.L.K.); (J.A.T.); (I.V.F.); (A.O.A.); (M.Y.B.); (A.S.P.); (O.I.L.); (E.V.D.); (K.V.A.); (R.S.E.); (A.I.M.)
| | - Irina D. Konstantinova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 GSP, B-437 Moscow, Russia; (A.L.K.); (J.A.T.); (I.V.F.); (A.O.A.); (M.Y.B.); (A.S.P.); (O.I.L.); (E.V.D.); (K.V.A.); (R.S.E.); (A.I.M.)
- Correspondence: ; Tel.: +7-905-791-17-19
| |
Collapse
|
32
|
Bouton J, Furquim d'Almeida A, Maes L, Caljon G, Van Calenbergh S, Hulpia F. Synthesis and evaluation of 3'-fluorinated 7-deazapurine nucleosides as antikinetoplastid agents. Eur J Med Chem 2021; 216:113290. [PMID: 33667845 DOI: 10.1016/j.ejmech.2021.113290] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 01/05/2023]
Abstract
Kinetoplastid parasites are the causative agents of neglected tropical diseases with an unmet medical need. These parasites are unable to synthesize the purine ring de novo, and therefore rely on purine salvage to meet their purine demand. Evaluating purine nucleoside analogs is therefore an attractive strategy to identify antikinetoplastid agents. Several anti-Trypanosoma cruzi and anti-Trypanosoma brucei 7-deazapurine nucleosides were previously discovered, with the removal of the 3'-hydroxyl group resulting in a significant boost in activity. In this work we therefore decided to assess the effect of the introduction of a 3'-fluoro substituent in 7-deazapurine nucleosides on the anti-kinetoplastid activities. Hence, we synthesized two series of 3'-deoxy-3'-fluororibofuranosyl and 3'-deoxy-3'-fluoroxylofuranosyl nucleosides comprising 7-deazaadenine and -hypoxanthine bases and assayed these for antiparasitic activity. Several analogs with potent activity against T. cruzi and T. brucei were discovered, indicating that a fluorine atom in the 3'-position is a promising modification for the discovery of antiparasitic nucleosides.
Collapse
Affiliation(s)
- Jakob Bouton
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| | - Arno Furquim d'Almeida
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610, Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium.
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| |
Collapse
|
33
|
Broad-Spectrum Antiviral Activity of 3'-Deoxy-3'-Fluoroadenosine against Emerging Flaviviruses. Antimicrob Agents Chemother 2021; 65:AAC.01522-20. [PMID: 33229424 DOI: 10.1128/aac.01522-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/14/2020] [Indexed: 01/23/2023] Open
Abstract
Emerging flaviviruses are causative agents of severe and life-threatening diseases, against which no approved therapies are available. Among the nucleoside analogues, which represent a promising group of potentially therapeutic compounds, fluorine-substituted nucleosides are characterized by unique structural and functional properties. Despite having first been synthesized almost 5 decades ago, they still offer new therapeutic opportunities as inhibitors of essential viral or cellular enzymes active in nucleic acid replication/transcription or nucleoside/nucleotide metabolism. Here, we report evaluation of the antiflaviviral activity of 28 nucleoside analogues, each modified with a fluoro substituent at different positions of the ribose ring and/or heterocyclic nucleobase. Our antiviral screening revealed that 3'-deoxy-3'-fluoroadenosine exerted a low-micromolar antiviral effect against tick-borne encephalitis virus (TBEV), Zika virus, and West Nile virus (WNV) (EC50 values from 1.1 ± 0.1 μM to 4.7 ± 1.5 μM), which was manifested in host cell lines of neural and extraneural origin. The compound did not display any measurable cytotoxicity up to concentrations of 25 μM but had an observable cytostatic effect, resulting in suppression of cell proliferation at concentrations of >12.5 μM. Novel approaches based on quantitative phase imaging using holographic microscopy were developed for advanced characterization of antiviral and cytotoxic profiles of 3'-deoxy-3'-fluoroadenosine in vitro In addition to its antiviral activity in cell cultures, 3'-deoxy-3'-fluoroadenosine was active in vivo in mouse models of TBEV and WNV infection. Our results demonstrate that fluoro-modified nucleosides represent a group of bioactive molecules with excellent potential to serve as prospective broad-spectrum antivirals in antiviral research and drug development.
