1
|
D'Ovidio AJ, Knarr B, Blanchard AJ, Bennett GW, Leiva W, Duan B, Zuniga JM. Characterization of Antimicrobial Poly(Lactic Acid)- and Polyurethane-Based Materials Enduring Closed-Loop Recycling with Applications in Space. Polymers (Basel) 2024; 16:626. [PMID: 38475308 DOI: 10.3390/polym16050626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Recent studies have shown that astronauts experience altered immune response behavior during spaceflight, resulting in heightened susceptibility to illness. Resources and resupply shuttles will become scarcer with longer duration spaceflight, limiting access to potentially necessary medical treatment and facilities. Thus, there is a need for preventative health countermeasures that can exploit in situ resource utilization technologies during spaceflight, such as additive manufacturing (i.e., 3D printing). The purpose of the current study was to test and validate recyclable antimicrobial materials compatible with additive manufacturing. Antimicrobial poly(lactic acid)- and polyurethane-based materials compatible with 3D printing were assessed for antimicrobial, mechanical, and chemical characteristics before and after one closed-loop recycling cycle. Our results show high biocidal efficacy (>90%) of both poly(lactic acid) and polyurethane materials while retaining efficacy post recycling, except for recycled-state polyurethane which dropped from 98.91% to 0% efficacy post 1-year accelerated aging. Significant differences in tensile and compression characteristics were observed post recycling, although no significant changes to functional chemical groups were found. Proof-of-concept medical devices developed show the potential for the on-demand manufacturing and recyclability of typically single-use medical devices using antimicrobial materials that could serve as preventative health countermeasures for immunocompromised populations, such as astronauts during spaceflight.
Collapse
Affiliation(s)
- Andrew J D'Ovidio
- Department of Biomechanics, University of Nebraska at Omaha (UNO), Omaha, NE 68182, USA
| | - Brian Knarr
- Department of Biomechanics, University of Nebraska at Omaha (UNO), Omaha, NE 68182, USA
| | | | - Gregory W Bennett
- Department of Adult Restorative Dentistry, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - William Leiva
- Bucharest University of Economic Studies, 010374 Bucharest, Romania
| | - Bin Duan
- Department of Adult Restorative Dentistry, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Jorge M Zuniga
- Department of Biomechanics, University of Nebraska at Omaha (UNO), Omaha, NE 68182, USA
| |
Collapse
|
2
|
Kurtjak M, Maček Kržmanc M, Spreitzer M, Vukomanović M. Nanogallium-poly(L-lactide) Composites with Contact Antibacterial Action. Pharmaceutics 2024; 16:228. [PMID: 38399282 PMCID: PMC10893416 DOI: 10.3390/pharmaceutics16020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
In diverse biomedical and other applications of polylactide (PLA), its bacterial contamination and colonization are unwanted. For this reason, this biodegradable polymer is often combined with antibacterial agents or fillers. Here, we present a new solution of this kind. Through the process of simple solvent casting, we developed homogeneous composite films from 28 ± 5 nm oleic-acid-capped gallium nanoparticles (Ga NPs) and poly(L-lactide) and characterized their detailed morphology, crystallinity, aqueous wettability, optical and thermal properties. The addition of Ga NPs decreased the ultraviolet transparency of the films, increased their hydrophobicity, and enhanced the PLA structural ordering during solvent casting. Albeit, above the glass transition, there is an interplay of heterogeneous nucleation and retarded chain mobility through interfacial interactions. The gallium content varied from 0.08 to 2.4 weight %, and films with at least 0.8% Ga inhibited the growth of Pseudomonas aeruginosa PAO1 in contact, while 2.4% Ga enhanced the effect of the films to be bactericidal. This contact action was a result of unwrapping the top film layer under biological conditions and the consequent bacterial contact with the exposed Ga NPs on the surface. All the tested films showed good cytocompatibility with human HaCaT keratinocytes and enabled the adhesion and growth of these skin cells on their surfaces when coated with poly(L-lysine). These properties make the nanogallium-polyl(L-lactide) composite a promising new polymer-based material worthy of further investigation and development for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Mario Kurtjak
- Jožef Stefan Institute (JSI), Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.M.K.); (M.S.); (M.V.)
| | | | | | | |
Collapse
|
3
|
Malashin IP, Tynchenko VS, Nelyub VA, Borodulin AS, Gantimurov AP. Estimation and Prediction of the Polymers' Physical Characteristics Using the Machine Learning Models. Polymers (Basel) 2023; 16:115. [PMID: 38201778 PMCID: PMC10780762 DOI: 10.3390/polym16010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
This article investigates the utility of machine learning (ML) methods for predicting and analyzing the diverse physical characteristics of polymers. Leveraging a rich dataset of polymers' characteristics, the study encompasses an extensive range of polymer properties, spanning compressive and tensile strength to thermal and electrical behaviors. Using various regression methods like Ensemble, Tree-based, Regularization, and Distance-based, the research undergoes thorough evaluation using the most common quality metrics. As a result of a series of experimental studies on the selection of effective model parameters, those that provide a high-quality solution to the stated problem were found. The best results were achieved by Random Forest with the highest R2 scores of 0.71, 0.73, and 0.88 for glass transition, thermal decomposition, and melting temperatures, respectively. The outcomes are intricately compared, providing valuable insights into the efficiency of distinct ML approaches in predicting polymer properties. Unknown values for each characteristic were predicted, and a method validation was performed by training on the predicted values, comparing the results with the specified variance values of each characteristic. The research not only advances our comprehension of polymer physics but also contributes to informed model selection and optimization for materials science applications.
Collapse
Affiliation(s)
- Ivan Pavlovich Malashin
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia; (V.A.N.); (A.S.B.); (A.P.G.)
| | - Vadim Sergeevich Tynchenko
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia; (V.A.N.); (A.S.B.); (A.P.G.)
- Information-Control Systems Department, Institute of Computer Science and Telecommunications, Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia
- Department of Technological Machines and Equipment of Oil and Gas Complex, School of Petroleum and Natural Gas Engineering, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Vladimir Aleksandrovich Nelyub
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia; (V.A.N.); (A.S.B.); (A.P.G.)
| | - Aleksei Sergeevich Borodulin
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia; (V.A.N.); (A.S.B.); (A.P.G.)
| | - Andrei Pavlovich Gantimurov
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia; (V.A.N.); (A.S.B.); (A.P.G.)
