1
|
Jaiswal VK, Sonwani RK, Singh RS. Construction and performance assessment of Recirculating packed bed biofilm reactor (RPBBR) for effective biodegradation of p-cresol from wastewater. BIORESOURCE TECHNOLOGY 2023:129372. [PMID: 37343800 DOI: 10.1016/j.biortech.2023.129372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Wastewater containing excess phenolic compounds is considered a major environmental concern due to its adverse impacts on the ecosystem. In this work, an effort has been given to treat the p-cresol from wastewater using Recirculating Packed Bed Biofilm Reactor (RPBBR). The process parameters, namely inoculum dose, pH, and NaCl (w/v) concentration were optimized to enhance the specific growth and obtained to be 14 ml, 7.0, and 1% NaCl (w/100 ml), respectively. Maximum p-cresol removal efficiency of 99.36±0.2% was achieved at 100 mg L-1 of p-cresol. First-order rate constants were found to be 0.70 day-1 and 0.96 day-1 for batch and continuous mode, respectively. The intermediates were analysed using FT-IR and GC-MS analysis. Pseudomonas fluorescens was used to assess bacterial toxicity and observed that the toxicity was reduced in case of treated wastewater. Finally, the performance of continuous RPBBR was better than the batch mode.
Collapse
Affiliation(s)
- Vivek Kumar Jaiswal
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India; Department of Chemical Engineering, Indian Institute of Petroleum and Energy (IIPE), Visakhapatnam, Andhra Pradesh 530003, India
| | - Ravi Kumar Sonwani
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India; Department of Chemical Engineering, Indian Institute of Petroleum and Energy (IIPE), Visakhapatnam, Andhra Pradesh 530003, India
| | - Ram Sharan Singh
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India; Department of Chemical Engineering, Indian Institute of Petroleum and Energy (IIPE), Visakhapatnam, Andhra Pradesh 530003, India.
| |
Collapse
|
2
|
Tripathi P, Tiwari S, Sonwani RK, Singh RS. Assessment of biodegradation kinetics and mass transfer aspects in attached growth bioreactor for effective treatment of Brilliant green dye from wastewater. BIORESOURCE TECHNOLOGY 2023; 381:129111. [PMID: 37137445 DOI: 10.1016/j.biortech.2023.129111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
In this study, Bacillus licheniformis immobilized with low-density polyethylene (LDPE) was employed to degrade Brilliant Green (BG) dye from wastewater in a packed bed bioreactor (PBBR). Bacterial growth and extracellular polymeric substance (EPS) secretion were also assessed under different concentrations of BG dye. The impacts of external mass transfer resistance on BG biodegradation were also evaluated at different flow rates (0.3 - 1.2 L/h). A new mass transfer correlation [Formula: see text] was proposed to study the mass transfer aspects in attached-growth bioreactor. The intermediates, namely 3- dimethylamino phenol, benzoic acid, 1-4 benzenediol, and acetaldehyde were identified during the biodegradation of BG and, subsequently degradation pathway was proposed. Han - Levenspiel kinetics parameters μmax and Ks were found to be 0.185 per day and 115 mg/L, respectively. The new insight into mass transfer and kinetics support the design of efficiently attached growth bioreactor to treat a wide range of pollutants.
Collapse
Affiliation(s)
- Pranjal Tripathi
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Sonam Tiwari
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ravi Kumar Sonwani
- Department of Chemical Engineering, Indian Institute of Petroleum and Energy (IIPE), Visakhapatnam 530003, Andhra Pradesh, India
| | - Ram Sharan Singh
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
3
|
Bolivar JM, Woodley JM, Fernandez-Lafuente R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem Soc Rev 2022; 51:6251-6290. [PMID: 35838107 DOI: 10.1039/d2cs00083k] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzyme immobilization has been developing since the 1960s and although many industrial biocatalytic processes use the technology to improve enzyme performance, still today we are far from full exploitation of the field. One clear reason is that many evaluate immobilization based on only a few experiments that are not always well-designed. In contrast to many other reviews on the subject, here we highlight the pitfalls of using incorrectly designed immobilization protocols and explain why in many cases sub-optimal results are obtained. We also describe solutions to overcome these challenges and come to the conclusion that recent developments in material science, bioprocess engineering and protein science continue to open new opportunities for the future. In this way, enzyme immobilization, far from being a mature discipline, remains as a subject of high interest and where intense research is still necessary to take full advantage of the possibilities.
Collapse
Affiliation(s)
- Juan M Bolivar
- FQPIMA group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, Madrid 28049, Spain. .,Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Jiang Z, Zheng Z, Wu J, Liu X, Yu H, Shen J. Synthesis, characterization and performance of microorganism-embedded biocomposites of LDH-modified PVA/SA hydrogel beads for enhanced biological nitrogen removal process. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Patel N, Shahane S, Bhunia B, Mishra U, Chaudhary VK, Srivastav AL. Biodegradation of 4-chlorophenol in batch and continuous packed bed reactor by isolated Bacillus subtilis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113851. [PMID: 34597952 DOI: 10.1016/j.jenvman.2021.113851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
In present work, biodegradation of 4-Chlorophenol (4-CP) has been successfully achieved using bacteria i.e. Bacillus subtilis (MF447841.1), which was isolated from the wastewater of a nearby drain of Hyundai Motor Company service centre, Agartala, Tripura (India). Geonomic identification was carried out by 16 S rDNA technique and phylogenetic processes. Both, batch and column mode of experiments were performed to optimize various parameters (initial concentration, contact time, dosages etc.) involved in the significant biodegradation of 4-CP. Based on R2 value (0.9789), the Levenspiel's model was found to be best fit than others. The kinetic parameters; specific growth rate (μ), yield of cell mass (YX/S), and saturation constant (KS), were obtained as 0.6383 (h-1), 0.35 (g/g), and 0.006884 (g/L), respectively. The isolated strain has shown the ability of degrading 4-CP up to 1000 mg/L initial concentration within 40 h. Bacterial strain was immobilized via developing calcium alginate beads along by optimizing weight proportion of calcium chloride and sodium alginate and size of the bead for further experiments. Various process parameters i.e. initial feed concentration, bed height, rate of flow of were optimized during packed bed reactor (PBR) study. Maximum biodegradation efficiency of 4-CP was observed as 45.39% at initial concentration of 500 mg/L within 105 min, using 2 mm size of immobilized beads which were formed using 3.5% w/v of both calcium chloride and sodium alginate within. Thus, Bacillus subtilis (MF447841.1) could be used for biological remediation of 4-CP pollutant present in wastewater. Moreover, because of affordable and eco-friendly nature of water treatment, relatively it has the better scope of commercialization.
