1
|
Lyu S, Zhang CS, Mao Z, Guo X, Li Z, Luo X, Sun J, Su Q. Real-world Chinese herbal medicine for Parkinson's disease: a hospital-based retrospective analysis of electronic medical records. Front Aging Neurosci 2024; 16:1362948. [PMID: 38756536 PMCID: PMC11096516 DOI: 10.3389/fnagi.2024.1362948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative condition. Chinese medicine therapies have demonstrated effectiveness for PD in controlled settings. However, the utilization of Chinese medicine therapies for PD in real-world clinical practice and the characteristics of patients seeking these therapies have not been thoroughly summarized. Method The study retrospectively analyzed initial patient encounters (PEs) with a first-listed diagnosis of PD, based on electronic medical records from Guangdong Provincial Hospital of Chinese Medicine between July 2018 and July 2023. Results A total of 3,206 PEs, each corresponding to an individual patient, were eligible for analyses. Approximately 60% of patients made initial visits to the Chinese medicine hospital after receiving a PD diagnosis, around 4.59 years after the onset of motor symptoms. Over 75% of the patients visited the Internal Medicine Outpatient Clinic at their initial visits, while a mere 13.85% visited PD Chronic Care Clinic. Rest tremor (61.98%) and bradykinesia (52.34%) are the most commonly reported motor symptoms, followed by rigidity (40.70%). The most commonly recorded non-motor symptoms included constipation (31.88%) and sleep disturbance (25.27%). Integration of Chinese medicine and conventional medicine therapies was the most common treatment method (39.15%), followed by single use of Chinese herbal medicine (27.14%). The most frequently prescribed herbs for PD included Glycyrrhiza uralensis Fisch. (gan cao), Astragalus mongholicus Bunge (huang qi), Atractylodes macrocephala Koidz. (bai zhu), Angelica sinensis (Oliv.) Diels (dang gui), Rehmannia glutinosa (Gaertn.) DC. (di huang), Paeonia lactiflora Pall. (bai shao), Bupleurum chinense DC. (chai hu), Citrus aurantium L. (zhi qiao/zhi shi/chen pi), Panax ginseng C. A. Mey. (ren shen), and Poria cocos (Schw.) Wolf (fu ling). These herbs contribute to formulation of Bu zhong yi qi tang (BZYQT). Conclusion Patients typically initiated Chinese medical care after the establishment of PD diagnosis, ~4.59 years post-onset of motor symptoms. The prevalent utilization of CHM decoctions and patented Chinese herbal medicine products, underscores its potential in addressing both motor and non-motor symptoms. Despite available evidence, rigorous clinical trials are needed to validate and optimize the integration of CHM, particularly BZYQT, into therapeutic strategies for PD.
Collapse
Affiliation(s)
- Shaohua Lyu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Claire Shuiqing Zhang
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia
| | - Zhenhui Mao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xinfeng Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Zhe Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xiaodong Luo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Jingbo Sun
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Qiaozhen Su
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
2
|
He Z, Hu Y, Zhang Y, Xie J, Niu Z, Yang G, Zhang J, Zhao Z, Wei S, Wu H, Hu W. Asiaticoside exerts neuroprotection through targeting NLRP3 inflammasome activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155494. [PMID: 38471370 DOI: 10.1016/j.phymed.2024.155494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Parkinson's disease (PD), a neurodegenerative disorder, is characterized by motor symptoms due to the progressive loss of dopaminergic neurons in the substantia nigra (SN) and striatum (STR), alongside neuroinflammation. Asiaticoside (AS), a primary active component with anti-inflammatory and neuroprotective properties, is derived from Centella asiatica. However, the precise mechanisms through which AS influences PD associated with inflammation are not yet fully understood. PURPOSE This study aimed to explore the protective mechanism of AS in PD. METHODS Targets associated with AS and PD were identified from the Swiss Target Prediction, Similarity Ensemble Approach, PharmMapper, and GeneCards database. A protein-protein interaction (PPI) network was constructed to identify potential therapeutic targets. Concurrently, GO and KEGG analyses were performed to predict potential signaling pathways. To validate these mechanisms, the effects of AS on 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice were investigated. Furthermore, neuroinflammation and the activation of the NLRP3 inflammasome were assessed to confirm the anti-inflammatory properties of AS. In vitro experiments in BV2 cells were then performed to investigate the mechanisms of AS in PD. Moreover, CETSA, molecular docking, and molecular dynamics simulations (MDs) were performed for further validation. RESULTS Network pharmacology analysis identified 17 potential targets affected by AS in PD. GO and KEGG analyses suggested the biological roles of these targets, demonstrating that AS interacts with 149 pathways in PD. Notably, the NOD-like receptor signaling pathway was identified as a key pathway mediating AS's effect on PD. In vivo studies demonstrated that AS alleviated motor dysfunction and reduced the loss of dopaminergic neurons in MPTP-induced PD mice. In vitro experiments demonstrated that AS substantially decreased IL-1β release in BV2 cells, attributing this to the modulation of the NLRP3 signaling pathway. CETSA and molecular docking studies indicated that AS forms a stable complex with NLRP3. MDs suggested that ARG578 played an important role in the formation of the complex. CONCLUSION In this study, we first predicted that the potential target and pathway of AS's effect on PD could be NLRP3 protein and NOD-like receptor signaling pathway by network pharmacology analysis. Further, we demonstrated that AS could alleviate symptoms of PD induced by MPTP through its interaction with the NLRP3 protein for the first time by in vivo and in vitro experiments. By binding to NLRP3, AS effectively inhibits the assembly and activation of the inflammasome. These findings suggest that AS is a promising inhibitor for PD driven by NLRP3 overactivation.
Collapse
Affiliation(s)
- Ziliang He
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yeye Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ying Zhang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jing Xie
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Zhiqiang Niu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Guigui Yang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Ji Zhang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Zixuan Zhao
- Beijing Key Laboratory of New Drug Discovery based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China.
| | - Haifeng Wu
- Beijing Key Laboratory of New Drug Discovery based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Weicheng Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Song G, Park WY, Jiao W, Park JY, Jung SJ, Ma S, Lee J, Lee KY, Choe SK, Park J, Kwak HJ, Ahn KS, Um JY. Moderating AKT signaling with baicalein protects against weight loss by preventing muscle atrophy in a cachexia model caused by CT26 colon cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119670. [PMID: 38220095 DOI: 10.1016/j.bbamcr.2024.119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Cancer cachexia is a type of energy-wasting syndrome characterized by fatigue, anorexia, muscle weakness, fat loss, and systemic inflammation. Baicalein, a flavonoid with bioactive properties, has demonstrated the ability to mitigate cardiac and skeletal muscle atrophy in different experimental settings. This effect is achieved through the inhibition of muscle proteolysis, suggesting its potential in preserving skeletal muscle homeostasis. In this study, we investigated the anti-cancer cachexia effects of baicalein in the regulation of muscle and fat wasting, both in vivo and in vitro. Baicalein attenuated body weight loss, including skeletal muscle and white adipose tissue (WAT), in CT26-induced cachectic mice. Moreover, baicalein increased muscle fiber thickness and suppressed the muscle-specific ubiquitin-protease system, including F-box only protein 32 and muscle RING-finger protein-1, by activating AKT phosphorylation both in vivo and in vitro. The use of LY294002, a particular inhibitor of AKT, eliminated the observed impact of baicalein on the improvement of muscle atrophy. In conclusion, baicalein inhibits muscle proteolysis and enhances AKT phosphorylation, indicating its potential role in cancer cachexia-associated muscle atrophy.
Collapse
Affiliation(s)
- Gahee Song
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo Yong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wenjun Jiao
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ja Yeon Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Se Jin Jung
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sungwon Ma
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junhee Lee
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kil Yeon Lee
- Department of Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong-Kyu Choe
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Jeong Kwak
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Young Um
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
4
|
Lee MY, Kim M. Effects of Red ginseng on neuroinflammation in neurodegenerative diseases. J Ginseng Res 2024; 48:20-30. [PMID: 38223824 PMCID: PMC10785270 DOI: 10.1016/j.jgr.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 01/16/2024] Open
Abstract
Red ginseng (RG) is widely used as a herbal medicine. As the human lifespan has increased, numerous diseases have developed, and RG has also been used to treat various diseases. Neurodegenerative diseases are major problems that modern people face through their lives. Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are featured by progressive nerve system damage. Recently, neuroinflammation has emerged as a degenerative factor and is an immune response in which cytokines with nerve cells that constitute the nervous system. RG, a natural herbal medicine with fewer side effects than chemically synthesized drugs, is currently in the spotlight. Therefore, we reviewed studies reporting the roles of RG in treating neuroinflammation and neurodegenerative diseases and found that RG might help alleviate neurodegenerative diseases by regulating neuroinflammation.