| |
Collapse
|
4
|
Manzoor A, Khan S, Dar AH, Pandey VK, Shams R, Ahmad S, Jeevarathinam G, Kumar M, Singh P, Pandiselvam R. Recent insights into green antimicrobial packaging towards food safety reinforcement: A review. J Food Saf 2023. [DOI: 10.1111/jfs.13046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- Arshied Manzoor
- Department of Post‐Harvest Engineering and Technology Faculty of Agricultural Sciences Aligarh India
| | - Sadeeya Khan
- Department of Food Science, Faculty of Food Science and Technology University Putra Malaysia Serdang Malaysia
| | - Aamir Hussain Dar
- Department of Food Technology Islamic University of Science and Technology Awantipora Kashmir India
| | - Vinay Kumar Pandey
- Department of Biotechnology Axis Institute of Higher Education Kanpur Uttar Pradesh India
- Department of Bioengineering Integral University Lucknow Uttar Pradesh India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab India
| | - Saghir Ahmad
- Department of Post‐Harvest Engineering and Technology Faculty of Agricultural Sciences Aligarh India
| | - G. Jeevarathinam
- Department of Food Technology Hindusthan College of Engineering and Technology Coimbatore India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division ICAR ‐ Central Institute for Research on Cotton Technology Mumbai India
| | - Punit Singh
- Institute of Engineering and Technology, Department of Mechanical Engineering GLA University Mathura Mathura India
| | - R. Pandiselvam
- Physiology, Biochemistry and Post‐Harvest Technology Division ICAR –Central Plantation Crops Research Institute Kasaragod Kerala India
| |
Collapse
|
5
|
A Review on Antimicrobial Packaging for Extending the Shelf Life of Food. Processes (Basel) 2023. [DOI: 10.3390/pr11020590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Food packaging systems are continually impacted by the growing demand for minimally processed foods, changing eating habits, and food safety risks. Minimally processed foods are prone to the growth of harmful microbes, compromising quality and safety. As a result, the need for improved food shelf life and protection against foodborne diseases alongside consumer preference for minimally processed foods with no or lesser synthetic additives foster the development of innovative technologies such as antimicrobial packaging. It is a form of active packaging that can release antimicrobial substances to suppress the activities of specific microorganisms, thereby improving food quality and safety during long-term storage. However, antimicrobial packaging continues to be a very challenging technology. This study highlights antimicrobial packaging concepts, providing different antimicrobial substances used in food packaging. We review various types of antimicrobial systems. Emphasis is given to the effectiveness of antimicrobial packaging in various food applications, including fresh and minimally processed fruit and vegetables and meat and dairy products. For the development of antimicrobial packaging, several approaches have been used, including the use of antimicrobial sachets inside packaging, packaging films, and coatings incorporating active antimicrobial agents. Due to their antimicrobial activity and capacity to extend food shelf life, regulate or inhibit the growth of microorganisms and ultimately reduce the potential risk of health hazards, natural antimicrobial agents are gaining significant importance and attention in developing antimicrobial packaging systems. Selecting the best antimicrobial packaging system for a particular product depends on its nature, desired shelf life, storage requirements, and legal considerations. The current review is expected to contribute to research on the potential of antimicrobial packaging to extend the shelf life of food and also serves as a good reference for food innovation information.
Collapse
|
6
|
Alves J, Gaspar PD, Lima TM, Silva PD. What is the role of active packaging in the future of food sustainability? A systematic review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1004-1020. [PMID: 35303759 DOI: 10.1002/jsfa.11880] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/17/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, the strong increase in products consumption, the purchase of products on online platforms as well as the requirements for greater safety and food protection are a concern for food and packaging industries. Active packaging brings huge advances in the extension of product shelf-life and food degradation and losses reduction. This systematic work aims to collect and evaluate all existing strategies and technologies of active packaging that can be applied in food products, with a global view of new possibilities for food preservation. Oxygen scavengers, carbon dioxide emitters/absorbers, ethylene scavengers, antimicrobial and antioxidant active packaging, and other active systems and technologies are summarized including the products commercially available and the respective mechanisms of action. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joel Alves
- Department of Electromechanical Engineering, University of Beira Interior, Covilhã, Portugal
| | - Pedro D Gaspar
- Department of Electromechanical Engineering, University of Beira Interior, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, University of Beira Interior, Covilhã, Portugal
| | - Tânia M Lima
- Department of Electromechanical Engineering, University of Beira Interior, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, University of Beira Interior, Covilhã, Portugal
| | - Pedro D Silva
- Department of Electromechanical Engineering, University of Beira Interior, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
7
|
Pilot-Scale Processing and Functional Properties of Antifungal EVOH-Based Films Containing Methyl Anthranilate Intended for Food Packaging Applications. Polymers (Basel) 2022; 14:polym14163405. [PMID: 36015660 PMCID: PMC9416094 DOI: 10.3390/polym14163405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial packaging has emerged as an efficient technology to improve the stability of food products. In this study, new formulations based on ethylene vinyl alcohol (EVOH) copolymer were developed by incorporating the volatile methyl anthranilate (MA) at different concentrations as antifungal compound to obtain active films for food packaging. To this end, a twin-screw extruder with a specifically designed screw configuration was employed to produce films at pilot scale. The quantification analyses of MA in the films showed a high retention capacity. Then, the morphological, optical, thermal, mechanical and water vapour barrier performance, as well as the antifungal activity in vitro of the active films, were evaluated. The presence of MA did not affect the transparency or the thermal stability of EVOH-based films, but decreased the glass transition temperature of the copolymer, indicating a plasticizing effect, which was confirmed by an increase in the elongation at break values of the films. Because of the additive-induced plasticization over EVOH, the water vapour permeability slightly increased at 33% and 75% relative humidity values. Finally, the evaluation of the antifungal activity in vitro of the active films containing methyl anthranilate showed a great effectiveness against P. expansum and B. cinerea, demonstrating the potential applicability of the developed films for active food packaging.
Collapse
|
8
|
Dobrzyńska‐Mizera M, Knitter M, Szymanowska D, Mallardo S, Santagata G, Di Lorenzo ML. Optical, mechanical, and antimicrobial properties of bio‐based composites of poly(L‐lactic acid) and D‐limonene/β‐cyclodextrin inclusion complex. J Appl Polym Sci 2022. [DOI: 10.1002/app.52177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Monika Dobrzyńska‐Mizera
- Institute of Materials Technology, Polymer Division Poznan University of Technology Poznan Poland
| | - Monika Knitter
- Institute of Materials Technology, Polymer Division Poznan University of Technology Poznan Poland
| | - Daria Szymanowska
- Department of Biotechnology and Food Microbiology Poznan University of Life Sciences Poznan Poland
| | - Salvatore Mallardo
- National Research Council (CNR), Institute of Polymers Composites and Biomaterials (IPCB), c/o Comprensorio Olivetti Pozzuoli NA Italy
| | - Gabriella Santagata
- National Research Council (CNR), Institute of Polymers Composites and Biomaterials (IPCB), c/o Comprensorio Olivetti Pozzuoli NA Italy
| | - Maria Laura Di Lorenzo
- National Research Council (CNR), Institute of Polymers Composites and Biomaterials (IPCB), c/o Comprensorio Olivetti Pozzuoli NA Italy
| |
Collapse
|
9
|
Velázquez-Contreras F, Zamora-Ledezma C, López-González I, Meseguer-Olmo L, Núñez-Delicado E, Gabaldón JA. Cyclodextrins in Polymer-Based Active Food Packaging: A Fresh Look at Nontoxic, Biodegradable, and Sustainable Technology Trends. Polymers (Basel) 2021; 14:polym14010104. [PMID: 35012127 PMCID: PMC8747138 DOI: 10.3390/polym14010104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/01/2023] Open
Abstract
Using cyclodextrins (CDs) in packaging technologies helps volatile or bioactive molecules improve their solubility, to guarantee the homogeneous distribution of the complexed molecules, protecting them from volatilization, oxidation, and temperature fluctuations when they are associated with polymeric matrices. This technology is also suitable for the controlled release of active substances and allows the exploration of their association with biodegradable polymer targeting to reduce the negative environmental impacts of food packaging. Here, we present a fresh look at the current status of and future prospects regarding the different strategies used to associate cyclodextrins and their derivatives with polymeric matrices to fabricate sustainable and biodegradable active food packaging (AFP). Particular attention is paid to the materials and the fabrication technologies available to date. In addition, the use of cutting-edge strategies, including the trend of nanotechnologies in active food packaging, is emphasized. Furthermore, a critical view on the risks to human health and the associated updated legislation is provided. Some of the more representative patents and commercial products that currently use AFP are also listed. Finally, the current and future research challenges which must be addressed are discussed.