Collapse
|
34
|
Bhati S. Structure-based drug designing of naphthalene based SARS-CoV PLpro inhibitors for the treatment of COVID-19. Heliyon 2020; 6:e05558. [PMID: 33251371 PMCID: PMC7679114 DOI: 10.1016/j.heliyon.2020.e05558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/15/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
The emergence of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has imposed a greater challenge for the world. Coronavirus has infected over 38.3 million people and caused millions of deaths worldwide. The COVID-19 outbreak has accentuated the need for additional efforts to develop broad-spectrum therapeutics to combat SARS-CoV-2 infection. In the current investigation, an attempt was made to design potential SARS-CoV PLpro inhibitors containing naphthalene and 3,4-dihydro-2H-pyran moieties connected via -NHCO- linker. The ligands obeyed Lipinski's rule and were found to have good drug-likeness and ADMET properties. Docking simulations confirmed strong binding affinity and inhibition potential of the designed ligands against the receptor SARS CoV-2 Papain-like protease (PLpro). LigandL10 incorporating the oxadiazole ring system displayed better binding affinity than the control 5-acetamido-2-methyl-N-[(1R)-1-naphthalen-1-ylethyl]benzamide. Further, the docked complex of LigandL10 was subjected to molecular dynamics (MD) simulation to examine the molecular mechanisms of protein-ligand interactions. The results of the present study are encouraging. Ligand L10 emerged as the most potent ligand in the series and could be considered for further research for the development of potential therapeutics for the treatment of COVID-19.
Collapse
Affiliation(s)
- Shipra Bhati
- Department of Chemistry, The Oxford College of Engineering, Bommanhalli, Bangalore, 560068, Karnataka, India
| |
Collapse
|
35
|
Boeszoermenyi A, Ogórek B, Jain A, Arthanari H, Wagner G. The precious fluorine on the ring: fluorine NMR for biological systems. JOURNAL OF BIOMOLECULAR NMR 2020; 74:365-379. [PMID: 32651751 PMCID: PMC7539674 DOI: 10.1007/s10858-020-00331-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/29/2020] [Indexed: 05/08/2023]
Abstract
The fluorine-19 nucleus was recognized early to harbor exceptional properties for NMR spectroscopy. With 100% natural abundance, a high gyromagnetic ratio (83% sensitivity compared to 1H), a chemical shift that is extremely sensitive to its surroundings and near total absence in biological systems, it was destined to become a favored NMR probe, decorating small and large molecules. However, after early excitement, where uptake of fluorinated aromatic amino acids was explored in a series of animal studies, 19F-NMR lost popularity, especially in large molecular weight systems, due to chemical shift anisotropy (CSA) induced line broadening at high magnetic fields. Recently, two orthogonal approaches, (i) CF3 labeling and (ii) aromatic 19F-13C labeling leveraging the TROSY (Transverse Relaxation Optimized Spectroscopy) effect have been successfully applied to study large biomolecular systems. In this perspective, we will discuss the fascinating early work with fluorinated aromatic amino acids, which reveals the enormous potential of these non-natural amino acids in biological NMR and the potential of 19F-NMR to characterize protein and nucleic acid structure, function and dynamics in the light of recent developments. Finally, we explore how fluorine NMR might be exploited to implement small molecule or fragment screens that resemble physiological conditions and discuss the opportunity to follow the fate of small molecules in living cells.