Collapse
Affiliation(s)
- Min Yeong Lee
- Department of Chemistry & Life Science, Sahmyook University, Hwarangro 815, Nowongu, Seoul, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, Hwarangro 815, Nowongu, Seoul, Republic of Korea
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Hwarangro 815, Nowongu, Seoul, Republic of Korea
| |
Collapse
|
5
|
Zhao Y, Liu Y, Deng J, Zhu C, Ma X, Jiang M, Fan D. Ginsenoside F4 Alleviates Skeletal Muscle Insulin Resistance by Regulating PTP1B in Type II Diabetes Mellitus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14263-14275. [PMID: 37726223 DOI: 10.1021/acs.jafc.3c01262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with increasing morbidity. Protein tyrosine phosphatase 1B (PTP1B) is a major negative regulator of the insulin signaling cascade and has attracted intensive investigation in the T2DM study. Ginseng is widely used to treat metabolic diseases, while the effects of ginsenoside F4 (F4) on T2DM have remained unknown. Here, we identify F4 as an inhibitor of skeletal muscle insulin resistance. The results showed that F4 significantly improved the hyperglycemic state of db/db mice, alleviated dyslipidemia, and promoted skeletal muscle glucose uptake. This phenomenon was closely related to the inhibition of the PTP1B activity. On the one hand, the inhibition of PTP1B activity by F4 resulted in increased insulin receptor (INSR) and insulin receptor substrate 1 tyrosine phosphorylation and enhanced insulin sensitivity. On the other hand, F4 as a PTP1B inhibitor inhibited the inositol-requiring enzyme 1 (IRE-1)/recombinant TNF receptor associated factor 2 (TRAF2)/c-Jun N-terminal kinase signaling pathway and alleviated skeletal muscle endoplasmic reticulum (ER) stress, thereby reducing IRS-1 serine phosphorylation. Both finally activated the PI3K/AKT signaling pathway and promoted glucose transporter protein 4 translocation to the cell membrane for glucose uptake. Taken together, our experiments demonstrate that F4 activates the insulin signaling pathway by inhibiting the activity of PTP1B while inhibiting the IRE-1/TRAF2/JNK signaling pathway, enhancing insulin sensitivity, and alleviating ER stress in the skeletal muscle of db/db mice. Our results indicate that F4 can be used as a PTP1B inhibitor for the treatment of T2DM.
Collapse
Affiliation(s)
- Yujie Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Yao Liu
- Shaanxi Institute of Microbiology, Xiying Road 76, Xi'an, Shaanxi 710043, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| |
Collapse
|
6
|
Lee MJ, Choi JH, Kwon TW, Jo HS, Ha Y, Nah SY, Cho IH. Korean Red Ginseng extract ameliorates demyelination by inhibiting infiltration and activation of immune cells in cuprizone-administrated mice. J Ginseng Res 2023; 47:672-680. [PMID: 37720568 PMCID: PMC10499591 DOI: 10.1016/j.jgr.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/16/2023] [Accepted: 05/09/2023] [Indexed: 09/19/2023] Open
Abstract
Background Korean Red Ginseng (KRG), the steamed root of Panax ginseng, has pharmacological activities for immunological and neurodegenerative disorders. But, the role of KRGE in multiple sclerosis (MS) remains unclear. Purpose To determine whether KRG extract (KRGE) could inhibit demyelination in corpus callosum (CC) of cuprizone (CPZ)-induced murine model of MS. Methods Male adult mice were fed with a standard chow diet or a chow diet supplemented with 0.2% (w/w) CPZ ad libitum for six weeks to induce demyelination while were simultaneously administered with distilled water (DW) alone or KRGE-DW (0.004%, 0.02 and 0.1% of KRGE) by drinking. Results Administration with KRGE-DW alleviated demyelination and oligodendrocyte degeneration associated with inhibition of infiltration and activation of resident microglia and monocyte-derived macrophages as well as downregulation of proinflammatory mediators in the CC of CPZ-fed mice. KRGE-DW also attenuated the level of infiltration of Th1 and Th17) cells, in line with inhibited mRNA expression of IFN-γ and IL-17, respectively, in the CC. These positive effects of KRGE-DW mitigated behavioral dysfunction based on elevated plus maze and the rotarod tests. Conclusion The results strongly suggest that KRGE-DW may inhibit CPZ-induced demyelination due to its oligodendroglial protective and anti-inflammatory activities by inhibiting infiltration/activation of immune cells. Thus, KRGE might have potential in therapeutic intervention for MS.
Collapse
Affiliation(s)
- Min Jung Lee
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, USA
| | - Jong Hee Choi
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Tae Woo Kwon
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Sung Jo
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Yujeong Ha
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Liao F, He D, Vong CT, Wang L, Chen Z, Zhang T, Luo H, Wang Y. Screening of the active Ingredients in Huanglian Jiedu decoction through amide bond-Immobilized magnetic nanoparticle-assisted cell membrane chromatography. Front Pharmacol 2022; 13:1087404. [PMID: 36642988 PMCID: PMC9837740 DOI: 10.3389/fphar.2022.1087404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: The Huanglian Jiedu decoction (HLJDD) is a Chinese herbal formula that exerts neuroprotective effects by alleviating oxidative stress injuries and may potentially be prescribed for treating Alzheimer's disease; however, its active ingredients have not yet been identified. Cell membrane chromatography is a high-throughput method for screening active ingredients, but traditional cell membrane chromatography requires multiple centrifugation steps, which affects its separation efficiency. Magnetic nanoparticles are unparalleled in solid-liquid separation and can overcome the shortcomings of traditional cell membrane chromatography. Methods: In this study, the neuroprotective effects of the components of HLJDD were screened through a novel magnetic nanoparticle-assisted cell membrane chromatography method. Magnetic nanoparticles and cell membranes were stably immobilized by amide bonds. Magnetic bead (MB)-immobilized cell membranes of HT-22 cells were incubated with the HLJDD extract to isolate specific binding components. The specific binding components were then identified by ultraperformance liquid chromatography (UPLC)-Orbitrap Fusion Tribrid MS after solid-phase extraction. The bioactivity of these components was analyzed in an HT-22 cellular model of glutamate-induced injury. Results and Discussion: The preparation method of the composite of cell membrane and MBs has the advantages of simple preparation and no introduction of toxic organic reagents. MBs not only provide support for cell membranes, but also greatly improve the separation efficiency compared with traditional cell membrane chromatography. Fifteen of these components were found to specifically bind to the cell membranes, and seven of them were confirmed to reduce varying degrees of glutamate-induced toxicity in HT-22 cells. In conclusion, our findings suggest that the amide bond-based immobilization of magnetic nanoparticles on cell membranes, along with solid-phase extraction and UPLC, is an effective method for isolating and discovering the bioactive components of traditional Chinese medicines.
Collapse
Affiliation(s)
- Fengyun Liao
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China,The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Dongmei He
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chi Teng Vong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lisheng Wang
- College of Chinese Material Medical, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhangmei Chen
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Tiejun Zhang
- Tianjin Engineering Laboratory of Quality Control Technology of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China,*Correspondence: Hua Luo, ; Yitao Wang,
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China,*Correspondence: Hua Luo, ; Yitao Wang,
| |
Collapse
|
8
|
Ahn JC, Mathiyalagan R, Nahar J, Ramadhania ZM, Kong BM, Lee DW, Choi SK, Lee CS, Boopathi V, Yang DU, Kim BY, Park H, Yang DC, Kang SC. Transcriptome expression profile of compound-K-enriched red ginseng extract (DDK-401) in Korean volunteers and its apoptotic properties. Front Pharmacol 2022; 13:999192. [PMID: 36532751 PMCID: PMC9751427 DOI: 10.3389/fphar.2022.999192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2023] Open
Abstract
Ginseng and ginsenosides have been reported to have various pharmacological effects, but their efficacies depend on intestinal absorption. Compound K (CK) is gaining prominence for its biological and pharmaceutical properties. In this study, CK-enriched fermented red ginseng extract (DDK-401) was prepared by enzymatic reactions. To examine its pharmacokinetics, a randomized, single-dose, two-sequence, crossover study was performed with eleven healthy Korean male and female volunteers. The volunteers were assigned to take a single oral dose of one of two extracts, DDK-401 or common red ginseng extract (DDK-204), during the initial period. After a 7-day washout, they received the other extract. The pharmacokinetics of DDK-401 showed that its maximum plasma concentration (Cmax) occurred at 184.8 ± 39.64 ng/mL, Tmax was at 2.4 h, and AUC0-12h was 920.3 ± 194.70 ng h/mL, which were all better than those of DDK-204. The maximum CK absorption in the female volunteers was higher than that in the male volunteers. The differentially expressed genes from the male and female groups were subjected to a KEGG pathway analysis, which showed results in the cell death pathway, such as apoptosis and necroptosis. In cytotoxicity tests, DDK-401 and DDK-204 were not particularly toxic to normal (HaCaT) cells, but at a concentration of 250 μg/mL, DDK-401 had a much higher toxicity to human lung cancer (A549) cells than DDK-204. DDK-401 also showed a stronger antioxidant capacity than DDK-204 in both the DPPH and potassium ferricyanide reducing power assays. DDK-401 reduced the reactive oxygen species production in HaCaT cells with induced oxidative stress and led to apoptosis in the A549 cells. In the mRNA sequence analysis, a signaling pathway with selected marker genes was assessed by RT-PCR. In the HaCaT cells, DDK-401 and DDK-204 did not regulate FOXO3, TLR4, MMP-9, or p38 expression; however, in the A549 cells, DDK-401 downregulated the expressions of MMP9 and TLR4 as well as upregulated the expressions of the p38 and caspase-8 genes compared to DDK-204. These results suggest that DDK-401 could act as a molecular switch for these two cellular processes in response to cell damage signaling and that it could be a potential candidate for further evaluations in health promotion studies.
