1
|
Gonzalez-Aldaco K, Torres-Reyes LA, Ojeda-Granados C, Leal-Mercado L, Roman S, Panduro A. Metabolic Dysfunction-Associated Steatotic Liver Disease in Chronic Hepatitis C Virus Infection: From Basics to Clinical and Nutritional Management. Clin Pract 2024; 14:2542-2558. [PMID: 39585028 PMCID: PMC11587073 DOI: 10.3390/clinpract14060200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is closely associated with obesity and other cardiometabolic risk factors. MASLD has rapidly become the most common cause of liver disease worldwide, currently affecting 38% of the global population. Excess weight causes chronic inflammation and the activation of different pathways involved in liver damage. MASLD can progress from simple steatosis to steatohepatitis, giving way to its inflammatory component, metabolic dysfunction-associated steatohepatitis (MASH), previously recognized as non-alcoholic steatosis hepatitis (NASH). Chronic hepatitis C virus (HCV) infection remains a significant challenge to liver health as it triggers hepatic inflammation, metabolic disruption, and hepatic steatosis. The convergence of MASLD and chronic HCV infection can significantly alter the course of liver disease and accelerate the progression to severe liver damage. Currently, HCV treatment has a high cure rate. However, in patients who achieve a sustained virological response after treatment with direct-acting antivirals, weight gain, and excessive calorie intake may contribute to increased liver steatosis and a higher risk of liver disease progression. Therefore, the effective clinical and nutritional management of HCV patients, both before and after viral eradication, is crucial to reducing the risk of death from hepatocellular carcinoma. Understanding the complex interactions between MASLD and HCV infection is crucial for managing these patients appropriately. Herein, host and viral mechanisms inducing liver damage during the coexistence of MASLD and HCV infection are described, and their therapeutic and dietary management are discussed.
Collapse
Affiliation(s)
- Karina Gonzalez-Aldaco
- Centro Universitario de los Valles, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, Mexico;
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Hospital #278, Col. El Retiro, Guadalajara 44280, Jalisco, Mexico; (L.L.-M.); (S.R.); (A.P.)
| | - Luis A. Torres-Reyes
- Centro Universitario de los Valles, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, Mexico;
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Hospital #278, Col. El Retiro, Guadalajara 44280, Jalisco, Mexico; (L.L.-M.); (S.R.); (A.P.)
| | - Claudia Ojeda-Granados
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Leonardo Leal-Mercado
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Hospital #278, Col. El Retiro, Guadalajara 44280, Jalisco, Mexico; (L.L.-M.); (S.R.); (A.P.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Sonia Roman
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Hospital #278, Col. El Retiro, Guadalajara 44280, Jalisco, Mexico; (L.L.-M.); (S.R.); (A.P.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Arturo Panduro
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Hospital #278, Col. El Retiro, Guadalajara 44280, Jalisco, Mexico; (L.L.-M.); (S.R.); (A.P.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
2
|
Ezz-Eldin YM, Ewees MG, Azouz AA, Khalaf MM. Investigating the tamoxifen/high-fat diet synergy: a promising paradigm for nonalcoholic steatohepatitis induction in a rat model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9067-9079. [PMID: 38884676 PMCID: PMC11522070 DOI: 10.1007/s00210-024-03192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024]
Abstract
Non-alcoholic steatohepatitis (NASH) is a severe liver condition characterized by excessive fat deposition, ballooning, and lobular inflammation. This investigation was conducted to estimate the capability of concomitant tamoxifen administration (TAM) with a high fat diet (HFD) to induce a reliable NASH model that mimics human NASH features. Rats were administered TAM (25 mg/kg/day p.o.) and consumed HFD for 5 weeks. A time-course investigation was conducted to determine the optimal time for NASH development. Liver function indices, hepatic lipid profile factors, oxidative stress biomarkers, and inflammatory mediators were estimated. Additionally, macroscopic and microscopic changes were examined. Compared with the time-matched control group receiving vehicle alone, TAM/HFD significantly impaired liver function indices represented as marked elevation in ALT, AST, and ALP serum levels. TAM/HFD significantly increased lipid profile factors including high TG and TC hepatic levels. Additionally, TAM/HFD remarkably raised hepatic levels of TNF-α and IL-17 and significantly decreased IL-10. The combination also increases the oxidative status evidenced by high content of MDA as well as low activity of GPx and SOD. Accordingly, the combination of TAM and HFD for 5 weeks collaboratively promotes NASH development by initiating compromised hepatocyte functionality, elevated lipid levels, oxidative stress, and liver inflammation.
Collapse
Affiliation(s)
- Yousra M Ezz-Eldin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Mohamed G Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Amany A Azouz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M Khalaf
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
3
|
Wu B, Lan X, Gao M, Wei W, Wang Y, Yang Y, Yu Z, Huang M, Wu Q. Elucidation of the molecular mechanism of type 2 diabetes mellitus affecting the progression of nonalcoholic steatohepatitis using bioinformatics and network pharmacology: A review. Medicine (Baltimore) 2024; 103:e39731. [PMID: 39287256 PMCID: PMC11404948 DOI: 10.1097/md.0000000000039731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Increasing evidence suggests that patients with diabetes are at increased risk of developing nonalcoholic steatohepatitis (NASH), but the underlying mechanisms that affect the progression of NASH remain unclear. In this study, we used bioinformatics and network pharmacology methods to explore the differentially expressed genes of NASH and the related genes of type 2 diabetes mellitus, and a total of 46 common targets were obtained. Gene ontology showed that the common targets were mainly involved in biological processes such as glucocorticoid, hormone, and bacterium responses. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis signal pathways were mainly in colorectal cancer, amphetamine addition, the peroxisome proliferator-activated receptor signaling pathway, and the toll-like receptor signaling pathway. The protein-protein interaction network identified 8 hub genes, and the co-expression network was analyzed to obtain 7 related functions and mutual proportions of hub genes. A total of 120 transcription factors were predicted for hub genes. Hub genes were closely related to immune cells, including neutropils and eosinophils. In addition, we identified 15 potential candidate drugs based on hub genes that are promising for the treatment of NASH. Type 2 diabetes mellitus can affect the progression of NASH by changing hormone levels and inflammatory responses through multiple targets and signaling pathways. Eight hub genes are expected to be potential targets for subsequent treatment.
