1
|
Fu Y, Lin Y, Deng Z, Chen M, Yu G, Jiang P, Zhang X, Liu J, Yang X. Transcriptome and metabolome analysis reveal key genes and metabolic pathway responses in Leersia hexandra Swartz under Cr and Ni co-stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134590. [PMID: 38762990 DOI: 10.1016/j.jhazmat.2024.134590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Phytoremediation, an eco-friendly approach for mitigating heavy metal contamination, is reliant on hyperaccumulators. This study focused on Leersia hexandra Swart, a known chromium (Cr) hyperaccumulator with demonstrated tolerance to multiple heavy metals. Our objective was to investigate its response to simultaneous Cr and nickel (Ni) stress over 12 days. Results from physiological experiments demonstrated a significant increase in the activities of antioxidant enzymes (APX, SOD, CAT) and glutathione (GSH) content under Cr and Ni stress, indicating enhanced antioxidant mechanisms. Transcriptome analysis revealed that stress resulted in the differential expression of 27 genes associated with antioxidant activity and metal binding, including APX, SOD, CAT, GSH, metallothionein (MT), and nicotinamide (NA). Among them, twenty differentially expressed genes (DEGs) related to GSH metabolic cycle were identified. Notably, GSTU6, GND1, and PGD were the top three related genes, showing upregulation with fold changes of 4.57, 6.07, and 3.76, respectively, indicating their crucial role in metal tolerance. The expression of selected DEGs was validated by quantitative real-time PCR, confirming the reliability of RNA-Seq data. Metabolomic analysis revealed changes in 1121 metabolites, with amino acids, flavonoids, and carbohydrates being the most affected. Furthermore, glucosinolate biosynthesis and amino acid biosynthesis pathways were represented in the KEGG pathway of differentially expressed metabolites (DEMs). This study provides insights into the tolerance mechanisms of L. hexandra under the co-stress of Cr and Ni, offering a new perspective for enhancing its remediation performance.
Collapse
Affiliation(s)
- Yuexin Fu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yi Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Zhenliang Deng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Mouyixing Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Guo Yu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Pingping Jiang
- College of Earth Sciences, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Exploration for Hidden Metallic Ore Deposits, Guilin 541004, China.
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Xuemeng Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
2
|
Chen H, Gao B, Guo Y, Yu Q, Hu M, Zhang X. Adding carbon sources to the substrates enhances Cr and Ni removal and mitigates greenhouse gas emissions in constructed wetlands. ENVIRONMENTAL RESEARCH 2024; 252:118940. [PMID: 38626871 DOI: 10.1016/j.envres.2024.118940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Constructed wetlands for wastewater treatment pose challenges related to long-term operational efficiency and greenhouse gas emissions on a global scale. This study investigated the impact of adding peat, humic acid, and biochar into the substrates of constructed wetlands and focused on Cr, and Ni removal, greenhouse gas emissions, and microbial communities in constructed wetlands. Biochar addition treatment achieved the highest removal efficiencies for total Cr (99.96%), Cr (VI) (100%), and total Ni (91.04%). Humic acid and biochar addition both significantly increased the heavy metal content in wetland plant Leersia hexandra and substrates of constructed wetlands. Further analysis of microbial community proportions by high-throughput sequencing revealed that biochar and humic acid treatments enhanced Cr and Ni removal efficiency by increasing the abundance of Bacteroidetes, Geobacter and Ascomycota. Humic acid addition treatment reduced CO2 emissions by decreasing the abundance of Bacteroidetes and increasing that of Basidiomycota. Peat treatment decreased CH4 emissions by reducing the abundance of the Bacteroidetes. Biochar treatment increased the abundance of the Firmicutes, Bacteroidetes, Proteobacteria as well as Basidiomycota, resulting in reduced N2O emissions. Biochar and humic acid treatments efficiently removed heavy metals from wastewater and mitigated greenhouse gas emissions in constructed wetlands by modifying the microbial communities.
Collapse
Affiliation(s)
- Hongxu Chen
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Bo Gao
- College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin, 541004, China; College of Plant and Ecological Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yuehong Guo
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Qiankui Yu
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Maosheng Hu
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Xingfeng Zhang
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
3
|
Chen M, Yu G, Qiu H, Jiang P, Zhong X, Liu J. Unveiling Metal Tolerance Mechanisms in Leersia hexandra Swartz under Cr/Ni Co-Pollution by Studying Endophytes and Plant Metabolites. Metabolites 2024; 14:231. [PMID: 38668359 PMCID: PMC11051720 DOI: 10.3390/metabo14040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Heavy metal pollution poses significant environmental challenges, and understanding how plants and endophytic bacteria interact to mitigate these challenges is of utmost importance. In this study, we investigated the roles of endophytic bacteria, particularly Chryseobacterium and Comamonas, in Leersia hexandra Swartz (L. hexandra) in response to chromium and nickel co-pollution. Our results demonstrated the remarkable tolerance of Chryseobacterium and Comamonas to heavy metals, and their potential to become dominant species in the presence of co-pollution. We observed a close relationship between these endophytic bacteria and the significant differences in metabolites, particularly carbohydrates, flavonoids, and amino acids in L. hexandra. These findings shed light on the potential of endophytic bacteria to promote the production of aspartic acid and other metabolites in plants as a response to abiotic stressors. Furthermore, our study presents a new direction for plant and bioremediation strategies in heavy metal pollution and enhances our understanding of L. hexandra's mechanisms for heavy metal tolerance.
Collapse
Affiliation(s)
- Mouyixing Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (M.C.); (H.Q.); (J.L.)
| | - Guo Yu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China;
| | - Hui Qiu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (M.C.); (H.Q.); (J.L.)
| | - Pingping Jiang
- College of Earth Sciences, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Exploration for Hidden Metallic Ore Deposits, Guilin 541004, China
| | - Xuemei Zhong
- College of Earth Sciences, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Exploration for Hidden Metallic Ore Deposits, Guilin 541004, China
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (M.C.); (H.Q.); (J.L.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
4
|
Chen M, Jiang P, Zhang X, Sunahara GI, Liu J, Yu G. Physiological and biochemical responses of Leersia hexandra Swartz to nickel stress: Insights into antioxidant defense mechanisms and metal detoxification strategies. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133578. [PMID: 38306837 DOI: 10.1016/j.jhazmat.2024.133578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Phytoremediation is widely considered as a cost-effective method for managing heavy metal soil pollution. Leersia hexandra Swartz shows a promising potential for the remediation of heavy metals pollution, including chromium (Cr), copper (Cu), and nickel (Ni). It is vital to understand the physiological and biochemical responses of L. hexandra to Ni stress to elucidate the mechanisms underlying Ni tolerance and accumulation. Here, we examined the metabolic and transcriptomic responses of L. hexandra exposed to 40 mg/L Ni for 24 h and 14 d. After 24-h Ni stress, gene expression of glutathione metabolic cycle (GSTF1, GSTU1 and MDAR4) and superoxide dismutase (SODCC2) was significantly increased in plant leaves. Furthermore, after 14-d Ni stress, the ascorbate peroxidase (APX7), superoxide dismutase (SODCP and SOD1), and catalase (CAT) gene expression was significantly upregulated, but that of glutathione metabolic cycle (EMB2360, GSTU1, GSTU6, GSH2, GPX6, and MDAR2) was downregulated. After 24-h Ni stress, the differentially expressed metabolites (DEMs) were mainly flavonoids (45%) and flavones (20%). However, after 14-d Ni stress, the DEMs were mainly carbohydrates and their derivatives (34%), amino acids and derivatives (15%), and organic acids and derivatives (8%). Results suggest that L. hexandra adopt distinct time-dependent antioxidant and metal detoxification strategies likely associated with intracellular reduction-oxidation balance. Novel insights into the molecular mechanisms responsible for Ni tolerance in plants are presented.
