1
|
Liu Y, Zhai Q, Lv J, Wu Y, Liu X, Zhang H, Wu X. Construction of a fusant bacterial strain simultaneously degrading atrazine and acetochlor and its application in soil bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178478. [PMID: 39818196 DOI: 10.1016/j.scitotenv.2025.178478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/05/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Application of herbicide-degrading bacteria is an effective strategy to remove herbicide in soil. However, the ability of bacteria to degrade a herbicide is often severely limited in the presence of other pesticide. In this study, the atrazine-degrading strain Klebsiella varicola FH-1 and acetochlor-degrading strain Bacillus Aryabhatti LY-4 were used as parent strains to construct the recombinant RH-92 strain through protoplast fusion technology. Compared with the parent strains, RH-92 exhibited enhanced ability to degrade herbicide mixture containing atrazine and acetochlor, exhibiting 63.16 % and 68.48 % higher degradation rates, respectively. RAPD analysis showed that gene rearrangement occurred during protoplast fusion, and the genetic similarity indexes of the fused strain RH-92 and the two parent strains were 0.5853 and 0.4240, respectively. HPLC-MS analysis confirmed that RH-92 shared similar degradation products and pathways with both parent strains but exhibited a novel metabolic pathway for the continuous degradation of CMEPA (degradation product of acetochlor) into MEA through amide bond hydrolysis. The activities of GSH, GST and SOD of RH-92 increased and the level of MDA decreased under the stress of compound herbicides. Strain RH-92 did not show a large number of bacterial apoptosis, and maintained good cell membrane integrity and permeability. The half-lives of atrazine and acetochlor were 4.9 d and 7.6 d when the parent strains FH-1 and LY-4 were applied in unsterilized soil containing herbicide mixture treatment,the application fusant RH-92 strain significantly reduced the half-life to 1.6 and 1.8 d, respectively. Furthermore, 16S rRNA sequencing indicated that RH-92 application effectively restored bacterial taxa with diminished relative abundances under herbicide mixture treatment, ameliorated phytotoxicity in soybean seedlings, and promoted enhanced vegetative growth in the roots and plant height. This study highlighted the application of fusant strains as a bioremediation strategy for combatting atrazine and acetochlor pollution in soil and provided theoretical insights.
Collapse
Affiliation(s)
- Yue Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Qianhang Zhai
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Jiaxu Lv
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yulin Wu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xuewei Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Hao Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Xian Wu
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of Chin), Gongzhuling 136100, Jilin, China.
| |
Collapse
|
2
|
Cheng X, Yang J, Tang T, Zhang C, Zhao X, Ye Q. Impact of superabsorbent hydrogels on microbial community and atrazine fate in soils by 14C-labeling techniques. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124822. [PMID: 39197643 DOI: 10.1016/j.envpol.2024.124822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/22/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The accumulation of atrazine in soils can create environmental challenges, potentially posing risks to human health. Superabsorbent hydrogel (SH)-based formulations offer an eco-friendly approach to accelerate herbicide degradation. However, the impact of SHs on soil microbial community structure, and thus on the fate of atrazine, remains uncertain. In this study, a radioactive tracer was employed to investigate the influence of SHs on microbial communities and atrazine transformation in soils. The results revealed that the mineralization of atrazine in active soils was considerably greater than that in sterilized soils. Atrazine degradation proceeded rapidly under SH treatment, indicating the potential of SH to accelerate atrazine degradation. Furthermore, SH addition did not alter the atrazine degradation pathway in soils, which included dealkylation, dechlorination and hydroxylation. The relative abundance of dominant microbial population was influenced by the presence of SHs in the soil. Additionally, SH application led to an increased relative abundance of Lysobacter, suggesting its potential involvement in atrazine degradation. These findings reveal the significance of soil microorganisms and SH in atrazine degradation, offering crucial insights for the development of effective strategies for atrazine remediation and environmental sustainability.
Collapse
Affiliation(s)
- Xi Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| | - Jingying Yang
- Radiolabeled DMPK & BA Laboratory, Pharmaron (Ningbo) Technology Development Co. Ltd., Ningbo, 315336, PR China.
