1
|
Ammar A, Nouira A, El Mouridi Z, Boughribil S. Recent trends in the phytoremediation of radionuclide contamination of soil by cesium and strontium: Sources, mechanisms and methods: A comprehensive review. CHEMOSPHERE 2024; 359:142273. [PMID: 38750727 DOI: 10.1016/j.chemosphere.2024.142273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
This comprehensive review examines recent trends in phytoremediation strategies to address soil radionuclide contamination by cesium (Cs) and strontium (Sr). Radionuclide contamination, resulting from natural processes and nuclear-related activities such as accidents and the operation of nuclear facilities, poses significant risks to the environment and human health. Cs and Sr, prominent radionuclides involved in nuclear accidents, exhibit chemical properties that contribute to their toxicity, including easy uptake, high solubility, and long half-lives. Phytoremediation is emerging as a promising and environmentally friendly approach to mitigate radionuclide contamination by exploiting the ability of plants to extract toxic elements from soil and water. This review focuses specifically on the removal of 90Sr and 137Cs, addressing their health risks and environmental implications. Understanding the mechanisms governing plant uptake of radionuclides is critical and is influenced by factors such as plant species, soil texture, and physicochemical properties. Phytoremediation not only addresses immediate contamination challenges but also provides long-term benefits for ecosystem restoration and sustainable development. By improving soil health, biodiversity, and ecosystem resilience, phytoremediation is in line with global sustainability goals and environmental protection initiatives. This review aims to provide insights into effective strategies for mitigating environmental hazards associated with radionuclide contamination and to highlight the importance of phytoremediation in environmental remediation efforts.
Collapse
Affiliation(s)
- Ayyoub Ammar
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco; National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco; Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco.
| | - Asmae Nouira
- National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco
| | - Zineb El Mouridi
- Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco
| | - Said Boughribil
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco
| |
Collapse
|
2
|
Thakur A, Kumar A. Emerging paradigms into bioremediation approaches for nuclear contaminant removal: From challenge to solution. CHEMOSPHERE 2024; 352:141369. [PMID: 38342150 DOI: 10.1016/j.chemosphere.2024.141369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
The release of radionuclides, including Cesium-137 (137Cs), Strontium-90 (90Sr), Uranium-238 (238U), Plutonium-239 (239Pu), Iodine-131 (131I), etc., from nuclear contamination presents profound threats to both the environment and human health. Traditional remediation methods, reliant on physical and chemical interventions, often prove economically burdensome and logistically unfeasible for large-scale restoration efforts. In response to these challenges, bioremediation has emerged as a remarkably efficient, environmentally sustainable, and cost-effective solution. This innovative approach harnesses the power of microorganisms, plants, and biological agents to transmute radioactive materials into less hazardous forms. For instance, consider the remarkable capability demonstrated by Fontinalis antipyretica, a water moss, which can accumulate uranium at levels as high as 4979 mg/kg, significantly exceeding concentrations found in the surrounding water. This review takes an extensive dive into the world of bioremediation for nuclear contaminant removal, exploring sources of radionuclides, the ingenious resistance mechanisms employed by plants against these harmful elements, and the fascinating dynamics of biological adsorption efficiency. It also addresses limitations and challenges, emphasizing the need for further research and implementation to expedite restoration and mitigate nuclear pollution's adverse effects.
Collapse
Affiliation(s)
- Abhinay Thakur
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Kumar
- Nalanda College of Engineering, Bihar Engineering University, Science, Technology and Technical Education Department, Government of Bihar, 803108, India.
| |
Collapse
|
3
|
Zamani N, Sabzalian MR, Afyuni M. Elevated atmospheric CO 2 combined with Epichloë endophyte may improve growth and Cd phytoremediation potential of tall fescue (Festuca arundinacea L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8164-8185. [PMID: 38172319 DOI: 10.1007/s11356-023-31496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Complex environmental conditions like heavy metal contamination and elevated CO2 concentration may cause numerous plant stresses and lead to considerable crop losses worldwide. Cadmium is a non-essential element and potentially highly toxic soil metal pollution, causing oxidative stress in plants and human toxicity. In order to assess a combination of complex factors on the responses of two genotypes of Festuca arundinacea (75B and 75C), a greenhouse experiment was conducted on plants grown in two Cd-contaminated soil conditions and two soil textures under combined effects of elevated ambient CO2 (700 ppm) and Epichloë endophyte infection. Plant biomass, Cd, Fe, Cu, Zn, and Mn concentrations in the plant shoots and roots, Fv/Fm, chlorophyll (a & b), and carotenoid contents were measured after 7 months of growth in pots. Our results showed that endophyte-infected plants (E+) grown in elevated CO2 atmosphere (CO2+), clay-loam soil texture (H) with no Cd amendment (Cd-) in the genotype 75B had significantly greater shoot and root biomass than non-infected plants (E-) grown in ambient CO2 concentration (CO2-), sandy-loam soil texture (L) with amended Cd (Cd+) in the genotype 75C. Increased CO2 concentration and endophyte infection, especially in the genotype 75B, enabled Festuca for greater phytoremediation of Cd because of higher tolerance to Cd stress and higher biomass accumulation in the plant genotype. However, CO2 enrichment negatively influenced the plant mineral absorption due to the inhibitory effects of high Cd concentration in shoots and roots. It is concluded that Cd phytoremediation can be positively affected by the increased atmospheric CO2 concentration, tolerant plant genotype, heavy soil texture, and Epichloë endophyte. Using Taguchi and AIC design methodologies, it was also predicted that the most critical factors affecting Cd phytoremediation potential were CO2 concentration and plant genotype.