Collapse
Affiliation(s)
- Andras Boeszoermenyi
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
| | - Barbara Ogórek
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, MA, 02115, USA
| | - Akshay Jain
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
36
|
Sivakrishna B, Shukla M, Santra MK, Pal S. Design, synthesis and cytotoxic evaluation of truncated 3'-deoxy- 3', 3' difluororibofuranosyl pyrimidine nucleosides. Carbohydr Res 2020; 497:108113. [PMID: 32858257 DOI: 10.1016/j.carres.2020.108113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023]
Abstract
Truncated 3'-deoxy- 3', 3' difluororibofuranosyl pyrimidine nucleoside derivatives were synthesized from d-ribose via β-apioribo pyrimidine nucleoside intermediates 11a-c. The synthetic approach signifies that truncation at C3' position of apioribose ring of 13a-c by oxidative cleavage of diols with Pb(OAc)4 and followed by fluorination with DAST as key steps. Cytotoxic evaluation of synthesized truncated nucleoside derivatives 16a-c and 19a-c were tested against MCF7 and MDA-MB-231 breast cancer cell lines. However, only 19a was shown minimal growth suppression activity on MDA-MB-231 cancer cell lines.
Collapse
Affiliation(s)
- Balija Sivakrishna
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha, 752050, India
| | - Meenakshi Shukla
- Cancer Biology Laboratory, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Manas Kumar Santra
- Cancer Biology Laboratory, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra, 411007, India.
| | - Shantanu Pal
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha, 752050, India.
| |
Collapse
|
37
|
Labbé MO, Li F, Chau I, Xiong ZJ, Santhakumar V, Dostie S, Guindon Y. Identification of a C2′ -fluorinated SAH analogue. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The progress towards the development of a nucleoside analogue with inhibitory properties against SETDB1, a histone methyltransferase (HMT), is described. Based on the structure of the natural cofactor S-adenosyl-L-methionine (SAM), novel fluorinated nucleoside analogues were synthesized. Two of these compounds bearing a C2′-F and C5′-primary amine moiety showed moderate inhibition of SETDB1, a lysine HMT for which there is only one reported inhibitor.
Collapse
Affiliation(s)
- Marc-Olivier Labbé
- Bio-organic Chemistry Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Zi-Jian Xiong
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | | | - Starr Dostie
- Bio-organic Chemistry Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Yvan Guindon
- Bio-organic Chemistry Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
38
|
A synergistic synthetic and computational insights towards anomerization of N-nitro pyrimidine nucleosides using fluorinating agents. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Theoretical analyses and experimental validation of the effects caused by the fluorinated substituent modification of DNA. Sci Rep 2020; 10:1138. [PMID: 31980685 PMCID: PMC6981298 DOI: 10.1038/s41598-020-57899-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 01/03/2020] [Indexed: 11/20/2022] Open
Abstract
Halogen-modified nucleic acid molecules, such as trifluorothymidine (FTD) and 5-fluorouracil, are widely used in medical science and clinical site. These compounds have a very similar nucleobase structure. It is reported that both of these compounds could be incorporated into DNA. The incorporation of FTD produces highly anti-tumor effect. However, it is not known whether to occur a significant effect by the incorporation of 5-fluorouracil. Nobody knows why such a difference will occur. To understand the reason why there is large differences between trifluorothymidine and 5-fluorouracil, we have performed the molecular dynamics simulations and molecular orbital calculations. Although the active interaction energy between Halogen-modified nucleic acids or and complementary adenine was increased, in only FTD incorporated DNA, more strongly dispersion force interactions with an adjacent base were detected in many thermodynamic DNA conformations. As the results, the conformational changes occur even if it is in internal body temperature. Then the break of hydrogen bonding between FTD and complementary adenine base occur more frequently. The double helix structural destabilization of DNA with FTD is resulted from autoagglutination caused by the bonding via halogen orbitals such as halogen bonding and the general van der Waals interactions such as CH–\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rm{\pi }}$$\end{document}π, lone pair (LP)–\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rm{\pi }}$$\end{document}π, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rm{\pi }}$$\end{document}π–\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rm{\pi }}$$\end{document}π interactions. Therefore, it is strongly speculated that such structural changes caused by trifluoromethyl group is important for the anti-tumor effect of FTD alone.