Collapse
Affiliation(s)
- Bo Wu
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaohong Lan
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ming Gao
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wei Wei
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuekun Wang
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Yang
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhiyang Yu
- The fourth was assigned to the outpatient department, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Min Huang
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qinyan Wu
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Matboli M, Abdelbaky I, Khaled A, Khaled R, Hamady S, Farid LM, Abouelkhair MB, El-Attar NE, Farag Fathallah M, Abd El Hamid MS, Elmakromy GM, Ali M. Machine learning based identification potential feature genes for prediction of drug efficacy in nonalcoholic steatohepatitis animal model. Lipids Health Dis 2024; 23:266. [PMID: 39182075 PMCID: PMC11344433 DOI: 10.1186/s12944-024-02231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Nonalcoholic Steatohepatitis (NASH) results from complex liver conditions involving metabolic, inflammatory, and fibrogenic processes. Despite its burden, there has been a lack of any approved food-and-drug administration therapy up till now. PURPOSE Utilizing machine learning (ML) algorithms, the study aims to identify reliable potential genes to accurately predict the treatment response in the NASH animal model using biochemical and molecular markers retrieved using bioinformatics techniques. METHODS The NASH-induced rat models were administered various microbiome-targeted therapies and herbal drugs for 12 weeks, these drugs resulted in reducing hepatic lipid accumulation, liver inflammation, and histopathological changes. The ML model was trained and tested based on the Histopathological NASH score (HPS); while (0-4) HPS considered Improved NASH and (5-8) considered non-improved, confirmed through rats' liver histopathological examination, incorporates 34 features comprising 20 molecular markers (mRNAs-microRNAs-Long non-coding-RNAs) and 14 biochemical markers that are highly enriched in NASH pathogenesis. Six different ML models were used in the proposed model for the prediction of NASH improvement, with Gradient Boosting demonstrating the highest accuracy of 98% in predicting NASH drug response. FINDINGS Following a gradual reduction in features, the outcomes demonstrated superior performance when employing the Random Forest classifier, yielding an accuracy of 98.4%. The principal selected molecular features included YAP1, LATS1, NF2, SRD5A3-AS1, FOXA2, TEAD2, miR-650, MMP14, ITGB1, and miR-6881-5P, while the biochemical markers comprised triglycerides (TG), ALT, ALP, total bilirubin (T. Bilirubin), alpha-fetoprotein (AFP), and low-density lipoprotein cholesterol (LDL-C). CONCLUSION This study introduced an ML model incorporating 16 noninvasive features, including molecular and biochemical signatures, which achieved high performance and accuracy in detecting NASH improvement. This model could potentially be used as diagnostic tools and to identify target therapies.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Ibrahim Abdelbaky
- Artificial Intelligence Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha City, Egypt
| | - Abdelrahman Khaled
- Bioinformatics Group, Center of Informatics Sciences (CIS), School of Information Technology and Computer Sciences, Nile University, Giza, Egypt
| | - Radwa Khaled
- Biotechnology/Biomolecular Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
- Basic Sciences Department, Modern University for Technology and Information, Cairo, Egypt
| | | | - Laila M Farid
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Noha E El-Attar
- Information System Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha City, Egypt
- Faculty of Artificial Intelligence, Delta University for Science and Technology, Gamasa, 35712, Egypt
| | - Mohamed Farag Fathallah
- Medical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Medical Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Manal S Abd El Hamid
- Medical Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Gena M Elmakromy
- Endocrinology & Diabetes Mellitus Unit, Department of Internal Medicine, Badr University in Cairo, Badr City, Egypt
| | - Marwa Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Srinivas AN, Suresh D, Vishwanath PM, Satish S, Santhekadur PK, Koka S, Kumar DP. TACE inhibition: a promising therapeutic intervention against AATF-mediated steatohepatitis to hepatocarcinogenesis. Mol Oncol 2024; 18:1940-1957. [PMID: 38558505 PMCID: PMC11306524 DOI: 10.1002/1878-0261.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/03/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis-driven hepatocellular carcinoma (MASH-HCC) is a global clinical challenge for which there is a limited understanding of disease pathogenesis and a subsequent lack of therapeutic interventions. We previously identified that tumor necrosis factor-alpha (TNF-α) upregulated apoptosis antagonizing transcription factor (AATF) in MASH. Here, we investigated the effect of TNF-α converting enzyme (TACE) inhibition as a promising targeted therapy against AATF-mediated steatohepatitis to hepatocarcinogenesis. A preclinical murine model that recapitulates human MASH-HCC was used in the study. C57Bl/6 mice were fed with chow diet normal water (CD) or western diet sugar water (WD) along with a low dose of carbon tetrachloride (CCl4; 0.2 μL·g-1, weekly) for 24 weeks. TACE activity, TNF-α levels, and AATF expression were measured. The mice were treated with the TACE inhibitor Marimastat for 12 weeks, followed by analyses of liver injury, fibrosis, inflammation, and oncogenic signaling. In vitro experiments using stable clones of AATF control and AATF knockdown were also conducted. We found that AATF expression was upregulated in WD/CCl4 mice, which developed severe MASH at 12 weeks and advanced fibrosis with HCC at 24 weeks. WD/CCl4 mice showed increased TACE activity with reduced hepatic expression of sirtuin 1 (Sirt1) and tissue inhibitor of metalloproteinase 3 (Timp3). The involvement of the SIRT1/TIMP3/TACE axis was confirmed by the release of TNF-α, which upregulated AATF, a key molecular driver of MASH-HCC. Interestingly, TACE inhibition by Marimastat reduced liver injury, dyslipidemia, AATF expression, and oncogenic signaling, effectively preventing hepatocarcinogenesis. Furthermore, Marimastat inhibited the activation of JNK, ERK1/2, and AKT, which are key regulators of tumorigenesis in WD/CCl4 mice and in AATF control cells, but had no effect on AATF knockdown cells. This study shows that TACE inhibition prevents AATF-mediated inflammation, fibrosis, and oncogenesis in MASH-HCC, offering a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Akshatha N. Srinivas
- Department of Biochemistry, CEMR Lab, JSS Medical CollegeJSS Academy of Higher Education and ResearchMysuruIndia
| | - Diwakar Suresh
- Department of Biochemistry, CEMR Lab, JSS Medical CollegeJSS Academy of Higher Education and ResearchMysuruIndia
| | - Prashant M. Vishwanath
- Department of Biochemistry, CEMR Lab, JSS Medical CollegeJSS Academy of Higher Education and ResearchMysuruIndia
| | - Suchitha Satish
- Department of Pathology, JSS Medical College and HospitalJSS Academy of Higher Education and ResearchMysuruIndia
| | - Prasanna K. Santhekadur
- Department of Biochemistry, CEMR Lab, JSS Medical CollegeJSS Academy of Higher Education and ResearchMysuruIndia
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of PharmacyTexas A&M UniversityKingsvilleTXUSA
| | - Divya P. Kumar
- Department of Biochemistry, CEMR Lab, JSS Medical CollegeJSS Academy of Higher Education and ResearchMysuruIndia
| |
Collapse
|
6
|
Miao Y, Li Z, Feng J, Lei X, Shan J, Qian C, Li J. The Role of CD4 +T Cells in Nonalcoholic Steatohepatitis and Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:6895. [PMID: 39000005 PMCID: PMC11240980 DOI: 10.3390/ijms25136895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has become the fourth leading cause of cancer-related deaths worldwide; annually, approximately 830,000 deaths related to liver cancer are diagnosed globally. Since early-stage HCC is clinically asymptomatic, traditional treatment modalities, including surgical ablation, are usually not applicable or result in recurrence. Immunotherapy, particularly immune checkpoint blockade (ICB), provides new hope for cancer therapy; however, immune evasion mechanisms counteract its efficiency. In addition to viral exposure and alcohol addiction, nonalcoholic steatohepatitis (NASH) has become a major cause of HCC. Owing to NASH-related aberrant T cell activation causing tissue damage that leads to impaired immune surveillance, NASH-associated HCC patients respond much less efficiently to ICB treatment than do patients with other etiologies. In addition, abnormal inflammation contributes to NASH progression and NASH-HCC transition, as well as to HCC immune evasion. Therefore, uncovering the detailed mechanism governing how NASH-associated immune cells contribute to NASH progression would benefit HCC prevention and improve HCC immunotherapy efficiency. In the following review, we focused our attention on summarizing the current knowledge of the role of CD4+T cells in NASH and HCC progression, and discuss potential therapeutic strategies involving the targeting of CD4+T cells for the treatment of NASH and HCC.