Collapse
Affiliation(s)
- Narges Zamani
- Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156 83111, Iran
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156 83111, Iran.
| | - Majid Afyuni
- Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156 83111, Iran
| |
Collapse
|
4
|
Li Z, He Y, Sonne C, Lam SS, Kirkham MB, Bolan N, Rinklebe J, Chen X, Peng W. A strategy for bioremediation of nuclear contaminants in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120964. [PMID: 36584860 DOI: 10.1016/j.envpol.2022.120964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Radionuclides released from nuclear contamination harm the environment and human health. Nuclear pollution spread over large areas and the costs associated with decontamination is high. Traditional remediation methods include both chemical and physical, however, these are expensive and unsuitable for large-scale restoration. Bioremediation is the use of plants or microorganisms to remove pollutants from the environment having a lower cost and can be upscaled to eliminate contamination from soil, water and air. It is a cheap, efficient, ecologically, and friendly restoration technology. Here we review the sources of radionuclides, bioremediation methods, mechanisms of plant resistance to radionuclides and the effects on the efficiency of biological adsorption. Uptake of radionuclides by plants can be facilitated by the addition of appropriate chemical accelerators and agronomic management, such as citric acid and intercropping. Future research should accelerate the use of genetic engineering and breeding techniques to screen high-enrichment plants. In addition, field experiments should be carried out to ensure that this technology can be applied to the remediation of nuclear contaminated sites as soon as possible.
Collapse
Affiliation(s)
- Zhaolin Li
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yifeng He
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Christian Sonne
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Department of Ecoscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | | - Nanthi Bolan
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, M079, Perth, WA, 6009, Australia
| | - Jörg Rinklebe
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation, Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Xiangmeng Chen
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
5
|
Uptake and Translocation of Cesium in Lettuce (Lactuca sativa L.) under Hydroponic Conditions. ADSORPT SCI TECHNOL 2023. [DOI: 10.1155/2023/4539075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The uptake of radiocesium (RCs) by plants is key to the assessment of its environmental risk. However, the transfer process of RCs in the water-vegetable system still remains unclear. In this work, the uptake and accumulation processes of Cs+ (0-10 mM) in lettuce were explored under different conditions by using hydroponics. The results showed that the higher exposure concentration of Cs+ could lead to a faster uptake rate and would be beneficial to the uptake and accumulation of Cs+. The uptake of K+ by roots and leaves was inhibited significantly when Cs+ concentration increased, but unapparent for Ca2+ and Mg2+. It was found that the higher K+ and Ca2+ concentration was, the higher inhibition was found for the uptake of Cs+ in root. The uptake of Cs+ leads the decrease of chlorophyll content and brought a negative effect on plant photosynthesis, consequently, a negative effect on lettuce morphology and obvious decrease of biomass and root length. The contents of glutathione (GSH), malondialdehyde (MDA), and root vitality were increasing during the growth following stress of high concentrations of Cs+, which caused stresses on the antioxidant system of lettuce. The enrichment coefficient for Cs+ in leaves was in the range of 8-217. Moreover, the transfer factor was in the range of 0.114-0.828, which suggested that the high Cs+ concentration could enhance the transfer of Cs+ from lettuce root to leaf. This study provides more information on the transfer of RCs from water to food chain, promoting the understanding of the potential risk of RCs.
Collapse
|
6
|
Kang DJ, Tazoe H, Yamada M. Effects of environmental conditions, low-level potassium, ethylenediaminetetraacetic acid, or combination treatment on radiocesium-137 decontamination in Napier grass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49602-49612. [PMID: 33939095 DOI: 10.1007/s11356-021-14177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Phytoextraction is widely used to remove environmental pollutants such as heavy metals or radionuclides from soil. It is important to understand how to enhance the accumulation of contaminants by plants. Previously, we found that Napier grass (Pennisetum purpureum Schum.) has the potential to effectively remove Cs (133Cs and 137Cs). In order to enhance the remediation efficiency of Napier grass, we evaluated the effects of low-level K (K), ethylenediaminetetraacetic acid (EDTA), or the combination of low-level K and EDTA (K+EDTA). We also examined the differences in 137Cs decontamination between two cropping years (2018 and 2019). Overall, there were no prominent effects from the K, EDTA, or K+EDTA treatments on plant growth (plant height, tiller number), aboveground biomass, 137Cs concentration, and 137Cs removal ratio (CR) in 2 years. However, the aboveground biomass (P < 0.001), 137Cs concentration (P < 0.001 in 2019 only), and CR (P < 0.001) in plants grown in the first growing period were significantly higher than in plants grown in the second growing period in both years. The mean 137Cs concentration (P < 0.001) and total CR (P < 0.001) per year was significantly greater in 2019 than in 2018. The precipitation amount during the cultivation period in 2019 (1197 mm) was 1.8-fold higher than in 2018 (655 mm). In this study, the K, EDTA, and K+EDTA treatments had less effect plant growth than the natural environmental conditions. To enhance remediation efficiency, soil moisture is one important factor to produce more aboveground biomass to achieve high CR in Napier grass.
Collapse
Affiliation(s)
- Dong-Jin Kang
- Teaching and Research Center for Bio-coexistence, Faculty of Agriculture and Life Science, Hirosaki University, Goshogawara, 037-0202, Japan.
| | - Hirofumi Tazoe
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, 036-8564, Japan
| | - Masatoshi Yamada
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, 036-8564, Japan
- Marine Ecology Research Institute, Chiba, 299-5105, Japan
| |
Collapse
|
7
|
Paramonova T, Kuzmenkova N, Godyaeva M, Slominskaya E. Biometric traits of onion (Allium cepa L.) exposed to 137Cs and 243Am under hydroponic cultivation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111191. [PMID: 32890947 DOI: 10.1016/j.ecoenv.2020.111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
To elucidate the features of bioaccumulation and phytotoxic effects of long-lived artificial radionuclides, a hydroponic experiment was carried out with the cultivation of onion (Allium cepa L.) in low-mineralized solutions spiked with 137Cs (250 kBq L-1) or 243Am (9 kBq L-1). After the 27-day growth period, ≈70% of 137Cs and ≈14% of 243Am were transferred from the solutions to onion biomass with transfer factor values ≈ 400 and ≈ 80, respectively. Since the bioaccumulation of both radionuclides mainly took place in the roots of onion (77% 137Cs and 93% 243Am of the total amount in biomass), edible organs - bulbs and leaves - were protected to some extent from radioactive contamination. At the same time, the incorporation of the radionuclides into the root tissues caused certain changes in their biometric (geometric and mass) traits, which were more pronounced under the 243Am-treatment of onion. Exposure to 243Am significantly reduced the number, length, and total surface area of onion roots by 1.3-2.6 times. Under the influence of 137Cs, the dry-matter content in roots decreased by 1.3 times with a corresponding increase in the degree of hydration of the root tissues. On the whole, the data obtained revealed the specific features of 137Cs and 243Am behaviour in "hydroponic solution - plant" system and suggested that biometric traits of onion roots could be appropriate indicators of phyto(radio)toxicity.