Collapse
Affiliation(s)
- Jong Chan Ahn
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
| | - Jinnatun Nahar
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
| | - Zelika Mega Ramadhania
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
| | - Byoung Man Kong
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, South Korea
| | | | - Sung Keun Choi
- Daedong Korea Ginseng Co., Ltd., Geumsan-gun, South Korea
| | - Chang Soon Lee
- Daedong Korea Ginseng Co., Ltd., Geumsan-gun, South Korea
| | - Vinothini Boopathi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
| | | | - Bo Yeon Kim
- Exercise Nutrition & Biochemistry Lab, Kyung Hee University, Yongin-si, South Korea
| | - Hyon Park
- Exercise Nutrition & Biochemistry Lab, Kyung Hee University, Yongin-si, South Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, South Korea
| | - Se Chan Kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, South Korea
| |
Collapse
|
9
|
Rajabian A, Farzanehfar M, Hosseini H, Arab FL, Nikkhah A. Boswellic acids as promising agents for the management of brain diseases. Life Sci 2022; 312:121196. [DOI: 10.1016/j.lfs.2022.121196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
|
10
|
Hussien M, Yousef MI. Impact of ginseng on neurotoxicity induced by cisplatin in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62042-62054. [PMID: 34591247 DOI: 10.1007/s11356-021-16403-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Over the years, many researches have shown the potential protective effects of ginseng for preventing and treating neurological damage and their related diseases. Neuronal disturbance is one of the most common serious effects of cisplatin chemotherapy that triggers memory impairment and cognitive disability. Based on the hypothesis that mechanistic pathways of ginseng against the neurological and biochemical disturbance remain unclear, therefore, this study was designed to investigate the neuroprotective effect of ginseng extract against neurological and behavior abnormality induced by cisplatin in male rats. Animals were divided into 4 groups. Group 1 served as a control, group 2 was orally administrated with ginseng (100 mg/kg BW) daily for 90 days, group 3 was injected intraperitoneally with cisplatin (4 mg/kg BW) once a week for 90 days, and group 4 received ginseng and cisplatin. Cisplatin induced a learning and memory dysfunction in the Morris water maze task and locomotor disability in the rotarod test. In addition, cisplatin disrupted the oxidant/antioxidant systems, neuroinflammatory molecules (TNF-α, IL-6, IL-12, and IL-1β), neurotransmitters, and apoptotic (caspase-3, P53, and Bax) and dementia markers (amyloid-β40 and amyloid-β 42). Co-treatment with ginseng extracts successfully ameliorated the cognitive behaviors and intramuscular strength and presented a good protective agent against neurological damage. Histopathological and histochemical studies proved the neuroprotective effect of ginseng. Our data showed that ginseng capable to counteract the memory dysfunction is induced by cisplatin via reducing oxidative stress and neuroinflammation restoring the neurological efficiency.
Collapse
Affiliation(s)
- Mohamed Hussien
- Pharmacology and Therapeutics Department, Faculty of Pharmacy, Pharos University, Canal El Mahmoudia Street, Smouha, Sidi Gaber, P.O. Box 37, Alexandria, Egypt.
| | - Mokhtar Ibrahim Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, Chatby 21526, P.O. Box 832, Alexandria, Egypt
| |
Collapse
|
11
|
Chen P, Zhang J, Wang C, Chai YH, Wu AG, Huang NY, Wang L. The pathogenesis and treatment mechanism of Parkinson's disease from the perspective of traditional Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154044. [PMID: 35338993 DOI: 10.1016/j.phymed.2022.154044] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/26/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease with no treatment currently available to modify its progression. Traditional Chinese medicine (TCM) has gained attention for its unique theoretical basis and clinical effects. Many studies have reported on the clinical effects and pharmacological mechanisms of Chinese herbs in PD. However, few studies have focused on the treatment mechanisms of anti-PD TCM drugs from the perspective of TCM itself. PURPOSE To elaborate the treatment mechanisms of anti-PD TCM drugs in the perspective of TCM. METHODS We performed a literature survey using traditional books of Chinese medicine and online scientific databases including PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure (CNKI), and others up to July 2021. RESULTS TCM theory states that PD is caused by a dysfunction of the zang-fu organs (liver, spleen, kidney, and lung) and subsequent pathogenic factors (wind, fire, phlegm, and blood stasis). Based on the pathogenesis, removing pathogenic factors and restoring visceral function are two primary treatment principles for PD in TCM. The former includes dispelling wind, clearing heat, resolving phlegm, and promoting blood circulation, while the latter involves nourishing the liver and kidney and strengthening the spleen. The anti-PD mechanisms of the active ingredients of TCM compounds and herbs at different levels include anti-apoptosis, anti-inflammation, and anti-oxidative stress, as well as the restoration of mitochondrial function and the regulation of autophagy and neurotransmitters. CONCLUSION Chinese herbs and prescriptions can be used to treat PD by targeting multiple pharmacological mechanisms.
Collapse
Affiliation(s)
- Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China; Accreditation Center of Traditional Chinese Medicine Physician, National Administration of Traditional Chinese Medicine, Beijing, China.
| | - Jie Zhang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Chen Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yi-Hui Chai
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - An-Guo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ning-Yu Huang
- Accreditation Center of Traditional Chinese Medicine Physician, National Administration of Traditional Chinese Medicine, Beijing, China.
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
12
|
Zhang W, Chen J, Liu H. Network Pharmacology and Molecular Docking-Based Prediction of the Molecular Targets and Signaling Pathways of Ginseng in the Treatment of Parkinson's Disease. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: The present study was aimed at exploring the molecular mechanism underlying the action of ginseng in the treatment of Parkinson's disease (PD) using network pharmacology. Methods: The main effective ginseng ingredients were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) database and screened for oral bioavailability (OB), as well as drug-like properties (DL). A platform of PD targets was established using GeneCards and Online Mendelian Inheritance in Man (OMIM) databases, and then an “effective ingredient-target-disease” interaction network was constructed using Cytoscape 3.7.1 software. A STRING database was used to construct a protein–protein interaction (PPI) network, and the related protein interactions were analyzed. Finally, we performed functional analyses of core targets using the Gene Ontology (GO) and Kyoto Gene and Gene Encyclopedia (KEGG) pathway enrichment, and then conducted molecular docking of the effective ingredients with disease targets. Results: Ninety-seven effective ginseng ingredients and 168 potential targets of PD were identified in the present study. Network analysis showed that the targets were mainly involved in regulating cell metabolism, apoptosis, and other biological processes (BPs). Further, it was noted that the effects of the targets on treatment of PD involved regulation of several signaling pathways, such as mitogen-activated protein kinase (MAPK), advanced glycation end products (AGE), and receptors of advanced glycation end products (RAGE). The results of molecular docking showed that the active ginseng ingredients bind well with the targets of MAPK3 and MAPK14. Conclusion: The main active compounds of ginseng in the treatment of PD may be ginsenosides, and the molecular mechanism may be related to key targets such as MAPK3, MAPK14, and EGFR. The MAPK and AGE-RAGE signaling pathways may also be involved.
Collapse
Affiliation(s)
- Wei Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingya Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongquan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
13
|
de Oliveira Zanuso B, de Oliveira Dos Santos AR, Miola VFB, Gissoni Campos LM, Spilla CSG, Barbalho SM. Panax ginseng and aging related disorders: A systematic review. Exp Gerontol 2022; 161:111731. [PMID: 35143871 DOI: 10.1016/j.exger.2022.111731] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022]
Abstract
The aging process predisposes numerous homeostatic disorders, metabolic disorders, cardiovascular diseases, neurodegenerative diseases, and cancer. Changes in diet and lifestyle and therapeutic adjuvants are essential to minimize the effects of comorbidities associated with aging. Natural products such as Panax ginseng have been used to treat and prevent diseases related to aging. This review aims to investigate the effects of Panax ginseng in various conditions associated with aging, such as inflammation, oxidative stress, mitochondrial dysfunction, apoptosis, neurodegenerative and metabolic disorders, cardiovascular diseases, and cancer. The ginsenosides, chemical constituents found in Panax ginseng, can inhibit the effects of inflammatory cytokines, inhibit signaling pathways that induce inflammation, and inhibit cells that participate in inflammatory processes. Besides, ginsenosides are involved in neuroprotective effects on the central nervous system due to anti-apoptotic, antioxidant, and anti-inflammatory effects. The use of ginseng extract showed actions on lipid homeostasis, positively regulating high-density lipoprotein, down-regulating low-density lipoprotein and triglyceride levels, and producing beneficial effects on vascular endothelial function. The use of this plant in cancer resulted in improved quality of life and mood. It decreased symptoms of fatigue, nausea, vomiting, and dyspnea, reducing anxiety. Panax ginseng has been shown to exert potent therapeutic benefits that can act as a complementary treatment in managing patients with chronic diseases related to aging.
Collapse
Affiliation(s)
- Bárbara de Oliveira Zanuso
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília, São Paulo, Brazil
| | - Ana Rita de Oliveira Dos Santos
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília, São Paulo, Brazil
| | - Vitor Fernando Bordin Miola
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília, São Paulo, Brazil
| | - Leila M Gissoni Campos
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Caio Sergio Galina Spilla
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; Department of Biochemistry and Nutrition, Faculty of Food Technology of Marília, Marília, São Paulo, Brazil.
| |
Collapse
|
14
|
Lee BR, Sung SJ, Hur KH, Kim SE, Ma SX, Kim SK, Ko YH, Kim YJ, Lee Y, Lee SY, Jang CG. Korean Red Ginseng inhibits methamphetamine addictive behaviors by regulating dopaminergic and NMDAergic system in rodents. J Ginseng Res 2022; 46:147-155. [PMID: 35058731 PMCID: PMC8753524 DOI: 10.1016/j.jgr.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 10/26/2022] Open
|
15
|
Seo MH, Lim S, Yeo S. Association of decreased triadin expression level with apoptosis of dopaminergic cells in Parkinson's disease mouse model. BMC Neurosci 2021; 22:65. [PMID: 34736417 PMCID: PMC8567705 DOI: 10.1186/s12868-021-00668-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) represent a loss of dopaminergic neurons in the substantia nigra (SN) of the midbrain. However, its cause remains unknown and Triadin (TRDN) function in the brain is also unknown. To examine the relationship between TRDN and PD, the expression levels of protein related to PD in TRDN knockdown status were studied in the SH-SY5Y cells. Cell viability and apoptosis were assessed to examine the apoptosis effect on dopaminergic cells by decreased TRDN, and the levels of the proteins related to apoptosis were also confirmed. RESULTS This study confirmed decreased TRDN expression level (P < 0.005) at the SN in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced PD mouse model and identified the functional features of TRDN. Our results showed a relationship between TRDN expression and PD in that reduced TRDN level induced PD-like characteristics. Interestingly, there was TRDN expression in the regions where dopaminergic cells are in the SN, and the expression patterns of TRDN and tyrosine hydroxylase (TH) were similar. Decreased TRDN level also induced apoptotic characteristics and the Fluorescence-activated cell sorting analysis results showed that apoptosis increased (P < 0.05) as the TRDN small interfering RNA concentration increased. The cytotoxicity assay revealed that cell viability also decreased (P < 0.0005) in the same condition as that in the Fluorescence-activated cell sorting analysis. CONCLUSIONS Decreased TRDN level could be related with the apoptotic death of dopaminergic cells at the SN in PD, and TRDN administration could give a positive effect on PD by reducing apoptotic cell death.