Collapse
Affiliation(s)
- Naveen Patel
- Department of Civil Engineering, National Institute of Technology, Agartala, Tripura, India; Department of Civil Engineering, Institute of Engineering & Technology, Dr. Ram Manohar Lohia Awadh University, Ayodhya, 224001, Uttar Pradesh, India
| | - Shraddha Shahane
- Department of Civil Engineering, National Institute of Technology, Agartala, Tripura, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology, Agartala, Tripura, India.
| | - Umesh Mishra
- Department of Civil Engineering, National Institute of Technology, Agartala, Tripura, India
| | - Vinod Kumar Chaudhary
- Department of Environmental Sciences, Dr. Ram Manohar Lohia Awadh University, Ayodhya, Uttar Pradesh, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, 174103, India.
| |
Collapse
|
6
|
Iliuta I, Iliuta MC. Intensified phenol and p-cresol biodegradation for wastewater treatment in countercurrent packed-bed column bioreactors. CHEMOSPHERE 2022; 286:131716. [PMID: 34343917 DOI: 10.1016/j.chemosphere.2021.131716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/30/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
An intensified biodegradation process in packed-bed column bioreactors (PBCB) with microbial cells attached to packing/micro-particles surface was proposed and simulated via a dynamic 3D model with continuity, momentum, and species (comprising biomicro-particles) balance equations in liquid/gas, accumulation of biomicro-particles in packed-bed, diffusion and enzymatic reaction within biofilm and liquid film. Phenol and phenol/p-cresol biological removal by Pseudomonas putida was chosen to discuss the enhanced biodegradation efficiency. The biodegradation in single/dual-substrate systems is significantly upgraded as biomass loading on micro-particles surface increases. Microbial cells addition to the surface of micro-particles is more efficient when the foremost extent of biomass is attached to packing via large biofilms with increased resistance to mass transfer, at low phenol concentrations and liquid velocities. These intensified biodegradation systems aim at maximizing the mass transfer in PBCB for treatment of wastewater having high phenols concentration, without reducing the residence time of liquid or diluting the effluent.
Collapse
Affiliation(s)
- Ion Iliuta
- Department of Chemical Engineering, Laval University, Québec, G1V 0A6, Canada
| | - Maria C Iliuta
- Department of Chemical Engineering, Laval University, Québec, G1V 0A6, Canada.
| |
Collapse
|
7
|
Wang J, Xie Y, Hou J, Zhou X, Chen J, Yao C, Zhang Y, Li Y. Biodegradation of bisphenol A by alginate immobilized Phanerochaete chrysosporium beads: Continuous cyclic treatment and degradation pathway analysis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108212] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Dual Use of Copper-Modified TiO2 Nanotube Arrays as Material for Photocatalytic NH3 Degradation and Relative Humidity Sensing. COATINGS 2021. [DOI: 10.3390/coatings11121500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, we emphasized the dual application of Cu-modified vertically aligned TiO2 nanotube arrays as photocatalyst and a relative humidity sensor. The TiO2 nanotube arrays were obtained by anodization of the titanium layer prepared using radio frequency magnetron sputtering (RFMS) and modified with different copper concentrations (0.5, 1, 1.5, and 2 M) by a wet-impregnation method. The sample modified with 2 M Cu(NO3)2 solution showed the highest efficiency for the NH3 photocatalytic degradation and the most pronounced humidity response in comparison to the other studied samples. In order to investigate the structure and impact of Cu modification, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were used. The photocatalytic activity and the kinetic study of ammonia oxidation were studied in a mini-photocatalytic wind tunnel reactor (MWPT), while relative humidity sensing was examined by impedance spectroscopy (IS). Higher NH3 oxidation was a direct consequence of the increased generation of •OH radicals obtained by a more efficient photogenerated charge separation, which is correlated with the increase in the DC conductivity.
Collapse
|
9
|
Mohanty SS, Reddy DK, Jena HM. Mass transfer study of butachlor biodegradation using immobilized microbial consortium
SMC1
in a packed bed bioreactor. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Satya Sundar Mohanty
- Department of Chemical Engineering National Institute of Technology Rourkela India
| | - D. Karthik Reddy
- Department of Chemical Engineering National Institute of Technology Rourkela India
| | - Hara Mohan Jena
- Department of Chemical Engineering National Institute of Technology Rourkela India
| |
Collapse
|
10
|
Grčić I, Marčec J, Radetić L, Radovan AM, Melnjak I, Jajčinović I, Brnardić I. Ammonia and methane oxidation on TiO 2 supported on glass fiber mesh under artificial solar irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18354-18367. [PMID: 32556993 DOI: 10.1007/s11356-020-09561-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
In this work, we present the application of solar photocatalysis for air purification including toxic substances such as ammonia and methane normally related to emissions from agriculture (e.g., poultry and cattle farms), landfills, etc. The study was done in three different laboratory and semi-pilot scale reactors: annular reactor (AR), mini-photocatalytic wind tunnel (MPWT), and photocatalytic wind tunnel (PWT). Reactors present a physical model for estimation of air-borne pollutant degradation over TiO2-based photocatalytic layer in respect to optimal operating conditions (relative humidity, air/gas flow, and feed concentration). All studies were performed under artificial solar irradiation with different portions of UVB and UVA light. The application of solar photocatalysis for air purification was evaluated based on thorough monitoring of pollutants in inlet and outlet streams. The kinetic study resulted with intrinsic reaction rate constants: kp,int,NH3 = (3.05 ± 0.04) × 10-3 cm4.5 mW-0.5 g-1 min-1 and kp,int,CH4 = (1.81 ± 0.02) × 10-2 cm4.5 mW-0.5 g-1 min-1, calculated using axial dispersion model including mass transfer considerations and first-order reaction rate kinetics with photon absorption effects. The results of photocatalytic oxidation of NH3 and CH4 confirmed continuous reduction of pollutant content in the air stream due to the oxidation of NH3 to N2 and CH4 to CO and CO2, respectively. The application of solar photocatalysis in outdoor air protection is still a pioneering work in the field, and the results obtained in this work represent a good basis for sizing large-scale devices and applying them to prevent further environmental pollution. In the current study, a TiO2 P25 supported on a glass fiber mesh was prepared from commercially available materials. The system designed in this way is easy to perform, operate, and relatively inexpensive.