Collapse
Affiliation(s)
- Friné Velázquez-Contreras
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (F.V.-C.); (E.N.-D.)
- Escuela de Administración de Instituciones (ESDAI), Universidad Panamericana, Álvaro del Portillo 49, Ciudad Granja, Zapopan 45010, Mexico
| | - Camilo Zamora-Ledezma
- Tissue Regeneration and Repair Group Orthobiology, Biomaterials and Tissue Engineering, Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (C.Z.-L.); (I.L.-G.); (L.M.-O.)
| | - Iván López-González
- Tissue Regeneration and Repair Group Orthobiology, Biomaterials and Tissue Engineering, Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (C.Z.-L.); (I.L.-G.); (L.M.-O.)
| | - Luis Meseguer-Olmo
- Tissue Regeneration and Repair Group Orthobiology, Biomaterials and Tissue Engineering, Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (C.Z.-L.); (I.L.-G.); (L.M.-O.)
| | - Estrella Núñez-Delicado
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (F.V.-C.); (E.N.-D.)
| | - José Antonio Gabaldón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, UCAM-Universidad Católica de Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain; (F.V.-C.); (E.N.-D.)
- Correspondence: ; Tel.: +34-968-278-622
| |
Collapse
|
10
|
Chawla R, Sivakumar S, Kaur H. Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements- a review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2020.100024] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
11
|
Siddiqui MN, Redhwi HH, Tsagkalias I, Vouvoudi EC, Achilias DS. Development of Bio-Composites with Enhanced Antioxidant Activity Based on Poly(lactic acid) with Thymol, Carvacrol, Limonene, or Cinnamaldehyde for Active Food Packaging. Polymers (Basel) 2021; 13:polym13213652. [PMID: 34771206 PMCID: PMC8588526 DOI: 10.3390/polym13213652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 01/05/2023] Open
Abstract
The new trend in food packaging films is to use biodegradable or bio-based polymers, such as poly(lactic acid), PLA with additives such as thymol, carvacrol, limonene or cinnamaldehyde coming from natural resources (i.e., thyme, oregano, citrus fruits and cinnamon) in order to extent foodstuff shelf-life and improve consumers’ safety. Single, triple and quadruple blends of these active compounds in PLA were prepared and studied using the solvent-casting technique. The successful incorporation of the active ingredients into the polymer matrix was verified by FTIR spectroscopy. XRD and DSC data revealed that the crystallinity of PLA was not significantly affected. However, the Tg of the polymer decreased, verifying the plasticization effect of all additives. Multicomponent mixtures resulted in more intense plasticization. Cinnamaldehyde was found to play a catalytic role in the thermal degradation of PLA shifting curves to slightly lower temperatures. Release of thymol or carvacrol from the composites takes place at low rates at temperatures below 100 °C. A combined diffusion-model was found to simulate the experimental release profiles very well. Higher antioxidant activity was noticed when carvacrol was added, followed by thymol and then cinnamaldehyde and limonene. From the triple-component composites, higher antioxidant activity measured in the materials with thymol, carvacrol and cinnamaldehyde.
Collapse
Affiliation(s)
- Mohammad Nahid Siddiqui
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Halim Hamid Redhwi
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Ioannis Tsagkalias
- Lab of Polymer and Color Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.T.); (E.C.V.)
| | - Evangelia C. Vouvoudi
- Lab of Polymer and Color Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.T.); (E.C.V.)
| | - Dimitris S. Achilias
- Lab of Polymer and Color Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.T.); (E.C.V.)
- Correspondence: ; Tel.: +30-2310-997822
| |
Collapse
|
12
|
Aragón-Gutiérrez A, Heras-Mozos R, Gallur M, López D, Gavara R, Hernández-Muñoz P. Hot-Melt-Extruded Active Films Prepared from EVOH/Trans-Cinnamaldehyde Blends Intended for Food Packaging Applications. Foods 2021; 10:1591. [PMID: 34359460 PMCID: PMC8304191 DOI: 10.3390/foods10071591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022] Open
Abstract
In this work, novel active films based on ethylene vinyl alcohol copolymer (EVOH) and cinnamaldehyde (CIN) were successfully obtained employing a hybrid technique consisting of a two-step protocol involving the preparation of a polymeric EVOH-CIN masterbatch by solvent-casting for its further utilization in the preparation of bioactive EVOH-based films by melt extrusion processing. The influence of CIN over the EVOH matrix was studied in terms of optical, morphological, thermal, and mechanical properties. Optically transparent films were obtained and the incorporation of cinnamaldehyde resulted in yellow-colored films, producing a blocking effect in the UV region. A decrease in the glass transition temperature was observed in the formulations containing cinnamaldehyde, indicating a plasticizing effect. This phenomenon was confirmed by an increase in the elongation at break values of the extruded films. Results from thermogravimetric analysis determined a slight decrease in the thermal stability of EVOH provoked by the vaporization of the bioactive compound. Bioactive properties of the films were also studied; the presence of residual cinnamaldehyde in EVOH after being subjected to an extrusion process conferred some radical scavenging activity determined by the DPPH assay whereas films were able to exert antifungal activity in vapor phase against Penicillium expansum. Therefore, the present work shows the potential of the hybrid technique employed in this study for the preparation of bioactive films by a ready industrial process technology for food packaging applications.
Collapse
Affiliation(s)
- Alejandro Aragón-Gutiérrez
- Grupo de Tecnología de Envases y Embalajes, Instituto Tecnológico del Embalaje, Transporte y Logística, ITENE, Unidad Asociada al CSIC, calle de Albert Einstein 1, 46980 Valencia, Spain;
| | - Raquel Heras-Mozos
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, calle del Catedrático Agustín Escardino Benlloch 7, 46980 Valencia, Spain; (R.H.-M.); (R.G.)
| | - Miriam Gallur
- Grupo de Tecnología de Envases y Embalajes, Instituto Tecnológico del Embalaje, Transporte y Logística, ITENE, Unidad Asociada al CSIC, calle de Albert Einstein 1, 46980 Valencia, Spain;
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, calle Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Rafael Gavara
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, calle del Catedrático Agustín Escardino Benlloch 7, 46980 Valencia, Spain; (R.H.-M.); (R.G.)
| | - Pilar Hernández-Muñoz
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, calle del Catedrático Agustín Escardino Benlloch 7, 46980 Valencia, Spain; (R.H.-M.); (R.G.)
| |
Collapse
|
13
|
Velásquez E, Patiño Vidal C, Rojas A, Guarda A, Galotto MJ, López de Dicastillo C. Natural antimicrobials and antioxidants added to polylactic acid packaging films. Part I: Polymer processing techniques. Compr Rev Food Sci Food Saf 2021; 20:3388-3403. [PMID: 34118127 DOI: 10.1111/1541-4337.12777] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022]
Abstract
Currently, reducing packaging plastic waste and food losses are concerning topics in the food packaging industry. As an alternative for these challenges, antimicrobial and antioxidant materials have been developed by incorporating active agents (AAs) into biodegradable polymers to extend the food shelf life. In this context, developing biodegradable active materials based on polylactic acid (PLA) and natural compounds are a great alternative to maintain food safety and non-toxicity of the packaging. AAs, such as essential oils and polyphenols, have been added mainly as antimicrobial and antioxidant natural compounds in PLA packaging. In this review, current techniques used to develop active PLA packaging films were described in order to critically compare their feasibility, advantages, limitations, and relevant processing aspects. The analysis was focused on the processing conditions, such as operation variables and stages, and factors related to the AAs, such as their concentrations, weight losses during processing, and incorporation technique, among others. Recent developments of active PLA-based monolayers and bi- or multilayer films were also considered. In addition, patents on inventions and technologies on active PLA-based films for food packaging were reviewed. This review highlights that the selection of the processing technique and conditions to obtain active PLA depends on the type of the AA regarding its volatility, solubility, and thermosensitivity.