Collapse
Affiliation(s)
- Mouyixing Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Pingping Jiang
- College of Earth Sciences, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Exploration for Hidden Metallic Ore Deposits, Guilin 541004, China.
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Geoffrey I Sunahara
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| |
Collapse
|
5
|
Zhang H, Zhang K, Duan Y, Sun X, Lin L, An Q, Altaf MM, Zhu Z, Liu F, Jiao Y, Yin J, Xie C, Wang B, Feng H, Zhang X, Li D. Effect of EDDS on the rhizosphere ecology and microbial regulation of the Cd-Cr contaminated soil remediation using king grass combined with Piriformospora indica. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133266. [PMID: 38118201 DOI: 10.1016/j.jhazmat.2023.133266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
The negative impacts of soil heavy metals composite pollution on agricultural production and human health are becoming increasingly prevalent. The applications of green chelating agents and microorganisms have emerged as promising alternate methods for enhancing phytoremediation. The regulatory effects of root secretion composition, microbial carbon source utilization, key gene expression, and soil microbial community structure were comprehensively analyzed through a combination of HPLC, Biolog EcoPlates, qPCR, and high-throughput screening techniques. The application of EDDS resulted in a favorable rhizosphere ecological environment for the king grass Piriformospora indica, characterized by a decrease in soil pH by 0.41 units, stimulation of succinic acid and fumaric acid secretion, and an increase in carbon source metabolic activity of amino acids and carbohydrates. Consequently, this improvement enhanced the bioavailability of Cd/Cr and increased the biomass of king grass by 25.7%. The expression of dissimilatory iron-reducing bacteria was significantly upregulated by 99.2%, while there was no significant difference in Clostridium abundance. Furthermore, the richness of the soil rhizosphere fungal community (Ascomycota: 45.8%, Rozellomycota: 16.7%) significantly increased to regulate the proportion of tolerant microbial dominant groups, promoting the improvement of Cd/Cr removal efficiency (Cd: 23.4%, Cr: 18.7%). These findings provide a theoretical basis for the sustainable development of chelating agent-assisted plants-microorganisms combined remediation of heavy metals in soil.
Collapse
Affiliation(s)
- Haixiang Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Kailu Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yali Duan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoyan Sun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Li Lin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi) / Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, Nanning 530007, China
| | - Qianli An
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Muhammad Mohsin Altaf
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zhiqiang Zhu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Fan Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yangqiu Jiao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jing Yin
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Can Xie
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Baijie Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Huiping Feng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dong Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Key Laboratory for Environmental Toxicology of Haikou / Center for Eco-Environmental Restoration aboratory of Marine Resource Utilization in South China Sea / Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China.
| |
Collapse
|
6
|
Zhang K, Zhang H, Xie C, Zhu Z, Lin L, An Q, Zhang X, Wu W, Li D. Piriformospora indica colonization enhances remediation of cadmium and chromium co-contaminated soils by king grass through plant growth promotion and rhizosphere microecological regulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132728. [PMID: 37820529 DOI: 10.1016/j.jhazmat.2023.132728] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Poor plant growth and low pollutant bioavailability in contaminated soils limit phytoremediation efficiency. Pot experiments were conducted to investigate the effects and mechanisms of Piriformospora indica inoculation on the phytoremediation of Cd-Cr co-contaminated soils from farmland using king grass. P. indica colonization increased plant biomass by 20.4-24.6% and enhanced Cd/Cr accumulation in root, stem and leave tissues. Root vascular cylinder and cortex were the major structures for Cd/Cr transportation in plants. The amounts of Cd and Cr extracted by king grass considerably increased in the presence of P. indica (by 31.5-88.9% and 22.4-38.4%, respectively), as did the removal efficiency of both metals from soils (by 13.2-32.2% and 23.2-33.5%, respectively). Cd/Cr phytoextraction was closely related to the contents of alkanes, lipids and acids in root exudates. Following inoculation, the respiration of microbial sulfur compounds was promoted in soils at low and medium pollution levels, whereas nitrogen fixation and nitrification were reduced at high pollution level. This study demonstrates that P. indica inoculation enhances the phytoremediation efficiency of king grass for Cd-Cr co-contaminated soils through multiple regulation of plant growth, rhizosphere environment, root exudation and soil microbial function.
Collapse
Affiliation(s)
- Kailu Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Haixiang Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Can Xie
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zhiqiang Zhu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Li Lin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi) / Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, Nanning 530007, China
| | - Qianli An
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weidong Wu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Dong Li
- Key Laboratory for Environmental Toxicology of Haikou / Center for Eco-Environmental Restoration Laboratory of Marine Resource Utilization in South China Sea / Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China.
| |
Collapse
|
7
|
Wang Y, Zhang X, Lin H. Effects of pH on simultaneous Cr(VI) and p-chlorophenol removal and electrochemical performance in Leersia hexandra constructed wetland-microbial fuel cell. ENVIRONMENTAL TECHNOLOGY 2024; 45:483-494. [PMID: 35971904 DOI: 10.1080/09593330.2022.2113918] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Cr(VI) and p-chlorophenol (4-CP) are common pollutants in the aquatic environment but are difficult to degrade and have complex toxic effects. A downflow Leersia hexandra microbial fuel cell (DLCW-MFC) system was constructed to purify Cr(VI) and 4-CP polluted wastewater, as well as to investigate the effects of different pHs on Cr(VI) and 4-CP removal, electrochemical performance, physiological and biochemical responses, and Cr enrichment status of L. hexandra. The results showed that the DLCW-MFC had the highest Cr(VI) and 4-CP removal rates at pH 6.5, which were 99.0% and 78.6%, respectively. At the same time, 543 mV output voltage and 72.25 mW/m2 power density of the system were generated at pH 6.5, which were better than those at pH 7.4 and pH 5.8. The electrochemical performance result showed that pH 6.5 enhanced charge transfer ability and ion diffusion ability of the system. pH 6.5 also promoted growth and photosynthesis, and enhanced the Cr enrichment capacity (4.56 mg/10 plants) of L. hexandra. These results demonstrate that pH 6.5 was the optimum pH for the DLCW-MFC synchronous treatment of Cr(VI) and 4-CP as well as the generation of electricity. The DLCW-MFC designed in this study will provide a reference for purifying polluted wastewater and generating electricity.