Collapse
Affiliation(s)
- Tatiana Paramonova
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow, 199991, Russia.
| | - Natalia Kuzmenkova
- Chemistry Faculty, Lomonosov Moscow State University, Moscow, 199991, Russia; Vernadsky Institute of Geochemistry and Analytical Chemistry, 199991, Moscow, Russia.
| | - Maria Godyaeva
- Federal Agricultural Research Centre VIM, 109428, Moscow, Russia.
| | | |
Collapse
|
8
|
Syringic Acid Alleviates Cesium-Induced Growth Defect in Arabidopsis. Int J Mol Sci 2020; 21:ijms21239116. [PMID: 33266116 PMCID: PMC7730055 DOI: 10.3390/ijms21239116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Syringic acid, a phenolic compound, serves a variety of beneficial functions in cells. Syringic acid increases in plants in response to cesium, and exogenous application of syringic acid resulted in a significant attenuation of cesium-induced growth defects in Arabidopsis. In addition, cesium or syringic acid application to plants also resulted in increased lignin deposition in interfascicular fibers. To better understand the role of lignin and syringic acid in attenuating cesium-induced growth defects, two mutants for Arabidopsis REDUCED EPIDERMAL FLUORESCENE 4 (REF4) and fourteen laccase mutants, some of which have lower levels of lignin, were evaluated for their response to cesium. These mutants responded differently to cesium stress, compared to control plants, and the application of syringic acid alleviated cesium-induced growth defects in the laccase mutants but not in the ref4 mutants. These findings imply that lignin plays a role in cesium signaling but the attenuation of cesium stress defects by syringic acid is mediated by regulatory components of lignin biosynthesis and not lignin biosynthesis itself. In contrast, syringic acid did not alleviate any low potassium-induced growth defects. Collectively, our findings provide the first established link between lignin and cesium stress via syringic acid in plants.
Collapse
|
9
|
Zhang Y, Lai JL, Ji XH, Luo XG. Assessment of cyto- and genotoxic effects of Cesium-133 in Vicia faba using single-cell gel electrophoresis and random amplified polymorphic DNA assays. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110620. [PMID: 32311615 DOI: 10.1016/j.ecoenv.2020.110620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/29/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to evaluate the ecotoxic effect of high concentration cesium (Cs) exposure on plant root growth and its toxicological mechanism. The radicle of broad bean (Vicia faba) was selected as experimental material. The cytotoxic and genotoxic effects of plants exposed to different Cs levels (0.19-1.5 mM) for 48 h were evaluated using scanning electron microscopy (SEM), X-ray fluorescence (XRF) analysis, single-cell gel electrophoresis (SCGE) and random amplified polymorphic DNA (RAPD) assays. The results showed that radicle elongation decreased clearly after 48 h of exposure treatment with different concentrations of Cs solution. The root cell structure was obviously damaged in the Cs treatment groups (0.19-1.5 mM). At a Cs concentration of 1.5 mM, the percentages of viable non-apoptotic cells, viable apoptotic cells, non-viable apoptotic cells, and non-viable cells were 40.09%, 20.67%, 28.73%, and 10.52%, respectively. SCGE showed DNA damage in radicle cells 48 h after Cs exposure. Compared with the control group, the percentage of tail DNA in Cs exposed group (0.38-1.5 mM) increased by 0.56-1.12 times (P < 0.05). RAPD results showed that the genomic stability of V. faba radicles decreased by 4.44%-15.56%. This study confirmed that high concentration Cs exposure had cytotoxicity and genotoxicity effects on plants.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jin-Long Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; College of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xiao-Hui Ji
- College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
10
|
Elbasan F, Ozfidan-Konakci C, Yildiztugay E, Kucukoduk M. Rare-earth element scandium improves stomatal regulation and enhances salt and drought stress tolerance by up-regulating antioxidant responses of Oryza sativa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:157-169. [PMID: 32417636 DOI: 10.1016/j.plaphy.2020.04.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Oryza sativa L. cv. Gönen grown in hydroponic culture was treated with scandium (Sc; 25 and 50 μM) alone or in combination with salt (100 mM NaCl) and/or drought (5% PEG-6000). Stress caused a decrease in growth (RGR), water content (RWC), osmotic potential (ΨΠ), chlorophyll fluorescence (Fv/Fm) and potential photochemical efficiency (Fv/Fo). Sc application prevented the decreases of these parameters. Sc also alleviated the changes on gas exchange parameters (carbon assimilation rate (A), stomatal conductance (gs), intercellular CO2 concentrations (Ci), transpiration rate (E) and stomatal limitation (Ls)). Stress caused no increase in superoxide dismutase (SOD) activity. After induvial applied NaCl or PEG, catalase (CAT) and ascorbate peroxidase (APX) showed an enhancement in activation and tried to scavenge of hydrogen peroxide (H2O2). On the other hand, in plants with the combination form of NaCl and PEG, only CAT activity was induced. Sc applications to NaCl-treated rice led to an increase of SOD, APX, glutathione reductase (GR), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) as well as peroxidase (POX). Sc under NaCl could be maintained both ascorbate (AsA) and glutathione (GSH) regeneration. Despite of induction of MDHAR and DHAR under Sc plus PEG, Sc did not maintain AsA redox state because of no induction in APX activity. However, GSH pool could be regenerated by induction in DHAR and GR in this group. Sc application (especially for 25 μM) in rice exposed to NaCl + PEG resulted an enhancement in APX and MDHAR and so Sc could be partially provided AsA regeneration. Since no increases in DHAR and GR were observed, GSH pool was reduced. Due to this activation of antioxidant enzymes, stress-induced H2O2 and TBARS content (lipid peroxidation) significantly decreased in rice with Sc applications. Sc in plants with stress also increased the transcript levels of OsCDPK7 and OsBG1 related to stomatal movement and signaling pathway. Consequently, Sc protected the rice plants by minimizing disturbances caused by NaCl or PEG exposure via the AsA-GSH redox-based systems.