Collapse
Affiliation(s)
- Ivana Grčić
- Faculty of Geotechnical Engineering, University of Zagreb, Hallerova aleja 7, 42000, Varaždin, Croatia.
| | - Jan Marčec
- Faculty of Geotechnical Engineering, University of Zagreb, Hallerova aleja 7, 42000, Varaždin, Croatia
| | - Lucija Radetić
- Faculty of Geotechnical Engineering, University of Zagreb, Hallerova aleja 7, 42000, Varaždin, Croatia
| | - Ana-Maria Radovan
- Faculty of Geotechnical Engineering, University of Zagreb, Hallerova aleja 7, 42000, Varaždin, Croatia
| | - Ivana Melnjak
- Faculty of Geotechnical Engineering, University of Zagreb, Hallerova aleja 7, 42000, Varaždin, Croatia
| | - Igor Jajčinović
- Faculty of Metallurgy, University of Zagreb, Aleja narodnih heroja 3, 44000, Sisak, Croatia
| | - Ivan Brnardić
- Faculty of Metallurgy, University of Zagreb, Aleja narodnih heroja 3, 44000, Sisak, Croatia
| |
Collapse
|
11
|
Moriyama J, Yoshimoto M. Efficient Entrapment of Carbonic Anhydrase in Alginate Hydrogels Using Liposomes for Continuous-Flow Catalytic Reactions. ACS OMEGA 2021; 6:6368-6378. [PMID: 33718727 PMCID: PMC7948239 DOI: 10.1021/acsomega.0c06299] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/10/2021] [Indexed: 05/03/2023]
Abstract
A versatile approach to entrap relatively small enzymes in hydrogels allows their diverse biotechnological applications. In the present work, bovine carbonic anhydrase (BCA) was efficiently entrapped in calcium alginate beads with the help of liposomes. A mixture of sodium alginate (3 wt %) and carbonic anhydrase-liposome conjugates (BCALs) was dripped into a Tris-HCl buffer solution (pH = 7.5) containing 0.4 M CaCl2 to induce the gelation and curing of the dispersed alginate-rich droplets. The entrapment efficiency of BCALs, which was defined as the amount of catalysts entrapped in alginate beads relative to that initially charged, was 98.7 ± 0.2% as determined through quantifying BCALs in the filtrate being separated from the beads. When free BCA was employed, on the other hand, a significantly lower entrapment efficiency of 27.2 ± 4.1% was obtained because free BCA could pass through alginate matrices. Because the volume of a cured alginate bead (10 μL) entrapped with BCALs was about 2.5 times smaller than that of an original droplet, BCALs were densely present in the beads to give the concentrations of lipids and BCA of 4.6-8.3 mM and 1.1-1.8 mg/mL, respectively. Alginate beads entrapped with BCALs were used to catalyze the hydrolysis of 1.0 mM p-nitrophenyl acetate (p-NA) at pH = 7.5 using the wells of a microplate or 10 mL glass beakers as batch reactors. Furthermore, the beads were confined in a column for continuous-flow hydrolysis of 1.0 mM p-NA for 1 h at a mean residence time of 8.5 or 4.3 min. The results obtained demonstrate that the conjugation of BCA to liposomes gave an opportunity to achieve efficient and stable entrapment of BCA in alginate hydrogels for applying to catalytic reactions in bioreactors.
Collapse
Affiliation(s)
- Junshi Moriyama
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Makoto Yoshimoto
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| |
Collapse
|
12
|
Sonwani RK, Giri BS, Jaiswal RP, Singh RS, Rai BN. Performance evaluation of a continuous packed bed bioreactor: Bio-kinetics and external mass transfer study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110860. [PMID: 32563162 DOI: 10.1016/j.ecoenv.2020.110860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
The biodegradation of naphthalene using low-density polyethylene (LDPE) immobilized Exiguobacterium sp. RKS3 (MG696729) in a packed bed bioreactor (PBBR) was studied. The performance of a continuous PBBR was evaluated at different inlet flow rates (IFRs) (20-100 mL/h) under 64 days of operation. The maximum naphthalene removal efficiency (RE) was found at low IFR, and it further decreased with increasing IFRs. In a continuous PBBR, the external mass transfer (EMT) aspect was analysed at various IFRs, and experimental data were interrelated between Colburn factor (JD) and Reynolds number (NRe) as [Formula: see text] . A new correlation [Formula: see text] was obtained to predict the EMT aspect of naphthalene biodegradation. Andrew-Haldane model was used to evaluate the bio-kinetic parameters of naphthalene degradation, and kinetic constant νmax, Js, and Ji were found as 0.386 per day, 13.6 mg/L, and 20.54 mg/L, respectively.
Collapse
Affiliation(s)
- Ravi Kumar Sonwani
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Balendu Shekhar Giri
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Ravi Prakash Jaiswal
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Ram Sharan Singh
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Birendra Nath Rai
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
13
|
Evaluation of Parallel-Series Configurations of Two-Phase Partitioning Biotrickling Filtration and Biotrickling Filtration for Treating Styrene Gas-Phase Emissions. SUSTAINABILITY 2020. [DOI: 10.3390/su12176740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The removal of styrene from industrial representative gaseous emissions was studied using two reactors connected in series: a two-phase partitioning biotrickling filter (TPPB-BTF) and a conventional biotrickling filter (BTF). The system was operated under industrial conditions, which included steady and transient conditions and intermittent spraying. Silicone oil was used in the TPPB-BTF with a quantity as low as 25 mL L−1, promoting a faster start-up compared to the BTF. By working at a styrene loading of 30 g m−3 h−1, nearly complete removal efficiency (RE) was obtained. In addition, the removal was not adversely impacted by using non-steady emission patterns such as overnight shutdowns (97% RE) and oscillating concentrations (95% RE), demonstrating its viability for industrial applications. After 2 months from inoculation, two additional configurations (reverse series BTF + TPPB-BTF and parallel) were tested, showing the series configuration as the best approach to consistently achieve RE > 95%. After 51 days of operation, high throughput sequencing revealed a sharp decrease in the bacterial diversity. In both reactors, the microorganisms belonging to the Comamonadaceae family were predominant and other styrene degraders such as Pseudomonadaceae proliferated preferably in the first reactor.