Collapse
|
40
|
Zhou Y, Zang C, Wang H, Li J, Cui Z, Li Q, Guo F, Yan Z, Wen X, Xi Z, Zhou C. 4'-C-Trifluoromethyl modified oligodeoxynucleotides: synthesis, biochemical studies, and cellular uptake properties. Org Biomol Chem 2020; 17:5550-5560. [PMID: 31112186 DOI: 10.1039/c9ob00765b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein, we report the synthesis of 4'-C-trifluoromethyl (4'-CF3) thymidine (T4'-CF3) and its incorporation into oligodeoxynucleotides (ODNs) through solid-supported DNA synthesis. The 4'-CF3 modification leads to a marginal effect on the deoxyribose conformation and a local helical structure perturbation for ODN/RNA duplexes. This type of modification slightly decreases the thermal stability of ODN/RNA duplexes (-1 °C/modification) and leads to improved nuclease resistance. Like the well-known phosphorothioate (PS) modification, heavy 4'-CF3 modifications enable direct cellular uptake of the modified ODNs without any delivery reagents. This work highlights that 4'-CF3 modified ODNs are promising candidates for antisense-based therapeutics, which will, in turn, inspire us to develop more potent modifications for antisense ODNs and siRNAs.
Collapse
Affiliation(s)
- Yifei Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Labbé MO, Collins L, Lefebvre CA, Maharsy W, Beauregard J, Dostie S, Prévost M, Nemer M, Guindon Y. Identification of a C3'-nitrile nucleoside analogue inhibitor of pancreatic cancer cell line growth. Bioorg Med Chem Lett 2020; 30:126983. [PMID: 32019711 DOI: 10.1016/j.bmcl.2020.126983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 12/29/2022]
Abstract
A synthetic strategy to access a novel family of nucleoside analogues bearing a C3'-nitrile substituted all-carbon quaternary center is presented herein. These purine bearing scaffolds were tested in two pancreatic cancer cell lines harboring either wild-type (BxPC3) or G12V KRAS (Capan2) mutations. A promising compound was shown to have significantly greater efficacy in the Capan2 cell line as compared to Gemcitabine, the clinical gold standard used to treat pancreatic cancer.
Collapse
Affiliation(s)
- Marc-Olivier Labbé
- Bio-organic Chemistry Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada; Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Laura Collins
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Carole-Anne Lefebvre
- Bio-organic Chemistry Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Wael Maharsy
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Janie Beauregard
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Starr Dostie
- Bio-organic Chemistry Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Michel Prévost
- Bio-organic Chemistry Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Mona Nemer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Yvan Guindon
- Bio-organic Chemistry Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada; Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
42
|
Baumann M, Moody TS, Smyth M, Wharry S. A Perspective on Continuous Flow Chemistry in the Pharmaceutical Industry. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00524] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Marcus Baumann
- University College Dublin, School of Chemistry, Science Centre, South Belfield, Dublin 4, Ireland
| | - Thomas S. Moody
- Almac Group Ltd., 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom
- Arran Chemical Company, Unit 1 Monksland Industrial Estate, Athlone, Co. Roscommon N37 DN24, Ireland
| | - Megan Smyth
- Almac Group Ltd., 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom
| | - Scott Wharry
- Almac Group Ltd., 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom
| |
Collapse
|
43
|
Metelev VG, Bogdanov AA. Synthesis and applications of theranostic oligonucleotides carrying multiple fluorine atoms. Theranostics 2020; 10:1391-1414. [PMID: 31938071 PMCID: PMC6956824 DOI: 10.7150/thno.37936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022] Open
Abstract
The use of various oligonucleotide (ON) syntheses and post-synthetic strategies for targeted chemical modification enables improving their efficacy as potent modulators of gene expression levels in eukaryotic cells. However, the search still continues for new approaches designed for increasing internalization, lysosomal escape, and tissue specific delivery of ON. In this review we emphasized all aspects related to the synthesis and properties of ON derivatives carrying multifluorinated (MF) groups. These MF groups have unique physico-chemical properties because of their simultaneous hydrophobicity and lipophobicity. Such unusual combination of properties results in the overall modification of ON mode of interaction with the cells and making multi-fluorination highly relevant to the goal of improving potency of ON as components of new therapies. The accumulated evidence so far is pointing to high potential of ON probes, RNAi components and ON imaging beacons carrying single or multiple MF groups for improving the stability, specificity of interaction with biological targets and delivery of ONs in vitro and potentially in vivo.