Collapse
Affiliation(s)
- Yadi Miao
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Ziyong Li
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Juan Feng
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Xia Lei
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Juanjuan Shan
- School of Medicine, Chongqing University, Chongqing 400030, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Cheng Qian
- School of Medicine, Chongqing University, Chongqing 400030, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Jiatao Li
- School of Medicine, Chongqing University, Chongqing 400030, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
7
|
Linero PL, Castilla-Guerra L. Management of Cardiovascular Risk in the Non-alcoholic Fatty Liver Disease Setting. Eur Cardiol 2024; 19:e02. [PMID: 38807854 PMCID: PMC11131151 DOI: 10.15420/ecr.2023.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/02/2023] [Indexed: 05/30/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an overlooked and undetected pathology, which affects more than 32% of adults worldwide. NAFLD is becoming more common in Western industrialised countries, particularly in patients with central obesity, type 2 diabetes, dyslipidaemia and metabolic syndrome. Although NAFLD has traditionally been interpreted as a liver disease with a high risk of liver-related complications, NAFLD is an underappreciated and independent risk factor for atherosclerotic cardiovascular disease, which is the principal cause of death in patients with NAFLD. Treatment options to counteract both the progression and development of cardiovascular disease and NAFLD include lifestyle interventions, such as weight loss, increased physical activity and dietary modification, and optimal medical therapy of comorbid conditions; nevertheless, further studies are needed to define optimal treatment strategies for the prevention of both hepatic and cardiovascular complications of NAFLD.
Collapse
Affiliation(s)
- Paula Luque Linero
- Vascular Risk Unit, Department of Internal Medicine, Hospital Virgen MacarenaSeville, Spain
| | - Luis Castilla-Guerra
- Vascular Risk Unit, Department of Internal Medicine, Hospital Virgen MacarenaSeville, Spain
- Department of Medicine, University of SevilleSeville, Spain
| |
Collapse
|
8
|
Mahmoudi A, Hajihasani MM, Majeed M, Jamialahmadi T, Sahebkar A. Effect of Calebin-A on Critical Genes Related to NAFLD: A Protein-Protein Interaction Network and Molecular Docking Study. Curr Genomics 2024; 25:120-139. [PMID: 38751599 PMCID: PMC11092913 DOI: 10.2174/0113892029280454240214072212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 05/18/2024] Open
Abstract
Background Calebin-A is a minor phytoconstituent of turmeric known for its activity against inflammation, oxidative stress, cancerous, and metabolic disorders like Non-alcoholic fatty liver disease(NAFLD). Based on bioinformatic tools. Subsequently, the details of the interaction of critical proteins with Calebin-A were investigated using the molecular docking technique. Methods We first probed the intersection of genes/ proteins between NAFLD and Calebin-A through online databases. Besides, we performed an enrichment analysis using the ClueGO plugin to investigate signaling pathways and gene ontology. Next, we evaluate the possible interaction of Calebin-A with significant hub proteins involved in NAFLD through a molecular docking study. Results We identified 87 intersection genes Calebin-A targets associated with NAFLD. PPI network analysis introduced 10 hub genes (TP53, TNF, STAT3, HSP90AA1, PTGS2, HDAC6, ABCB1, CCT2, NR1I2, and GUSB). In KEGG enrichment, most were associated with Sphingolipid, vascular endothelial growth factor A (VEGFA), C-type lectin receptor, and mitogen-activated protein kinase (MAPK) signaling pathways. The biological processes described in 87 intersection genes are mostly concerned with regulating the apoptotic process, cytokine production, and intracellular signal transduction. Molecular docking results also directed that Calebin-A had a high affinity to bind hub proteins linked to NAFLD. Conclusion Here, we showed that Calebin-A, through its effect on several critical genes/ proteins and pathways, might repress the progression of NAFLD.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Hajihasani
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Muhammed Majeed
- Department of Chemistry, Sabinsa Corporation, 20 Lake Drive, East Windsor, NJ, 08520, USA
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran;
| | - Amirhossein Sahebkar
- Department of Medical Biotechnology, Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Gao S, Wei L, Qin Y, Zhang P, Quan T, Liang F, Huang G. Network pharmacological analysis on the mechanism of Linggui Zhugan decoction for nonalcoholic fatty liver disease. Medicine (Baltimore) 2024; 103:e37281. [PMID: 38457573 PMCID: PMC10919485 DOI: 10.1097/md.0000000000037281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/10/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), represents a chronic progressive disease that imposes a significant burden on patients and the healthcare system. Linggui Zhugan decoction (LGZGD) plays a substantial role in treating NAFLD, but its exact molecular mechanism is unknown. Using network pharmacology, this study aimed to investigate the mechanism of action of LGZGD in treating NAFLD. Active ingredients and targets were identified through the integration of data from the TCMSP, GEO, GeneCards, and OMIM databases. Cytoscape 3.9.1 software, in conjunction with the STRING platform, was employed to construct network diagrams and screen core targets. The enrichment analysis of gene ontology and the Kyoto Encyclopedia of Genes and Genomes pathways were conducted by using the R. Molecular docking of the active ingredients and core targets was performed with AutoDock Vina software. We obtained 93 and 112 active ingredients and potential targets using the bioinformatic analysis of LGZGD in treating NAFLD. The primary ingredients of LGZGD included quercetin, kaempferol, and naringenin. The core targets were identified AKT1, MYC, HSP90AA1, HIF1A, ESR1, TP53, and STAT3. Gene ontology function enrichment analysis revealed associations with responses to nutrient and oxygen levels, nuclear receptor activity, and ligand-activated transcription factor activity. Kyoto Encyclopedia of Genes and Genomes signaling pathway analysis implicated the involvement of the PI3K-Akt, IL-17, TNF, Th17 cell differentiation, HIF-1, and TLR signaling pathways. Molecular docking studies indicated strong binding affinities between active ingredients and targets. LGZGD intervenes in NAFLD through a multi-ingredient, multi-target, and multi-pathway approach. Treatment with LGZGD can improve insulin resistance, oxidative stress, inflammation, and lipid metabolism associated with NAFLD.
Collapse
Affiliation(s)
- Songlin Gao
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Liuting Wei
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yan Qin
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Peng Zhang
- Department of Nephrology, Liuzhou Traditional Chinese Medicine Hospital, Liuzhou, Guangxi, China
| | - Tingwei Quan
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Fei Liang
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Guihua Huang
- Department of Spleen and Stomach Liver Diseases, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
10
|
Hwang SJ, Choi YJ, Wang JH, Son CG. Lactobacillus Casei-fermented Amomum Xanthioides Mitigates non-alcoholic fatty liver disease in a high-fat diet mice model. Biomed Pharmacother 2024; 172:116250. [PMID: 38320334 DOI: 10.1016/j.biopha.2024.116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a substantial global health issue owing to its high prevalence and the lack of effective therapies. Fermentation of medicinal herbs has always been considered a feasible strategy for enhancing efficacy in treating various ailments. This study aimed to investigate the potential benefits of the Lactobacillus casei-fermented Amomum xanthioides (LAX) on NAFLD in a high-fat diet model. HFD-fed C57BL6/j mice were administered with 200 mg/kg of LAX or unfermented Amomum xanthioides (AX) or 100 mg/kg of metformin for 6 weeks from the 4th week. The 10-week HFD-induced alterations of hepatic lipid accumulation and hepatic inflammation were significantly attenuated by LAX dominantly (more than AX or metformin), which evidenced by pathohistological findings, lipid contents, inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)- 6 and IL-1β, oxidative parameters such as reactive oxygen species (ROS) and malondialdehyde (MDA), and molecular changes reversely between lipogenic proteins such as glycerol-3-phosphate acyltransferase (GPAM) and sterol regulatory element-binding protein (SREBP)- 1, and lipolytic proteins including peroxisome proliferator-activated receptor (PPAR-α) and AMP-activated kinase (AMPK)-α in the liver tissues. In addition, the abnormal serum lipid parameters (triglyceride, total cholesterol and LDL-cholesterol) notably ameliorated by LAX. In conclusion, these findings support the potential of LAX as a promising plant-derived remedy for NAFLD.