Collapse
Affiliation(s)
- Yian Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, People's Republic of China
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, People's Republic of China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin, People's Republic of China
| |
Collapse
|
8
|
Huang Q, Zhao J, Wang J, Yang L, Xu Y, Yu G, Bai S, Liu L. Enhancement of iron-loaded sludge biochar on Cr accumulation in Leersia hexandra swartz: Hydroponic test. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119389. [PMID: 39491937 DOI: 10.1016/j.jenvman.2023.119389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/22/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
In this study, the effect of iron-loaded sludge biochar (ISBC) on the Cr enrichment capacity of Leersia hexandra swartz (L. hexandra) in hydroponic tests was investigated at different Cr treatment levels (5 mg/L, 10 mg/L and 20 mg/L). The results showed that the plant height and biomass of L. hexandra were significantly increased with the rise of ISBC dose (p < 0.01), while the Cr content in L. hexandra showed a significant downward trend (p < 0.01). However, the Cr accumulation capacity of L. hexandra was significantly increased as ISBC dose was raised (p < 0.01), which was attributed to the significant improvement of its biomass. According to Cr accumulation capacity, the appropriate ISBC dose was recommended to be 50 g/L for all Cr treatment levels. Compared to the control (no ISBC; 0.105 mg, 0.167 mg and 0.193 mg), the Cr accumulation capacity of L. hexandra at different Cr treatment levels were increased by 77.40%, 59.72% and 88.41%, respectively. The comparative analysis throughout the test cycle indicated that the addition of ISBC could convert more Cr(VI) to Cr(III), which was beneficial to the biomass and the Cr accumulation capacity of L. hexandra. Meanwhile, the relationship between changes in the concentrations of NH4+, PO43- and K+ and the incremental biomass of L. hexandra was well described by the Logistic model, while the relationship between changes in their concentrations and the Cr accumulation capacity of L. hexandra also followed this model well. Moreover, their effects were found throughout the test, while the contribution of Ca2+ was mainly at the beginning and end of the test. In summary, the enhancement of ISBC on Cr accumulation capacity of L. hexandra was attributed to detoxification and fertilizer supply.
Collapse
Affiliation(s)
- Qingxia Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jirong Zhao
- School of Civil and Hydraulic Engineering, Xichang University, Xichang, 615000, China
| | - Jinchao Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Lijiao Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yufeng Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Shaoyuan Bai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
9
|
Vélez-Terranova M, Salamanca-Carreño A, Vargas-Corzo OM, Parés-Casanova PM, Arias-Landazábal JN. Chemical Composition and In Vitro Ruminal Fermentation Characteristics of Native Grasses from the Floodplain Lowlands Ecosystem in the Colombian Orinoquia. Animals (Basel) 2023; 13:2760. [PMID: 37685024 PMCID: PMC10486961 DOI: 10.3390/ani13172760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Grasses from lowland ecosystems in flooded savannahs are useful to feed extensive grazing animals; however, scarce information about its agronomic and fermentation characteristics exists. This study aims to determine the chemical composition and fermentation parameters of native grasses from the floodplain lowlands ecosystem in the Colombian Orinoquia. Three native grasses (Leersia hexandra, Acroceras zizanioides and Hymenachne amplexicaulis) and a "control" grass (introduced Urochloa arrecta-Tanner grass) were sown and sampled at 30, 40 and 50 days of age. On each sampling date, biomass production in a 1 m2 frame was estimated, and the chemical composition and fermentation parameters were analyzed using near-infrared spectroscopy and the in vitro gas production technique, respectively. Data were analyzed using a mixed model for repeated measures and the least significant difference (LSD) was used for mean differentiation (p < 0.05). The grasses' nutritional characteristics varied as follows: dry matter (DM, 0.7-2.0 ton/ha), crude protein (CP, 6.1-12.2%), neutral detergent fiber (NDF, 56.6-69.6%), ash (5.8-15.8%) and dry matter digestibility (DMD) between 20.8 and 60.6% from 12 to 48 h of fermentation. Native plants such as L. hexandra and A. zizanioides presented higher biomass production, CP, ash, cellulose, and Ca levels than the control plant. During the experimental period (30 to 50 days), the grasses did not present significant nutrient availability changes. In terms of fermentation characteristics, L. hexandra increased ammonia concentrations and total volatile fatty acids (TVFA) and butyric acid. This latter effect was also observed in A. zizanioides grass. L. hexandra and A. zizanioides grasses constitute a valuable alternative forage resource during the flooding times of the studied ecosystem.
Collapse
Affiliation(s)
| | - Arcesio Salamanca-Carreño
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Villavicencio 500001, Colombia
| | | | | | - José N. Arias-Landazábal
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Villavicencio 500001, Colombia
| |
Collapse
|
10
|
Zhang X, Su C, Zhang Y, Lai S, Han S, Zhang X, Zheng J. Mineralogical characteristics of root iron plaque and its functional mechanism for regulating Cr phytoextraction of hyperaccumulator Leersia hexandra Swartz. ENVIRONMENTAL RESEARCH 2023; 228:115846. [PMID: 37024027 DOI: 10.1016/j.envres.2023.115846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
Leersia hexandra Swartz (L. hexandra) is a promising hyperaccumulator for Cr pollution remediation, but whether its Cr phytoextraction is subject to the root surface-attached iron plaque (IP) remains unclear. In this research, the natural and artificial IPs were proven to be comprised of small amounts of exchangeable Fe as well as carbonate Fe, and dominantly Fe minerals involving amorphous two-line ferrihydrite (Fh), poorly crystalline lepidocrocite (Le) and highly crystalline goethite (Go). The Fe content in the artificial IPs augmented with increasing induced Fe(II) concentration, and the 50 mg/L Fe(II) led to the identical Fe content and different component proportions of artificial IP (Fe50) and natural IP. Fh was consisted of highly aggregated nanoparticles, and the aging of Fh caused its phase conversion to rod-like Le and Go. The Cr(VI) adsorption results of Fe minerals corroborated the coordination of Cr(VI) onto the Fh surface and the significantly greater equilibrium Cr(VI) adsorption amount of Fh over Le and Go. The greatest Cr(VI) reduction capacity of Fh among three Fe minerals was found to be related to its most abundant surface-adsorbed Fe(II) content. The results of hydroponic experiment of L. hexandra showed that the presence of IP facilitated the Cr(VI) removal by L. hexandra during the cultivation period of 10-45 days, and consequently, compared to the Fe0 group (without IP), around 60% of increase in the Cr accumulation of shoots was achieved by Fe50 group. The findings of this work are conductive to furthering our understanding of IP-regulated Cr phytoextraction of L. hexandra.