Collapse
Affiliation(s)
- Valeriy G. Metelev
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester MA, USA
- Department of Chemistry, Moscow State University, Moscow, Russian Federation
| | - Alexei A. Bogdanov
- Laboratory of Molecular Imaging Probes, Department of Radiology, University of Massachusetts Medical School, Worcester MA, USA
- Laboratory of Molecular Imaging, A.N. Bakh Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow
- Department of Bioengineering and Bioinformatics, Moscow State University, Moscow
| |
Collapse
|
44
|
Ager CR, Zhang H, Wei Z, Jones P, Curran MA, Di Francesco ME. Discovery of IACS-8803 and IACS-8779, potent agonists of stimulator of interferon genes (STING) with robust systemic antitumor efficacy. Bioorg Med Chem Lett 2019; 29:126640. [PMID: 31500996 PMCID: PMC6993876 DOI: 10.1016/j.bmcl.2019.126640] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 01/16/2023]
Abstract
Activation of the stimulator of interferon genes (STING) pathway by both exogenous and endogenous cytosolic DNA results in the production of interferon beta (IFN-β) and is required for the generation of cytotoxic T-cell priming against tumor antigens. In the clinical setting, pharmacological stimulation of the STING pathway has the potential to synergize with immunotherapy antibodies by boosting anti-tumor immune responses. We report the discovery of two highly potent cyclic dinucleotide STING agonists, IACS-8803 and IACS-8779, which show robust activation of the STING pathway in vitro and a superior systemic anti-tumor response in the B16 murine model of melanoma when compared to one of the clinical benchmark compounds.
Collapse
Affiliation(s)
- Casey R Ager
- Department of Immunology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blv., Houston 77030, TX, USA; The University of Texas MD Anderson UTHealth Graduate School of Biochemical Sciences, Immunology Program, 1515 Holcombe Blv., Houston 77030, TX, USA
| | - Huaping Zhang
- WuXi AppTec (Wuhan) Co., Ltd., 666 Gaoxin Road, Wuhan East Lake High-tech Development Zone, Hubei 430075, China
| | - Zhanlei Wei
- WuXi AppTec (Wuhan) Co., Ltd., 666 Gaoxin Road, Wuhan East Lake High-tech Development Zone, Hubei 430075, China
| | - Philip Jones
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blv., Houston 77030, TX, USA
| | - Michael A Curran
- Department of Immunology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blv., Houston 77030, TX, USA; The University of Texas MD Anderson UTHealth Graduate School of Biochemical Sciences, Immunology Program, 1515 Holcombe Blv., Houston 77030, TX, USA
| | - M Emilia Di Francesco
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blv., Houston 77030, TX, USA.
| |
Collapse
|
45
|
Nandi B, Pattanayak S, Paul S, Kundu J, Sinha S. Synthesis of Nucleobase-Functionalized Morpholino Monomers. Methods Mol Biol 2019; 1973:107-130. [PMID: 31016698 DOI: 10.1007/978-1-4939-9216-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Morpholino antisense oligonucleotides are used as routine tools in developmental biology to investigate gene function during early embryogenesis. These chemically modified oligos contain morpholine ring connected with phosphorodiamidate linkages as backbone but carry unmodified nucleobases. In this chapter, we describe the methods to further modify the nucleobases using palladium-catalyzed cross-coupling reactions. The key reactions used are halogenations of the nucleobases in suitable position and subsequent Pd-catalyzed Sonogashira and Suzuki reactions. The sequential synthetic steps are described in detail in this chapter, and the examples are shown in tables.