Collapse
Affiliation(s)
- Min Hyung Seo
- College of Korean Medicine, Sangji University, #83 Sangjidae-Gil, Wonju, Gangwon-Do, 26339, Republic of Korea
| | - Sabina Lim
- WHO Collaborating Center for Traditional Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Meridian & Acupoint, College of Korean Medicine, Kyung Hee University, #47 Kyungheedae-gil, Dongdaemun-gu, Seoul, 02453, Republic of Korea.
| | - Sujung Yeo
- College of Korean Medicine, Sangji University, #83 Sangjidae-Gil, Wonju, Gangwon-Do, 26339, Republic of Korea.
- Research Institute of Korean Medicine, Sangji Univeristy, 26339, Wonju, Republic of Korea.
| |
Collapse
|
16
|
Korean red ginseng suppresses 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced inflammation in the substantia nigra and colon. Brain Behav Immun 2021; 94:410-423. [PMID: 33662500 DOI: 10.1016/j.bbi.2021.02.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 11/20/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease involving dopaminergic neuronal death in the substantia nigra (SN); recent studies have shown that interactions between gut and brain play a critical role in the pathogenesis of PD. In this study, the anti-inflammatory effect of Korean red ginseng (KRG) and the changes in gut microbiota were evaluated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Male nine-week-old C57BL/6 mice were injected intraperitoneally with 30 mg/kg of MPTP at 24-h intervals for 5 days. Two hours after the daily MPTP injection, the mice were orally administered 100 mg/kg of KRG, which continued for 7 days beyond the MPTP injections, for a total of 12 consecutive days. Eight days after the final KRG administration, the pole and rotarod tests were performed and brain and colon samples of the mice were collected. Dopaminergic neuronal death, activation of microglia and astrocytes, α-synuclein and expressions of inflammatory cytokines and disruption of tight junction were evaluated. In addition, 16S ribosomal RNA gene sequencing of mouse fecal samples was performed to investigate microbiome changes. KRG treatment prevented MPTP-induced behavioral impairment, dopaminergic neuronal death, activation of microglia and astrocytes in the nigrostriatal pathway, disruption of tight junction and the increase in α-synuclein, interleukin-1β and tumor necrosis factor-α expression in the colon. The 16S rRNA sequencing revealed that MPTP altered the number of bacterial species and their relative abundances, which were partially suppressed by KRG treatment. Especially, KRG suppressed the abundance of the inflammation-related phylum Verrucomicrobia and genera Ruminococcus and Akkermansia (especially Akkermansia muciniphila), and elevated the abundance of Eubacterium, which produces the anti-inflammatory substances. These findings suggest that KRG prevents MPTP-induced dopaminergic neuronal death, activation of microglia and astrocytes, and accumulation of α-synuclein in the SN, and the regulation of inflammation-related factors in the colon may influence the effect.
Collapse
|
17
|
Ovarian cysts disappear after 14-day oral regimen of Korean red ginseng extract in letrozole-induced polycystic ovarian syndrome. Obstet Gynecol Sci 2021; 64:274-283. [PMID: 33743577 PMCID: PMC8138080 DOI: 10.5468/ogs.20094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/26/2020] [Indexed: 11/25/2022] Open
Abstract
Objective Hormonal and inflammatory mechanisms are involved in the pathogenesis of polycystic ovarian syndrome (PCOS), which is a prevalent metabolic disorder among women of reproductive age. We aimed to evaluate the comparative efficiency of short-term oral administration of Korean red ginseng extract (KRGE) and the standard treatment on PCOS by focusing on the histopathological parameters and serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone, and nuclear factor kappa B (NF-κB). Methods A PCOS rat model was established by oral gavage of letrozole (1 mg/kg) for 21 days. The serum levels of LH, FSH, testosterone, and NF-κB were measured, and the morphological features and differences of the ovaries were examined in each group using a light microscope before and after 14 days of treatment with oral regimens—KRGE, oral contraceptives (OCPs), KRGE+OCPs, and carboxymethyl cellulose (CMC). Results OCPs alone could not normalize the mean ovarian weights of PCOS rats despite the 14-day oral regimen, but they were more effective in reducing the number and size of cysts compared to others. KRGE alone and in combination with OCPs was effective in normalizing abnormal ovarian weights, decreasing LH serum levels, and dissipating the ovarian cysts in PCOS rats. However, when combined with the standard regimen, KRGE showed additional therapeutic effects by efficiently reducing serum testosterone and NF-κB levels. Conclusion Our necropsy and histopathological evidence suggests the efficacy of KRGE as a novel integrative medicine against abnormal multiple follicular cysts. However, antiandrogenic and anti-inflammatory effects were only seen in animals that were administered a combination of KRGE and the standard regimen.
Collapse
|
18
|
Jang M, Choi SH, Choi JH, Oh J, Lee RM, Lee NE, Cho YJ, Rhim H, Kim HC, Cho IH, Nah SY. Ginseng gintonin attenuates the disruptions of brain microvascular permeability and microvascular endothelium junctional proteins in an APPswe/PSEN-1 double-transgenic mouse model of Αlzheimer's disease. Exp Ther Med 2021; 21:310. [PMID: 33717253 PMCID: PMC7885069 DOI: 10.3892/etm.2021.9741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/30/2020] [Indexed: 11/06/2022] Open
Abstract
It has been previously indicated that gintonin, which is a novel exogenous ginseng-derived lysophosphatidic acid (LPA) receptor ligand, restores memory dysfunctions in an APPswe/PSEN-1 double-transgenic mouse model of Alzheimer's disease (AD Tg mice) by attenuating β-amyloid plaque deposition, recovering cholinergic dysfunctions and upregulating hippocampal neurogenesis in the cortex and hippocampus. Although β-amyloid plaque depositions in AD is accompanied with disruptions of brain microvessels, including the brain-blood barrier (BBB), it is unknown whether gintonin exerts protective effects on brain microvascular dysfunctions in AD Tg mice. In the present study, the effects of gintonin-enriched fraction (GEF) on the changes in β-amyloid plaque depositions, brain permeability of Evans blue, and microvascular junctional proteins were investigated in AD Tg mice. Long-term oral administration of GEF reduced β-amyloid plaque depositions in the cortex and hippocampus of AD Tg mice. GEF treatment also reduced the permeability of Evans blue through BBB and decreased immunoreactivity of platelet endothelial cell adhesion molecule-1 (a marker of BBB disruption) in the cortex and hippocampus of AD Tg mice in a dose-dependent manner. However, GEF elevated the protein expression of occludin, claudin-5 and zonula occludens-1, which are tight-junction proteins. The present results demonstrated that long-term oral GEF treatment not only attenuates β-amyloid plaque depositions in the brain but also exhibits protective effects against microvascular disruptions in AD Tg mice. Finally, GEF exhibits anti-AD effects through attenuation of β-amyloid plaque depositions and protection against brain microvascular damage in an AD animal model.
Collapse
Affiliation(s)
- Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong Hee Choi
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jinhee Oh
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ra Mi Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Eun Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeon-Jin Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,Brain Korea 21 Plus Program and Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
19
|
Choi JH, Jang M, Kim EJ, Lee MJ, Park KS, Kim SH, In JG, Kwak YS, Park DH, Cho SS, Nah SY, Cho IH, Bae CS. Korean Red Ginseng alleviates dehydroepiandrosterone-induced polycystic ovarian syndrome in rats via its antiinflammatory and antioxidant activities. J Ginseng Res 2020; 44:790-798. [PMID: 33192122 PMCID: PMC7655494 DOI: 10.1016/j.jgr.2019.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Beneficial effects of Korean Red Ginseng (KRG) on polycystic ovarian syndrome (PCOS) remains unclear. METHODS We examined whether pretreatment (daily from 2 hours before PCOS induction) with KRG extract in water (KRGE; 75 and 150 mg/kg/day, p.o.) could exert a favorable effect in a dehydroepiandrosterone (DHEA)-induced PCOS rat model. RESULTS Pretreatment with KRGE significantly inhibited the elevation of body and ovary weights, the increase in number and size of ovarian cysts, and the elevation of serum testosterone and estradiol levels induced by DHEA. Pretreatment with KRGE also inhibited macrophage infiltration and enhanced mRNA expression levels of chemokines [interleukin (IL)-8, monocyte chemoattractant protein-1), proinflammatory cytokines (IL-1β, IL-6), and inducible nitric oxide synthase in ovaries induced by DHEA. It also prevented the reduction in mRNA expression of growth factors (epidermal growth factor, transforming growth factor-beta (EGF, TGF-β)) related to inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell pathway and stimulation of the nuclear factor erythroid-derived 2-related factor 2 pathway. Interestingly, KRGE or representative ginsenosides (Rb1, Rg1, and Rg3(s)) inhibited the activity of inflammatory enzymes cyclooxygenase-2 and iNOS, cytosolic p-IkB, and nuclear p-nuclear factor kappa-light-chain-enhancer of activated B in lipopolysaccharide-induced RAW264.7 cells, whereas they increased nuclear factor erythroid-derived 2-related factor 2 nuclear translocation. CONCLUSION These results provide that KRGE could prevent DHEA-induced PCOS via antiinflammatory and antioxidant activities. Thus, KRGE may be used in preventive and therapeutic strategies for PCOS-like symptoms.