Collapse
Affiliation(s)
- Eliezer Velásquez
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile
| | - Cristian Patiño Vidal
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile
| | - Adrián Rojas
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile
| | - Abel Guarda
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Technological Faculty, Food Science and Technology Department, University of Santiago of Chile (USACH), Santiago, Chile
| | - María José Galotto
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Technological Faculty, Food Science and Technology Department, University of Santiago of Chile (USACH), Santiago, Chile
| | - Carol López de Dicastillo
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Technological Faculty, Food Science and Technology Department, University of Santiago of Chile (USACH), Santiago, Chile
| |
Collapse
|
14
|
Beltrán Sanahuja A, Valdés García A. New Trends in the Use of Volatile Compounds in Food Packaging. Polymers (Basel) 2021; 13:polym13071053. [PMID: 33801647 PMCID: PMC8038046 DOI: 10.3390/polym13071053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
In the last years, many of the research studies in the packaging industry have been focused on food active packaging in order to develop new materials capable of retaining the active agent in the polymeric matrix and controlling its release into food, which is not easy in many cases due to the high volatility of the chemical compounds, as well as their ease of diffusion within polymeric matrices. This review presents a complete revision of the studies that have been carried out on the incorporation of volatile compounds to food packaging applications. We provide an overview of the type of volatile compounds used in active food packaging and the most recent trends in the strategies used to incorporate them into different polymeric matrices. Moreover, a thorough discussion regarding the main factors affecting the retention capacity and controlled release of volatile compounds from active food packaging is presented.
Collapse
Affiliation(s)
- Ana Beltrán Sanahuja
- Correspondence: (A.B.S.); (A.V.G.); Tel.: +34-965-90-96-45 (A.B.S.); +34-965-90-35-27 (A.V.G.)
| | - Arantzazu Valdés García
- Correspondence: (A.B.S.); (A.V.G.); Tel.: +34-965-90-96-45 (A.B.S.); +34-965-90-35-27 (A.V.G.)
| |
Collapse
|
15
|
Jeong S, Lee HG, Cho CH, Yoo S. Deodorization films based on polyphenol compound-rich natural deodorants and polycaprolactone for removing volatile sulfur compounds from kimchi. J Food Sci 2021; 86:1004-1013. [PMID: 33580503 DOI: 10.1111/1750-3841.15626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 01/23/2023]
Abstract
As natural polyphenols have been known to have the deodorizing activity, the deodorizing properties and mechanisms of action of polyphenols, the main constituents of green tea extract (GTE), black tea extract (BTE), and grape seed extract (GSE), against volatile sulfur compounds (VSCs) in kimchi were investigated. Six VSCs were targeted and detected to be in high abundance in kimchi. The deodorizing activity (%) toward VSCs was found to be in the following order: GSE (58.4 to 91.8) >GTE (37.6 to 73.8) >BTE (28.4 to 60.3). This was attributed to the high phenolic (892.6 ± 10.5 mg GAE/g) and flavonoid (666.5 ± 23.9 mg CE/g) contents in GSE, that is, polymeric proanthocyanidins (85.97%). Particularly, the hydroxyl groups in the polyphenols showed deodorizing activity against VSCs via a sulfur-capture reaction. For packaging applications, deodorization films based on GSE and polycaprolactone were developed, and the GSE/polycaprolactone 20% films exhibited strong deodorizing effects (54.9 to 99.8%) against kimchi VSCs.
Collapse
Affiliation(s)
- Suyeon Jeong
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Hyun-Gyu Lee
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Chi Heung Cho
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - SeungRan Yoo
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| |
Collapse
|
16
|
Lima EMB, Middea A, Neumann R, Thiré RMDSM, Pereira JF, Freitas SC, Penteado MS, Lima AM, Minguita APDS, Mattos MDC, Teixeira ADS, Pereira ICS, Rojas dos Santos NR, Marconcini JM, Oliveira RN, Corrêa AC. Biocomposites of PLA and Mango Seed Waste: Potential Material for Food Packaging and a Technological Alternative to Reduce Environmental Impact. STARCH-STARKE 2021. [DOI: 10.1002/star.202000118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Edla Maria Bezerra Lima
- EMBRAPA Food Technology Av. das Américas, 29501 – Guaratiba Rio de Janeiro Rio de Janeiro 23020‐470 Brazil
| | - Antonieta Middea
- Centre for Mineral Technology (CETEM) Av. Pedro Calmon, 900, Cidade Universitária Rio de Janeiro Rio de Janeiro 21941‐908 Brazil
| | - Reiner Neumann
- Centre for Mineral Technology (CETEM) Av. Pedro Calmon, 900, Cidade Universitária Rio de Janeiro Rio de Janeiro 21941‐908 Brazil
| | - Rossana Mara da Silva Moreira Thiré
- Program of Metallurgical and Materials Engineering (PEMM)/COPPE Federal University of Rio de Janeiro (UFRJ) Technology Center, Ilha do Fundão Rio de Janeiro Rio de Janeiro 21941‐598 Brazil
| | - Jéssica Fernandes Pereira
- EMBRAPA Food Technology Av. das Américas, 29501 – Guaratiba Rio de Janeiro Rio de Janeiro 23020‐470 Brazil
| | - Sidinea Cordeiro Freitas
- EMBRAPA Food Technology Av. das Américas, 29501 – Guaratiba Rio de Janeiro Rio de Janeiro 23020‐470 Brazil
| | - Marília Stephan Penteado
- EMBRAPA Food Technology Av. das Américas, 29501 – Guaratiba Rio de Janeiro Rio de Janeiro 23020‐470 Brazil
| | - Aline Muniz Lima
- EMBRAPA Food Technology Av. das Américas, 29501 – Guaratiba Rio de Janeiro Rio de Janeiro 23020‐470 Brazil
| | | | - Mariana da Costa Mattos
- EMBRAPA Food Technology Av. das Américas, 29501 – Guaratiba Rio de Janeiro Rio de Janeiro 23020‐470 Brazil
| | | | | | | | - José Manoel Marconcini
- National Nanotechnology Laboratory for Agriculture (LNNA) EMBRAPA Instrumentation São Carlos São Paulo 13560‐970 ‐ PO Box 741 Brazil
| | - Renata Nunes Oliveira
- Post Graduation Program of Chemical Engineering Chemical Engineering Department Federal Rural University of Rio de Janeiro Rod. BR 465, Km 07, s/n – Zona Rural Seropédica Rio de Janeiro 23890‐000 Brazil
| | - Ana Carolina Corrêa
- National Nanotechnology Laboratory for Agriculture (LNNA) EMBRAPA Instrumentation São Carlos São Paulo 13560‐970 ‐ PO Box 741 Brazil
- Graduate Program in Materials Science and Engineering Federal University of Sao Carlos (UFSCar) Rod. Washington Luiz, km 235 São Carlos São Paulo 13565‐905 Brazil
| |
Collapse
|
17
|
Aragón-Gutiérrez A, Rosa E, Gallur M, López D, Hernández-Muñoz P, Gavara R. Melt-Processed Bioactive EVOH Films Incorporated with Ferulic Acid. Polymers (Basel) 2020; 13:E68. [PMID: 33375327 PMCID: PMC7795252 DOI: 10.3390/polym13010068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
In this work, antimicrobial and antioxidant films based on ethylene vinyl alcohol (EVOH) copolymer containing low amounts of ferulic acid (FA) were successfully developed by melt extrusion. Optically transparent films were obtained, and the presence of FA provided some UV blocking effect. The characterization of the thermal and barrier properties of the developed films showed that the addition of FA improved the thermal stability, decreased the glass transition temperature (Tg) and increased the water vapor and oxygen transmission rates when ferulic acid was loaded above 0.5 wt.%, associated with its plasticizing effect. Mechanical characterization confirmed the plasticizing effect by an increase in the elongation at break values while no significant differences were observed in Young's modulus and tensile strength. Significant antioxidant activity of all active films exposed to two food simulants, 10% ethanol and 95% ethanol, was also confirmed using the 2,2-diphenyl-1-pricylhydrazyl (DPPH) free radical scavenging method, indicating that FA conserved its well-known antioxidant properties after melt-processing. Finally, EVOH-FA samples presented antibacterial activity in vitro against Escherichia coli and Staphylococcus aureus, thus showing the potential of ferulic acid as bioactive compound to be used in extrusion processing for active packaging applications.