Collapse
Affiliation(s)
- Xuehong Zhang
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China; Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Chang Su
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Yuanyuan Zhang
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China; Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Simin Lai
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Shuo Han
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Xingran Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Junjian Zheng
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China; Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, 541004, China.
| |
Collapse
|
11
|
He Y, Ding N, Yu G, Sunahara GI, Lin H, Zhang X, Ullah H, Liu J. High-resolution imaging of O 2 dynamics and metal solubilization in the rhizosphere of the hyperaccumulator Leersia hexandra Swartz. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131580. [PMID: 37167872 DOI: 10.1016/j.jhazmat.2023.131580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
The mobilization of trace metals in the rhizosphere can be affected by the redox potential, which is closely related to the O2 dynamics. This study examined the distributions of O2 and trace metals in the rhizosphere of the subaquatic hyperaccumulator Leersia hexandra Swartz under chromium (Cr) stress using planar optodes and the diffusive gradients in thin films technique coupled with laser ablation inductively coupled plasma mass spectrometry. The O2 concentrations and oxidized areas in the rhizosphere significantly increased with increases in the light intensity, air humidity, and atmospheric CO2 concentrations (p < 0.05). The O2 concentration first increased with increasing ambient temperatures, then decreased when the temperature increased from 25 to 32 ℃. The O2 concentration in the rhizosphere was significantly decreased under Cr stress (p < 0.05), with a prolonged response time to the altered ambient temperature. Cr stress led to decreased mobilities of As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Sb, V, W, and Zn in the rhizosphere, which were negatively correlated with the concentrations of O2. These results provide new insights into the role of changes in the O2 concentration induced by the roots of hyperaccumulator plants in controlling the mobility of trace metals in soils.
Collapse
Affiliation(s)
- Yao He
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Na Ding
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 541000 Guilin, China.
| | - Geoffrey I Sunahara
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 541000 Guilin, China.
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 541000 Guilin, China
| | - Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 541000 Guilin, China
| |
Collapse
|
12
|
Bai S, Han X, Feng D. Shoot-root signal circuit: Phytoremediation of heavy metal contaminated soil. FRONTIERS IN PLANT SCIENCE 2023; 14:1139744. [PMID: 36890896 PMCID: PMC9987563 DOI: 10.3389/fpls.2023.1139744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
High concentrations of heavy metals in the environment will cause serious harm to ecosystems and human health. It is urgent to develop effective methods to control soil heavy metal pollution. Phytoremediation has advantages and potential for soil heavy metal pollution control. However, the current hyperaccumulators have the disadvantages of poor environmental adaptability, single enrichment species and small biomass. Based on the concept of modularity, synthetic biology makes it possible to design a wide range of organisms. In this paper, a comprehensive strategy of "microbial biosensor detection - phytoremediation - heavy metal recovery" for soil heavy metal pollution control was proposed, and the required steps were modified by using synthetic biology methods. This paper summarizes the new experimental methods that promote the discovery of synthetic biological elements and the construction of circuits, and combs the methods of producing transgenic plants to facilitate the transformation of constructed synthetic biological vectors. Finally, the problems that should be paid more attention to in the remediation of soil heavy metal pollution based on synthetic biology were discussed.
Collapse
Affiliation(s)
- Shiyan Bai
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Dan Feng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Yang W, Dai H, Skuza L, Wei S. Enhanced Cd Phytoextraction by Solanum nigrum L. from Contaminated Soils Combined with the Application of N Fertilizers and Double Harvests. TOXICS 2022; 10:266. [PMID: 35622679 PMCID: PMC9144175 DOI: 10.3390/toxics10050266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022]
Abstract
It is very important to increase phytoremediation efficiency in practice in suitable climatic conditions for plant growth through multiple harvests. Solanum nigrum L. is a Cd hyperaccumulator. In the present experiment, after applying different types of N fertilizers (NH4HCO3, NH4Cl, (NH4)2SO4, CH4N2O), root and shoot biomasses and Cd phytoextraction efficiency of S. nigrum effectively improved (p < 0.05). Shoot biomasses of S. nigrum harvested at the first florescence stage plus the amounts at the second florescence stage were higher than those harvested at the maturation stage, which indicates that S. nigrum Cd phytoaccumulation efficiency was higher in the former compared to the latter as there was no clear change in Cd concentration (p < 0.05). The pH value and extractable Cd contents showed no changes, regardless of whether N fertilizer was added or not at different growth stages. In addition, after N fertilizer was applied, H2O2 and malondialdehyde (MDA) contents in S. nigrum in vivo were lower compared to those that had not received N addition (CK); similarly, the concentration of proline was decreased as well (p < 0.05). The activity of the antioxidant enzyme catalase (CAT), harvested at different growth periods after four types of N fertilizer applications, obviously decreased in S. nigrum shoots, while peroxidase (POD) and superoxide dismutase) (SOD) activities increased (p < 0.05). Our study demonstrated that (NH4)2SO4 treatment exerted the most positive effect and CH4N2O the second most positive effect on S. nigrum Cd phytoremediation efficiency in double harvests at florescence stages, and the growth conditions were better than others.
Collapse
Affiliation(s)
- Wei Yang
- Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
| | - Huiping Dai
- Shaanxi Province Key Laboratory of Bio-Resources, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Lidia Skuza
- Institute of Biology, University of Szczecin, 71-415 Szczecin, Poland;
| | - Shuhe Wei
- Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
| |
Collapse
|
14
|
Bao Z, Feng H, Tu W, Li L, Li Q. Method and mechanism of chromium removal from soil: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35501-35517. [PMID: 35226261 DOI: 10.1007/s11356-022-19452-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal pollution has increasingly affected human life, and the treatment of heavy metal pollution, especially chromium pollution, is still a major problem in the field of environmental governance. As a commonly used industrial metal, chromium can easily enter the environment with improperly treated industrial waste or wastewater, then pollute soil and water sources, and eventually accumulate in the human body through the food chain. Many countries and regions in the world are threatened by soil chromium pollution, resulting in the occurrence of cancer and a variety of metabolic diseases. However, as a serious threat to agriculture, food, and human health. Notwithstanding, there are limited latest and systematic review on the removal methods, mechanisms, and effects of soil chromium pollution in recent years. Hence, this article outlines some of the methods and mechanisms for the removal of chromium in soil, including physical, chemical, biological, and biochar methods, which provide a reference for the treatment and research on soil chromium pollution drawn from existing publications.
Collapse
Affiliation(s)
- Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Huiyu Feng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Wen K, Li X, Huang R, Nian H. Application of exogenous glutathione decreases chromium translocation and alleviates its toxicity in soybean (Glycine max L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113405. [PMID: 35298965 DOI: 10.1016/j.ecoenv.2022.113405] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Chromium is considered one of the most severe toxic elements affecting agriculture. Soybean seedlings under chromium stress were treated with glutathione and buthionine sulfoximine. The effects of exogenous glutathione on the physiological effects of two different chromium-resistant soybean seedlings and the expression levels of expression levels related genes were studied. This study tested the seedling weight and SPAD values, detected enzymatic antioxidants (i.e., superoxide dismutase, peroxidase, catalase, catalase, ascorbate peroxidase), and non-enzymatic antioxidants (i.e., glutathione, proline, soluble sugars, and soluble phenols) that attenuate chromium-induced reactive oxygen species, and quantified several genes associated with glutathione-mediated chromium stress. The results showed that exogenous glutathione could improve the physiological adaptability of soybean seedlings by regulating photosynthesis, antioxidant, and related enzyme activities, osmotic system, the compartmentalization of ion chelation, and regulating the transcription level of related genes, thereby increasing the chromium accumulation of soybean seedlings, enhancing the tolerance of chromium stress, and reducing the toxicity of chromium. Overall, the application of glutathione alleviates chromium toxicity in soybeans, and this strategy may be a potential farming option for soybean bioremediation in chromium-contaminated soils.