Collapse
Affiliation(s)
- Fevzi Elbasan
- Selcuk University, Faculty of Science, Department of Biotechnology, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Necmettin Erbakan University, Faculty of Science, Department of Molecular Biology and Genetics, 42090, Konya, Turkey.
| | - Evren Yildiztugay
- Selcuk University, Faculty of Science, Department of Biotechnology, 42130, Konya, Turkey.
| | - Mustafa Kucukoduk
- Selcuk University, Faculty of Science, Department of Biology, 42130, Konya, Turkey.
| |
Collapse
|
11
|
Ko JA, Furuta N, Lim H. New approach for mapping and physiological test of silica nanoparticles accumulated in sweet basil (Ocimum basilicum) by LA-ICP-MS. Anal Chim Acta 2019; 1069:28-35. [DOI: 10.1016/j.aca.2019.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/13/2019] [Accepted: 04/15/2019] [Indexed: 01/24/2023]
|
12
|
Sarma H, Sonowal S, Prasad MNV. Plant-microbiome assisted and biochar-amended remediation of heavy metals and polyaromatic compounds ─ a microcosmic study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:288-299. [PMID: 30947032 DOI: 10.1016/j.ecoenv.2019.03.081] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 05/18/2023]
Abstract
The study has been carried out to develop a plant-microbes assisted remediation technology to accelerate polyaromatic hydrocarbons (PAHs) degradation and heavy metals (HMs) removal in a microcosmic experiment. The quaternary mixture of PAHs (phenanthrene, anthracene, pyrene, and benzo[a] pyrene) and metals (Cr, Ni, and Pb) spiked the soil, constructing a microcosm; the microcosms were bioaugmented with newly developed plant bacterial consortia (Cpm1 and Cpm2). The microcosms were amended with biochar (sieved particle size 0.5-2 mm) as redox regulators to reduce oxidative stress of plant-microbe systems. To formulate the two plant-bacterial consortia, plant species were collected and bacteria were isolated from oil spill soil. The bacterial strains used in two formulated consortia includes ─ Cpm1 (Enterobacter cloacae HS32, Brevibacillus reuszeri HS37, and Stenotrophomonas sp. HS16) and Cpm2 (Acinetobacter junii HS29, Enterobacter aerogenes HS39 and Enterobacter asburiae HS22). The PAHs degradation and metal removal efficacy of the consortia (Cpm1 and Cpm2) were studied after 24 weeks of trial. The physicochemical properties of microcosm's soil (M2 and M3) were assessed after experimentation, which resulted in the finding that the soil exhibits dropped in pH from basic to neutral after application of the plant microbe's consortium. The electrical conductivity was lower in M2 and M3 soils, with a range between 1.60 and 1.80 mS/cm after the treatment. The Gas Chromatography/Mass Spectrometry (GC/MS) results illustrate how metabolites with the different molecular weight (M.W) were found in M2 and M3 soils (184─446), as a result of the plant-microbes mediated rhizodegradation of four spiked PAHs. The metals in microcosm's soil are very low in concentration after 24 weeks of trial when compared to control(M1). The Cr, Ni and Pb removal percentages were found in 45.79, 42.19 and 44.85 in M2. However, the removal percentages were found to be 45.41, 41.47 and 44.25 respectively for these same HMs in M3 soil. Both the consortia that were newly developed showed similar trends of metals removal and PAHs degradation. This study provides a breakthrough in the area of rhizosphere engineering with the goal of maintaining a sustainable application of plant-microbes in ecosystem services.
Collapse
Affiliation(s)
- Hemen Sarma
- Department of Botany, N N Saikia College, Titabar, 785630, Assam, India.
| | - S Sonowal
- Department of Botany, N N Saikia College, Titabar, 785630, Assam, India
| | - M N V Prasad
- School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telengana, India
| |
Collapse
|
13
|
Tang L, Hamid Y, Sahito ZA, Gurajala HK, He Z, Yang X. Effects of CO 2 application coupled with endophyte inoculation on rhizosphere characteristics and cadmium uptake by Sedum alfredii Hance in response to cadmium stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 239:287-298. [PMID: 30913479 DOI: 10.1016/j.jenvman.2019.03.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Comparative impact of CO2 application and endophyte inoculation was investigated on the growth, rhizosphere characteristics, and cadmium (Cd) absorption of two ecotypes of Sedum alfredii Hance in response to Cd stress under hydroponic or rhizo-box culture conditions. The results showed that both CO2 application and endophyte inoculation significantly (P < 0.05) promoted plant growth (fresh weight and dry weight), improved root morphological properties (SRL, SRA, SRV, ARD and RTN) and exudation (pH, TOC, TN, soluble sugar and organic acids), changed Cd uptake and distribution of both ecotypes of S. alfredii. Meanwhile soil total and DTPA extractable Cd in rhizo-box decreased by biofortification treatments. Superposition biofortification exhibits utmost improvement for the above mentioned parameters, and has potential for enhancing phytoremediation efficiency of hyperaccumulator and sustaining regular growth of non-hyperaccumulator in Cd contaminated soils.