Collapse
Affiliation(s)
- Alejandro Aragón-Gutiérrez
- Grupo de Tecnología de Envases y Embalajes, Instituto Tecnológico del Embalaje, Transporte y Logística, ITENE, Unidad Asociada al CSIC, calle de Albert Einstein 1, 46980 Paterna, Valencia, Spain; (E.R.); (M.G.)
| | - Estela Rosa
- Grupo de Tecnología de Envases y Embalajes, Instituto Tecnológico del Embalaje, Transporte y Logística, ITENE, Unidad Asociada al CSIC, calle de Albert Einstein 1, 46980 Paterna, Valencia, Spain; (E.R.); (M.G.)
| | - Miriam Gallur
- Grupo de Tecnología de Envases y Embalajes, Instituto Tecnológico del Embalaje, Transporte y Logística, ITENE, Unidad Asociada al CSIC, calle de Albert Einstein 1, 46980 Paterna, Valencia, Spain; (E.R.); (M.G.)
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, calle Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Pilar Hernández-Muñoz
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, calle del Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain;
| | - Rafael Gavara
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, calle del Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain;
| |
Collapse
|
18
|
Physicomechanical properties, release kinetics, and antimicrobial activity of activated low-density polyethylene and orientated polypropylene films by Thyme essential oil active component. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00690-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
19
|
Effects of glycerol and thymol on physical, mechanical, and thermal properties of corn starch films. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105884] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Characterization of multi-functional, biodegradable sodium metabisulfite-incorporated films based on polycarprolactone for active food packaging applications. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Dilucia F, Lacivita V, Conte A, Del Nobile MA. Sustainable Use of Fruit and Vegetable By-Products to Enhance Food Packaging Performance. Foods 2020; 9:E857. [PMID: 32630106 PMCID: PMC7404480 DOI: 10.3390/foods9070857] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Fruit and vegetable by-products are the most abundant food waste. Industrial processes such as oil, juice, wine or sugar production greatly contribute to this amount. These kinds of residues are generally thrown away in form of leftover and used as feed or composted, but they are a great source of bioactive compounds like polyphenols, vitamins or minerals. The amount of residue with potential utilization after processing has been estimated in millions of tons every year. For this reason, many researchers all around the world are making great efforts to valorize and reuse these valuable resources. Of greatest importance is the by-product potential to enhance the properties of packaging intended for food applications. Therefore, this overview collects the most recent researches dealing with fruit and vegetable by-products used to enhance physical, mechanical, antioxidant and antimicrobial properties of packaging systems. Recent advances on synthetic or bio-based films enriched with by-product components are extensively reviewed, with an emphasis on the role that by-product extracts can play in food packaging materials.
Collapse
Affiliation(s)
| | | | - Amalia Conte
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 25-71121 Foggia, Italy; (F.D.); (V.L.); (M.A.D.N.)
| | | |
Collapse
|
22
|
Chen S, Wu M, Lu P, Gao L, Yan S, Wang S. Development of pH indicator and antimicrobial cellulose nanofibre packaging film based on purple sweet potato anthocyanin and oregano essential oil. Int J Biol Macromol 2020; 149:271-280. [DOI: 10.1016/j.ijbiomac.2020.01.231] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
|
23
|
Safaei M, Roosta Azad R. Preparation and characterization of poly-lactic acid based films containing propolis ethanolic extract to be used in dry meat sausage packaging. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:1242-1250. [PMID: 32180620 PMCID: PMC7054522 DOI: 10.1007/s13197-019-04156-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/24/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
In this study, active poly lactic acid (PLA) films containing 0, 10, 20 and 40% w/w propolis extract (PE), as active agent, were developed. A high amount of phenolic content (PC) was measured in PE. The antioxidant effect of active PLA films was determined by measuring the PC of sausage slices after 0, 2 and 4 days storage at refrigerator. Results showed that phenolic compounds of PE were released from PLA films in quantities proportional to PE concentration. Disc diffusion test indicated that PE showed an inhibitory effect against Staphylococcus aureus and Pseudomonas aeruginosa bacterial species but was more effective against gram-positive species. PE containing PLA films had antimicrobial effect on S. aureus while in the case of P. aeruginosa, PLA/PE films needed polyethylene glycol (PEG)/CaCO3 content to show inhibitory effect. Addition of PE changed the tensile strength, elongation at break and elastic modulus of PLA films negatively. However, addition of PEG/CaCO3 improved the film mechanical properties and antimicrobial effect of films.
Collapse
Affiliation(s)
- Maryam Safaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran, P.O. Box 11155-9465, Iran
| | - Reza Roosta Azad
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran, P.O. Box 11155-9465, Iran
| |
Collapse
|
24
|
Brito SDC, Bresolin JD, Sivieri K, Ferreira MD. Low-density polyethylene films incorporated with silver nanoparticles to promote antimicrobial efficiency in food packaging. FOOD SCI TECHNOL INT 2019; 26:353-366. [PMID: 31870192 DOI: 10.1177/1082013219894202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Technological innovations in packaging are intended to prevent microbiological contaminations for ensuring food safety and preservation. In this context, researchers have investigated the antimicrobial effect of low-density polyethylene films incorporated with the following concentrations of silver nanoparticles: 1.50, 3.75, 7.50, 15.00, 30.00, 60.00, and 75.00 µg/ml. The films were characterized using field emission gun scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry, and differential scanning calorimetry. From the results of these techniques, it could be concluded that the silver nanoparticles incorporated in the low-density polyethylene films did not influence their physical, chemical, and thermal properties. The direct contact assays, shake-flask assays, and bacterial images obtained using scanning electron microscopy were used to analyze the antimicrobial activity of the films. In the microbial analyses, it was verified that the nanostructured films exhibited antimicrobial properties against all the microorganisms studied, although more notably for fungi and Gram-negative bacteria than the Gram-positive bacteria. Moreover, it was discovered that the packages, in which silver nanoparticles were incorporated, inhibited the growth and reproduction of bacterial cells during the early stages. These results suggest that the extruded low-density polyethylene films incorporated with silver nanoparticles may be an essential tool for improving food quality and safety.