Collapse
Affiliation(s)
- Jong Hee Choi
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Jeong Kim
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Min Jung Lee
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Kyoung Sun Park
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Seung-Hyun Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Jun-Gyo In
- Laboratory of Analysis R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Yi-Seong Kwak
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Dae-Hun Park
- Department of Nursing, Dongshin University, Naju, Jeonnam, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
20
|
Jeon H, Kim HY, Bae CH, Lee Y, Kim S. Korean Red Ginseng Regulates Intestinal Tight Junction and Inflammation in the Colon of a Parkinson's Disease Mouse Model. J Med Food 2020; 23:1231-1237. [PMID: 33121350 DOI: 10.1089/jmf.2019.4640] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent studies have determined that gastrointestinal function contributes to the control of Parkinson's disease (PD). Gastrointestinal dysfunction results in a leaky intestinal barrier, inducing inflammation in the gut. Korean red ginseng (KRG) is widely used for the treatment of numerous afflictions, including inflammation and neurodegenerative disease. We investigated changes in the intestinal tight junctions and proinflammatory cytokines in the colon, and alpha-synuclein (aSyn) in the colon and the substantia nigra (SN) of a PD mouse model. Eight-week-old male C57BL/6 mice were intraperitoneally administered 30 mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) once a day for 5 days, and orally given 100 mg/kg of KRG for 12 consecutive days. Alterations in the levels of occludin, zonula occludens-1 (ZO-1), tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in the colon, and the expressions of aSyn and tyrosine hydroxylase (TH) in the colon and the SN were evaluated. Oral administration of KRG significantly prevents the MPTP-induced motor dysfunction, and suppresses the MPTP-induced disruption of occludin and ZO-1, and suppresses the increase in TNF-α and IL-1β in the colon of mice. In addition, KRG prevents accumulation of aSyn and TH in the colon and the SN. These results suggest that KRG has the potential to prevent MPTP-induced leaky gut barrier, inflammation, and accumulation of aSyn.
Collapse
Affiliation(s)
- Hyongjun Jeon
- Department of Korean Medical Science, School of Korean Medicine; Yangsan, Korea.,Korean Medicine Research Center for Healthy Aging; Pusan National University, Yangsan, Korea
| | - Hee-Young Kim
- Korean Medicine Research Center for Healthy Aging; Pusan National University, Yangsan, Korea
| | - Chang-Hwan Bae
- Department of Korean Medical Science, School of Korean Medicine; Yangsan, Korea.,Korean Medicine Research Center for Healthy Aging; Pusan National University, Yangsan, Korea
| | - Yukyoung Lee
- Department of Korean Medical Science, School of Korean Medicine; Yangsan, Korea.,Korean Medicine Research Center for Healthy Aging; Pusan National University, Yangsan, Korea
| | - Seungtae Kim
- Department of Korean Medical Science, School of Korean Medicine; Yangsan, Korea.,Korean Medicine Research Center for Healthy Aging; Pusan National University, Yangsan, Korea
| |
Collapse
|
21
|
Lee S, Kim SB, Lee J, Park J, Choi S, Hwang GS, Choi HS, Kang KS. Evaluation of Anti-Colitis Effect of KM1608 and Biodistribution of Dehydrocostus Lactone in Mice Using Bioimaging Analysis. PLANTS 2020; 9:plants9091175. [PMID: 32927852 PMCID: PMC7570101 DOI: 10.3390/plants9091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing disorder modulated by numerous factors. Recent failures of drugs targeting single factors suggest that multitargeting drugs could be useful for the treatment of IBD. Natural medicines may be an alternative option for the treatment of IBD, owing to the complex nature of the disease. However, most natural medicines have poor in vitro and in vivo translational potential because of inadequate pharmacokinetic study. KM1608, a mixture of the medicinal plants Aucklandia lappa, Terminalia chebula, and Zingiber officinale, was examined for its anti-colitis effects and biodistribution using bioimaging. Dehydrocostus lactone, as a marker compound, was analyzed to assess the biodistribution of KM1608. KM1608 significantly attenuated the disease activity of dextran sodium sulfate-induced colitis in mice and suppressed inflammatory mediators such as myeloperoxidase, proinflammatory cytokines (TNF-α and IL-6), and the Th2-type cytokine IL-4 in the colon. Optical fluorescence imaging revealed that KM1608 was distributed in the intestinal area as a target organ. Collectively, our findings suggest that KM1608 is a potential therapeutic formulation for IBD.
Collapse
Affiliation(s)
- Sullim Lee
- College of Bio-Nano Technology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Korea;
| | - Sang-Back Kim
- Kolmar Korea R&D Complex, Kolmar, Korea Co. Ltd, 61, Heolleung-ro 8-gil, Seocho-gu, Seoul 06500, Korea; (S.-B.K.); (J.P.)
| | - Jaemin Lee
- College of Korean Medicine, Gachon University, Seongnam-si, Gyeonggi-do 13120, Korea; (J.L.); (S.C.); (G.S.H.)
| | - Jimin Park
- Kolmar Korea R&D Complex, Kolmar, Korea Co. Ltd, 61, Heolleung-ro 8-gil, Seocho-gu, Seoul 06500, Korea; (S.-B.K.); (J.P.)
| | - Sungyoul Choi
- College of Korean Medicine, Gachon University, Seongnam-si, Gyeonggi-do 13120, Korea; (J.L.); (S.C.); (G.S.H.)
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam-si, Gyeonggi-do 13120, Korea; (J.L.); (S.C.); (G.S.H.)
| | - Han-Seok Choi
- Kolmar Korea R&D Complex, Kolmar, Korea Co. Ltd, 61, Heolleung-ro 8-gil, Seocho-gu, Seoul 06500, Korea; (S.-B.K.); (J.P.)
- Correspondence: (H.-S.C.); (K.S.K.); Tel.: +82-2-3459-5753 (H.-S.C.); +82-31-750-5402 (K.S.K.)
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam-si, Gyeonggi-do 13120, Korea; (J.L.); (S.C.); (G.S.H.)
- Correspondence: (H.-S.C.); (K.S.K.); Tel.: +82-2-3459-5753 (H.-S.C.); +82-31-750-5402 (K.S.K.)
| |
Collapse
|
22
|
Kim TH, Kim JY, Bae J, Kim YM, Won MH, Ha KS, Kwon YG, Kim YM. Korean Red ginseng prevents endothelial senescence by downregulating the HO-1/NF-κB/miRNA-155-5p/eNOS pathway. J Ginseng Res 2020; 45:344-353. [PMID: 33841015 PMCID: PMC8020293 DOI: 10.1016/j.jgr.2020.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/05/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022] Open
Abstract
Background Korean Red ginseng extract (KRGE) has beneficial effects on the cardiovascular system by improving endothelial cell function. However, its pharmacological effect on endothelial cell senescence has not been clearly elucidated. Therefore, we examined the effect and molecular mechanism of KRGE on the senescence of human umbilical vein endothelial cells (HUVECs). Methods HUVECs were grown in normal or KRGE-supplemented medium. Furthermore, they were transfected with heme oxygenase-1 (HO-1) gene or treated with its inhibitor, a NF-κB inhibitor, and a miR-155-5p mimic or inhibitor. Senescence-associated characteristics of endothelial cells were determined by biochemical and immunohistochemical analyses. Results Treatment of HUVECs with KRGE resulted in delayed onset and progression of senescence-associated characteristics, such as increased lysosomal acidic β-galactosidase and decreased telomerase activity, angiogenic dysfunction, and abnormal cell morphology. KRGE preserved the levels of anti-senescent factors, such as eNOS-derived NO, MnSOD, and cyclins D and A: however, it decreased the levels of senescence-promoting factors, such as ROS, activated NF-κB, endothelial cell inflammation, and p21 expression. The beneficial effects of KRGE were due to the induction of HO-1 and the inhibition of NF-κB-dependent biogenesis of miR-155-5p that led to the downregulation of eNOS. Moreover, treatment with inhibitors of HO-1, NF-κB, and miR-155-5p abolished the anti-senescence effects of KRGE. Conclusion KRGE delayed or prevented HUVEC senescence through a signaling cascade involving the induction of HO-1, the inhibition of NF-κB-dependent miR-155-5p biogenesis, and the maintenance of the eNOS/NO axis activity, suggesting that it may protect against vascular diseases associated with endothelial senescence.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Ji-Yoon Kim
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul, 04763, South Korea
| | - Jieun Bae
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul, 04763, South Korea
| | - Young-Mi Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| |
Collapse
|
23
|
Protective Effects of Active Compounds from Salviae miltiorrhizae Radix against Glutamate-Induced HT-22 Hippocampal Neuronal Cell Death. Processes (Basel) 2020. [DOI: 10.3390/pr8080914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress is considered one of the factors that cause dysfunction and damage of neurons, causing diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), and Parkinson’s disease (PD).Recently, natural antioxidant sources have emerged as one of the main research areas for the discovery of potential neuroprotectants that can be used to treat neurological diseases. In this research, we assessed the neuroprotective effect of a 70% ethanol Salvia miltiorrhiza Radix (SMR) extract and five of its constituent compounds (tanshinone IIA, caffeic acid, salvianolic acid B, rosmarinic acid, and salvianic acid A) in HT-22 hippocampal cells. The experimental data showed that most samples were effective in attenuating the cytotoxicity caused by glutamate in HT-22 cells, except for rosmarinic acid and salvianolic acid B. Of the compounds tested, tanshinone IIA (TS-IIA) exerted the strongest effect in protecting HT-22 cells against glutamate neurotoxin. Treatment with 400 nM TS-IIA restored HT-22 cell viability almost completely. TS-IIA prevented glutamate-induced oxytosis by abating the accumulation of calcium influx, reactive oxygen species, and phosphorylation of mitogen-activated protein kinases. Moreover, TS-IIA inhibited glutamate-induced cytotoxicity by reducing the activation and phosphorylation of p53, as well as by stimulating Akt expression. This research suggested that TS-IIA is a potential neuroprotective component of SMR, with the ability to protect against neuronal cell death induced by excessive amounts of glutamate.