Collapse
Affiliation(s)
- Ke Wen
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong, People's Republic of China; The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China; Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Xingang Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong, People's Republic of China; The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China; Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Rong Huang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong, People's Republic of China; The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China; Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong, People's Republic of China; The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China; Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| |
Collapse
|
16
|
Zhang Z, Chen Y, Chen H, Wang Y, Wu D, Pan Y. Novel efficient capture of Cr(VI) from soil driven by capillarity and evaporation coupling. CHEMOSPHERE 2022; 288:132593. [PMID: 34666072 DOI: 10.1016/j.chemosphere.2021.132593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Soil contaminated by hexavalent chromium (Cr(VI)) poses a severe environmental threat owing to the carcinogenic and genotoxic characteristics of Cr(VI). Currently, field application of remediation technologies for Cr(VI) removal or detoxification fails to achieve optimum results owing to various limitations, such as high energy consumption, high chemical cost, secondary pollution, and long treatment duration. Herein, a novel strategy, namely, the capillary-evaporation membrane (CEM) method, which is based on the ubiquitous phenomena of capillarity and evaporation in natural soil environment without external forces, was applied to remove Cr(VI) from contaminated soil. The CEM method enables Cr(VI) dissolved in the soil solution to move upwards through soil pores and inter-particle spaces and get attached to the surface of adsorption membrane under the coupling action of capillarity and evaporation to achieve Cr(VI) removal. The CEM method showed high Cr(VI) removal capacity during 22 days of treatment of bulk soil (47.26%), sandy fraction (34.60%), and silt-clay fraction (52.50%), respectively. Further research on optimization of the CEM process conditions could remarkably improve Cr(VI) remediation performance. For example, the Cr(VI) removal rate increased to 89.04% in bulk soil through prolongation of the remediation period to 61 days. This study demonstrated a new environment-friendly remediation method driven by natural phenomena for Cr(VI)-contaminated soils.
Collapse
Affiliation(s)
- Zhuo Zhang
- School of Land Science and Technology, China University of Geosciences, Beijing, 100083, China; Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Natural Resources, Beijing, 100035, China.
| | - Youzhi Chen
- Hunan Liyong Environmental Technology Co., Ltd., Changsha, 410000, China
| | - Honghan Chen
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing, 100083, China
| | - Yixiao Wang
- School of Land Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Dan Wu
- School of Land Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Yaran Pan
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
17
|
Rajput V, Minkina T, Semenkov I, Klink G, Tarigholizadeh S, Sushkova S. Phylogenetic analysis of hyperaccumulator plant species for heavy metals and polycyclic aromatic hydrocarbons. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1629-1654. [PMID: 32040786 DOI: 10.1007/s10653-020-00527-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/21/2020] [Indexed: 05/23/2023]
Abstract
Increasing concentration of heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) in the soil may impose a serious threat to living organisms due to their toxicity and the ability to accumulate in plant tissues. The present review focuses on the phylogenetic relationships, sources, biotransformation and accumulation potential of hyperaccumulators for the priority HMs and PAHs. This review provides an opportunity to reveal the role of hyperaccumulators in removal of HMs and PAHs from soils, to understand the relationships between pollutants and their influence on the environment and to find potential plant species for soil remediation. The phylogenetic analysis results showed that the hyperaccumulators of some chemicals (Co, Cu, Mn, Ni, Zn, Cd) are clustered on the evolutionary tree and that the ability to hyperaccumulate different pollutants can be correlated either positively (Cd-Zn, Pb-Zn, Co-Cu, Cd-Pb) or negatively (Cu-PAHs, Co-Cd, Co-PAHs, Ni-PAHs, Cu-Ni, Mn-PAHs). Further research needs to be extended on the focus of commercializing the techniques including the native hyperaccumulators to remediate the highly contaminated soils.
Collapse
Affiliation(s)
- Vishnu Rajput
- Southern Federal University, Rostov-on-Don, Russia, 344090.
| | | | - Ivan Semenkov
- Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Galya Klink
- Lomonosov Moscow State University, Moscow, Russia, 119991
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia, 127051
| | | | | |
Collapse
|
18
|
Li Q, Xing Y, Fu X, Ji L, Li T, Wang J, Chen G, Qi Z, Zhang Q. Biochemical mechanisms of rhizospheric Bacillus subtilis-facilitated phytoextraction by alfalfa under cadmium stress - Microbial diversity and metabolomics analyses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112016. [PMID: 33550079 DOI: 10.1016/j.ecoenv.2021.112016] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 05/27/2023]
Abstract
The effects of Bacillus subtilis inoculation on the growth and Cd uptake of alfalfa were evaluated in this research using pot experiments, and the relevant biochemical mechanisms were first investigated by combined microbial diversity and nontarget metabolomics analyses. The results indicated that inoculation with alfalfa significantly decreased the amount of plant malondialdehyde (MDA) and improved the activities of plant antioxidant enzymes and soil nutrient cycling-involved enzymes, thereby promoting biomass by 29.4%. Inoculation also increased Cd bioavailability in rhizosphere soil by 12.0% and Cd removal efficiency by 139.3%. The biochemical mechanisms included enhanced bacterial diversity, transformed microbial community composition, regulated amounts of amino acids, fatty acids, carbohydrates, flavonoids and phenols in rhizosphere soil metabolites, and modulations of the corresponding Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. These responses were beneficial to microbial activity, nutrient cycling, and Cd mobilization, detoxification, and decontamination by alfalfa in soil. This study, especially the newly identified differential metabolites and metabolic pathways, provides new insights into mechanism revelation and strategy development in microbe-assisted phytomanagement of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Qi Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Yingna Xing
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China.
| | - Xiaowen Fu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Lei Ji
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Tianyuan Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Jianing Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Guanhong Chen
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Qiang Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China.
| |
Collapse
|
19
|
Wang C, Tan H, Li H, Xie Y, Liu H, Xu F, Xu H. Mechanism study of Chromium influenced soil remediated by an uptake-detoxification system using hyperaccumulator, resistant microbe consortium, and nano iron complex. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113558. [PMID: 31708284 DOI: 10.1016/j.envpol.2019.113558] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
A soil heavy metal decontamination system was developed based on the immobilization of bioavailable metal fraction by iron-biochar nano-complex (BC@Fe3O4) and the uptake by Chromium (Cr) hyperaccumulator Leersia hexandra (L. hexandra) under the assistance of metal resistant microbe consortium (MC). In this system, L. hexandra was able to accumulate 485.1-785.0 mg kg-1 in root and 147.5-297.2 mg kg-1 of Cr in its aerial part. With MC assistance, more Cr could be translocated to the aerial part of L. hexandra, which dramatically improved its remediation potential. Meanwhile, BC@Fe3O4 application decreased bioavailable Cr in soil and reduced soil toxicity, which contributed to soil microbial community adaption and L. hexandra performance under high level of Cr concentration (elevated microbial activity, decreased plant stress response, enhanced L. hexandra growth and accumulation) without negative influence on accumulation efficiency. Moreover, details of the possible mechanistic insight into metal removal were discussed, which indicated a negative correlation of the extractable Cr with soil microecology and hyperaccumulator performance. Furthermore, the resistant bacteria successfully altered soil microbial community, enhanced its diversity, which was in favor of the soil quality improvement.