Collapse
Affiliation(s)
- Lin Tang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yasir Hamid
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zulfiqar Ali Sahito
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Hanumanth Kumar Gurajala
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, Florida, 34945, United States
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
14
|
The Fate of Chemical Pollutants with Soil Properties and Processes in the Climate Change Paradigm—A Review. SOIL SYSTEMS 2018. [DOI: 10.3390/soilsystems2030051] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heavy metal(loid)s and organic contaminants are two major groups of pollutants in soils. The fate and exposure of such pollutants in soil depends on their chemical properties, speciation, and soil properties. Soil properties and processes that control the toxicological aspects of pollutants include temperature, moisture, organic matter, mineral fractions, and microbial activities. These processes are vulnerable to climate change associated with global warming, including increased incidences of extreme rainfall, extended dry periods, soil erosion, and a rise in sea level. Here we explain evidence that relates to the effects of climate change-driven soil processes on the mobility, transport, and storage of pollutants in soil. The review found that changes in climate could increase human exposure to soil contaminants mainly due to processes involving soil organic carbon (SOC), surface runoff, redox state, and microbial community. However, uncertainties remain in relation to the extent of contaminant toxicity to human health, which is linked to global change drivers.
Collapse
|
15
|
Burger A, Lichtscheidl I. Stable and radioactive cesium: A review about distribution in the environment, uptake and translocation in plants, plant reactions and plants' potential for bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:1459-1485. [PMID: 29122347 DOI: 10.1016/j.scitotenv.2017.09.298] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 05/23/2023]
Abstract
Radiocesium in water, soil, and air represents a severe threat to human health and the environment. It either acts directly on living organisms from external sources, or it becomes incorporated through the food chain, or both. Plants are at the base of the food chain; it is therefore essential to understand the mechanisms of plants for cesium retention and uptake. In this review we summarize investigations about sources of stable and radioactive cesium in the environment and harmful effects caused by internal and external exposure of plants to radiocesium. Uptake of cesium into cells occurs through molecular mechanisms such as potassium and calcium transporters in the plasma membrane. In soil, bioavailability of cesium depends on the chemical composition of the soil and physical factors such as pH, temperature and tilling as well as on environmental factors such as soil microorganisms. Uptake of cesium occurs also from air through interception and absorption on leaves and from water through the whole submerged surface. We reviewed information about reducing cesium in the vegetation by loss processes, and we extracted transfer factors from the available literature and give an overview over the uptake capacities of 72 plants for cesium from the substratum to the biomass. Plants with high uptake potential could be used to remediate soil and water from radiocesium by accumulation and rhizofiltration. Inside plants, cesium distributes fast between the different plant organs and cells, but cesium in soil is extremely stable and remains for decades in the rhizosphere. Monitoring of contaminated soil therefore has to continue for many decades, and edible plants grown on such soil must continuously be monitored.
Collapse
Affiliation(s)
- Anna Burger
- University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Althanstrasse 14, A-1090 Vienna, Austria.
| | - Irene Lichtscheidl
- University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Althanstrasse 14, A-1090 Vienna, Austria
| |
Collapse
|
16
|
Wang X, Chen C, Wang J. Cs phytoremediation by Sorghum bicolor cultivated in soil and in hydroponic system. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:402-412. [PMID: 27739906 DOI: 10.1080/15226514.2016.1244158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cs accumulation characteristics by Sorghum bicolor were investigated in hydroponic system (Cs level at 50-1000 μmol/L) and in soil (Cs-spiked concentration was 100 and 400 mg/kg soil). Two varieties of S. bicolor Cowly and Nengsi 2# grown on pot soil during the entire growth period (100 days) did not show significant differences on the height, dry weight (DW), and Cs accumulation. S. bicolor showed the potential phytoextraction ability for Cs-contaminated soil with the bioaccumulation factor (BCF) and the translocation factor (TF) values usually higher than 1 in soil system and in hydroponic system. The aerial parts of S. bicolor contributed to 86-92% of the total removed amounts of Cs from soil. Cs level in solution at 100 μmol/L gave the highest BCF and TF values of S. bicolor. Cs at low level tended to transfer to the aerial parts, whereas Cs at high level decreased the transfer ratio from root to shoot. In soil, the plant grew well when Cs spiked level was 100 mg/kg soil, but was inhibited by Cs at 400 mg/kg soil with Cs content in sorghum reaching 1147 mg/kg (roots), 2473 mg/kg (stems), and 2939 mg/kg (leaves). In hydroponic system, average Cs level in sorghum reached 5270 mg/kg (roots) and 4513 mg/kg (aerial parts), without significant damages to its biomass at 30 days after starting Cs treatment. Cs accumulation in sorghum tissues was positively correlated with the metal concentration in medium.
Collapse
Affiliation(s)
- Xu Wang
- a Collaborative Innovation Center for Advanced Nuclear Energy Technology (INET), Tsinghua University , Beijing , P.R. China
| | - Can Chen
- a Collaborative Innovation Center for Advanced Nuclear Energy Technology (INET), Tsinghua University , Beijing , P.R. China
| | - Jianlong Wang
- a Collaborative Innovation Center for Advanced Nuclear Energy Technology (INET), Tsinghua University , Beijing , P.R. China
- b Beijing Key Laboratory of Radioactive Waste Treatment , INET, Tsinghua University , Beijing , P.R. China
| |
Collapse
|
17
|
A novel role for methyl cysteinate, a cysteine derivative, in cesium accumulation in Arabidopsis thaliana. Sci Rep 2017; 7:43170. [PMID: 28230101 PMCID: PMC5322390 DOI: 10.1038/srep43170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/18/2017] [Indexed: 11/18/2022] Open
Abstract
Phytoaccumulation is a technique to extract metals from soil utilising ability of plants. Cesium is a valuable metal while radioactive isotopes of cesium can be hazardous. In order to establish a more efficient phytoaccumulation system, small molecules which promote plants to accumulate cesium were investigated. Through chemical library screening, 14 chemicals were isolated as ‘cesium accumulators’ in Arabidopsis thaliana. Of those, methyl cysteinate, a derivative of cysteine, was found to function within the plant to accumulate externally supplemented cesium. Moreover, metabolite profiling demonstrated that cesium treatment increased cysteine levels in Arabidopsis. The cesium accumulation effect was not observed for other cysteine derivatives or amino acids on the cysteine metabolic pathway tested. Our results suggest that methyl cysteinate, potentially metabolised from cysteine, binds with cesium on the surface of the roots or inside plant cells and improve phytoaccumulation.