Collapse
|
24
|
Selvakumar GP, Ahmed ME, Thangavel R, Kempuraj D, Dubova I, Raikwar SP, Zaheer S, Iyer SS, Zaheer A. A role for glia maturation factor dependent activation of mast cells and microglia in MPTP induced dopamine loss and behavioural deficits in mice. Brain Behav Immun 2020; 87:429-443. [PMID: 31982500 PMCID: PMC7316620 DOI: 10.1016/j.bbi.2020.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
The molecular mechanism mediating degeneration of nigrostriatal dopaminergic neurons in Parkinson's disease (PD) is not yet fully understood. Previously, we have shown the contribution of glia maturation factor (GMF), a proinflammatory protein in dopaminergic neurodegeneration mediated by activation of mast cells (MCs). In this study, methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal neurodegeneration and astro-glial activations were determined by western blot and immunofluorescence techniques in wild type (WT) mice, MC-deficient (MC-KO) mice and GMF-deficient (GMF-KO) mice, with or without MC reconstitution before MPTP administration. We show that GMF-KO in the MCs reduces the synergistic effects of MC and Calpain1 (calcium-activated cysteine protease enzyme)-dependent dopaminergic neuronal loss that reduces motor behavioral impairments in MPTP-treated mouse. Administration of MPTP increase in calpain-mediated proteolysis in nigral dopaminergic neurons further resulting in motor decline in mice. We found that MPTP administered WT mice exhibits oxidative stress due to significant increases in the levels of malondialdehyde, superoxide dismutase and reduction in the levels of reduced glutathione and glutathione peroxidase activity as compared with both MC-KO and GMF-KO mice. The number of TH-positive neurons in the ventral tegmental area, substantia nigra and the fibers in the striatum were significantly reduced while granulocyte macrophage colony-stimulating factor (GM-CSF), MC-Tryptase, GFAP, IBA1, Calpain1 and intracellular adhesion molecule 1 expression were significantly increased in WT mice. Similarly, tyrosine hydroxylase, dopamine transporters and vesicular monoamine transporters 2 proteins expression were significantly reduced in the SN of MPTP treated WT mice. The motor behavior as analyzed by rotarod and hang test was significantly reduced in WT mice as compared with both the MC-KO and GMF-KO mice. We conclude that GMF-dependent MC activation enhances the detrimental effect of astro-glial activation-mediated oxidative stress and neuroinflammation in the midbrain, and its inhibition may slowdown the progression of PD.
Collapse
Affiliation(s)
- Govindhasamy Pushpavathi Selvakumar
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65211, United States,Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65211, United States
| | - Mohammad Ejaz Ahmed
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65211, United States,Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65211, United States
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65211, United States,Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65211, United States
| | - Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65211, United States,Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65211, United States
| | - Iuliia Dubova
- Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65211, United States
| | - Sudhanshu P. Raikwar
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65211, United States,Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65211, United States
| | - Smita Zaheer
- Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65211, United States
| | - Shankar S. Iyer
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65211, United States,Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65211, United States
| | - Asgar Zaheer
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65211, United States; Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
25
|
Red Ginseng Inhibits Tau Aggregation and Promotes Tau Dissociation In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7829842. [PMID: 32685100 PMCID: PMC7350179 DOI: 10.1155/2020/7829842] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 11/18/2022]
Abstract
Tau, a microtubule-associated protein expressed in mature neurons, interacts with tubulin to promote the assembly and stabilization of microtubules. However, abnormally hyperphosphorylated tau dissociates from microtubules and self-aggregates. Tau aggregates, including paired helical filaments and neurofibrillary tangles, promote neuronal dysfunction and death and are the defining neuropathological feature of tauopathies. Therefore, suppressing tau aggregation or stimulating the dissociation of tau aggregates has been proposed as an effective strategy for treating neurodegenerative diseases associated with tau pathology such as Alzheimer's disease (AD) and frontotemporal dementia. Interestingly, ginsenosides extracted from Panax ginseng reduced the hippocampal and cortical expression of phosphorylated tau in a rat model of AD. However, no studies have been conducted into the effect of red ginseng (RG) and its components on tau pathology. Here, we evaluated the effect of Korean red ginseng extract (KRGE) and its components on the aggregation and disassociation of tau. Using the thioflavin T assay, we monitored the change in fluorescence produced by the aggregation or disassociation of tau K18, an aggregation-prone fragment of tau441 containing the microtubule-binding domain. Our analysis revealed that KRGE not only inhibited tau aggregation but also promoted the dissociation of tau aggregates. In addition, the KRGE fractions, such as saponin, nonsaponin, and nonsaponin fraction with rich polysaccharide, also inhibited tau aggregation and promoted the dissociation of tau aggregates. Our observations suggest that RG could be a potential therapeutic agent for the treatment of neurodegenerative diseases associated with tauopathy.
Collapse
|
26
|
Li X, Zhang J, Rong H, Zhang X, Dong M. Ferulic Acid Ameliorates MPP +/MPTP-Induced Oxidative Stress via ERK1/2-Dependent Nrf2 Activation: Translational Implications for Parkinson Disease Treatment. Mol Neurobiol 2020; 57:2981-2995. [PMID: 32445087 DOI: 10.1007/s12035-020-01934-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/13/2020] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder closely associated with oxidative stress. The biochemical and cellular alterations that occur after cell and mouse treatment with the parkinsonism-inducing neurotoxin MPP+/MPTP are remarkably similar to those observed in idiopathic PD. Previously, we showed that ferulic acid (FA) has antioxidant properties and the ability to activate nuclear factor E2-related factor 2 (Nrf2). The present study tested the hypothesis that FA attenuates MPP+/MPTP-induced oxidative stress by regulating crosstalk between sirtuin 2 (SIRT2) and Nrf2 pathways. To test this hypothesis, we performed in vitro and in vivo studies using MPP+/MPTP-challenged SH-SY5Y cells or mice treated with or not with FA. FA marginally inhibited SIRT2 in parallel with α-synuclein at levels of transcription and translation in SH-SY5Y cells challenged with MPP+. Moreover, FA attenuated MPP+-induced oxidative stress, as indicated by reactive oxygen species, lipid hydroperoxides, GSH/GSSG ratio, and NAD+/NADH ratio. Mechanistically, FA strongly upregulated the glutamate cysteine ligase catalytic subunit and heme oxygenase-1 expression at the levels of transcription and translation. Interestingly, FA-mediated extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation contributed to nuclear accumulation of Nrf2 via de novo synthesis, which was validated by the use of dominant negative ERK2. Surprisingly, activation of the ERK1/2 and inhibition of SIRT2 by FA are mediated by independent mechanisms. Furthermore, FA ameliorated motor deficits and oxidative stress in the ventral midbrain in MPTP-treated (25 mg/kg, i.p., daily for 5 days) wild-type mice and α-synuclein knockout mice, but not in Nrf2 knockout mice. Collectively, FA exerts antioxidant effects through ERK1/2-mediated activation of the Nrf2 pathway, and these results may have important translational value for the treatment of PD.