Collapse
Affiliation(s)
- Seung-Ju Hwang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea; Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea
| | - Yu-Jin Choi
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea; Department of Internal Medicine, College of Korean Medicine, Se-Myung University, Semyeong-ro 65, Jecheon-si, Chungcheongbuk-do, 27136, the Republic of Korea
| | - Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea; Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea.
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea; Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea.
| |
Collapse
|
11
|
DiSabato DJ, Marion CM, Mifflin KA, Alfredo AN, Rodgers KA, Kigerl KA, Popovich PG, McTigue DM. System failure: Systemic inflammation following spinal cord injury. Eur J Immunol 2024; 54:e2250274. [PMID: 37822141 PMCID: PMC10919103 DOI: 10.1002/eji.202250274] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Spinal cord injury (SCI) affects hundreds of thousands of people in the United States, and while some effects of the injury are broadly recognized (deficits to locomotion, fine motor control, and quality of life), the systemic consequences of SCI are less well-known. The spinal cord regulates systemic immunological and visceral functions; this control is often disrupted by the injury, resulting in viscera including the gut, spleen, liver, bone marrow, and kidneys experiencing local tissue inflammation and physiological dysfunction. The extent of pathology depends on the injury level, severity, and time post-injury. In this review, we describe immunological and metabolic consequences of SCI across several organs. Since infection and metabolic disorders are primary reasons for reduced lifespan after SCI, it is imperative that research continues to focus on these deleterious aspects of SCI to improve life span and quality of life for individuals with SCI.
Collapse
Affiliation(s)
- Damon J. DiSabato
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
| | - Christina M. Marion
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
| | - Katherine A. Mifflin
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
| | - Anthony N. Alfredo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Kyleigh A. Rodgers
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Kristina A. Kigerl
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
| | - Phillip G. Popovich
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
| | - Dana M. McTigue
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
12
|
Xourafa G, Korbmacher M, Roden M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat Rev Endocrinol 2024; 20:27-49. [PMID: 37845351 DOI: 10.1038/s41574-023-00898-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/18/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by tissue-specific insulin resistance and pancreatic β-cell dysfunction, which result from the interplay of local abnormalities within different tissues and systemic dysregulation of tissue crosstalk. The main local mechanisms comprise metabolic (lipid) signalling, altered mitochondrial metabolism with oxidative stress, endoplasmic reticulum stress and local inflammation. While the role of endocrine dysregulation in T2DM pathogenesis is well established, other forms of inter-organ crosstalk deserve closer investigation to better understand the multifactorial transition from normoglycaemia to hyperglycaemia. This narrative Review addresses the impact of certain tissue-specific messenger systems, such as metabolites, peptides and proteins and microRNAs, their secretion patterns and possible alternative transport mechanisms, such as extracellular vesicles (exosomes). The focus is on the effects of these messengers on distant organs during the development of T2DM and progression to its complications. Starting from the adipose tissue as a major organ relevant to T2DM pathophysiology, the discussion is expanded to other key tissues, such as skeletal muscle, liver, the endocrine pancreas and the intestine. Subsequently, this Review also sheds light on the potential of multimarker panels derived from these biomarkers and related multi-omics for the prediction of risk and progression of T2DM, novel diabetes mellitus subtypes and/or endotypes and T2DM-related complications.
Collapse
Affiliation(s)
- Georgia Xourafa
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Melis Korbmacher
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany.
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
13
|
Li X, Chen W, Ren J, Gao X, Zhao Y, Song T, Fu K, Zheng Y, Yang J. Effects of curcumin on non-alcoholic fatty liver disease: A scientific metrogy study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155241. [PMID: 38128395 DOI: 10.1016/j.phymed.2023.155241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/26/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases encountered in clinical practice. Curcumin can alleviate insulin resistance, inhibit oxidative stress response, reduce inflammation, reduce liver fat deposition, and effectively improve NAFLD through various modalities, inhibiting the progression into cirrhosis and fibrosis. PURPOSE To explore the current status, hot spots, and developing trends of curcumin in NAFLD treatment through quantitative scientific analysis to serve as a reference for subsequent studies. STUDY DESIGN A comprehensive analysis of the mechanism of action of curcumin in the treatment of NAFLD and methods to increase curcumin bioavailability using bibliometric analysis and literature review. METHODS This study used VOSviewer software to analyze the literature related to curcumin treatment of NAFLD in the Web of Science (WOS) core set database. A comprehensive and in-depth review was conducted based on the results of scientific econometric research and literature review. RESULTS The review observed that curcumin can activate various signaling pathways such as AMPK and NF-κB to inhibit oxidative stress and apoptosis, thereby reflecting its pharmacological effects: lowering lipid, anti-inflammatory, reducing insulin resistance, and anti-fibrosis. These mechanisms improve or even reverse the complex pathological features of lipid metabolism disorders associated with NAFLD. Curcumin also can potentially serve as a primary regulatory target for treating hepatic steatosis using gut microbiota. However, these pharmacological effects of curcumin were limited owing to its low bioavailability. CONCLUSION This review discusses NAFLD treatment with curcumin, analyzes the reasons for its low bioavailability, and introduces models for studying and methods for improving curcumin bioavailability. As research on NAFLD grows, future research should capture the trend of basic research, pay attention to clinical research, and continuously explore the therapeutic potential of curcumin.
Collapse
Affiliation(s)
- Xiankuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weisan Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinchen Gao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tianbao Song
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kun Fu
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300120, China
| | - Yanchao Zheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jinlong Yang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Vachliotis ID, Valsamidis I, Polyzos SA. Tumor Necrosis Factor-Alpha and Adiponectin in Nonalcoholic Fatty Liver Disease-Associated Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:5306. [PMID: 37958479 PMCID: PMC10650629 DOI: 10.3390/cancers15215306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is emerging as an important risk factor for hepatocellular carcinoma (HCC), whose prevalence is rising. Although the mechanisms of progression from NAFLD to HCC are not fully elucidated, tumor necrosis factor-α (TNF-α) and adiponectin, as well as their interplay, which seems to be antagonistic, may contribute to the pathophysiology of NAFLD-associated HCC. TNF-α initially aims to protect against hepatocarcinogenesis, but during the progression of NAFLD, TNF-α is increased, thus probably inducing hepatocarcinogenesis in the long-term, when NAFLD is not resolved. On the other hand, adiponectin, which is expected to exert anti-tumorigenic effects, is decreased during the progression of the disease, a trend that may favor hepatocarcinogenesis, but is paradoxically increased at end stage disease, i.e., cirrhosis and HCC. These observations render TNF-α and adiponectin as potentially diagnostic biomarkers and appealing therapeutic targets in the setting of NAFLD-associated HCC, possibly in combination with systematic therapy. In this regard, combination strategy, including immune checkpoint inhibitors (ICIs) with anti-TNF biologics and/or adiponectin analogs or medications that increase endogenous adiponectin, may warrant investigation against NAFLD-associated HCC. This review aims to summarize evidence on the association between TNF-α and adiponectin with NAFLD-associated HCC, based on experimental and clinical studies, and to discuss relevant potential therapeutic considerations.