Collapse
|
14
|
Pathak U, Banerjee A, Roy T, Das SK, Das P, Kumar T, Mandal T. Evaluation of mass transfer effect and response surface optimization for abatement of phenol and cyanide using immobilized carbon alginate beads in a fixed bio‐column reactor. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Uttarini Pathak
- Centre for Technological Excellence in Water Purification, Department of Chemical EngineeringNational Institute of Technology Durgapur Durgapur India
| | - Avishek Banerjee
- Centre for Technological Excellence in Water Purification, Department of Chemical EngineeringNational Institute of Technology Durgapur Durgapur India
| | - Teetas Roy
- Centre for Technological Excellence in Water Purification, Department of Chemical EngineeringNational Institute of Technology Durgapur Durgapur India
| | - Subham Kumar Das
- Centre for Technological Excellence in Water Purification, Department of Chemical EngineeringNational Institute of Technology Durgapur Durgapur India
| | - Papita Das
- Department of Chemical EngineeringJadavpur University Kolkata Kolkata India
| | - Tarkeshwar Kumar
- Department of Petroleum EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad India
| | - Tamal Mandal
- Centre for Technological Excellence in Water Purification, Department of Chemical EngineeringNational Institute of Technology Durgapur Durgapur India
| |
Collapse
|
15
|
Wang P, Shen C, Wang X, Liu S, Li L, Guo J. Biodegradation of penicillin G from industrial bacteria residue by immobilized cells of Paracoccus sp. KDSPL-02 through continuous expanded bed adsorption bioreactor. J Biol Eng 2020; 14:5. [PMID: 32123541 PMCID: PMC7036172 DOI: 10.1186/s13036-020-0229-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 01/29/2023] Open
Abstract
Background An efficient biodegradation-strengthening approach was developed to improve penicillin G degradation from industrial bacterial residue in an expanded bed adsorption bioreactor (EBAB) is reported in this paper. Results Paracoccus sp. strain KDSPL-02 was isolated based on its ability to use penicillin G as the sole carbon and nitrogen source. Strain identification was based on analyses of morphology, physio-biochemical characteristics, and 16S rDNA sequences. The effects of temperature, pH, PVA-sodium alginate concentration, calcium chloride concentration and initial penicillin G concentration were investigated. Repeated operations of immobilized cells with EBAB, At initial penicillin concentrations below 2.0 g L- 1, the continuous mode could reach more than 20 times, and the degradation rate reached 100%. Conclusions The present study suggests that the EBAB system can be utilized for the simple and economical biodegradation of penicillin G from industrial bacterial residue.
Collapse
Affiliation(s)
- Peng Wang
- 1College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, 050018 China.,2State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science & Technology, Shijiazhuang, 050018 China.,Hebei Province Pharmaceutical Chemical Engineering Technology Research Center, Shijiazhuang, 050018 China
| | - Chen Shen
- 2State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science & Technology, Shijiazhuang, 050018 China
| | - Xiaochun Wang
- 1College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, 050018 China
| | - Shouxin Liu
- 1College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, 050018 China.,2State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science & Technology, Shijiazhuang, 050018 China
| | - Luwei Li
- 1College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, 050018 China
| | - Jinfeng Guo
- 1College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, 050018 China
| |
Collapse
|
16
|
Zhao Y, Lu W, Liu Y, Wang J, Zhou S, Mao Y, Li G, Deng Y. Efficient total nitrogen removal from wastewater by Paracoccus denitrificans DYTN-1. Lett Appl Microbiol 2019; 70:263-273. [PMID: 31879967 DOI: 10.1111/lam.13268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 01/20/2023]
Abstract
Bioaugmentation is an effective treatment method to reduce nitrogenous pollutants from wastewater. A strain of DYTN-1, which could effectively remove TN from sewage, was isolated from the sludge of a wastewater treatment plant and was identified as Paracoccus denitrificans. The TN in wastewater reduced to <20 mg l-1 within 12 h under optimal conditions by free cells of P. denitrificans DYTN-1. To enhance the removal of TN, P. denitrificans DYTN-1 cells were immobilized in sodium alginate (SA) using different divalent metal ions as cross-linking agents. It was found that the immobilized P. denitrificans DYTN-1 cells could reduce the TN concentration from 100 to below 20 mg l-1 within 8 h. After the optimization of an orthogonal experiment, the immobilized P. denitrificans DYTN-1 cells could reduce the TN concentration from 100 mg l-1 to below 20 mg l-1 within 1 h and significantly reduce the fermentation cycle. These findings would provide an economical and effective method for the removal of total nitrogen in wastewater by immobilized cells of P. denitrificans DYTN-1. SIGNIFICANCE AND IMPACT OF THE STUDY: We identified a new Paracoccus denitrificans strain (DYTN-1) for removal of the total nitrogen in wastewater. The total nitrogen could be removed effectively by P. denitrificans DYTN-1 within 12 h in wastewater. Using sodium alginate as the carrier and Ba2+ as cross-linking agent, the immobilized P. denitrificans DYTN-1 cells could improve the removal efficiency of total nitrogen in wastewater and significantly reduce the fermentation cycle. The assay has provided an economical and effective method for the removal of total nitrogen in wastewater by immobilized cell.
Collapse
Affiliation(s)
- Y Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - W Lu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Y Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing, China
| | - J Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing, China
| | - S Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Y Mao
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - G Li
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Y Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
17
|
Wang B, Xu X, Yao X, Tang H, Ji F. Degradation of phenanthrene and fluoranthene in a slurry bioreactor using free and Ca-alginate-immobilized Sphingomonas pseudosanguinis and Pseudomonas stutzeri bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109388. [PMID: 31466043 DOI: 10.1016/j.jenvman.2019.109388] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/25/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Biodegradation studies of three- and four-ring polycyclic aromatic hydrocarbons (PAHs) (phenanthrene [PHE] and fluoranthene [FLU]) were conducted using free and Ca-alginate-immobilized Sphingomonas pseudosanguinis strain J1-q (S1) and Pseudomonas stutzeri strain (S2) in bench-scale sediment slurry reactors. In this study, the effects of sodium alginate (SA) dosage on the characteristics of immobilized bacterial beads were investigated. The results indicated a 3% alginate concentration was optimal for immobilizing bacteria for PHE and FLU degradation. Scanning electron microscopy (SEM) images of the immobilized beads showed the presence of honeycomb structures and abundant interstices in the beads, which provided adequate space for microorganism adhesion and proliferation. The biodegradation of PHE and FLU using both free and immobilized bacteria fit a first-order reaction model well. The degradation efficiencies of PHE and FLU using immobilized bacteria were higher than those of free bacteria in sediment slurry reactors. The removal percentages of PHE and FLU using immobilized indigenous bacteria strain S1 after 42 d were 63.16% and 56.94%, respectively, which were higher than the removal percentages of exogenous strain S2.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xiaoyi Xu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215001, China.