Collapse
Affiliation(s)
- Xu Li
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar, 161006, China
| | - Jing Zhang
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Hua Rong
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar, 161006, China
| | - Xiaojie Zhang
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar, 161006, China
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar, 161006, China.
| |
Collapse
|
27
|
Ratan ZA, Haidere MF, Hong YH, Park SH, Lee JO, Lee J, Cho JY. Pharmacological potential of ginseng and its major component ginsenosides. J Ginseng Res 2020; 45:199-210. [PMID: 33841000 PMCID: PMC8020288 DOI: 10.1016/j.jgr.2020.02.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/25/2020] [Indexed: 12/25/2022] Open
Abstract
Ginseng has been used as a traditional herb in Asian countries for thousands of years. It contains a large number of active ingredients including steroidal saponins, protopanaxadiols, and protopanaxatriols, collectively known as ginsenosides. In the last few decades, the antioxidative and anticancer effects of ginseng, in addition to its effects on improving immunity, energy and sexuality, and combating cardiovascular diseases, diabetes mellitus, and neurological diseases, have been studied in both basic and clinical research. Ginseng could be a valuable resource for future drug development; however, further higher quality evidence is required. Moreover, ginseng may have drug interactions although the available evidence suggests it is a relatively safe product. This article reviews the bioactive compounds, global distribution, and therapeutic potential of plants in the genus Panax.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh
| | - Mohammad Faisal Haidere
- Department of Public Health and Informatics, Bangabandhu Sheikh Mujib Medical University, Dhaka, 1000, Bangladesh
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeong-Oog Lee
- Department of Aerospace Information Engineering, Bio-Inspired Aerospace Information Laboratory, Konkuk University, Seoul, Republic of Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Corresponding author. Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-Ro, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Suwon, 16419, Republic of Korea
- Corresponding author. Department of Integrative Biotechnology, Sungkyunkwan, 2066 Seobu-Ro, Suwon, 16419, Republic of Korea.
| |
Collapse
|
28
|
Ma L, Yang C, Zheng J, Chen Y, Xiao Y, Huang K. Non-polyphenolic natural inhibitors of amyloid aggregation. Eur J Med Chem 2020; 192:112197. [PMID: 32172082 DOI: 10.1016/j.ejmech.2020.112197] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/09/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Protein misfolding diseases (PMDs) are chronic and progressive, with no effective therapy so far. Aggregation and misfolding of amyloidogenic proteins are closely associated with the onset and progression of PMDs, such as amyloid-β (Aβ) in Alzheimer's disease, α-Synuclein (α-Syn) in Parkinson's disease and human islet amyloid polypeptide (hIAPP) in type 2 diabetes. Inhibiting toxic aggregation of amyloidogenic proteins is regarded as a promising therapeutic approach in PMDs. The past decade has witnessed the rapid progresses of this field, dozens of inhibitors have been screened and verified in vitro and in vivo, demonstrating inhibitory effects against the aggregation and misfolding of amyloidogenic proteins, together with beneficial effects. Natural products are major sources of small molecule amyloid inhibitors, a number of natural derived compounds have been identified with great bioactivities and translational prospects. Here, we review the non-polyphenolic natural inhibitors that potentially applicable for PMDs treatment, along with their working mechanisms. Future directions are proposed for the development and clinical applications of these inhibitors.
Collapse
Affiliation(s)
- Liang Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chen Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jiaojiao Zheng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yushuo Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430035, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
29
|
Kang B, Lee S, Seo CS, Kang KS, Choi YK. Analysis and Identification of Active Compounds from Salviae miltiorrhizae Radix Toxic to HCT-116 Human Colon Cancer Cells. APPLIED SCIENCES 2020; 10:1304. [DOI: 10.3390/app10041304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Colorectal cancer is one of the most frequently diagnosed cancers worldwide. The aim of the present study was to simultaneously analyze compounds of Salviae miltiorrhizae Radix (SMR) and determine their cytotoxic effects on HCT-116 human colorectal cancer cells. We established a simultaneous analysis method of five compounds (salvianic acid A, salvianolic acid B, caffeic acid, tanshinone IIA, and rosmarinic acid) contained in SMR, and found that among the various compounds in SMR, tanshinone IIA significantly decreased cell viability in a concentration-dependent manner. Hoechst staining also showed that both SMR and tanshinone IIA increased nuclear condensation, suggesting induction of apoptosis. By Western blotting, we found that tanshinone IIA induced apoptotic cell death, significantly increased Bax, but decreased Bcl-2 in the course of apoptosis. Tanshinone IIA increased the expression of cleaved caspases-7 and -8. Tanshinone IIA was shown to be an active ingredient of SMR that may be a useful chemotherapeutic strategy for patients with colorectal cancer.
Collapse
Affiliation(s)
- Bohyung Kang
- Department of Korean International Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Korea
| | - Chang-Seob Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - You-Kyung Choi
- Department of Korean International Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| |
Collapse
|
30
|
Mohd Sairazi NS, Sirajudeen KNS. Natural Products and Their Bioactive Compounds: Neuroprotective Potentials against Neurodegenerative Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:6565396. [PMID: 32148547 PMCID: PMC7042511 DOI: 10.1155/2020/6565396] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
Abstract
In recent years, natural products, which originate from plants, animals, and fungi, together with their bioactive compounds have been intensively explored and studied for their therapeutic potentials for various diseases such as cardiovascular, diabetes, hypertension, reproductive, cancer, and neurodegenerative diseases. Neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis are characterized by the progressive dysfunction and loss of neuronal structure and function that resulted in the neuronal cell death. Since the multifactorial pathological mechanisms are associated with neurodegeneration, targeting multiple mechanisms of actions and neuroprotection approach, which involves preventing cell death and restoring the function to damaged neurons, could be promising strategies for the prevention and therapeutic of neurodegenerative diseases. Natural products have emerged as potential neuroprotective agents for the treatment of neurodegenerative diseases. This review focused on the therapeutic potential of natural products and their bioactive compounds to exert a neuroprotective effect on the pathologies of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nur Shafika Mohd Sairazi
- Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), Medical Campus, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| | - K. N. S. Sirajudeen
- Department of Chemical Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
31
|
Adam GO, Kim GB, Lee SJ, Lee H, Kang HS, Kim SJ. Red Ginseng Reduces Inflammatory Response via Suppression MAPK/P38 Signaling and p65 Nuclear Proteins Translocation in Rats and Raw 264.7 Macrophage. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1589-1609. [PMID: 31645122 DOI: 10.1142/s0192415x19500812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lipopolysaccharides (LPS) cause systemic inflammatory responses, which are characterized by high mortality and multiple signs, including metabolic disturbances, respiratory acidosis, hypotension, and vital organs disorder. Cytokines secretion and oxidative stress are the main features of the disease. Diagnosis and treatment of systemic inflammation (SI) remain a challenge. Korean Red Ginseng (RG) is one of medicinal herbs that showed a potent anti-oxidant effect. We aimed to study the protective effects of RG on systemic inflammatory response in rats and RAW 264.7 macrophage cells induced by LPS. The rats were treated with water and alcohol extracts of RG for four weeks to prevent the inflammatory response. The result showed that LPS toxin increased morbidity and mortality, and induced liver, kidney, and lung injuries manifested by deteriorated biomarkers. Hypotension, hypomagnesemia, acidosis, and oxidative stress were observed in septic rats. However, RG extracts attenuated liver, kidney, and lung enzymes and metabolites in treated groups via its anti-inflammatory and anti-oxidant properties. Furthermore, RG improved magnesium and blood pressure in the treated groups. RAW 264.7 macrophage cells exposed to LPS disturbance in translocation of p65 and MAPK/p38. Nevertheless, RG-pretreated cells did not significantly alter. In conclusion, RG reduced the rates of mortality and morbidity of treated rats - liver, kidney, and lung injuries were protected in the treated groups through the potentiation of anti-oxidant defense. RG was able to conserve mitochondrial function, inhibiting the activation of MAPK/p38 signaling and suppressing NF-κB p65 cytoplasm-nucleus transport. Further studies are needed to examine the effects on chronic conditions in animal models and human.
Collapse
Affiliation(s)
- Gareeballah Osman Adam
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 79 Gobong-ro, Iksan-si, Jeollabuk-do 54596, Republic of Korea.,Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, P.O. Box No. 204, Hilat Kuku, Khartoum, Sudan
| | - Gi-Beum Kim
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 79 Gobong-ro, Iksan-si, Jeollabuk-do 54596, Republic of Korea
| | - Sei-Jin Lee
- Korea Basic Science Institute Jeonju Center, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Heeryung Lee
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 79 Gobong-ro, Iksan-si, Jeollabuk-do 54596, Republic of Korea.,Hansarang Animal Clinic, 27 Seongbuk-ro, Seoul 02880, Republic of Korea
| | - Hyung-Sub Kang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 79 Gobong-ro, Iksan-si, Jeollabuk-do 54596, Republic of Korea
| | - Shang-Jin Kim
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 79 Gobong-ro, Iksan-si, Jeollabuk-do 54596, Republic of Korea
| |
Collapse
|
32
|
Kim JY, Kim JH, Lee HJ, Kim SH, Jung YJ, Lee HY, Kim HJ, Kim SY. Antiepileptic and anti-neuroinflammatory effects of red ginseng in an intrahippocampal kainic acid model of temporal lobe epilepsy demonstrated by electroencephalography. Yeungnam Univ J Med 2019; 35:192-198. [PMID: 31620593 PMCID: PMC6784711 DOI: 10.12701/yujm.2018.35.2.192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 11/18/2022] Open
Abstract
Background Chronic inflammation can lower the seizure threshold and have influence on epileptogenesis. The components of red ginseng (RG) have anti-inflammatory effects. The abundance of peripherally derived immune cells in resected epileptic tissue suggests that the immune system is a potential target for anti-epileptogenic therapies. The present study used continuous electroencephalography (EEG) to evaluate the therapeutic efficacy of RG in intrahippocampal kainic acid (IHKA) animal model of temporal lobe epilepsy. Methods Prolonged status epilepticus (SE) was induced in 7-week-old C57BL/6J mice via stereotaxic injection of kainic acid (KA, 150 nL; 1 mg/mL) into the right CA3/dorsal hippocampus. The animals were implanted electrodes and monitored for spontaneous seizures. Following the IHKA injections, one group received treatments of RG (250 mg/kg/day) for 4 weeks (RG group, n=7) while another group received valproic acid (VPA, 30 mg/kg/day) (VPA group, n=7). Laboratory findings and pathological results were assessed at D29 and continuous (24 h/week) EEG monitoring was used to evaluate high-voltage sharp waves on D7, D14, D21, and D28. Results At D29, there were no differences between the groups in liver function test but RG group had higher blood urea nitrogen levels. Immunohistochemistry analyses revealed that RG reduced the infiltration of immune cells into the brain and EEG analyses showed that it had anticonvulsant effects. Conclusion Repeated treatments with RG after IHKA-induced SE decreased immune cell infiltration into the brain and resulted in a marked decrease in electrographic seizures. RG had anticonvulsant effects that were similar to those of VPA without serious side effects.