Collapse
Affiliation(s)
- Bappaditya Nandi
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Sankha Pattanayak
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Sibasish Paul
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Jayanta Kundu
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Surajit Sinha
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India.
| |
Collapse
|
46
|
Liu C, Coleman R, Archer A, Hussein I, Bowlin TL, Chen Q, Schneller SW. Enantiomeric 4'-Truncated 3-deaza-1',6'-isoneplanocins: Synthesis and antiviral properties including Ebola. Bioorg Med Chem Lett 2019; 29:2480-2482. [PMID: 31358469 DOI: 10.1016/j.bmcl.2019.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
Abstract
Enantiomeric 3-deaza-1',6'-isoneplanocins (C-3 unsubstituted 7a/7b and C-3 with a bromine 8a/8b) lacking the 4'-hydroxymethyl as mechanistically designed anti-viral targets have been prepared by utilizing the Ullmann reaction. Anti-Ebola properties were found for the D-like 7a and 8a and L-like 8b. All four products showed effects against human cytomegalovirus while D-like 7a/8a affected measles; 7a was effective versus norovirus and 8a inhibited Pichinde. Both 7a and 8a produced SAHase inhibitory effects. However, the anti-EBOV activity of 7a and 8a cannot be readily correlated with this observation due with their contrasting IC50 values (8a > 7a). It is to be noted that 7b showed no effects on this enzyme and 8b was minimally inhibitory. These results offer preliminary insight into the differing mechanisms of action of D- and L- like structures and enlighten structural features to guide additional antiviral agent pursuit in the isoneplanocin series.
Collapse
Affiliation(s)
- Chong Liu
- Molette Laboratory for Drug Discovery, Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, United States
| | - Rachel Coleman
- Molette Laboratory for Drug Discovery, Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, United States
| | - Ashley Archer
- Molette Laboratory for Drug Discovery, Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, United States
| | - Islam Hussein
- Microbiotix, Inc., One Innovation Drive, Worcester, MA 01605, United States
| | - Terry L Bowlin
- Microbiotix, Inc., One Innovation Drive, Worcester, MA 01605, United States
| | - Qi Chen
- Department of Chemistry, Slippery Rock University, Slippery Rock, PA 16057, United States
| | - Stewart W Schneller
- Molette Laboratory for Drug Discovery, Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, United States.
| |
Collapse
|
47
|
Kim H, Jarhad DB, Sahu PK, Sung K, An D, Hyun YE, Yu J, Jeong LS. Asymmetric Synthesis of Fluoro‐MLN4924 as a Selective NEDD8‐Activating Enzyme (NAE) Inhibitor. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hong‐Rae Kim
- Research Institute of Pharmaceutical Sciences College of PharmacySeoul National University Seoul 08826 Republic of Korea
| | - Dnyandev B. Jarhad
- Research Institute of Pharmaceutical Sciences College of PharmacySeoul National University Seoul 08826 Republic of Korea
| | - Pramod K. Sahu
- Research Institute of Pharmaceutical Sciences College of PharmacySeoul National University Seoul 08826 Republic of Korea
| | - Kisu Sung
- Research Institute of Pharmaceutical Sciences College of PharmacySeoul National University Seoul 08826 Republic of Korea
| | - Dayoung An
- Research Institute of Pharmaceutical Sciences College of PharmacySeoul National University Seoul 08826 Republic of Korea
| | - Young Eum Hyun
- Research Institute of Pharmaceutical Sciences College of PharmacySeoul National University Seoul 08826 Republic of Korea
| | - Jinha Yu
- Research Institute of Pharmaceutical Sciences College of PharmacySeoul National University Seoul 08826 Republic of Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences College of PharmacySeoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
48
|
Pomeisl K, Krečmerová M, Pohl R, Snoeck R, Andrei G. Synthesis of fluorinated acyclic nucleoside phosphonates with 5-azacytosine base moiety. Tetrahedron 2019; 75:130529. [PMID: 32287433 PMCID: PMC7111758 DOI: 10.1016/j.tet.2019.130529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 11/25/2022]
Abstract