Collapse
Affiliation(s)
- Can Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Hang Tan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Hao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yanluo Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Huakang Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Fei Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
20
|
Yu G, Liu J, Long Y, Chen Z, Sunahara GI, Jiang P, You S, Lin H, Xiao H. Phytoextraction of cadmium-contaminated soils: comparison of plant species and low molecular weight organic acids. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:383-391. [PMID: 31522543 DOI: 10.1080/15226514.2019.1663488] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To select suitable plants for phytoextraction of Cd-contaminated soils, we evaluated the phytoextraction potential of five local Cd-accumulators: Amaranthus hypochondriacus L., Solanum nigrum L., Phytolacca acinosa Roxb., Celosia argentea L., and Sedum spectabile Boreau. The plants were grown in three naturally contaminated soils with different total Cd levels (1.57, 3.89, and 22.4 mg kg-1). Throughout the experimental period, no plants showed any visible symptoms of metal toxicity. The Cd uptake of C. argentea was the greatest in the S-YS soil (105 μg plant-1) and among the greatest in the S-HC soil and S-TJ soil. Besides, C. argentea exhibited the highest bioconcentration factor (12.3) in three soils. To improve the phytoextraction efficiency of C. argentea, we applied four low molecular weight organic acids (LMWOAs): tartaric acid, malic acid, oxalic acid, and citric acid. Malic acid was more effective in enhancing Cd uptake by C. argentea than the other LMWOAs. Therefore, C. argentea may be a potential choice in actual remediation projects. Moreover, application of malic acid is an effective way to increase the phytoextraction efficiency of C. argentea.
Collapse
Affiliation(s)
- Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin, China
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Yumei Long
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Zhe Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Geoffrey I Sunahara
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Pingping Jiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Shaohong You
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin, China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin, China
| | - He Xiao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| |
Collapse
|
21
|
Lang JM, Pérez-Quintero AL, Koebnik R, DuCharme E, Sarra S, Doucoure H, Keita I, Ziegle J, Jacobs JM, Oliva R, Koita O, Szurek B, Verdier V, Leach JE. A Pathovar of Xanthomonas oryzae Infecting Wild Grasses Provides Insight Into the Evolution of Pathogenicity in Rice Agroecosystems. FRONTIERS IN PLANT SCIENCE 2019; 10:507. [PMID: 31114597 PMCID: PMC6503118 DOI: 10.3389/fpls.2019.00507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/02/2019] [Indexed: 05/21/2023]
Abstract
Xanthomonas oryzae (Xo) are globally important rice pathogens. Virulent lineages from Africa and Asia and less virulent strains from the United States have been well characterized. Xanthomonas campestris pv. leersiae (Xcl), first described in 1957, causes bacterial streak on the perennial grass, Leersia hexandra, and is a close relative of Xo. L. hexandra, a member of the Poaceae, is highly similar to rice phylogenetically, is globally ubiquitous around rice paddies, and is a reservoir of pathogenic Xo. We used long read, single molecule real time (SMRT) genome sequences of five strains of Xcl from Burkina Faso, China, Mali, and Uganda to determine the genetic relatedness of this organism with Xo. Novel transcription activator-like effectors (TALEs) were discovered in all five strains of Xcl. Predicted TALE target sequences were identified in the Leersia perrieri genome and compared to rice susceptibility gene homologs. Pathogenicity screening on L. hexandra and diverse rice cultivars confirmed that Xcl are able to colonize rice and produce weak but not progressive symptoms. Overall, based on average nucleotide identity (ANI), type III (T3) effector repertoires, and disease phenotype, we propose to rename Xcl to X. oryzae pv. leersiae (Xol) and use this parallel system to improve understanding of the evolution of bacterial pathogenicity in rice agroecosystems.
Collapse
Affiliation(s)
- Jillian M. Lang
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | - Alvaro L. Pérez-Quintero
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | - Ralf Koebnik
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | - Elysa DuCharme
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
| | - Soungalo Sarra
- Centre Régional de Recherche Agronomique de Niono, Institut d’Economie Rural, Bamako, Mali
| | - Hinda Doucoure
- Laboratoire de Biologie Moléculaire Appliquée, Université des Sciences Techniques et Technologiques de Bamako, Bamako, Mali
| | - Ibrahim Keita
- Laboratoire de Biologie Moléculaire Appliquée, Université des Sciences Techniques et Technologiques de Bamako, Bamako, Mali
| | - Janet Ziegle
- Pacific Biosciences, Menlo Park, CA, United States
| | - Jonathan M. Jacobs
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
- Department of Plant Pathology, Infectious Disease Institute, Ohio State University, Columbus, OH, United States
| | - Ricardo Oliva
- International Rice Research Institute, Los Baños, Philippines
| | - Ousmane Koita
- Laboratoire de Biologie Moléculaire Appliquée, Université des Sciences Techniques et Technologiques de Bamako, Bamako, Mali
| | - Boris Szurek
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | - Valérie Verdier
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | - Jan E. Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
22
|
Levizou E, Zanni AA, Antoniadis V. Varying concentrations of soil chromium (VI) for the exploration of tolerance thresholds and phytoremediation potential of the oregano (Origanum vulgare). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:14-23. [PMID: 29961221 DOI: 10.1007/s11356-018-2658-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Varying concentrations of soil Cr(VI) were used in order to explore the tolerance thresholds and phytoremediation potential of Greek oregano (Origanum vulgare), in a pot experiment conducted outdoors. Oregano exhibited a rather exceptional capacity to bioaccumulate Cr in both the aerial part (up to 1200 mg of total Cr kg-1 DM) and the root-reaching 4300 mg kg-1 DM when grown in soil [Cr(VI)] of 150-200 mg kg-1. Plant responses indicated that there was a threshold set at 100 mg Cr(VI) kg-1 in the soil, above which the following results were recorded: (i) a restriction of Cr translocation from below- to above-ground plant part, (ii) a raise of the soil-to-root Cr transfer, and (iii) the Cr(III) evolution from the reduction of Cr(VI) was significantly decelerated in the root and accelerated in the aerial part. Soil [Cr] that surpassed this threshold challenged plant tolerance, resulting in a dose-dependent reduction of growth and antioxidant phenolics pool. Nonetheless, the significant Cr uptake capacity at plant level accounted for the considerably short remediation time (i.e., 29 years at soil [Cr(VI)] of 150 mg kg-1) calculated according to these results. The overall performance of oregano indicated that phytoremediation would be feasible at sites with Cr contamination levels ranging within the above-defined thresholds.
Collapse
Affiliation(s)
- Efi Levizou
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece.
| | - Anna A Zanni
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| |
Collapse
|
23
|
Support Tool for Identifying In Situ Remediation Technology for Sites Contaminated by Hexavalent Chromium. WATER 2018. [DOI: 10.3390/w10101344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sites contaminated by hexavalent chromium raise concerns relating to the toxicity of the pollutant, as well as for the increased solubility of its compounds, which helps it to seep into aquifers. Chemical and biological in situ treatment technologies, with good potential in terms of environmental sustainability, have recently been designed and implemented on a wide scale. A useful support tool is shown in the manuscript in the preliminary phase of assessing possible technologies applicable according to the site-specific characteristics of sites. The actual efficacy of the technologies identified should nevertheless be verified in laboratory trials and pilot tests.