Collapse
Affiliation(s)
- Sabrina da Costa Brito
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Instrumentation, São Carlos, Brazil
| | - Joana D Bresolin
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Instrumentation, São Carlos, Brazil
| | - Kátia Sivieri
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marcos D Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.,Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Instrumentation, São Carlos, Brazil
| |
Collapse
|
25
|
Development of grapefruit seed extract-loaded poly(ε-caprolactone)/chitosan films for antimicrobial food packaging. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100396] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Pecchielan G, Baldo MA, Fabris S, Daniele S. A preliminary voltammetric investigation of silver ions in food simulants. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Zia J, Paul UC, Heredia-Guerrero JA, Athanassiou A, Fragouli D. Low-density polyethylene/curcumin melt extruded composites with enhanced water vapor barrier and antioxidant properties for active food packaging. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Cottaz A, Bouarab L, De Clercq J, Oulahal N, Degraeve P, Joly C. Potential of Incorporation of Antimicrobial Plant Phenolics Into Polyolefin-Based Food Contact Materials to Produce Active Packaging by Melt-Blending: Proof of Concept With Isobutyl-4-Hydroxybenzoate. Front Chem 2019; 7:148. [PMID: 30968015 PMCID: PMC6439309 DOI: 10.3389/fchem.2019.00148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/28/2019] [Indexed: 01/22/2023] Open
Abstract
There is an increasing interest for active food packaging incorporated with natural antimicrobial agents rather than synthetic preservatives. However, most of plastics for direct contact with food are made of polyolefins, usually processed by extrusion, injection, or blow-molding methods while most of natural antimicrobial molecules are thermolabile compounds (e.g., essential oils). Therefore, addition of plant phenolics (with low volatility) to different polyolefins might be promising to design active controlled release packaging processed by usual plastic compounding and used for direct contact with food products. Therefore, up to 2% (wt/wt) of isobutyl-4-hydroxybenzoate (IBHB) was mixed with 3 polyolefins: EVA poly(ethylene-co-vinyl acetate), LLDPE (Linear Low Density Polyethylene), and PP (PolyPropylene) by melt-blending from 75 to 170°C and then pelletized in order to prepare heat-pressed films. IBHB was chosen as an antibacterial phenolic active model molecule against Staphylococcus aureus to challenge the entire processing. Antibacterial activity of films against S. aureus (procedure adapted from ISO 22196 standard) were 4, 6, and 1 decimal reductions in 24 h for EVA, LLDPE, and PP films, respectively, demonstrating the preservation of the antibacterial activity after melt processing. For food contact materials, the efficacy of antimicrobial packaging depends on the release of the antimicrobial molecules. Therefore, the three types of films were placed at 23°C in 95% (v/v) ethanol and the release rates of IBHB were monitored: 101 ± 1%, 32 ± 7%, and 72 ± 9% at apparent equilibrium for EVA, LLDPE, and PP films, respectively. The apparent diffusion coefficients of IBHB in EVA and PP films were 2.8 ± 0.3 × 10−12 and 4.0 ± 1.0 × 10−16 m2s−1. For LLDPE films, IBHB crystals were observed on the surface of films by SEM (Scanning Electron Microscopy): this blooming effect was due the partial incompatibility of IBHB in LLDPE and its fast diffusion out of the polymer matrix onto the film surface. In conclusion, none of these three materials was suitable for a relevant controlled release packaging targeting the preservation of fresh food, but a combination of two of them is promising by the design of a multilayer packaging: the release could result from permeation through an inner PE layer combined with an EVA one acting as a reservoir.
Collapse
Affiliation(s)
- Amandine Cottaz
- Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | - Lynda Bouarab
- Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | - Justine De Clercq
- Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | - Nadia Oulahal
- Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | - Pascal Degraeve
- Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | - Catherine Joly
- Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| |
Collapse
|
29
|
Rodríguez-Rojas A, Arango Ospina A, Rodríguez-Vélez P, Arana-Florez R. ¿What is the new about food packaging material? A bibliometric review during 1996–2016. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.01.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
|
31
|
Holcapkova P, Hurajova A, Bazant P, Pummerova M, Sedlarik V. Thermal stability of bacteriocin nisin in polylactide-based films. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Lunkov AP, Ilyina AV, Varlamov VP. Antioxidant, Antimicrobial, and Fungicidal Properties of Chitosan Based Films (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818050125] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Belizón M, Fernández-Ponce M, Casas L, Mantell C, Martínez de la Ossa-Fernández E. Supercritical impregnation of antioxidant mango polyphenols into a multilayer PET/PP food-grade film. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
34
|
Llana-Ruiz-Cabello M, Pichardo S, Bermudez JM, Baños A, Ariza JJ, Guillamón E, Aucejo S, Cameán AM. Characterisation and antimicrobial activity of active polypropylene films containing oregano essential oil and Allium extract to be used in packaging for meat products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:782-791. [PMID: 29279039 DOI: 10.1080/19440049.2017.1422282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cooked ham is more prone to spoilage than other meat products, making preservation a key step in its commercialisation. One of the most promising preservation strategies is the use of active packaging. Oregano essential oil (OEO) and Proallium® (an Allium extract) have previously been shown to be useful in polylactic acid (PLA)-active films for ready-to-eat salads. The present work aims to study the suitability of polypropylene (PP) films containing OEO and Proallium® in the preservation of cooked ham. Concerning the technological features of the studied material, no significant changes in the mechanical or optical properties of PP films containing the active substances were recorded in comparison to the PP film without extracts. However, films containing both active substances were more flexible than the control film and less strong, highlighting the plasticisation effect of the natural extracts. Moreover, physical properties changed when active substances were added to the film. Incorporation of 4% Proallium® affected the transparency of the film to a higher extent compared to 8% OEO, undergoing decreases in transparency of 40% and 45%, respectively. Moreover, only the film containing the highest amount of OEO (8%) significantly decreased the thickness. Both active substances showed antibacterial properties; however, Proallium®-active films seemed to be more effective against Brochothrix thermosphacta than PP films containing OEO, with all percentages of Proallium® killing the bacterial population present in the ham after 60 days. In addition, materials containing the lowest Proallium® content exhibited higher acceptability by consumers in the sensory analyses with 63-100% willing to purchase, better even than the control package (56-89%). In fact, 2% of Proallium® obtained the best results in the odour study performed by the panellists.
Collapse
Affiliation(s)
| | - Silvia Pichardo
- a Area of Toxicology, Faculty of Pharmacy , Universidad de Sevilla , Seville , Spain
| | | | | | | | | | - Susana Aucejo
- c Area of Packaging materials and Systems , ITENE , Paterna , Spain
| | - Ana M Cameán
- a Area of Toxicology, Faculty of Pharmacy , Universidad de Sevilla , Seville , Spain
| |
Collapse
|
35
|
Mahato N, Sharma K, Koteswararao R, Sinha M, Baral E, Cho MH. Citrus essential oils: Extraction, authentication and application in food preservation. Crit Rev Food Sci Nutr 2017; 59:611-625. [PMID: 28956626 DOI: 10.1080/10408398.2017.1384716] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Citrus EOs is an economic, eco-friendly and natural alternatives to chemical preservatives and other synthetic antioxidants, such as sodium nitrites, nitrates or benzoates, commonly utilized in food preservation. Citrus based EOs is obtained mainly from the peels of citrus fruits which are largely discarded as wastes and cause environmental problems. The extraction of citrus oils from the waste peels not only saves environment but can be used in various applications including food preservation. The present article presents elaborated viewpoints on the nature and chemical composition of different EOs present in main citrus varieties widely grown across the globe; extraction, characterization and authentication techniques/methods of the citrus EOs; and reviews the recent advances in the application of citrus EOs for the preservation of fruits, vegetables, meat, fish and processed food stuffs. The probable reaction mechanism of the EOs based thin films formation with biodegradable polymers is presented. Other formulation, viz., EOs microencapsulation incorporating biodegradable polymers, nanoemulsion coatings, spray applications and antibacterial action mechanism of the active compounds present in the EOs have been elaborated. Extensive research is required on overcoming the challenges regarding allergies and obtaining safer dosage limits. Shift towards greener technologies indicate optimistic future towards safer utilization of citrus based EOs in food preservation.