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| | - Chunrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
3
|
Li Y, Lu J, Dong C, Wang H, Liu B, Li D, Cui Y, Wang Z, Ma S, Shi Y, Wang C, Zhu X, Sun H. Physiological and biochemical characteristics and microbial responses of Medicago sativa (Fabales: Fabaceae) varieties with different resistance to atrazine stress. Front Microbiol 2024; 15:1447348. [PMID: 39220044 PMCID: PMC11363823 DOI: 10.3389/fmicb.2024.1447348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Atrazine, a commonly employed herbicide for corn production, can leave residues in soil, resulting in photosynthetic toxicity and impeding growth in subsequent alfalfa (Medicago sativa L.) crops within alfalfa-corn rotation systems. The molecular regulatory mechanisms by which atrazine affects alfalfa growth and development, particularly its impact on the microbial communities of the alfalfa rhizosphere, are not well understood. This study carried out field experiments to explore the influence of atrazine stress on the biomass, chlorophyll content, antioxidant system, and rhizosphere microbial communities of the atrazine-sensitive alfalfa variety WL-363 and the atrazine-resistant variety JN5010. The results revealed that atrazine significantly reduced WL-363 growth, decreasing plant height by 8.58 cm and root length by 5.42 cm (p < 0.05). Conversely, JN5010 showed minimal reductions, with decreases of 1.96 cm in height and 1.26 cm in root length. Chlorophyll content in WL-363 decreased by 35% under atrazine stress, while in JN5010, it was reduced by only 10%. Reactive oxygen species (ROS) accumulation increased by 60% in WL-363, compared to a 20% increase in JN5010 (p < 0.05 for both). Antioxidant enzyme activities, such as superoxide dismutase (SOD) and catalase (CAT), were significantly elevated in JN5010 (p < 0.05), suggesting a more robust defense mechanism. Although the predominant bacterial and fungal abundances in rhizosphere soils remained generally unchanged under atrazine stress, specific microbial groups exhibited variable responses. Notably, Promicromonospora abundance declined in WL-363 but increased in JN5010. FAPROTAX functional predictions indicated shifts in the abundance of microorganisms associated with pesticide degradation, resistance, and microbial structure reconstruction under atrazine stress, displaying different patterns between the two varieties. This study provides insights into how atrazine residues affect alfalfa rhizosphere microorganisms and identifies differential microbial responses to atrazine stress, offering valuable reference data for screening and identifying atrazine-degrading bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiaoyan Zhu
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hao Sun
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
Harindintwali JD, Dou Q, Wen X, Xiang L, Fu Y, Xia L, Jia Z, Jiang X, Jiang J, Wang F. Physiological and transcriptomic changes drive robust responses in Paenarthrobacter sp. AT5 to co-exposure of sulfamethoxazole and atrazine. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132795. [PMID: 37865076 DOI: 10.1016/j.jhazmat.2023.132795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
Agricultural waterways are often contaminated with herbicide and antibiotic residues due to the widespread use of these chemicals in modern agriculture. The search for resistant bacterial strains that can adapt to and degrade these mixed contaminants is essential for effective in situ bioremediation. Herein, by integrating chemical and transcriptomic analyses, we shed light on mechanisms through which Paenarthrobacter sp. AT5, a well-known atrazine-degrading bacterial strain, can adapt to sulfamethoxazole (SMX) while degrading atrazine. When exposed to SMX and/or atrazine, strain AT5 increased the production of extracellular polymeric substances and reactive oxygen species, as well as the rate of activity of antioxidant enzymes. Atrazine and SMX, either alone or combined, increased the expression of genes involved in antioxidant responses, multidrug resistance, DNA repair, and membrane transport of lipopolysaccharides. Unlike atrazine alone, co-exposure with SMX reduced the expression of genes encoding enzymes involved in the lower part of the atrazine degradation pathway. Overall, these findings emphasize the complexity of bacterial adaptation to mixed herbicide and antibiotic residues and highlight the potential of strain AT5 in bioremediation efforts.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Xia
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich 52428, Germany; RWTH Aachen University, Institute for Environmental Research, WorringerWeg 1, 52074 Aachen, Germany.