| | - Xuewen Yao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Hui Tang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Fangying Ji
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
18
|
Basak B, Jeon BH, Kurade MB, Saratale GD, Bhunia B, Chatterjee PK, Dey A. Biodegradation of high concentration phenol using sugarcane bagasse immobilized Candida tropicalis PHB5 in a packed-bed column reactor. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:317-325. [PMID: 31100595 DOI: 10.1016/j.ecoenv.2019.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/20/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Biodegradation of phenolic compounds in wastewater can be effectively carried out in packed bed reactors (PBRs) employing immobilized microorganisms. A low-cost, reusable immobilization matrix in PBR can provide economic advantages in large scale removal of high concentration phenol. In this study, we evaluated the efficiency and reusability of sugarcane bagasse (SCB) as a low-cost immobilization support for high strength phenol removal in recirculating upflow PBR. An isolated yeast Candida tropicalis PHB5 was immobilized onto the SCB support and packed into the reactor to assess phenol biodegradation at various influent flow rates. Scanning electron microscopy exhibited substantial cell attachment within the pith and onto the fibrous strand surface of the SCB support. The PBR showed 97% removal efficiency at the initial phenol concentration of 2400 mg L-1 and 4 mL min-1 flow rate within 54 h. Biodegradation kinetic studies revealed that the phenol biodegradation rate and biodegradation rate constant were dependent on the influent flow rate. A relatively higher rate of biodegradation (64.20 mg g-1 h-1) was found at a flow rate of 8 mL min-1, indicating rapid phenol removal in the PBR. Up to six successive batches (phenol removal >94%) were successfully applied in the PBR using an initial phenol concentration of 400-2400 mg L-1 at a flow rate of 4 mL min-1 indicating the reusability of the PBR system. The SCB-immobilized C. tropicalis could be employed as a cost-effective packing material for removal of high strength phenolic compounds in real scale PBR.
Collapse
Affiliation(s)
- Bikram Basak
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea; Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209, India
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Mayur B Kurade
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Ganesh D Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Biswanath Bhunia
- Department of Bioengineering, National Institute of Technology Agartala, Barjala, Agartala, 799055, India
| | - Pradip K Chatterjee
- Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India
| | - Apurba Dey
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209, India.
| |
Collapse
|
19
|
Removing phenol contaminants from wastewater using graphene nanobuds: DFT and reactive MD simulation investigations. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Sonwani R, Giri B, Das T, Singh R, Rai B. Biodegradation of fluorene by neoteric LDPE immobilized Pseudomonas pseudoalcaligenes NRSS3 in a packed bed bioreactor and analysis of external mass transfer correlation. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Ruan B, Wu P, Chen M, Lai X, Chen L, Yu L, Gong B, Kang C, Dang Z, Shi Z, Liu Z. Immobilization of Sphingomonas sp. GY2B in polyvinyl alcohol-alginate-kaolin beads for efficient degradation of phenol against unfavorable environmental factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:103-111. [PMID: 29990721 DOI: 10.1016/j.ecoenv.2018.06.058] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/19/2018] [Accepted: 06/20/2018] [Indexed: 05/17/2023]
Abstract
In this study, batch experiments were carried out to evaluate the biodegradation of phenol by Sphingomonas sp. GY2B, which were immobilized in polyvinyl alcohol (PVA)-sodium alginate-kaolin beads under different conditions. The optimal degradation performance was achieved by GY2B immobilized in beads containing 1.0% (w/v) of kaolin, 10% (w/v) of PVA, 0.3% (w/v) of sodium alginate, 10% (v/v) of biomass dosage, and exposed to an initial phenol concentration of 100 mg/L. The experimental results indicated that PVA-sodium alginate-kaolin beads can accelerate the degradation rate of phenol by reducing the degradation time and also improve degradation rate. The biodegradation rate of phenol by immobilized cells (16.79 ± 0.81 mg/(L·h)) was significantly higher than that of free cells (11.49 ± 1.29 mg/(L·h)) under the above optimal conditions. GY2B immobilized on beads was more competent than free GY2B in degradation under conditions with high phenol concentrations (up to 300 mg/L) and in strong acidic (pH = 1) and alkaline (pH = 12) environments. Higher phenol concentrations inhibit the biomass and reduce the biodegradation rate, while the lower biodegradation rate at low initial phenol concentrations is attributed to mass transfer limitations. The Haldane inhibitory model was in agreement with the experimental data well, revealing that phenol showed a considerable inhibitory effect on the biodegradation by Sphingomonas sp. GY2B, especially at concentrations higher than 90 mg/L. Intra-particle diffusion model analysis suggests that adsorption of phenol by immobilized beads was controlled by both rapid surface adsorption as well as pore diffusion mechanism. It's worth noting that the presence of 1 mg/L Cr(VI) enhanced the biodegradation of phenol by free cells, while Cr(VI) showed no obvious impact on the removal of phenol by immobilized cells. In addition, immobilized cells were reused 16 times and removed 99.5% phenol, and when stored at 4 °C for 90 days, more than 99% phenol was removed. These results showed that immobilized cells can significantly improve the microbial degradation performance, and protect microorganisms against unfavorable environment. It is implied that PVA -sodium alginate-kaolin beads have great potential to be applied in a practical and economical phenolic wastewater treatment system.
Collapse
Affiliation(s)
- Bo Ruan
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China.
| | - Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xiaolin Lai
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Liya Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Langfeng Yu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Beini Gong
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Chunxi Kang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Zhenqing Shi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China
| | - Zehua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| |
Collapse
|
22
|
Reungsang A, Zhong N, Yang Y, Sittijunda S, Xia A, Liao Q. Hydrogen from Photo Fermentation. GREEN ENERGY AND TECHNOLOGY 2018. [DOI: 10.1007/978-981-10-7677-0_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
23
|
Kureel M, Geed S, Giri B, Shukla A, Rai B, Singh R. Removal of aqueous benzene in the immobilized batch and continuous packed bed bioreactor by isolated Bacillus sp. M1. RESOURCE-EFFICIENT TECHNOLOGIES 2016. [DOI: 10.1016/j.reffit.2016.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Kaczorek E, Smułek W, Zdarta A, Sawczuk A, Zgoła-Grześkowiak A. Influence of saponins on the biodegradation of halogenated phenols. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 131:127-134. [PMID: 27232205 DOI: 10.1016/j.ecoenv.2016.05.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
Biotransformation of aromatic compounds is a challenge due to their low aqueous solubility and sorptive losses. The main obstacle in this process is binding of organic pollutants to the microbial cell surface. To overcome these, we applied saponins from plant extract to the microbial culture, to increase pollutants solubility and enhance diffusive massive transfer. This study investigated the efficiency of Quillaja saponaria and Sapindus mukorossi saponins-rich extracts on biodegradation of halogenated phenols by Raoultella planticola WS2 and Pseudomonas sp. OS2, as an effect of cell surface modification of tested strains. Both strains display changes in inner membrane permeability and cell surface hydrophobicity in the presence of saponins during the process of halogenated phenols biotransformation. This allows them to more efficient pollutants removal from the environment. However, only in case of the Pseudomonas sp. OS2 the addition of surfactants to the culture improved effectiveness of bromo-, chloro- and fluorophenols biodegradation. Also introduction of surfactant allowed higher biodegradability of halogenated phenols and can shorten the process. Therefore this suggests that usage of plant saponins can indicate more successful halogenated phenols biodegradation for selected strains.