Collapse
Affiliation(s)
- Ilias D. Vachliotis
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Gastroenterology, 424 General Military Hospital, 56429 Thessaloniki, Greece
| | - Ioannis Valsamidis
- First Department of Internal Medicine, 424 General Military Hospital, 56429 Thessaloniki, Greece;
| | - Stergios A. Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
15
|
Burger K, Jung F, Baumann A, Brandt A, Staltner R, Sánchez V, Bergheim I. TNFα is a key trigger of inflammation in diet-induced non-obese MASLD in mice. Redox Biol 2023; 66:102870. [PMID: 37683301 PMCID: PMC10493600 DOI: 10.1016/j.redox.2023.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Tumor necrosis factor alpha (TNFα) is thought to be a critical factor in the development of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we determined the effects of a treatment with the anti-TNFα antibody infliximab and a genetic deletion of TNFα, respectively, in the development of non-obese diet-induced early metabolic dysfunction-associated steatohepatitis (MASH) in mice. The treatment with infliximab improved markers of liver damage in mice with pre-existing early MASH. In TNFα-/- mice, the development of early signs of MASH and insulin resistance was significantly attenuated compared to wild-type animals. While mRNA expression of proinflammatory cytokines like interleukin 1β (Il1b) and interleukin 6 (Il6) were significantly lower in livers of MASH-diet-fed TNFα-/- mice compared to wild-type mice with early MASH, markers of intestinal barrier function were similarly impaired in both MASH-diet-fed groups compared to controls. Our data suggest that TNFα is a key regulator of hepatic inflammation and insulin resistance associated with the development of early non-obese MASH.
Collapse
Affiliation(s)
- Katharina Burger
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Finn Jung
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Victor Sánchez
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Xi Y, Kim S, Nguyen TTT, Lee PJ, Zheng J, Lin Z, Cho N. 2-Geranyl-1-methoxyerythrabyssin II alleviates lipid accumulation and inflammation in hepatocytes through AMPK activation and AKT inhibition. Arch Pharm Res 2023; 46:808-824. [PMID: 37782374 DOI: 10.1007/s12272-023-01464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
A growing proportion of the global adult and pediatric populations are currently affected by nonalcoholic steatohepatitis (NASH), leading to rising rates of liver fibrosis and hepatocellular carcinoma without effective pharmacotherapy. Here, we investigated whether 2-geranyl-1-methoxyerythrabyssin II (GMET), isolated from Lespedeza bicolor, could alleviate lipid accumulation and inflammatory responses in a NASH model. GMET exhibited potent in vitro and in vivo effects against lipid accumulation and attenuated inflammatory responses without cytotoxicity. Mechanistically, GMET inhibits acetyl-CoA carboxylase (ACC), sterol regulatory element-binding proteins-1c (SREBP1), and mammalian target of rapamycin (mTOR), and activates PPARα by activating AMP-activated kinase (AMPK), leading to the alleviation of lipid accumulation. In addition, GMET suppresses the NF-κB pathway by activating AMPK and inhibiting the activated protein kinase B (AKT)/IκB-kinase (IKK) pathway, leading to the inhibition of the inflammatory response in hepatocytes. All these protective effects of GMET on lipid accumulation and inflammation in vivo and in vitro were largely abolished by co-treatment with dorsomorphin, an AMPK inhibitor. In conclusion, GMET alleviated lipid accumulation and inflammation to preserve normal hepatocyte function in steatohepatitis. Thus, GMET is a novel potential multi-targeting compound to improve steatohepatitis.
Collapse
Affiliation(s)
- Yiyuan Xi
- The Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Korea
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Soeun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Korea
| | - Thi Thanh Thuy Nguyen
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Korea
| | - Phil Jun Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Korea
| | - Jujia Zheng
- The Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhuofeng Lin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Korea.
| |
Collapse
|
17
|
He X, Li Y, Deng X, Xiao X, Zeng J. Integrative evidence construction for resveratrol treatment of nonalcoholic fatty liver disease: preclinical and clinical meta-analyses. Front Pharmacol 2023; 14:1230783. [PMID: 37767399 PMCID: PMC10520779 DOI: 10.3389/fphar.2023.1230783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Background: Resveratrol, a polyphenol found in various plants, is known for its diverse bioactivities and has been explored in relation to nonalcoholic fatty liver disease (NAFLD). However, no high-quality evidence exists regarding its efficacy. Objective: a meta-analysis was conducted to evaluate the potential efficacy of resveratrol in treating nonalcoholic fatty liver disease by analyzing both preclinical studies and clinical trials. Method: PubMed, Embase and Web of Science were searched for the included literature with the criteria for screening. Quantitative synthesis and meta-analyses were performed by STATA 16.0. Results: Twenty-seven studies were included, and the results indicated that resveratrol effectively improved liver function, reduced fatty liver indicators, and affected other indices in preclinical studies. The effective dosage ranged from 50 mg/kg-200 mg/kg, administered over a period of 4-8 weeks. While there were inconsistencies between clinical trials and preclinical research, both study types revealed that resveratrol significantly reduced tumor necrosis factor-α levels, further supporting its protective effect against nonalcoholic fatty liver disease. Additionally, resveratrol alleviated nonalcoholic fatty liver disease primarily via AMPK/Sirt1 and anti-inflammatory signaling pathways. Conclusion: Current meta-analysis could not consistently verify the efficacy of resveratrol in treating nonalcoholic fatty liver disease, but demonstrated the liver-protective effects on nonalcoholic fatty liver disease. The large-sample scale and single region RCTs were further needed to investigate the efficacy.