Collapse
Affiliation(s)
- Neelima Mahato
- a School of Chemical Engineering, Yeungnam University , Gyeongsan , Gyeongsanbuk-do , Republic of Korea
| | - Kavita Sharma
- a School of Chemical Engineering, Yeungnam University , Gyeongsan , Gyeongsanbuk-do , Republic of Korea
| | - Rakoti Koteswararao
- b Department of Medical Devices , National Institute of Pharmaceutical Education and Research , Ahmedabad , Palej , Gandhinagar , India
| | - Mukty Sinha
- b Department of Medical Devices , National Institute of Pharmaceutical Education and Research , Ahmedabad , Palej , Gandhinagar , India
| | - EkRaj Baral
- a School of Chemical Engineering, Yeungnam University , Gyeongsan , Gyeongsanbuk-do , Republic of Korea
| | - Moo Hwan Cho
- a School of Chemical Engineering, Yeungnam University , Gyeongsan , Gyeongsanbuk-do , Republic of Korea
| |
Collapse
|
36
|
Llana-Ruíz-Cabello M, Pichardo S, Jiménez-Morillo N, González-Vila F, Guillamón E, Bermúdez J, Aucejo S, Camean A, González-Pérez J. Pyrolysis-gas chromatography–isotope ratio mass spectrometry for monitoring natural additives in polylactic acid active food packages. J Chromatogr A 2017; 1525:145-151. [DOI: 10.1016/j.chroma.2017.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 09/28/2017] [Accepted: 10/07/2017] [Indexed: 11/17/2022]
|
37
|
Werner BG, Koontz JL, Goddard JM. Hurdles to commercial translation of next generation active food packaging technologies. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Bugatti V, Sorrentino A, Gorrasi G. Encapsulation of Lysozyme into halloysite nanotubes and dispersion in PLA: Structural and physical properties and controlled release analysis. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.06.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Boonruang K, Kerddonfag N, Chinsirikul W, Mitcham EJ, Chonhenchob V. Antifungal effect of poly(lactic acid) films containing thymol and R-(-)-carvone against anthracnose pathogens isolated from avocado and citrus. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.02.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Li W, Li L, Zhang H, Yuan M, Qin Y. Evaluation of PLA nanocomposite films on physicochemical and microbiological properties of refrigerated cottage cheese. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13362] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenhui Li
- Institute of Yunnan Food Safety; Kunming University of Science and Technology; Kunming 650550 China
| | - Lin Li
- College of Light Industry and Food Science; South China University of Technology; Guangzhou 510640 China
| | - Heng Zhang
- Institute of Yunnan Food Safety; Kunming University of Science and Technology; Kunming 650550 China
| | - Minglong Yuan
- Engineering Research Center of Biopolymer Functional Materials of Yunnan; Yunnan Minzu University; Kunming 650500 China
| | - Yuyue Qin
- Institute of Yunnan Food Safety; Kunming University of Science and Technology; Kunming 650550 China
| |
Collapse
|
41
|
Structural characterization of 1,8-naphthalimides and in vitro microbiological activity of their Cu(II) and Zn(II) complexes. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.10.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Saraiva C, Vasconcelos H, de Almeida JM. A chemometrics approach applied to Fourier transform infrared spectroscopy (FTIR) for monitoring the spoilage of fresh salmon ( Salmo salar ) stored under modified atmospheres. Int J Food Microbiol 2017; 241:331-339. [DOI: 10.1016/j.ijfoodmicro.2016.10.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/14/2016] [Accepted: 10/30/2016] [Indexed: 01/21/2023]
|
43
|
Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. Adv Drug Deliv Rev 2016; 107:367-392. [PMID: 27356150 DOI: 10.1016/j.addr.2016.06.012] [Citation(s) in RCA: 1097] [Impact Index Per Article: 137.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/28/2022]
Abstract
Poly(lactic acid) (PLA), so far, is the most extensively researched and utilized biodegradable aliphatic polyester in human history. Due to its merits, PLA is a leading biomaterial for numerous applications in medicine as well as in industry replacing conventional petrochemical-based polymers. The main purpose of this review is to elaborate the mechanical and physical properties that affect its stability, processability, degradation, PLA-other polymers immiscibility, aging and recyclability, and therefore its potential suitability to fulfill specific application requirements. This review also summarizes variations in these properties during PLA processing (i.e. thermal degradation and recyclability), biodegradation, packaging and sterilization, and aging (i.e. weathering and hygrothermal). In addition, we discuss up-to-date strategies for PLA properties improvements including components and plasticizer blending, nucleation agent addition, and PLA modifications and nanoformulations. Incorporating better understanding of the role of these properties with available improvement strategies is the key for successful utilization of PLA and its copolymers/composites/blends to maximize their fit with worldwide application needs.
Collapse
|
44
|
Stebbins ND, Moy MM, Faig JJ, Uhrich KE. Sugar-based poly (anhydride-ester) containing natural antioxidants and antimicrobials: Synthesis and formulation into polymer blends. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516664819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thymol, a naturally occurring antioxidant and antimicrobial, is commonly researched for active packaging applications to deter food spoilage and bacterial growth. However, the high temperature necessary for processing often volatilizes the thymol, reducing its utility. To overcome this processing limitation, sugar-based poly(anhydride-esters) comprising thymol and compounds generally regarded as safe (succinic and tartaric acid) were successful prepared via mild solution polymerization methods. In vitro release studies demonstrated a sustained thymol release over 3 weeks at therapeutically relevant concentrations. Furthermore, the released thymol displayed antioxidant and antimicrobial activities as indicated by a 2,2-diphenyl-1-picrylhydrazyl radical scavenging and Kirby–Bauer disk diffusion assays, respectively. High-temperature melt blending with low-density polyethylene revealed that the chemical incorporation of thymol into a polymer backbone overcame volatility issues and maintained relevant bioactivity.
Collapse
Affiliation(s)
- Nicholas D Stebbins
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Michelle M Moy
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Jonathan J Faig
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
45
|
Liu F, Hu CY, Zhao Q, Shi YJ, Zhong HN. Migration of copper from nanocopper/LDPE composite films. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:1741-1749. [PMID: 27636863 DOI: 10.1080/19440049.2016.1237779] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Three nanocopper/low-density polyethylene (LDPE) composite films were tested in food simulants (3% acetic acid and 10% ethanol) and real food matrices (rice vinegar, bottled water and Chinese liquor) to explore the behaviours of copper migration using ICP-OES and GFAAS. The effects of exposure time, temperature, nanocopper concentration and contact media on the release of copper from nanocopper/LDPE composite films were studied. It was shown that the migration of copper into 10% ethanol was much less than that into 3% acetic acid at the same conditions. With the increase of nanocopper concentration, exposure time and temperature, the release of copper increased. Copper migration does not appear to be significant in the case of bottled water and Chinese liquor compared with rice vinegar with a maximum value of 0.54 μg mL-1 for the CF-0.25# bags at 70°C for 2 h. The presence and morphology of copper nanoparticles in the films and the topographical changes of the films were confirmed by field emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM). In this manner, copper nanoparticles of different morphologies, sizes and distribution were found, and samples with higher nanocopper concentration had a more irregular topography. In the case of Fourier transform infrared spectroscopy (FTIR), no chemical bonds formed between copper nanoparticles and LDPE. Copper nanoparticles were just as physically dispersed in LDPE.