Collapse
|
18
|
Aung HP, Mensah AD, Aye YS, Djedidi S, Oikawa Y, Yokoyama T, Suzuki S, Dorothea Bellingrath-Kimura S. Transfer of radiocesium from rhizosphere soil to four cruciferous vegetables in association with a Bacillus pumilus strain and root exudation. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 164:209-219. [PMID: 27517724 DOI: 10.1016/j.jenvrad.2016.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 07/03/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
This study was carried out to assess the effect of Bacillus pumilus on the roots of four cruciferous vegetables with different root structures in regard to enhancement of 137Cs bioavailability in contaminated rhizosphere soil. Results revealed that B. pumilus inoculation did not enhance the plant biomass of vegetables, although it increased root volume and root surface areas of all vegetables except turnip. The pH changes due to rhizosphere acidification by B. pumilus inoculation and root exudation did not affect the bioavailability of 137Cs. However, concentrations of 137Cs in plant tissues and soil-to-plant transfer values increased as a result of the larger root volume and root surface area of vegetables due to inoculation. Moreover, leafy vegetables, which possessed larger root volume and root surface areas, had a higher 137Cs transfer value than root vegetables.
Collapse
Affiliation(s)
- Han Phyo Aung
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | - Akwasi Dwira Mensah
- Department of International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | - Yi Swe Aye
- Department of International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | - Salem Djedidi
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | - Yosei Oikawa
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | - Tadashi Yokoyama
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | - Sohzoh Suzuki
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | | |
Collapse
|
19
|
Djedidi S, Kojima K, Ohkama-Ohtsu N, Bellingrath-Kimura SD, Yokoyama T. Growth and (137)Cs uptake and accumulation among 56 Japanese cultivars of Brassica rapa, Brassica juncea and Brassica napus grown in a contaminated field in Fukushima: Effect of inoculation with a Bacillus pumilus strain. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 157:27-37. [PMID: 26986237 DOI: 10.1016/j.jenvrad.2016.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Fifty six local Japanese cultivars of Brassica rapa (40 cultivars), Brassica juncea (10 cultivars) and Brassica napus (6 cultivars) were assessed for variability in growth and (137)Cs uptake and accumulation in association with a Bacillus pumilus strain. Field trial was conducted at a contaminated farmland in Nihonmatsu city, in Fukushima prefecture. Inoculation resulted in different responses of the cultivars in terms of growth and radiocesium uptake and accumulation. B. pumilus induced a significant increase in shoot dry weight in 12 cultivars that reached up to 40% in one B. rapa and three B. juncea cultivars. Differences in radiocesium uptake were observed between the cultivars of each Brassica species. Generally, inoculation resulted in a significant increase in (137)Cs uptake in 22 cultivars, while in seven cultivars it was significantly decreased. Regardless of plant cultivar and bacterial inoculation, the transfer of (137)Cs to the plant shoots (TF) varied by a factor of up to 5 and it ranged from to 0.011 to 0.054. Five inoculated cultivars, showed enhanced shoot dry weights and decreased (137)Cs accumulations, among which two B. rapa cultivars named Bitamina and Nozawana had a significantly decreased (137)Cs accumulation in their shoots. Such cultivars could be utilized to minimize the entry of radiocesium into the food chain; however, verifying the consistency of their radiocesium accumulation in other soils is strongly required. Moreover, the variations in growth and radiocesium accumulation, as influenced by Bacillus inoculation, could help selecting well grown inoculated Brassica cultivars with low radiocesium accumulation in their shoots.
Collapse
Affiliation(s)
- Salem Djedidi
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Katsuhiro Kojima
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | | | - Tadashi Yokoyama
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
20
|
Mallampati SR, Mitoma Y, Okuda T, Simion C, Lee BK. Solvent-free synthesis and application of nano-Fe/Ca/CaO/[PO4] composite for dual separation and immobilization of stable and radioactive cesium in contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2015; 297:74-82. [PMID: 25942697 DOI: 10.1016/j.jhazmat.2015.04.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/27/2015] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
This study assessed the synthesis and application of nano-Fe/Ca/CaO-based composite material for use as a separation and immobilizing treatment of dry soil contaminated by stable ((133)Cs) and radioactive cesium species ((134)Cs and (137)Cs). After grinding with nano-Fe/CaO, nano-Fe/Ca/CaO, and nano-Fe/Ca/CaO/[PO4], approximately 31, 25, and 22 wt% of magnetic fraction soil was separated. Their resultant (133)Cs immobilization values were about 78, 81, and 100%, respectively. When real radioactive cesium contaminated soil obtained from Fukushima was treated with nano-Fe/Ca/CaO/[PO4], approximately 27.3 wt% of magnetic and 72.75% of non-magnetic soil fractions were separated. The highest amount of entrapped (134)Cs and (137)Cs was found in the lowest weight of the magnetically separated soil fraction (i.e., 80% in 27.3% of treated soil). Results show that (134)Cs and (137)Cs either in the magnetic or non-magnetic soil fractions was 100% immobilized. The morphology and mineral phases of the nano-Fe/Ca/CaO/[PO4] treated soil were characterized using SEM-EDS, EPMA, and XRD analysis. The EPMA and XRD patterns indicate that the main fraction of enclosed/bound materials on treated soil included Ca/PO4 associated crystalline complexes. These results suggest that simple grinding treatment with nano-Fe/Ca/CaO/[PO4] under dry conditions might be an extremely efficient separation and immobilization method for radioactive cesium contaminated soil.