Collapse
|
24
|
Chu J, Zhu F, Chen X, Liang H, Wang R, Wang X, Huang X. Effects of cadmium on photosynthesis of Schima superba young plant detected by chlorophyll fluorescence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10679-10687. [PMID: 29392606 DOI: 10.1007/s11356-018-1294-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
Contamination by heavy metals has become a serious environmental pollution issue today due to its potential threat to plant, wildlife, and human health. Photosynthesis, a process in which light energy is used to produce sugar and other organic compounds, is sensitive to heavy metals. In the present study, the response of photosynthetic process and carbon assimilation of Schima superba was investigated under cadmium (Cd) stress. Three Cd concentrations (0, 300, and 600 mg kg-1) were used designated as control (CK), low Cd (L1), and high Cd treatment (L2) of plants. Results showed that photosystem II (PSII) acceptor and donor side electron transport were more easily blocked in treatment compared to control, and L2 have more significant changes than L1. A substantial decrease of 820 nm reflection curve absorption was observed both in L1 and L2 treatments. Special energy fluxes showed significant difference between the control group and the treated group, which indicated that low concentration Cd stress can cause decrease in quantum yield of PSII in plants studied. Non-stomatal factors resulted in a decrease in net photosynthetic rate and a decrease in photosystem activity. Our results suggested that Cd can damage structure and function of the photosynthesis of S. superba young plants.
Collapse
Affiliation(s)
- Jingjing Chu
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Fan Zhu
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China.
| | - Xiaoyong Chen
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
- College of Arts and Sciences, Governors State University, Chicago, IL, 60466, USA
| | - Huizi Liang
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Renjie Wang
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Xuxu Wang
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Xinhao Huang
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| |
Collapse
|
25
|
Liu J, Zhang X, Mo L, Yao S, Wang Y. Decapitation improves the efficiency of Cd phytoextraction by Celosia argentea Linn. CHEMOSPHERE 2017; 181:382-389. [PMID: 28458213 DOI: 10.1016/j.chemosphere.2017.04.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
The effect of decapitation on enhancing plant growth and Cd accumulation in Celosia argentea Linn. was evaluated using a pot experiment. Decapitation significantly enhanced the growth of C. argentea. The numbers of branch and leaf in the decapitated plants (DP) were significantly higher than those in undecapitated plants (UDP, p < 0.05). Decapitation increased the biomass by 75%-105% for roots, 108%-152% for stems, and 80%-107% for leaves. Although the transpiration and photosynthesis rates were not significantly different between DP and UPD, decapitation significantly increased the total leaf area and total transpiration per plant (p < 0.05). The higher total transpiration per plant resulted in a higher leaf Cd concentration in DP. DP accumulated Cd in shoots (197, 275, and 425 μg plant-1) that were 2.5-2.8 times higher than UDP (78, 108, and 152 μg plant-1), with the soils containing 1, 5, and 10 mg kg-1 Cd. Results suggested that decapitation is a novel and convenient method to improve the phytoextraction efficiency of C. argentea in Cd contaminated soils.
Collapse
Affiliation(s)
- Jie Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Xuehong Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Lingyun Mo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Shiyin Yao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Yixuan Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
26
|
Rámila CDP, Contreras SA, Di Domenico C, Molina-Montenegro MA, Vega A, Handford M, Bonilla CA, Pizarro GE. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:476-484. [PMID: 27322905 DOI: 10.1016/j.jhazmat.2016.05.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/24/2016] [Accepted: 05/29/2016] [Indexed: 06/06/2023]
Abstract
Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500mg/L), and within its tissues (>5000mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems.
Collapse
Affiliation(s)
- Consuelo D P Rámila
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago, Chile
| | - Samuel A Contreras
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago, Chile
| | - Camila Di Domenico
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago, Chile
| | - Marco A Molina-Montenegro
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile; Instituto de Ciencias Biológicas, Universidad de Talca, Avda. Lircay s/n, Talca, Chile
| | - Andrea Vega
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago, Chile
| | - Michael Handford
- Departmento de Biología, Facultad de Ciencias, Universidad de Chile, Avenida Las Palmeras 3425, 7800024 Santiago, Chile
| | - Carlos A Bonilla
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago, Chile
| | - Gonzalo E Pizarro
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago, Chile.
| |
Collapse
|
27
|
Nie J, Liu Y, Zeng G, Zheng B, Tan X, Liu H, Xie J, Gan C, Liu W. Cadmium accumulation and tolerance of Macleaya cordata: a newly potential plant for sustainable phytoremediation in Cd-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10189-99. [PMID: 26875820 DOI: 10.1007/s11356-016-6263-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/07/2016] [Indexed: 05/22/2023]
Abstract
Heavy metal pollution is a major concern of the public due to their threats to the safety of food chains. A 60-day pot experiment was conducted using Macleaya cordata as plant material to investigate the phytoremediation potential and anti-oxidative responses of M. cordata under different Cd stress. Significant growth inhibition phenomenon and toxic symptoms were not detected in the experiment. The high biomass of the plant provided high accumulation capacity for Cd with an average dry weight of 3.6 g. The maximum extraction amount of Cd was 393 μg·plant(-1), suggesting that this species had potential for phytoremediation of Cd-contaminated soil. A slight increase of chlorophyll (CHL) content was observed in Cd10 treatment. The plant was confirmed to have relatively high tolerance to the Cd stress on the basis of tolerance indexes (TI), relative water content, and CHLa/CHLb ratio. M. cordata could maintain high level of superoxide dismutase (SOD) activity under Cd stress, indicating strong tolerance capacity for reactive oxygen species (ROS) in plant cells. Catalase (CAT) activity show a certain range of decline in the experiment compare to the control. And peroxidase (POD) activity in leaves changed irregularly when compared to the control. The malondialdehyde (MDA) content increased as Cd concentration elevated compared to the control. In addition, as an inedible crop with relatively high economic value, M. cordata have shown the advantage of high biomass and high tolerance under Cd stress, which can provide a new plant resource for sustainable phytoremediation.