Collapse
Affiliation(s)
- Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Agata Zdarta
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Agata Sawczuk
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
25
|
Konti A, Mamma D, Hatzinikolaou DG, Kekos D. 3-Chloro-1,2-propanediol biodegradation by Ca-alginate immobilized Pseudomonas putida DSM 437 cells applying different processes: mass transfer effects. Bioprocess Biosyst Eng 2016; 39:1597-609. [PMID: 27262716 DOI: 10.1007/s00449-016-1635-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/30/2016] [Indexed: 10/21/2022]
Abstract
3-Chloro-1,2-propanediol (3-CPD) biodegradation by Ca-alginate immobilized Pseudomonas putida cells was performed in batch system, continuous stirred tank reactor (CSTR), and packed-bed reactor (PBR). Batch system exhibited higher biodegradation rates and 3-CPD uptakes compared to CSTR and PBR. The two continuous systems (CSTR and PBR) when compared at 200 mg/L 3-CPD in the inlet exhibited the same removal of 3-CPD at steady state. External mass-transfer limitations are found negligible at all systems examined, since the observable modulus for external mass transfer Ω ≪ 1 and the Biot number Bi > 1. Intra-particle diffusion resistance had a significant effect on 3-CPD biodegradation in all systems studied, but to a different extent. Thiele modulus was in the range of 2.5 in batch system, but it was increased at 11 when increasing cell loading in the beads, thus lowering significantly the respective effectiveness factor. Comparing the systems at the same cell loading in the beads PBR was less affected by internal diffusional limitations compared to CSTR and batch system, and, as a result, exhibited the highest overall effectiveness factor.
Collapse
Affiliation(s)
- Aikaterini Konti
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 157 80, Zografou, Greece
| | - Diomi Mamma
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 157 80, Zografou, Greece
| | - Dimitios G Hatzinikolaou
- Microbial Biotechnology Unit, Sector of Botany, Department of Biology, National and Kapodistrian University of Athens, Athens, Zografou, Greece
| | - Dimitris Kekos
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 157 80, Zografou, Greece.
| |
Collapse
|
26
|
Bakkiyaraj S, Syed MB, Devanesan MG, Thangavelu V. Production and optimization of biodiesel using mixed immobilized biocatalysts in packed bed reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9276-9283. [PMID: 25940482 DOI: 10.1007/s11356-015-4583-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
Vegetable oils are used as raw materials for biodiesel production using transesterification reaction. Several methods for the production of biodiesel were developed using chemical (alkali and acidic compounds) and biological catalysts (lipases). Biodiesel production catalyzed by lipases is energy and cost-saving processes and is carried out at normal temperature and pressure. The need for an efficient method for screening larger number of variables has led to the adoption of statistical experimental design. In the present study, packed bed reactor was designed to study with mixed immobilized biocatalysts to have higher productivity under optimum conditions. Contrary to the single-step acyl migration mechanism, a two-step stepwise reaction mechanism involving immobilized Candida rugosa lipase and immobilized Rhizopus oryzae cells was employed for the present work. This method was chosen because enzymatic hydrolysis followed by esterification can tolerate high free fatty acid containing oils. The effects of flow rate and bed height on biodiesel yield were studied using two factors five-level central composite design (CCD) and response surface methodology (RSM). Maximum biodiesel yield of 85 and 81 % was obtained for jatropha oil and karanja oil with the optimum bed height and optimum flow rate of 32.6 cm and 1.35 L/h, and 32.6 cm and 1.36 L/h, respectively.
Collapse
Affiliation(s)
- S Bakkiyaraj
- Biochemical Engineering Lab, Chemical Engineering Department, Annamalai University, Chidambaram, 608002, Tamilnadu, India
| | - Mahin Basha Syed
- Biochemical Engineering Lab, Chemical Engineering Department, Annamalai University, Chidambaram, 608002, Tamilnadu, India.
- Environmental Engineering Lab, Nawab Shah Alam Khan College of Engineering and Technology, Hyderabad, 500024, Telangana, India.
| | - M G Devanesan
- Biochemical Engineering Lab, Chemical Engineering Department, Annamalai University, Chidambaram, 608002, Tamilnadu, India
| | - Viruthagiri Thangavelu
- Biochemical Engineering Lab, Chemical Engineering Department, Annamalai University, Chidambaram, 608002, Tamilnadu, India
| |
Collapse
|
27
|
Sedighi M, Zamir SM, Vahabzadeh F. Cometabolic degradation of ethyl mercaptan by phenol-utilizing Ralstonia eutropha in suspended growth and gas-recycling trickle-bed reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 165:53-61. [PMID: 26406878 DOI: 10.1016/j.jenvman.2015.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/26/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Abstract
The degradability of ethyl mercaptan (EM), by phenol-utilizing cells of Ralstonia eutropha, in both suspended and immobilized culture systems, was investigated in the present study. Free-cells experiments conducted at EM concentrations ranging from 1.25 to 14.42 mg/l, showed almost complete removal of EM at concentrations below 10.08 mg/l, which is much higher than the maximum biodegradable EM concentration obtained in experiments that did not utilize phenol as the primary substrate, i.e. 2.5 mg/l. The first-order kinetic rate constant (kSKS) for EM biodegradation by the phenol-utilizing cells (1.7 l/g biomass/h) was about 10 times higher than by cells without phenol utilization. Immobilized-cells experiments performed in a gas recycling trickle-bed reactor packed with kissiris particles at EM concentrations ranging from 1.6 to 36.9 mg/l, showed complete removal at all tested concentrations in a much shorter time, compared with free cells. The first-order kinetic rate constant (rmaxKs) for EM utilization was 0.04 l/h for the immobilized system compared to 0.06 for the suspended-growth culture, due to external mass transfer diffusion. Diffusion limitation was decreased by increasing the recycling-liquid flow rate from 25 to 65 ml/min. The removed EM was almost completely mineralized according to TOC and sulfate measurements. Shut down and starvation experiments revealed that the reactor could effectively handle the starving conditions and was reliable for full-scale application.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Chemical Engineering Department, Amirkabir University of Technology, 424, Hafez Ave., Tehran, Iran
| | - Seyed Morteza Zamir
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran.