Collapse
Affiliation(s)
- Xuan He
- Department of Pharmacy, Xindu District Shibantan Street Community Healthcare Center, Chengdu, China
| | - Yubing Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Vachliotis ID, Polyzos SA. The Role of Tumor Necrosis Factor-Alpha in the Pathogenesis and Treatment of Nonalcoholic Fatty Liver Disease. Curr Obes Rep 2023; 12:191-206. [PMID: 37407724 PMCID: PMC10482776 DOI: 10.1007/s13679-023-00519-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE OF REVIEW To summarize experimental and clinical evidence on the association between tumor necrosis factor-α (TNF-α) and nonalcoholic fatty liver disease (NAFLD) and discuss potential treatment considerations. RECENT FINDINGS Experimental evidence suggests that TNF-α is a cytokine with a critical role in the pathogenesis of NAFLD. Although, the production of TNF-α may be an early event during the course of nonalcoholic fatty liver (NAFL), TNF-α may play a more substantial role in the pathogenesis of nonalcoholic steatohepatitis (NASH) and NAFLD-associated fibrosis. Moreover, TNF-α may potentiate hepatic insulin resistance, thus interconnecting inflammatory with metabolic signals and possibly contributing to the development of NAFLD-related comorbidities, including cardiovascular disease, hepatocellular carcinoma, and extra-hepatic malignancies. In clinical terms, TNF-α is probably associated with the severity of NAFLD; circulating TNF-α gradually increases from controls to patients with NAFL, and then, to patients with NASH. Given this potential association, various therapeutic interventions (obeticholic acid, peroxisome proliferator-activated receptors, sodium-glucose co-transporter 2 inhibitors, glucagon-like peptide-1 receptor agonists, probiotics, synbiotics, rifaximin, vitamin E, pentoxifylline, ursodeoxycholic acid, fibroblast growth factor-21, n-3 polyunsaturated fatty acids, statins, angiotensin receptor blockers) have been evaluated for their effect on TNF-α and NAFLD. Interestingly, anti-TNF biologics have shown favorable metabolic and hepatic effects, which may open a possible therapeutic window for the management of advanced NAFLD. The potential key pathogenic role of TNF-α in NAFLD warrants further investigation and may have important diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Ilias D. Vachliotis
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Second Department of Internal Medicine, 424 General Military Hospital, Thessaloniki, Greece
| | - Stergios A. Polyzos
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
19
|
Ke F, Wu X, Zheng J, Li C. Tilianin alleviates lipid deposition and fibrosis in mice with nonalcoholic steatohepatitis by activating the PPARα/Nnat axis. Drug Dev Res 2023; 84:922-936. [PMID: 37052239 DOI: 10.1002/ddr.22062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
The understanding and treatment of nonalcoholic steatohepatitis (NASH) are still very limited. This study reports the therapeutic effect of tilianin on mice with NASH and further explores its possible molecular mechanisms. A mice model of NASH was established using low-dose streptozotocin combined with a high-fat diet and tilianin treatment. Liver function was assessed by determining serum aspartate aminotransferase and alanine aminotransferase in serum. Interleukin (IL)-1β, IL-6, transforming growth factor β1 (TGF-β1), and tumor necrosis factor α (TNF-α) levels in serum were determined. Hepatocyte apoptosis was assessed using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling staining. Oil Red O staining and boron dipyrrin staining were used to determine lipid deposition in liver tissues. Masson staining was used to evaluate liver fibrosis, and immunohistochemistry and western blot analysis were used to determine the expression of target proteins. Tilianin treatment significantly ameliorated liver function, inhibited hepatocyte apoptosis, and reduced lipid deposition and liver fibrosis in mice with NASH. The expression of neuronatin (Nnat) and peroxisome proliferator-activated receptor (PPAR) α was upregulated, whereas that of sterol regulatory element-binding protein 1 (SREBP-1), TGF-β1, nuclear factor (NF)-κB p65, and phosphorylated p65 was downregulated in the liver tissues of mice with NASH after tilianin treatment. The above effects of tilianin were significantly reversed after Nnat knock-down, but its effect on PPARα expression was unaffected. Thus, the natural drug tilianin shows potential in treatig NASH. Its mechanism of action may be related to the targeted activation of PPARα/Nnat, thereby inhibiting the activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fan Ke
- Department of Endocrinology, Jiujiang No. 1 People's Hospital, Jiujiang, People's Republic of China
| | - Xu Wu
- Department of Endocrinology, Jiujiang No. 1 People's Hospital, Jiujiang, People's Republic of China
| | - Jing Zheng
- Department of Endocrinology, Jiujiang No. 1 People's Hospital, Jiujiang, People's Republic of China
| | - Cuihong Li
- Department of Gastroenterology, Jiujiang No. 1 People's Hospital, Jiujiang, People's Republic of China
| |
Collapse
|
20
|
Maleki E, Sadeghpour A, Taherifard E, Izadi B, Pasalar M, Akbari M. The effects of chicory supplementation on liver enzymes and lipid profiles in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis of clinical evidence. Clin Nutr ESPEN 2023; 55:447-454. [PMID: 37202083 DOI: 10.1016/j.clnesp.2023.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND & AIMS The beneficial effects of Cichorium intybus L., chicory, in patients with non-alcoholic fatty liver disease (NAFLD) are controversial. This review aimed to systematically summarize the evidence on the effects of chicory on liver function and lipid profile in patients with NAFLD. METHODS Online databases of Scopus, Web of Science, PubMed, EMBASE, Cochrane Library, and grey literature were searched for relevant randomized clinical trials. Weighted mean differences (WMD) with 95% confidence intervals (CIs) were used as effect sizes and a random-effects model was used to pool the data. Besides, sensitivity analyses and publication bias analysis were performed. RESULTS In total, five articles containing 197 patients with NAFLD were included. The study showed that chicory significantly decreased the levels of both aspartate transaminase (WMD: -7.07 U/L, 95%CI: -13.82 to -0.32) and alanine transaminase (WMD: -17.53 U/L, 95%CI: -32.64 to -2.42). However, no significant effects on alkaline phosphatase and gamma-glutamyl transferase levels and the components of the lipid profile were observed with the use of chicory. CONCLUSIONS This meta-analysis showed that chicory supplementation may exert potential hepatoprotective effects in patients with NAFLD. However, for widespread recommendations, more studies with a higher number of patients and longer periods of intervention are mandatory.
Collapse
Affiliation(s)
- Elham Maleki
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Sadeghpour
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Erfan Taherifard
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz School for Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Izadi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Pasalar
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Akbari
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
Biosensor-based active ingredient recognition system for screening TNF-α inhibitors from lotus leaves. Anal Bioanal Chem 2023; 415:1641-1655. [PMID: 36719439 DOI: 10.1007/s00216-023-04565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
Erhuangquzhi granules (EQG) have been clinically proven to be effective in nonalcoholic steatohepatitis (NASH) treatment. However, the active components and molecular mechanisms remain unknown. This study aimed to screen active components targeting tumor necrosis factor α (TNF-α) in EQG for the treatment of NASH by a surface plasmon resonance (SPR) biosensor-based active ingredient recognition system (SPR-AIRS). The amine-coupling method was used to immobilize recombinant TNF-α protein on an SPR chip, the specificity of the TNF-α-immobilized chip was validated, and nine medicinal herbs in EQG were prescreened. Nuciferine (NF), lirinidine (ID), and O-nornuciferine (NNF) from lotus leaves were found and identified as TNF-α ligands by UPLC‒MS/MS, and the affinity constants of NF, ID, and NNF to TNF-α were determined by SPR experiments (Kd = 61.19, 31.02, and 20.71 µM, respectively). NF, ID, and NNF inhibited TNF-α-induced apoptosis in L929 cells, the levels of secreted IL-6 and IL-1β were reduced, and the phosphorylation of IKKβ and IκB was inhibited in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. In conclusion, a class of new active small-molecule TNF-α inhibitors was discovered, which also provides a valuable reference for the material basis and mechanism of EQG action in NASH treatment.
Collapse
|
22
|
Musolino V, Macrì R, Cardamone A, Serra M, Coppoletta AR, Tucci L, Maiuolo J, Lupia C, Scarano F, Carresi C, Nucera S, Bava I, Marrelli M, Palma E, Gliozzi M, Mollace V. Nocellara Del Belice ( Olea europaea L. Cultivar): Leaf Extract Concentrated in Phenolic Compounds and Its Anti-Inflammatory and Radical Scavenging Activity. PLANTS (BASEL, SWITZERLAND) 2022; 12:27. [PMID: 36616158 PMCID: PMC9824270 DOI: 10.3390/plants12010027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Olea europaea L. is a plant belonging to the Oleaceae family, widely grown around the Mediterranean Basin and its leaves are a source of phenolic compounds with antioxidant and anti-inflammatory capacity. Among these, oleuropein and luteolin-7-O-glucoside represent two major polyphenolic compounds in olive-leaf extract. Herein, a polystyrene resin was used to recover the polyphenolic fraction from the acetone-water leaf extract from Nocellara del Belice cultivar, which showed the higher level of analysed bioactive compounds, compared to Carolea cultivar. The antioxidant activity of the extract concentrated in phenolic compounds (OLECp) was evaluated through a classical assay and electron paramagnetic resonance (EPR) for DPPH and hydroxyl radicals scavenging. Thus, the anti-inflammatory activity and the potential beneficial effects in reducing lipid accumulation in an in vitro model of NAFLD using McA-RH7777 cells exposed to oleic acid (OA) were evaluated. Nile Red and Oil Red O have been used to stain the lipid accumulation, while the inflammatory status was assessed by Cytokines Bioplex Assay. OLECp (TPC: 92.93 ± 9.35 mg GAE/g, TFC: 728.12 ± 16.04 mg RE/g; 1 g of extract contains 315.250 mg of oleuropein and 17.44 mg of luteolin-7-O-glucoside) exerted a good radical scavenging capability (IC50: 2.30 ± 0.18 mg/mL) with a neutralizing power against DPPH and hydroxyl radicals, as confirmed by the decreased signal area of the EPR spectra. Moreover, OLECp at concentration of 25, 50 and 100 μg/mL counteracted the intracellular inflammatory status, as result of decreased intracellular lipid content. Our results highlighted the multiple properties and applications of an O. europaea extract concentrated in polyphenols, and the possibility to formulate novel nutraceuticals with antioxidant properties, destined to ameliorate human health.