Collapse
Affiliation(s)
- Jian Nie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Yunguo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Bohong Zheng
- School of Architecture and Art Central South University, Central South University, Changsha, 410082, People's Republic of China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Huan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Jieli Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Chao Gan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Wei Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| |
Collapse
|
28
|
|
29
|
Han J, Bu X, Zhou D, Zhang H, Yang B. Discriminating Cr(iii) and Cr(vi) using aqueous CdTe quantum dots with various surface ligands. RSC Adv 2014. [DOI: 10.1039/c4ra04535a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Liu J, Shang W, Zhang X, Zhu Y, Yu K. Mn accumulation and tolerance in Celosia argentea Linn.: a new Mn-hyperaccumulating plant species. JOURNAL OF HAZARDOUS MATERIALS 2014; 267:136-141. [PMID: 24444455 DOI: 10.1016/j.jhazmat.2013.12.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 11/18/2013] [Accepted: 12/24/2013] [Indexed: 06/03/2023]
Abstract
Identifying a hyperaccumulator is an important groundwork for the phytoextraction of heavy metal-contaminated soil. Celosia argentea Linn., which grew on a Mn tailing wasteland, was found to hyperaccumulate Mn (14 362mgkg(-1) in leaf dry matter) in this study. To investigate Mn tolerance and accumulation in C. argentea, a hydroponic culture experiment was conducted in a greenhouse. Results showed that the biomass and the relative growth rate of C. argentea were insignificantly different (p>0.05) at the Mn supply level ranging from 2.5mgL(-1) (control) to 400mgL(-1). Manganese concentrations in leaves, stems, and roots reached maxima of 20228, 8872, and 2823mgkg(-1) at 600mgMnL(-1), respectively. The relative rate of Mn accumulation increased by 91.2% at 400mgMnL(-1). Over 95% of the total Mn taken up by C. argentea was translocated to shoots. Thus, C. argentea exhibits the basic characteristics of a Mn-hyperaccumulator. This species has great potential to remediate Mn-contaminated soil cheaply and can also aid the studies of Mn uptake, translocation, speciation, distribution and detoxification in plants.
Collapse
Affiliation(s)
- Jie Liu
- Guangxi Scientific Experiment Center of Mining, Metallurgy, and Environment, Guilin University of Technology, Guilin, Guangxi 541004, China.
| | - Weiwei Shang
- Guangxi Scientific Experiment Center of Mining, Metallurgy, and Environment, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Xuehong Zhang
- Guangxi Scientific Experiment Center of Mining, Metallurgy, and Environment, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Yinian Zhu
- Guangxi Scientific Experiment Center of Mining, Metallurgy, and Environment, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Ke Yu
- Guangxi Scientific Experiment Center of Mining, Metallurgy, and Environment, Guilin University of Technology, Guilin, Guangxi 541004, China
| |
Collapse
|
31
|
de Oliveira LM, Ma LQ, Santos JAG, Guilherme LRG, Lessl JT. Effects of arsenate, chromate, and sulfate on arsenic and chromium uptake and translocation by arsenic hyperaccumulator Pteris vittata L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 184:187-92. [PMID: 24056188 DOI: 10.1016/j.envpol.2013.08.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/18/2013] [Accepted: 08/16/2013] [Indexed: 05/22/2023]
Abstract
We investigated effects of arsenate (AsV), chromate (CrVI) and sulfate on As and Cr uptake and translocation by arsenic hyperaccumulator Pteris vittata (PV), which was exposed to AsV, CrVI and sulfate at 0, 0.05, 0.25 or 1.25 mM for 2-wk in hydroponic system. PV was effective in accumulating large amounts of As (4598 and 1160 mg/kg in the fronds and roots at 0.05 mM AsV) and Cr (234 and 12,630 mg/kg in the fronds and roots at 0.05 mM CrVI). However, when co-present, AsV and CrVI acted as inhibitors, negatively impacting their accumulation in PV. Arsenic accumulation in the fronds was reduced by 92% and Cr by 26%, indicating reduced As and Cr translocation. However, addition of sulfate increased uptake and translocation of As by 26-28% and Cr by 1.63 fold. This experiment demonstrated that As and Cr inhibited each other in uptake and translocation by PV but sulfate enhanced As and Cr uptake and translocation by PV.
Collapse
|
32
|
You SH, Zhang XH, Liu J, Zhu YN, Gu C. Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater. ENVIRONMENTAL TECHNOLOGY 2014; 35:187-194. [PMID: 24600856 DOI: 10.1080/09593330.2013.822006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
As a low-cost treatment technology for effluent, the constructed wetlands can be applied to remove the heavy metals from wastewater. Leersia hexandra Swartz is a metal-accumulating hygrophyte with great potential to remove heavy metal from water. In this study, two pilot-scale constructed wetlands planted with L. hexandra (CWL) were set up in greenhouse to treat electroplating wastewater containing Cr, Cu and Ni. The treatment performance of CWL under different hydraulic loading rates (HLR) and initial metal concentrations were also evaluated. The results showed that CWL significantly reduced the concentrations of Cr, Cu and Ni in wastewater by 84.4%, 97.1% and 94.3%, respectively. High HLR decreased the removal efficiencies of Cr, Cu and Ni; however, the heavy metal concentrations in effluent met Emission Standard of Pollutants for Electroplating in China (ESPE) at HLR less than 0.3 m3/m2 d. For the influent of 5 mg/L Cr, 10 mg/L Cu and 8 mg/L Ni, effluent concentrations were below maximum allowable concentrations in ESPE, indicating that the removal of Cr, Cu and Ni by CWL was feasible at considerably high influent metal concentrations. Mass balance showed that the primary sink for the retention of contaminants within the constructed wetland system was the sediment, which accounted for 59.5%, 83.5%, and 73.9% of the Cr, Cu and Ni, respectively. The data from the pilot wetlands support the view that CWL could be used to successfully remove Cr, Cu and Ni from electroplating wastewater.
Collapse
Affiliation(s)
- Shao-Hong You
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xue-Hong Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Jie Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Yi-Nian Zhu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Chen Gu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, Guangxi 541004, People's Republic of China
| |
Collapse
|
33
|
Adki VS, Jadhav JP, Bapat VA. Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:1173-1180. [PMID: 22914913 DOI: 10.1007/s11356-012-1125-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 08/08/2012] [Indexed: 06/01/2023]
Abstract
Hexavalant chromium [Cr(VI)] tolerance and accumulation in in vitro grown Nopalea cochenillifera Salm. Dyck. plants was investigated. A micropropagation protocol was establish for a rapid multiplication of N. cochenillifera and [Cr(VI)] tolerance and accumulation was studied in in vitro grown cultures. Cr concentration was estimated by atomic absorption spectroscopy in roots and shoots to confirm plant's hyperaccumulation capacity. Plants showed tolerance up to 100 μM K(2)Cr(2)O(7) without any significant changes in root growth after 16 days treatment; whereas, chlorophyll content in plants treated with 1 and 10 μM K(2)Cr(2)O(7) were not so different than the control plant. The levels of lipid peroxidation and protein oxidation increased significantly (p < 0.01) with increasing concentration of chromium. Exposures of N. cochenillifera to lower concentrations of K(2)Cr(2)O(7) (≤ 10 μM) induced catalase (CAT) and superoxide dismutase (SOD) significantly (p < 0.001) but higher concentrations of K(2)Cr(2)O(7) (>100 μM) inhibited the activities of CAT and SOD. Roots accumulated a maximum of 25,263.396 ± 1,722.672 mg Cr Kg(-1) dry weight (DW); while the highest concentration of Cr in N. cochenillifera shoots was 705.714 ± 32.324 mg Cr Kg(-1) DW. N. cochenillifera could be a prospective hyperaccumulator plant of Cr(VI) and a promising candidate for phytoremediation purposes.
Collapse
Affiliation(s)
- Vinayak S Adki
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur 416004, India
| | | | | |
Collapse
|