| | - Farzaneh Vahabzadeh
- Chemical Engineering Department, Amirkabir University of Technology, 424, Hafez Ave., Tehran, Iran
| |
Collapse
|
28
|
Zheng C, Zeng X, Danquah MK, Lu Y. NaCS-PDMDAAC immobilized cultivation of recombinant Dictyostelium discoideum for soluble human Fas ligand production. Biotechnol Prog 2014; 31:424-30. [PMID: 25504805 DOI: 10.1002/btpr.2032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 10/29/2014] [Indexed: 11/09/2022]
Abstract
Dictyostelium discoideum is a promising eukaryotic host for the expression of heterologous proteins requiring post-translational modifications. However, the dilute nature of D. discoideum cell culture limits applications for high value proteins production. D. discoideum cells, entrapped in sodium cellulose sulfate/poly-dimethyl-diallyl-ammonium chloride (NaCS-PDMDAAC) capsules were used for biosynthesis of the heterologous protein, soluble human Fas ligand (hFasL). Semi-continuous cultivations with capsules recycling were carried out in shake flasks. Also, a scaled-up cultivation of immobilized D. discoideum for hFasL production in a customized vitreous airlift bioreactor was conducted. The results show that NaCS-PDMDAAC capsules have desirable biophysical properties including biocompatibility with the D. discoideum cells and good mechanical stability throughout the duration of cultivation. A maximum cell density of 2.02 × 10(7) cells mL(-1) (equivalent to a maximum cell density of 2.22 × 10(8) cells mL(-1) in capsules) and a hFasL concentration of 130.40 μg L(-1) (equivalent to a hFasL concentration of 1434.40 μg L(-1) in capsules) were obtained in shake flask cultivation with capsules recycling. Also, a maximum cell density of 1.72 × 10(7) cells mL(-1) (equivalent to a maximum cell density of 1.89 × 10(8) cells mL(-1) in capsules) and a hFasL concentration of 106.10 μg L(-1) (equivalent to a hFasL concentration of 1167.10 μg L(-1) in capsules) were obtained after ∼170 h cultivation in the airlift bioreactor (with a working volume of 200 mL in a 315 mL bioreactor). As the article presents a premier work in the application of NaCS-PDMDAAC immobilized D. discoideum cells for the production of hFasL, more work is required to further optimize the system to generate higher cell densities and hFasL titers for large-scale applications.
Collapse
Affiliation(s)
- Chao Zheng
- Dept. of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China; Scientific Research Center, Zhejiang Inst. of Medical Devices, Hangzhou, 310009, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Kathiravan MN, Praveen SA, Gim GH, Han GH, Kim SW. Biodegradation of Methyl Orange by alginate-immobilized Aeromonas sp. in a packed bed reactor: external mass transfer modeling. Bioprocess Biosyst Eng 2014; 37:2149-62. [PMID: 24810435 DOI: 10.1007/s00449-014-1192-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/10/2014] [Indexed: 11/26/2022]
Abstract
Azo dyes are recalcitrant and xenobiotic nature makes these compounds a challenging task for continuous biodegradation up to satisfactorily levels in large-scale. In the present report, the biodegradation efficiency of alginate immobilized indigenous Aeromonas sp. MNK1 on Methyl Orange (MO) in a packed bed reactor was explored. The experimental results were used to determine the external mass transfer model. Complete MO degradation and COD removal were observed at 0.20 cm bead size and 120 ml/h flow rate at 300 mg/l of initial dye concentration. The degradation of MO decreased with increasing bead sizes and flow rates, which may be attributed to the decrease in surface of the beads and higher flux of MO, respectively. The experimental rate constants (k ps) for various beads sizes and flow rates were calculated and compared with theoretically obtained rate constants using external film diffusion models. From the experimental data, the external mass transfer effect was correlated with a model J D = K Re (-(1 - n)). The model was tested with K value (5.7) and the Colburn factor correlation model for 0.20, 0.40 and 0.60 bead sizes were J D = 5.7 Re (-0.15), J D = 5.7 Re (-0.36) and J D = 5.7 Re (-0.48), respectively. Based on the results, the Colburn factor correlation models were found to predict the experimental data accurately. The proposed model was constructive to design and direct industrial applications in packed bed reactors within acceptable limits.
Collapse
Affiliation(s)
- Mathur Nadarajan Kathiravan
- Department of Environmental Engineering, Pioneer Research Center for Controlling of Harmful Algal Bloom, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju, 501-759, Republic of Korea,
| | | | | | | | | |
Collapse
|
30
|
Topalova Y, Dimkov R, Todorova Y, Daskalova E, Petrov P. Biodegradation of Phenol by Immobilized in Peo-CryogelBacillus Laterosporus BT-271in Sequencing Batch Biofilter. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
31
|
Niju S, S. Begum KMM, Anantharaman N. Continuous flow reactive distillation process for biodiesel production using waste egg shells as heterogeneous catalysts. RSC Adv 2014. [DOI: 10.1039/c4ra05848h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A laboratory scale continuous flow jacketed reactive distillation (RD) unit was developed to evaluate the performance of calcium oxide (CaO) derived from egg shells as a heterogeneous catalyst for transesterification of waste frying oil.
Collapse
Affiliation(s)
- S. Niju
- Department of Chemical Engineering
- National Institute of Technology
- Tiruchirappalli-620015, India
| | - K. M. Meera S. Begum
- Department of Chemical Engineering
- National Institute of Technology
- Tiruchirappalli-620015, India
| | - N. Anantharaman
- Department of Chemical Engineering
- National Institute of Technology
- Tiruchirappalli-620015, India
| |
Collapse
|
32
|
Ren Y, He B, Yan F, Wang H, Cheng Y, Lin L, Feng Y, Li J. Continuous biodiesel production in a fixed bed reactor packed with anion-exchange resin as heterogeneous catalyst. BIORESOURCE TECHNOLOGY 2012; 113:19-22. [PMID: 22138595 DOI: 10.1016/j.biortech.2011.10.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 05/31/2023]
Abstract
A continuous biodiesel production from the transesterification of soybean oil with methanol was investigated in a fixed bed reactor packed with D261 anion-exchange resin as a heterogeneous catalyst. The conversion to biodiesel achieved 95.2% within a residence time 56 min under the conditions: reaction temperature of 323.15K, n-hexane/soybean oil weight rate of 0.5, methanol/soybean oil molar ratio of 9:1 and feed flow rate of 1.2 ml/min. The resin can be regenerated in-situ and restored to the original activity to achieve continuous production after the resin deactivation. The product obtained was mainly composed of methyl esters. No glycerol in the product was detected due to the resin adsorbing glycerol in the fixed bed, which solved the issue of glycerol separation from biodiesel. It is believed that the fixed bed reactor with D261 has a potential commercial application in the transesterification of triglyceride.