With respect to the strong antiviral activity of (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine various types of its side chain fluorinated analogues were prepared. The title compound, (S)-1-[3-fluoro-2-(phosphonomethoxy)propyl]-5-azacytosine (FPMP-5-azaC) was synthesised by the condensation reaction of (S)-2-[(diisopropoxyphosphoryl)methoxy)-3-fluoropropyl p-toluenesulfonate with a sodium salt of 5-azacytosine followed by separation of appropriate N1 and O2 regioisomers and ester hydrolysis. Transformations of FPMP-5-azaC to its 5,6-dihydro-5-azacytosine counterpart, amino acid phosphoramidate prodrugs and systems with an annelated five-membered imidazole ring, i.e. imidazo [1,2-a][1,3,5]triazine derivatives were also carried out. 1-(2-Phosphonomethoxy-3,3,3-trifluoropropyl)-5-azacytosine was prepared from 5-azacytosine and trifluoromethyloxirane to form 1-(3,3,3-trifluoro-2-hydroxypropyl)-5-azacytosine which was treated with diisopropyl bromomethanephosphonate followed by deprotection of esters. Antiviral activity of all newly prepared compounds was studied. FPMP-5-azaC diisopropyl ester inhibited the replication of herpes viruses with EC50 values that were about three times higher than that of the reference anti-HCMV drug ganciclovir without displaying cytotoxicity. 5-Azacytosine acyclic nucleoside phosphonates fluorinated in the aliphatic side chain have been synthesized. Stabilized analogues with 5,6-dihydro arrangement and/or with an annelated five-membered ring were also prepared. Diisopropyl phosphonate esters were converted to amino acid amidate prodrugs. In most cases, antiviral activity of the compounds was only marginal.
Collapse
Affiliation(s)
- Karel Pomeisl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic.,Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 182 21, Prague 8, Czech Republic
| | - Marcela Krečmerová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1043, B-3000, Leuven, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1043, B-3000, Leuven, Belgium
| |
Collapse
|
49
|
Synthesis of nucleoside phosphonate analogs having phosphonodifluoromethylene moieties and their biological activities. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Devereaux ZJ, He CC, Zhu Y, Roy HA, Cunningham NA, Hamlow LA, Berden G, Oomens J, Rodgers MT. Structures and Relative Glycosidic Bond Stabilities of Protonated 2'-Fluoro-Substituted Purine Nucleosides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1521-1536. [PMID: 31111413 DOI: 10.1007/s13361-019-02222-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
The 2'-substituent is the primary distinguishing feature between DNA and RNA nucleosides. Modifications to this critical position, both naturally occurring and synthetic, can produce biologically valuable nucleoside analogues. The unique properties of fluorine make it particularly interesting and medically useful as a synthetic nucleoside modification. In this work, the effects of 2'-fluoro modification on the protonated gas-phase purine nucleosides are examined using complementary tandem mass spectrometry and computational methods. Direct comparisons are made with previous studies on related nucleosides. Infrared multiple photon dissociation action spectroscopy performed in both the fingerprint and hydrogen-stretching regions allows for the determination of the experimentally populated conformations. The populated conformers of protonated 2'-fluoro-2'-deoxyadenosine, [Adofl+H]+, and 2'-fluoro-2'-deoxyguanosine, [Guofl+H]+, are highly parallel to their respective canonical DNA and RNA counterparts. Both N3 and N1 protonation sites are accessed by [Adofl+H]+, stabilizing syn and anti nucleobase orientations, respectively. N7 protonation and anti nucleobase orientation dominates in [Guofl+H]+. Spectroscopically observable intramolecular hydrogen-bonding interactions with fluorine allow more definitive sugar puckering determinations than possible for the canonical systems. [Adofl+H]+ adopts C2'-endo sugar puckering, whereas [Guofl+H]+ adopts both C2'-endo and C3'-endo sugar puckering. Energy-resolved collision-induced dissociation experiments with survival yield analyses provide relative glycosidic bond stabilities. The N-glycosidic bond stabilities of the protonated 2'-fluoro-substituted purine nucleosides are found to exceed those of their canonical analogues. Further, the N-glycosidic bond stability is found to increase with increasing electronegativity of the 2'-substituent, i.e., H < OH < F. The N-glycosidic bond stability is also greater for the adenine nucleoside analogues than the guanine nucleoside analogues.
Collapse
Affiliation(s)
- Zachary J Devereaux
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - C C He
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Y Zhu
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - H A Roy
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - N A Cunningham
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - L A Hamlow
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA.
| |
Collapse
|