Collapse
Affiliation(s)
- Srinivasa Reddy Mallampati
- Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749, Republic of Korea.
| | - Yoshiharu Mitoma
- Department of Environmental Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka-Cho Shobara City, Hiroshima 727-0023, Japan.
| | - Tetsuji Okuda
- Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513, Japan
| | - Cristian Simion
- Politehnica University of Bucharest, Department of Organic Chemistry, Bucharest 060042, Romania
| | - Byeong Kyu Lee
- Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749, Republic of Korea
| |
Collapse
|
21
|
Aung HP, Djedidi S, Oo AZ, Aye YS, Yokoyama T, Suzuki S, Sekimoto H, Bellingrath-Kimura SD. Growth and (137)Cs uptake of four Brassica species influenced by inoculation with a plant growth-promoting rhizobacterium Bacillus pumilus in three contaminated farmlands in Fukushima prefecture, Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 521-522:261-269. [PMID: 25847170 DOI: 10.1016/j.scitotenv.2015.03.109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
The effectiveness of the plant growth-promoting rhizobacterium Bacillus pumilus regarding growth promotion and radiocesium ((137)Cs) uptake was evaluated in four Brassica species grown on different (137)Cs contaminated farmlands at Fukushima prefecture in Japan from June to August 2012. B. pumilus inoculation did not enhance growth in any of the plants, although it resulted in a significant increase of (137)Cs concentration and higher (137)Cs transfer from the soil to plants. The Brassica species exhibited different (137)Cs uptake abilities in the order Komatsuna>turnip>mustard>radish. TF values of (137)Cs ranged from 0.018 to 0.069 for all vegetables. Komatsuna possessed the largest root surface area and root volume, and showed a higher (137)Cs concentration in plant tissue and higher (137)Cs TF values (0.060) than the other vegetables. Higher (137)Cs transfer to plants was prominent in soil with a high amount of organic matter and an Al-vermiculite clay mineral type.
Collapse
Affiliation(s)
- Han Phyo Aung
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | - Salem Djedidi
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | - Aung Zaw Oo
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | - Yi Swe Aye
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | - Tadashi Yokoyama
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | - Sohzoh Suzuki
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | | | | |
Collapse
|
22
|
Djedidi S, Terasaki A, Aung HP, Kojima K, Yamaya H, Ohkama-Ohtsu N, Bellingrath-Kimura SD, Meunchang P, Yokoyama T. Evaluation of the possibility to use the plant-microbe interaction to stimulate radioactive 137Cs accumulation by plants in a contaminated farm field in Fukushima, Japan. JOURNAL OF PLANT RESEARCH 2015; 128:147-159. [PMID: 25398196 DOI: 10.1007/s10265-014-0678-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/27/2014] [Indexed: 06/04/2023]
Abstract
Field experiments in a contaminated farmland in Nihonmatsu city, Fukushima were conducted to assess the effectiveness of the plant-microbe interaction on removal of radiocesium. Before plowing, 93.3% of radiocesium was found in the top 5 cm layer (5,718 Bq kg DW(-1)). After plowing, Cs radioactivity in the 0-15 cm layer ranged from 2,037 to 3,277 Bq kg DW(-1). Based on sequential extraction, the percentage of available radiocesium (water soluble + exchangeable) was fewer than 10% of the total radioactive Cs. The transfer of (137)Cs was investigated in three agricultural crops; komatsuna (four cultivars), Indian mustard and buckwheat, inoculated with a Bacillus or an Azospirillum strains. Except for komatsuna Nikko and Indian mustard, inoculation with both strains resulted in an increase of biomass production by the tested plants. The highest (137)Cs radioactivity concentration in above-ground parts was found in Bacillus-inoculated komatsuna Nikko (121 Bq kg DW(-1)), accompanied with the highest (137)Cs TF (0.092). Furthermore, komatsuna Nikko-Bacillus and Indian mustard-Azospirillum associations gave the highest (137)Cs removal, 131.5 and 113.8 Bq m(-2), respectively. Despite the beneficial effect of inoculation, concentrations of (137)Cs and its transfer to the tested plants were not very high; consequently, removal of (137)Cs from soil would be very slow.
Collapse
Affiliation(s)
- Salem Djedidi
- Department of Biological Production Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-chou, Fuchu, Tokyo, 183-8509, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Djedidi S, Kojima K, Yamaya H, Ohkama-Ohtsu N, Bellingrath-Kimura SD, Watanabe I, Yokoyama T. Stable cesium uptake and accumulation capacities of five plant species as influenced by bacterial inoculation and cesium distribution in the soil. JOURNAL OF PLANT RESEARCH 2014; 127:585-597. [PMID: 25002227 DOI: 10.1007/s10265-014-0647-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/25/2014] [Indexed: 06/03/2023]
Abstract
The effects of inoculation with Bacillus and Azospirillum strains on growth and cesium accumulation of five plant species, Komatsuna, Amaranth, sorghum, common millet and buckwheat, grown on cesium-spiked soil were assessed for potential use in cesium remediation. Pot experiments were performed using "artificially" Cs-contaminated soil. Three treatments were applied based on Cs location in the soil. For a soil height of 15 cm in the pots, Cs was added as follows: in the top five cm to imitate no ploughing condition; in the bottom five cm simulating inverted ploughing; and uniformly distributed Cs reproducing normal plowing. Generally, inoculation of Cs-exposed plants significantly enhanced growth and tolerance to this element. Transfer factor (ratio of Cs concentration in the plant tissues to that in surrounding soil) was strongly influenced by Cs distribution, with higher values in the top-Cs treatment. Within this treatment, inoculation of Komatsuna with Bacillus and Azospirillum strains resulted in the greatest transfer factors of 6.55 and 6.68, respectively. Cesium content in the shoots was high in the Azospirillum-inoculated Komatsuna, Amaranth, and buckwheat, i.e., 1,830, 1,220, and 1,030 µg per pot, respectively (five plants were grown in each pot). Therefore, inoculation of Komatsuna and Amaranth with the strains tested here could be effective in enhancing Cs accumulation. The decrease of Cs transfer under uniform- and bottom-Cs treatments would suggest that countermeasures aiming at decreasing the transfer of Cs could rely on ploughing practices.