Collapse
Affiliation(s)
- Yanbiao Ren
- The State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300160, PR China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kumar SS, Kumar MS, Siddavattam D, Karegoudar TB. Generation of continuous packed bed reactor with PVA-alginate blend immobilized Ochrobactrum sp. DGVK1 cells for effective removal of N,N-dimethylformamide from industrial effluents. JOURNAL OF HAZARDOUS MATERIALS 2012; 199-200:58-63. [PMID: 22079508 DOI: 10.1016/j.jhazmat.2011.10.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/14/2011] [Accepted: 10/19/2011] [Indexed: 05/31/2023]
Abstract
Effective removal of dimethylformamide (DMF), the organic solvent found in industrial effluents of textile and pharma industries, was demonstrated by using free and immobilized cells of Ochrobactrum sp. DGVK1, a soil isolate capable of utilizing DMF as a sole source of carbon, nitrogen. The free cells have efficiently removed DMF from culture media and effluents, only when DMF concentration was less than 1% (v/v). Entrapment of cells either in alginate or in polyvinyl alcohol (PVA) failed to increase tolerance limits. However, the cells of Ochrobactrum sp. DGVK1 entrapped in PVA-alginate mixed matrix tolerated higher concentration of DMF (2.5%, v/v) and effectively removed DMF from industrial effluents. As determined through batch fermentation, these immobilized cells have retained viability and degradability for more than 20 cycles. A continuous packed bed reactor, generated by using PVA-alginate beads, efficiently removed DMF from industrial effluents, even in the presence of certain organic solvents frequently found in effluents along with DMF.
Collapse
Affiliation(s)
- S Sanjeev Kumar
- Department of Biochemistry, Gulbarga University, Gulbarga 585106, Karnataka, India
| | | | | | | |
Collapse
|
34
|
Rahman NK, Kamaruddin AH, Uzir MH. Enzymatic synthesis of farnesyl laurate in organic solvent: initial water activity, kinetics mechanism, optimization of continuous operation using packed bed reactor and mass transfer studies. Bioprocess Biosyst Eng 2011; 34:687-99. [DOI: 10.1007/s00449-011-0518-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 01/25/2011] [Indexed: 11/28/2022]
|
35
|
Dizge N, Tansel B. External mass transfer analysis for simultaneous removal of carbohydrate and protein by immobilized activated sludge culture in a packed bed batch bioreactor. JOURNAL OF HAZARDOUS MATERIALS 2010; 184:671-677. [PMID: 20855154 DOI: 10.1016/j.jhazmat.2010.08.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/19/2010] [Accepted: 08/21/2010] [Indexed: 05/29/2023]
Abstract
External mass transfer effects were analyzed for removal of carbohydrate and protein by immobilized activated sludge culture in a packed bed bioreactor. The bioreactor was made from 52 cm glass tubing with 5.0 cm inner diameter (with a total volume of 1020 cm(3)). The microbial culture was immobilized on microporus polyurethane cut into cubic pieces of approximately 1.5 cm in length. The effect of flow rate on mass transfer and removal of carbohydrate and protein were analyzed theoretically and compared with experimental data. The rate constants were estimated using external film diffusion models at different flow rates (900, 1200, 1800 cm(3)h(-1)). Based on the experimental data, correlations between the Colburn factor (J(D)) and Reynolds number (Re) as J(D)=5.7 × Re(-0.90) and J(D)=5.7 × Re(-0.18) were found to be adequate to predict the removal of carbohydrate and protein, respectively.
Collapse
Affiliation(s)
- Nadir Dizge
- Florida International University, Civil and Environmental Engineering Department, Miami, FL, United States; Gebze Institute of Technology, Department of Environmental Engineering, Gebze, Kocaeli, Turkey
| | - Berrin Tansel
- Florida International University, Civil and Environmental Engineering Department, Miami, FL, United States.
| |
Collapse
|
36
|
|
37
|
Rahman N, Kamaruddin A, Uzir M. Continuous Biosynthesis of Farnesyl Laurate in Packed Bed Reactor: Optimization using Response Surface Methodology. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/jas.2010.1110.1115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Abdelwahab O, Amin NK, El-Ashtoukhy ESZ. Electrochemical removal of phenol from oil refinery wastewater. JOURNAL OF HAZARDOUS MATERIALS 2009; 163:711-716. [PMID: 18755537 DOI: 10.1016/j.jhazmat.2008.07.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 05/12/2008] [Accepted: 07/04/2008] [Indexed: 05/26/2023]
Abstract
This study explores the possibility of using electrocoagulation to remove phenol from oil refinery waste effluent using a cell with horizontally oriented aluminum cathode and a horizontal aluminum screen anode. The removal of phenol was investigated in terms of various parameters namely: pH, operating time, current density, initial phenol concentration and addition of NaCl. Removal of phenol during electrocoagulation was due to combined effect of sweep coagulation and adsorption. The results showed that, at high current density and solution pH 7, remarkable removal of 97% of phenol after 2h can be achieved. The rate of electrocoagulation was observed to increase as the phenol concentration decreases; the maximum removal rate was attained at 30 mg L(-1) phenol concentration. For a given current density using an array of closely packed Al screens as anode was found to be more effective than single screen anode, the percentage phenol removal was found to increase with increasing the number of screens per array. After 2h of electrocoagulation, 94.5% of initial phenol concentration was removed from the petroleum refinery wastewater. Energy consumption and aluminum Electrode consumption were calculated per gram of phenol removed. The present study shows that, electrocoagulation of phenol using aluminum electrodes is a promising process.
Collapse
Affiliation(s)
- O Abdelwahab
- Environmental Division, National Institute of Oceanography and Fisheries, Kayet Bay, El-Anfushy, Alexandria, Egypt.
| | | | | |
Collapse
|
39
|
Halim SFA, Kamaruddin AH, Fernando WJN. Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: optimization using response surface methodology (RSM) and mass transfer studies. BIORESOURCE TECHNOLOGY 2009; 100:710-6. [PMID: 18819793 DOI: 10.1016/j.biortech.2008.07.031] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/18/2008] [Accepted: 07/21/2008] [Indexed: 05/22/2023]
Abstract
This study aimed to develop an optimal continuous procedure of lipase-catalyzes transesterification of waste cooking palm oil in a packed bed reactor to investigate the possibility of large scale production further. Response surface methodology (RSM) based on central composite rotatable design (CCRD) was used to optimize the two important reaction variables packed bed height (cm) and substrate flow rate(ml/min) for the transesterification of waste cooking palm oil in a continuous packed bed reactor. The optimum condition for the transesterification of waste cooking palm oil was as follows: 10.53 cm packed bed height and 0.57 ml/min substrate flow rate. The optimum predicted fatty acid methyl ester (FAME) yield was 80.3% and the actual value was 79%. The above results shows that the RSM study based on CCRD is adaptable for FAME yield studied for the current transesterification system. The effect of mass transfer in the packed bed reactor has also been studied. Models for FAME yield have been developed for cases of reaction control and mass transfer control. The results showed very good agreement compatibility between mass transfer model and the experimental results obtained from immobilized lipase packed bed reactor operation, showing that in this case the FAME yield was mass transfer controlled.
Collapse
Affiliation(s)
- Siti Fatimah Abdul Halim
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | | | | |
Collapse
|