Collapse
Affiliation(s)
- Fang Liu
- a Department of Food Science and Engineering , Jinan University , Guangzhou , China
| | - Chang-Ying Hu
- a Department of Food Science and Engineering , Jinan University , Guangzhou , China.,b Key Laboratory of Product Packaging and Logistics of Guangdong Higher Education Institutes , Jinan University , Zhuhai , China
| | - Quan Zhao
- c Guangdong Inspection and Quarantine Technology Center , Guangzhou , China
| | - Yu-Jie Shi
- a Department of Food Science and Engineering , Jinan University , Guangzhou , China
| | - Huai-Ning Zhong
- c Guangdong Inspection and Quarantine Technology Center , Guangzhou , China
| |
Collapse
|
46
|
Development and characterisation of HPMC films containing PLA nanoparticles loaded with green tea extract for food packaging applications. Carbohydr Polym 2016; 156:108-117. [PMID: 27842804 DOI: 10.1016/j.carbpol.2016.08.094] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/12/2016] [Accepted: 06/27/2016] [Indexed: 11/24/2022]
Abstract
A novel active film material based on hydroxypropyl-methylcellulose (HPMC) containing poly(lactic acid) (PLA) nanoparticles (NPs) loaded with antioxidant (AO) green tea extract (GTE) was successfully developed. The PLA NPs were fabricated using an emulsification-solvent evaporation technique and the sizes were varied to enable a controlled release of the AO from the HPMC matrix. A statistical experimental design was used to optimise the synthesis of the NPs in order to obtain different sizes of nanoparticles and the loading of these into the HPMC matrix was also varied. The physico-chemical properties of the composite films were investigated and the release of the AO was confirmed by migration studies in 50% v/v ethanol/water food simulant. The AO capacity of the GTE released from the active films was studied using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical method and the results suggest that the material could potentially be used for extending the shelf-life of food products with high fat content.
Collapse
|
47
|
Gómez-Heincke D, Martínez I, Partal P, Guerrero A, Gallegos C. Development of antimicrobial active packaging materials based on gluten proteins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3432-3438. [PMID: 26558473 DOI: 10.1002/jsfa.7525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/14/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND The incorporation of natural biocide agents into protein-based bioplastics, a source of biodegradable polymeric materials, manufactured by a thermo-mechanical method is a way to contribute to a sustainable food packaging industry. This study assesses the antimicrobial activity of 10 different biocides incorporated into wheat gluten-based bioplastics. The effect that formulation, processing, and further thermal treatments exert on the thermo-mechanical properties, water absorption characteristics and rheological behaviour of these materials is also studied. RESULTS Bioplastics containing six of the 10 examined bioactive agents have demonstrated suitable antimicrobial activity at 37 °C after their incorporation into the bioplastic. Moreover, the essential oils are able to create an antimicrobial atmosphere within a Petri dish. CONCLUSION Depending on the selected biocide, its addition may alter the bioplastics protein network in a different extent, which leads to materials exhibiting less water uptake and different rheological and thermo-mechanical behaviours. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Diana Gómez-Heincke
- Departamento de Ingeniería Química, Centro de Investigación en Tecnología de Productos y Procesos Químicos (Pro2TecS) - Campus de Excelencia Internacional Agroalimentario, CeiA3, Universidad de Huelva, Campus el Carmen, 21071, Huelva, Spain
| | - Inmaculada Martínez
- Departamento de Ingeniería Química, Centro de Investigación en Tecnología de Productos y Procesos Químicos (Pro2TecS) - Campus de Excelencia Internacional Agroalimentario, CeiA3, Universidad de Huelva, Campus el Carmen, 21071, Huelva, Spain
| | - Pedro Partal
- Departamento de Ingeniería Química, Centro de Investigación en Tecnología de Productos y Procesos Químicos (Pro2TecS) - Campus de Excelencia Internacional Agroalimentario, CeiA3, Universidad de Huelva, Campus el Carmen, 21071, Huelva, Spain
| | - Antonio Guerrero
- Departamento de Ingeniería Química, Universidad de Sevilla, Facultad de Química, Calle Profesor García González 1, 41012, Sevilla, Spain
| | - Críspulo Gallegos
- Departamento de Ingeniería Química, Centro de Investigación en Tecnología de Productos y Procesos Químicos (Pro2TecS) - Campus de Excelencia Internacional Agroalimentario, CeiA3, Universidad de Huelva, Campus el Carmen, 21071, Huelva, Spain
| |
Collapse
|
48
|
Haghighi-Manesh S, Azizi MH. Production and Evaluation of Type of Multi-Layer Active Film for Packaging of Pasteurized Milk. J FOOD PROCESS ENG 2016. [DOI: 10.1111/jfpe.12442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Soroush Haghighi-Manesh
- Department of Food Science and Technology, School of Agriculture; Tarbiat Modares University; Tehran Iran
| | - Mohammad Hossein Azizi
- Department of Food Science and Technology, School of Agriculture; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
49
|
Llana-Ruiz-Cabello M, Pichardo S, Bermúdez JM, Baños A, Núñez C, Guillamón E, Aucejo S, Cameán AM. Development of PLA films containing oregano essential oil (Origanum vulgare L. virens) intended for use in food packaging. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:1374-86. [PMID: 27455176 DOI: 10.1080/19440049.2016.1204666] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Consumers' concerns about the environment and health have led to the development of new food packaging materials avoiding petroleum-based matrices and synthetic additives. The present study has developed polylactic acid (PLA) films containing different concentrations of essential oil from Origanum vulgare L. virens (OEO). The effectiveness of this new active packaging was checked for use in ready-to-eat salads. A plasticising effect was observed when OEO was incorporated in PLA films. The rest of the mechanical and physical properties of developed films did not show much change when OEO was included in the film. An antioxidant effect was recorded only for films containing the highest percentages of the active agent (5% and 10%). In addition, films exhibited in vitro antibacterial activity against Staphylococcus aureus, Yersinia enterocolitica, Listeria monocytogenes, Enterococcus faecalis and Staphylococcus carnosus. Moreover, in ready-to-eat salads, antimicrobial activity was only observed against yeast and moulds, where 5% and 10% of OEO was the most effective.
Collapse
Affiliation(s)
- M Llana-Ruiz-Cabello
- a Area of Toxicology, Faculty of Pharmacy , Universidad de Sevilla , Seville , Spain
| | - S Pichardo
- a Area of Toxicology, Faculty of Pharmacy , Universidad de Sevilla , Seville , Spain
| | - J M Bermúdez
- b Area of Packaging Materials and Systems , ITENE , Paterna , Valencia , Spain
| | - A Baños
- c DOMCA S.A ., Alhendín , Granada , Spain
| | - C Núñez
- c DOMCA S.A ., Alhendín , Granada , Spain
| | | | - S Aucejo
- b Area of Packaging Materials and Systems , ITENE , Paterna , Valencia , Spain
| | - A M Cameán
- a Area of Toxicology, Faculty of Pharmacy , Universidad de Sevilla , Seville , Spain
| |
Collapse
|
50
|
|