Collapse
Affiliation(s)
- Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Rita Coppoletta
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Luigi Tucci
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Carmine Lupia
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Irene Bava
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
23
|
Nguyen TK, Phung HH, Choi WJ, Ahn HC. Network Pharmacology and Molecular Docking Study on the Multi-Target Mechanisms of Aloe vera for Non-Alcoholic Steatohepatitis Treatment. PLANTS (BASEL, SWITZERLAND) 2022; 11:3585. [PMID: 36559697 PMCID: PMC9783676 DOI: 10.3390/plants11243585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease with limited treatment options. The widely distributed plant Aloe vera has shown protective effects against NASH in animals, yet the precise mechanism remains unknown. In this study, we investigated the potential mechanisms underlying the anti-NASH effects of Aloe vera using a network pharmacology and molecular docking approach. By searching online databases and analyzing the Gene Expression Omnibus dataset, we obtained 260 Aloe vera-NASH common targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that the common targets were strongly associated with the key pathological processes implicated in NASH, including lipid and glucose metabolism, inflammation, apoptosis, oxidative stress, and liver fibrosis. Four core proteins, AKT serine/threonine kinase 1 (AKT1), tumor necrosis factor alpha (TNFα), transcription factor c-Jun, and tumor suppressor protein p53, were identified from compound-target-pathway and protein-protein interaction networks. Molecular docking analysis verified that the active ingredients of Aloe vera were able to interact with the core proteins, especially AKT1 and TNFα. The results demonstrate the multi-compound, multi-target, and multi-pathway mechanisms of Aloe vera against NASH. Our study has shown the scientific basis for further experiments in terms of the mechanism to develop Aloe vera-based natural products as complementary treatments for NASH. Furthermore, it identifies novel drug candidates based on the structures of Aloe vera's active compounds.
Collapse
|
24
|
Pafili K, Kahl S, Mastrototaro L, Strassburger K, Pesta D, Herder C, Pützer J, Dewidar B, Hendlinger M, Granata C, Saatmann N, Yavas A, Gancheva S, Heilmann G, Esposito I, Schlensak M, Roden M. Mitochondrial respiration is decreased in visceral but not subcutaneous adipose tissue in obese individuals with fatty liver disease. J Hepatol 2022; 77:1504-1514. [PMID: 35988689 DOI: 10.1016/j.jhep.2022.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Adipose tissue dysfunction is involved in the development of insulin resistance and is responsible for excessive lipid delivery to other organs such as the liver. We tested the hypothesis that impaired mitochondrial function is a common feature of subcutaneous (SAT) and visceral adipose tissue (VAT), but may differently contribute to adipose tissue insulin resistance (IR) in obesity, non-alcoholic fatty liver (NAFL) and steatohepatitis (NASH). METHODS In this cross-sectional study, we analyzed tissue-specific insulin sensitivity using stable isotope dilution and hyperinsulinemic-normoglycemic clamp tests. We also assessed mitochondrial respiration, mRNA and protein expression, and tissue morphology in biopsies of SAT and VAT from obese humans without NAFL, with NAFL or with NASH (n = 22/group). RESULTS Compared to individuals without liver disease, persons with NAFL and NASH had about 30% (p = 0.010) and 33% (p = 0.002) lower maximal mitochondrial respiration, respectively, in VAT, but not in SAT. The lower maximal mitochondrial respiration of VAT was associated with lower adipose tissue insulin sensitivity (β = 0.985, p = 0.041) and with increased VAT protein expression of tumor necrosis factor A across all groups (β = -0.085, p = 0.040). VAT from individuals with NASH was characterized by lower expression of oxidative phosphorylation complex IV (p = 0.042) and higher mRNA expression of the macrophage marker CD68 (p = 0.002) than VAT from participants without NAFL. CONCLUSIONS Humans with non-alcoholic fatty liver disease have distinct abnormalities of VAT energy metabolism, which correlate with adipose tissue dysfunction and may favor progression of NAFL to NASH. LAY SUMMARY Adipose tissue (commonly called body fat) can be found under the skin (subcutaneous) or around internal organs (visceral). Dysfunction of adipose tissue can cause insulin resistance and lead to excess delivery of fat to other organs such as the liver. Herein, we show that dysfunction specifically in visceral adipose tissue was associated with fatty liver disease. CLINICAL TRIAL NUMBER NCT01477957.