Collapse
Affiliation(s)
- Salem Djedidi
- Department of Biological Production Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-chou, Fuchu, Tokyo, 183-8509, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Guo J, Feng R, Ding Y, Wang R. Applying carbon dioxide, plant growth-promoting rhizobacterium and EDTA can enhance the phytoremediation efficiency of ryegrass in a soil polluted with zinc, arsenic, cadmium and lead. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 141:1-8. [PMID: 24762567 DOI: 10.1016/j.jenvman.2013.12.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/27/2013] [Accepted: 12/29/2013] [Indexed: 06/03/2023]
Abstract
This study was conducted to investigate the use of elevated carbon dioxide (CO2), plant growth-promoting rhizobacterium Burkholderia sp. D54 (PGPR) and ethylenediaminetetraacetic acid (EDTA) to enhance the phytoextraction efficiency of ryegrass in response to multiple heavy metal (or metalloid)-polluted soil containing zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb). All of the single or combined CO2, PGPR and EDTA treatments promoted ryegrass growth. The stimulation of ryegrass growth by CO2 and PGPR could primarily be attributed to the regulation of photosynthesis rather than decreased levels of Zn, As and Cd in the shoots. Most treatments seemed to reduce the Zn, As and Cd contents in the shoots, which might be associated with enhanced shoot biomass, thus causing a "dilution effect" regarding their levels. The combined treatments seemed to perform better than single treatments in removing Zn, As, Cd and Pb from soil, judging from the larger biomass and relatively higher total amounts (TAs) of Zn, As, Cd and Pb in both the shoots and roots. Therefore, we suggest that the CO2 plus PGPR treatment will be suitable for removing Zn, As, Cd and Pb from heavy metal (or metalloid)-polluted soils using ryegrass as a phytoremediation material.
Collapse
Affiliation(s)
- Junkang Guo
- Institute of Agro-Environmental Protection, The Ministry of Agriculture, Tianjin 300191, China
| | - Renwei Feng
- Institute of Agro-Environmental Protection, The Ministry of Agriculture, Tianjin 300191, China.
| | - Yongzhen Ding
- Institute of Agro-Environmental Protection, The Ministry of Agriculture, Tianjin 300191, China
| | - Ruigang Wang
- Institute of Agro-Environmental Protection, The Ministry of Agriculture, Tianjin 300191, China.
| |
Collapse
|
25
|
Rajkumar M, Prasad MNV, Swaminathan S, Freitas H. Climate change driven plant-metal-microbe interactions. ENVIRONMENT INTERNATIONAL 2013; 53:74-86. [PMID: 23347948 DOI: 10.1016/j.envint.2012.12.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/13/2012] [Accepted: 12/20/2012] [Indexed: 05/24/2023]
Abstract
Various biotic and abiotic stress factors affect the growth and productivity of crop plants. Particularly, the climatic and/or heavy metal stress influence various processes including growth, physiology, biochemistry, and yield of crops. Climatic changes particularly the elevated atmospheric CO₂ enhance the biomass production and metal accumulation in plants and help plants to support greater microbial populations and/or protect the microorganisms against the impacts of heavy metals. Besides, the indirect effects of climatic change (e.g., changes in the function and structure of plant roots and diversity and activity of rhizosphere microbes) would lead to altered metal bioavailability in soils and concomitantly affect plant growth. However, the effects of warming, drought or combined climatic stress on plant growth and metal accumulation vary substantially across physico-chemico-biological properties of the environment (e.g., soil pH, heavy metal type and its bio-available concentrations, microbial diversity, and interactive effects of climatic factors) and plant used. Overall, direct and/or indirect effects of climate change on heavy metal mobility in soils may further hinder the ability of plants to adapt and make them more susceptible to stress. Here, we review and discuss how the climatic parameters including atmospheric CO₂, temperature and drought influence the plant-metal interaction in polluted soils. Other aspects including the effects of climate change and heavy metals on plant-microbe interaction, heavy metal phytoremediation and safety of food and feed are also discussed. This review shows that predicting how plant-metal interaction responds to altering climatic change is critical to select suitable crop plants that would be able to produce more yields and tolerate multi-stress conditions without accumulating toxic heavy metals for future food security.
Collapse
Affiliation(s)
- Mani Rajkumar
- National Environmental Engineering Research Institute-NEERI, CSIR Complex, Taramani, Chennai 600113, India.
| | | | | | | |
Collapse
|
26
|
Kang DJ, Seo YJ, Saito T, Suzuki H, Ishii Y. Uptake and translocation of cesium-133 in napiergrass (Pennisetum purpureum Schum.) under hydroponic conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 82:122-126. [PMID: 22710264 DOI: 10.1016/j.ecoenv.2012.05.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/25/2012] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
The present study reports the potential remediation of cesium (Cs) using napiergrass, which produces the largest biomass among the herbaceous plants in hydroponic culture containing stable Cs (Cs-133) at concentrations of 50, 150, 300, 1000, and 3,000 μM using cesium chloride (CsCl), with 0 μM Cs as a control concentration. Plant height was significantly decreased in higher Cs-treated conditions (300, 1000, and 3000 μM Cs) at 7 weeks after treatment (WAT), but tiller numbers tended to increase compared with the control plant. No significant difference was observed in the aboveground dry matter weight in all Cs treatments throughout the study period. Cs content in the roots, leaf blades, and leaf sheaths clearly increased with increasing Cs concentration in the solutions. Cs content in the aboveground parts (leaf blades and leaf sheaths) was consistently higher than in the roots at concentration of 3,000 μM. Total Cs contents in the aboveground parts were 6305 and 26,365 mg kg(-1) at 7WAT in 1000- and 3000-μM Cs treatments, respectively. Mean values of transfer factors (TFs) in the aboveground parts were 50 μM=0.78, 150 μM=1.02, 300 μM=0.86, 1,000 μM=0.68, and 3,000 μM=0.94, respectively at 7WAT. Due to its high Cs content and high TF in the aboveground parts, napiergrass may be a candidate plant with high potential for phytoremediation of Cs from Cs-137-contaminated soil.
Collapse
Affiliation(s)
- Dong Jin Kang
- Teaching and Research Center for Bio-coexistence, Faculty of Agriculture and Life Science, Hirosaki University, Gosyogawara 037-0202, Japan.
| | | | | | | | | |
Collapse
|