Collapse
Affiliation(s)
- Ju Young Kim
- Department of Pediatrics, Yeungnam University College of Medicine, Daegu, Korea
| | - Jin Hyeon Kim
- Department of Pediatrics, Yeungnam University College of Medicine, Daegu, Korea
| | - Hee Jin Lee
- Department of Pediatrics, Yeungnam University College of Medicine, Daegu, Korea
| | - Sang Hoon Kim
- Department of Pediatrics, Yeungnam University College of Medicine, Daegu, Korea
| | - Young Jin Jung
- Department of Neurosurgery, Yeungnam University College of Medicine, Daegu, Korea
| | - Hee-Young Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Hee Jaung Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Sae Yoon Kim
- Department of Pediatrics, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
33
|
Ghorbani Z, Mirghafourvand M, Charandabi SMA, Javadzadeh Y. The effect of ginseng on sexual dysfunction in menopausal women: A double-blind, randomized, controlled trial. Complement Ther Med 2019; 45:57-64. [DOI: 10.1016/j.ctim.2019.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/24/2019] [Accepted: 05/12/2019] [Indexed: 12/30/2022] Open
|
34
|
Ginsenoside Rb1 promotes the growth of mink hair follicle via PI3K/AKT/GSK-3β signaling pathway. Life Sci 2019; 229:210-218. [PMID: 31102746 DOI: 10.1016/j.lfs.2019.05.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
Abstract
AIMS Hair follicles play a critical role in the process of hair growth. The dermal papilla cells (DPCs) are an important component in the hair follicle regeneration and growth. This study investigated the effects of ginsenoside Rb1 on the growth of cultured mink hair follicles and DPCs. MAIN METHODS The mink hair follicles were treated with ginsenoside Rb1 for 9 days and their lengths were measured every three days. Real-time PCR was used to determine the mRNA expression of vascularization endothelial growth factor A (VEGF-A), VEGF receptor 2 (VEGF-R2) and TGF-β1. In addition, the levels of proteins were detected by western blot. Cell proliferation was determined by immunofluorescence staining of proliferation marker Ki-67 and cell cycle analysis was performed on flow cytometry. Moreover, cell migration was evaluated by wound healing assay. KEY FINDINGS Ginsenoside Rb1 promoted the growth of hair follicles, and proliferation and migration of DPCs. Ginsenoside Rb1 improved the expression levels of VEGFA and VEGF-R2, while attenuated the TGF-β1 expression both in hair follicles and DPCs. Furthermore, ginsenoside Rb1 facilitated the activation of PI3K/AKT/GSK-3β signaling pathway in hair follicles and DPCs. SIGNIFICANCE The results reveals a crucial role of PI3K/AKT/GSK-3β signaling pathway in ginsenoside Rb1-induced growth of hair follicles and DPCs.
Collapse
|
35
|
Choi JH, Jang M, Lee JI, Chung WS, Cho IH. Neuroprotective Effects of a Traditional Multi-Herbal Medicine Kyung-Ok-Ko in an Animal Model of Parkinson's Disease: Inhibition of MAPKs and NF-κB Pathways and Activation of Keap1-Nrf2 Pathway. Front Pharmacol 2018; 9:1444. [PMID: 30618742 PMCID: PMC6300575 DOI: 10.3389/fphar.2018.01444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/22/2018] [Indexed: 11/13/2022] Open
Abstract
Kyung-Ok-Ko (KOK), a traditional multi-herbal medicine, has been widely used in Oriental medicine as a restorative that can enforce vitality of whole organs and as a medicine that can treat age-related symptoms including lack of vigor and weakened immunity. However, the beneficial effect of KOK on neurological diseases such as Parkinson's diseases (PD) is largely unknown. Thus, the objective of this study was to examine the protective effect of KOK on neurotoxicity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Pre-treatment with KOK at 1 or 2 g/kg/day (p.o.) showed significant mitigating effects on neurological dysfunction (motor and welfare) based on pole, rotarod, and nest building tests. It also showed effects on survival rate. These positive effects of KOK were related to inhibition of loss of tyrosine hydroxylase-positive neurons, reduction of MitoSOX activity, increased apoptotic cells, microglia activation, and upregulation of inflammatory factors [interleukin (IL)-1β, IL-6, cyclooxygenase-2, and inducible nitric oxide], and reduced blood-brain barrier (BBB) disruption in the substantia nigra pars compacta (SNpc) and/or striatum after MPTP intoxication. Interestingly, these effects of KOK against MPTP neurotoxicity were associated with inhibition of phosphorylation of mitogen-activated protein kinases and nuclear factor-kappa B signaling pathways along with up-regulation of nuclear factor erythroid 2-related factor 2 pathways in SNpc and/or striatum. Collectively, our findings suggest that KOK might be able to mitigate neurotoxicity in MPTP-induced mouse model of PD via multi-effects, including anti-neuronal and anti-BBB disruption activities through its anti-inflammatory and anti-oxidative activities. Therefore, KOK might have potential for preventing and/or treating PD.
Collapse
Affiliation(s)
- Jong Hee Choi
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Joon-Il Lee
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Won-Seok Chung
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ik-Hyun Cho
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
36
|
Jang M, Lee SE, Cho IH. Adeno-Associated Viral Vector Serotype DJ-Mediated Overexpression of N171-82Q-Mutant Huntingtin in the Striatum of Juvenile Mice Is a New Model for Huntington's Disease. Front Cell Neurosci 2018; 12:157. [PMID: 29946240 PMCID: PMC6005874 DOI: 10.3389/fncel.2018.00157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/18/2018] [Indexed: 12/14/2022] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disorder characterized by motor, psychiatric and cognitive symptoms. HD is caused by an expansion of CAG repeats in the huntingtin (HTT) gene in various areas of the brain including striatum. There are few suitable animal models to study the pathogenesis of HD and validate therapeutic strategies. Recombinant adeno-associated viral (AAV) vectors successfully transfer foreign genes to the brain of adult mammalians. In this article, we report a novel mouse model of HD generated by bilateral intrastriatal injection of AAV vector serotype DJ (AAV-DJ) containing N171-82Q mutant HTT (82Q) and N171-18Q wild type HTT (18Q; sham). The AAV-DJ-82Q model displayed motor dysfunctions in pole and rotarod tests beginning 4 weeks after viral infection in juvenile mice (8 weeks after birth). They showed behaviors reflecting neurodegeneration. They also showed increased apoptosis, robust glial activation and upregulated representative inflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6), mediators (cyclooxygenase-2 and inducible nitric oxide synthase) and signaling pathways (nuclear factor kappa B and signal transducer and activator of transcription 3 (STAT3)) in the striatum at 10 weeks after viral infection (14 weeks after birth) via successful transfection of mutant HTT into neurons, microglia, and astrocytes in the striatum. However, little evidence of any of these events was found in mice infected with the AAV-DJ-18Q expressing construct. Intrastriatal injection of AAV-DJ-82Q might be useful as a novel in vivo model to investigate the biology of truncated N-terminal fragment (N171) in the striatum and to explore the efficacy of therapeutic strategies for HD.
Collapse
Affiliation(s)
- Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Brain Korea 21 Plus Program and Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
37
|
Choi JH, Jang M, Oh S, Nah SY, Cho IH. Multi-Target Protective Effects of Gintonin in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Mediated Model of Parkinson's Disease via Lysophosphatidic Acid Receptors. Front Pharmacol 2018; 9:515. [PMID: 29875659 PMCID: PMC5974039 DOI: 10.3389/fphar.2018.00515] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/30/2018] [Indexed: 12/24/2022] Open
Abstract
Gintonin is a ginseng-derived lysophosphatidic acid receptor (LPAR) ligand. Although previous in vitro and in vivo studies demonstrated the therapeutic role of gintonin against Alzheimer's disease, the neuroprotective effects of gintonin in Parkinson's disease (PD) are still unknown. We investigated whether gintonin (50 and 100 mg/kg/day, p.o., daily for 12 days) had neuroprotective activities against neurotoxicity in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Pre-administration of 100 mg/kg gintonin displayed significantly ameliorating effects in neurological disorders (motor and welfare) as measuring using pole, rotarod, and nest building tests, and in the survival rate. These effects were associated to the reduction of the loss of tyrosine hydroxylase-positive neurons, microglial activation, activation of inflammatory mediators (interleukin-6, tumor necrosis factor, and cyclooxygenase-2), and alteration of blood-brain barrier (BBB) integrity in the substantia nigra pars compacta and/or striatum following MPTP injection. The benefits of gintonin treatment against MPTP also included the activation of the nuclear factor erythroid 2-related factor 2 pathways and the inhibition of phosphorylation of the mitogen-activated protein kinases and nuclear factor-kappa B signaling pathways. Interestingly, these neuroprotective effects of gintonin were blocked by LPAR1/3 antagonist, Ki16425. Overall, the present study shows that gintonin attenuates MPTP-induced neurotoxicity via multiple targets. Gintonin combats neuronal death, and acts as an anti-inflammatory and an anti-oxidant agent. It maintains BBB integrity. LPA receptors play a key role in gintonin-mediated anti-PD mechanisms. Finally, gintonin is a key agent for prevention and/or treatment of PD.
Collapse
Affiliation(s)
- Jong Hee Choi
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, South Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Seikwan Oh
- Department of Neuroscience and Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Ik-Hyun Cho
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, South Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|