Collapse
Affiliation(s)
- Kalliopi Pafili
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Aerospace Center (DLR), Institute of Aerospace Medicine, 51147, Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50931, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jennifer Pützer
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Mona Hendlinger
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Cesare Granata
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Nina Saatmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Aslihan Yavas
- Institute of Pathology, University Hospital and Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Geronimo Heilmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Irene Esposito
- Institute of Pathology, University Hospital and Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Matthias Schlensak
- Department of General and Visceral Surgery, Neuwerk Hospital, 41066, Mönchengladbach, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
25
|
Yan L, Zhang T, Wang K, Chen Z, Yang Y, Shan B, Sun Q, Zhang M, Zhang Y, Zhong Y, Liu N, Gu J, Xu D. SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and inflammation. Nat Commun 2022; 13:7153. [PMID: 36414671 PMCID: PMC9681887 DOI: 10.1038/s41467-022-34993-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Activation of RIPK1-driven cell death and inflammation play important roles in the progression of nonalcoholic steatohepatitis (NASH). However, the mechanism underlying RIPK1 activation in NASH remains unclear. Here we identified SENP1, a SUMO-specific protease, as a key endogenous inhibitor of RIPK1. SENP1 is progressively reduced in proportion to NASH severity in patients. Hepatocyte-specific SENP1-knockout mice develop spontaneous NASH-related phenotypes in a RIPK1 kinase-dependent manner. We demonstrate that SENP1 deficiency sensitizes cells to RIPK1 kinase-dependent apoptosis by promoting RIPK1 activation following TNFα stimulation. Mechanistically, SENP1 deSUMOylates RIPK1 in TNF-R1 signaling complex (TNF-RSC), keeping RIPK1 in check. Loss of SENP1 leads to SUMOylation of RIPK1, which re-orchestrates TNF-RSC and modulates the ubiquitination patterns and activity of RIPK1. Notably, genetic inhibition of RIPK1 effectively reverses disease progression in hepatocyte-specific SENP1-knockout male mice with high-fat-diet-induced nonalcoholic fatty liver. We propose that deSUMOylation of RIPK1 by SENP1 provides a pathophysiologically relevant cell death-restricting checkpoint that modulates RIPK1 activation in the pathogenesis of nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Lingjie Yan
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tao Zhang
- grid.38142.3c000000041936754XDepartment of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Kai Wang
- grid.13402.340000 0004 1759 700XDepartment of Hepatobiliary and Pancreatic Surgery, Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People’s Hospital Affiliated Zhejiang University School of Medicine, Hangzhou, 310006 China ,grid.13402.340000 0004 1759 700XInstitute of Organ Transplantation, Zhejiang University, Hangzhou, 310003 China
| | - Zezhao Chen
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuanxin Yang
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Bing Shan
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Qi Sun
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Mengmeng Zhang
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Yichi Zhang
- grid.412987.10000 0004 0630 1330Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Yedan Zhong
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Nan Liu
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China ,Shanghai Key Laboratory of Aging Studies, Shanghai, 201210 China
| | - Jinyang Gu
- grid.412987.10000 0004 0630 1330Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China ,grid.33199.310000 0004 0368 7223Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Daichao Xu
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China ,Shanghai Key Laboratory of Aging Studies, Shanghai, 201210 China
| |
Collapse
|
26
|
Lactobacillus sakei MJM60958 as a Potential Probiotic Alleviated Non-Alcoholic Fatty Liver Disease in Mice Fed a High-Fat Diet by Modulating Lipid Metabolism, Inflammation, and Gut Microbiota. Int J Mol Sci 2022; 23:ijms232113436. [PMID: 36362221 PMCID: PMC9658623 DOI: 10.3390/ijms232113436] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease with a rapidly increasing number of cases worldwide. This study aimed to evaluate the effects of Lactobacillus sakei MJM60958 (MJM60958) on NAFLD in vitro and in vivo. In in vitro tests, MJM60958 significantly inhibited lipid accumulation by 46.79% in HepG2 cells stimulated with oleic acid and cholesterol (OA-C). Moreover, MJM60958 showed safe and probiotic characteristics in vitro. In the animal study, MJM60958 administration in a high-fat diet-induced NAFLD mouse model significantly reduced body weight and liver weight, and controlled aspartate aminotransferase (ALT), aspartate transaminase (AST), triglyceride (TG), urea nitrogen (BUN), and uric acid (UA) levels in the blood, which are features of NAFLD. Further, treatment with MJM60958 also reduced steatosis scores in liver tissues, serum leptin and interleukin, and increased serum adiponectin content. Moreover, administration of MJM60958 resulted in a significantly decreased expression of some genes and proteins which are related to lipid accumulation, such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and sterol regulatory element-binding protein 1 (SREBP-1), and also upregulated genes and protein expression of lipid oxidation such as peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1a (CPT1A). Administration of MJM60958 increased the relative abundance of specific microbial taxa such as Verrucomicrobia, which are abundant in non-NAFLD mice, and reduced Firmicutes, which are a major group in NAFLD mice. MJM60958 affected the modulation of gut microbiota and altered the strain profile of short-chain fatty acids (SCFAs) production in the cecum by reduced lactic acid and enhanced acetic acid production. Overall, MJM60958 showed potential as a probiotic that can prevent and treat NAFLD.
Collapse
|
27
|
Gabbia D, Roverso M, Zanotto I, Colognesi M, Sayaf K, Sarcognato S, Arcidiacono D, Zaramella A, Realdon S, Ferri N, Guido M, Russo FP, Bogialli S, Carrara M, De Martin S. A Nutraceutical Formulation Containing Brown Algae Reduces Hepatic Lipid Accumulation by Modulating Lipid Metabolism and Inflammation in Experimental Models of NAFLD and NASH. Mar Drugs 2022; 20:572. [PMID: 36135761 PMCID: PMC9501409 DOI: 10.3390/md20090572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
Recently, some preclinical and clinical studies have demonstrated the ability of brown seaweeds in reducing the risk factors for metabolic syndrome. Here, we analyzed the beneficial effect of a nutraceutical formulation containing a phytocomplex extracted from seaweeds and chromium picolinate in animal models of liver steatosis of differing severities (rats with non-alcoholic fatty liver disease (NAFLD) and its complication, non-alcoholic steatohepatitis (NASH)). This treatment led to a significant drop in hepatic fat deposition in both models (p < 0.01 vs. untreated animals), accompanied by a reduction in plasma inflammatory cytokines, such as interleukin 6, tumor necrosis factor α, and C reactive protein, and myeloperoxidase expression in liver tissue. Furthermore, a modulation of the molecular pathways involved in lipid metabolism and storage was demonstrated, since we observed the significant reduction of the mRNA levels of fatty acid synthase, diacylglycerol acyltransferases, the sterol-binding protein SREBP-1, and the lipid transporter perilipin-2, in both treated NAFLD and NASH rats in comparison to untreated ones. In conclusion, this nutraceutical product was effective in reducing liver steatosis and showed further beneficial effects on hepatic inflammation and glycemic control, which were particularly evident in rats characterized by a more severe condition, thus representing a therapeutic option for the treatment of NAFLD and NASH patients.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Ilaria Zanotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Martina Colognesi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Samantha Sarcognato
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
| | - Diletta Arcidiacono
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Alice Zaramella
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Stefano Realdon
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Nicola Ferri
- Department of Medicine, University of Padova, 35131 Padova, Italy
| | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
- Department of Medicine, University of Padova, 35131 Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
28
|
He X, Hu Y, Liu W, Zhu G, Zhang R, You J, Shao Y, Li Y, Zhang Z, Cui J, He Y, Ge G, Yang H. Deciphering the Effective Constituents and Mechanisms of Portulaca oleracea L. for Treating NASH via Integrating Bioinformatics Analysis and Experimental Pharmacology. Front Pharmacol 2022; 12:818227. [PMID: 35126150 PMCID: PMC8807659 DOI: 10.3389/fphar.2021.818227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a highly prevalent metabolic disorder. Currently, there are no effective pharmacotherapeutic options for preventing and treating NASH. Portulaca oleracea L. (POL) is an edible herb that has been used for preventing and treating some metabolic disorders in China, but the bioactive constituents in POL and the related mechanisms for treating NASH are still unclear. Here, a comprehensive research strategy was used to identify the core genes and the key constituents in POL for treating NASH, via integrating bioinformatics analysis and experimental pharmacology both in vitro and in vivo. The phenotypes and mechanisms of POL were carefully investigated by performing a set of in vivo and in vitro experiments. Bioinformatics analysis suggested that prostaglandin-endoperoxide synthase 2 (PTGS2) was the core target and myricetin (Myr) was the key constituent in POL for treating NASH. In NASH mice model induced by methionine choline deficiency diet, POL significantly alleviated hepatic steatosis and liver injury. In free fatty acids-induced hepatocytes, POL and Myr significantly down-regulated the expression of PTGS2, decreased the number of lipid droplets, and regulated the mRNA expression of lipid synthesis and homeostasis genes, including FASN, CPT1a, SERBP1c, ACC1, and SCD1. In lipopolysaccharide-induced macrophages, POL and Myr significantly reduced the expression of PTGS2 and blocked the secretion of inflammatory mediators TNF-α, IL-6, and IL-1β. Further investigations demonstrate that Myr acts as both suppressor and inhibitor of PTGS2. Collectively, POL and its major component Myr can ameliorate NASH via down-regulating and inhibiting PTGS2, suggesting that POL and Myr can be developed as novel medicines for treating NASH.
Collapse
Affiliation(s)
- Xiaoli He
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiren Hu
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanghao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruoxi Zhang
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawen You
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanting Shao
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunhao Li
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zeng Zhang
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingang Cui
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanming He
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjie Yang
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|