| |
Collapse
|
5
|
Dhar K, Venkateswarlu K, Megharaj M. Anoxygenic phototrophic purple non-sulfur bacteria: tool for bioremediation of hazardous environmental pollutants. World J Microbiol Biotechnol 2023; 39:283. [PMID: 37594588 PMCID: PMC10439078 DOI: 10.1007/s11274-023-03729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
The extraordinary metabolic flexibility of anoxygenic phototrophic purple non-sulfur bacteria (PNSB) has been exploited in the development of various biotechnological applications, such as wastewater treatment, biohydrogen production, improvement of soil fertility and plant growth, and recovery of high-value compounds. These versatile microorganisms can also be employed for the efficient bioremediation of hazardous inorganic and organic pollutants from contaminated environments. Certain members of PNSB, especially strains of Rhodobacter sphaeroides and Rhodopseudomonas palustris, exhibit efficient remediation of several toxic and carcinogenic heavy metals and metalloids, such as arsenic, cadmium, chromium, and lead. PNSB are also known to utilize diverse biomass-derived lignocellulosic organic compounds and xenobiotics. Although biodegradation of some substituted aromatic compounds by PNSB has been established, available information on the involvement of PNSB in the biodegradation of toxic organic pollutants is limited. In this review, we present advancements in the field of PNSB-based bioremediation of heavy metals and organic pollutants. Furthermore, we highlight that the potential role of PNSB as a promising bioremediation tool remains largely unexplored. Thus, this review emphasizes the necessity of investing extensive research efforts in the development of PNSB-based bioremediation technology.
Collapse
Affiliation(s)
- Kartik Dhar
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
- Department of Microbiology, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh, 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
6
|
Zhang L, Cui H, Liu M, Wang W, Li X, Huang H. The role of multi-low molecular weight organic acids on phenanthrene biodegradation: Insight from cellular characteristics and proteomics. CHEMOSPHERE 2023; 326:138406. [PMID: 36925006 DOI: 10.1016/j.chemosphere.2023.138406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/15/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic and ubiquitous pollutants that need to be solved. The low-molecular-weight organic acid (LMWOA) holds the promise to accelerate the capacity of microbes to degrade PAHs. However, the degradation mechanism(s) with multi-LMWOAs has not been understood yet, which is closer to the complex environmental biodegradation in nature. Here, we demonstrated a comprehensive cellular and proteomic response pattern by investigating the relationship between a model PAH degrading strain, B. subtilis ZL09-26, and the mixture LMWOAs (citric acid, glutaric acid, and oxalic acid). As a result, multi-LMWOAs introduced a highly enhanced phenanthrene (PHE) degradation efficiency with up to 3.1-fold improvement at 72 h, which is accompanied by the enhancement of strain growth and activity, but the releasement of membrane damages and oxidative stresses. Moreover, a detailed proteomic analysis revealed that the synergistic perturbation of various metabolic pathways jointly governed the change of cellular behaviors and improved PHE degradation in a network manner. The obtained knowledge provides a foundation for designing the artificial LMWOAs mixtures and guides the rational remediation of contaminated soils using bio-stimulation techniques.
Collapse
Affiliation(s)
- Lei Zhang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China; College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Haiyang Cui
- RWTH Aachen University, Templergraben 55, Aachen, 52062, Germany
| | - Mina Liu
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, China
| | - Weidong Wang
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying, 257067, China
| | - Xiujuan Li
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, China.
| | - He Huang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Yu F, Luo W, Xie W, Li Y, Liu Y, Ye X, Peng T, Wang H, Huang T, Hu Z. The effects of long-term hexabromocyclododecanes contamination on microbial communities in the microcosms. CHEMOSPHERE 2023; 325:138412. [PMID: 36925001 DOI: 10.1016/j.chemosphere.2023.138412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/21/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The adaptation of microbial community to the long-term contamination of hexabromocyclododecanes (HBCDs) has not been well studied. Our previous study found that the HBCDs contamination in the microcosms constructed of sediments from two different mangrove forests in 8 months resulted in serious acidification (pH2-3). This study reanalyzed previous sequencing data and compared them with data after 20 months to investigate the adaptive properties of microbial communities in the stress of HBCDs and acidification. It hypothesized that the reassembly was based on the fitness of taxa. The results indicated that eukaryotes and fungi might have better adaptive capacity to these deteriorated habitats. Eukaryotic taxa Eufallia and Syncystis, and fungal taxa Wickerhamomyces were only detected after 20 months of contamination. Moreover, eukaryotic taxa Caloneis and Nitzschia, and fungal taxa Talaromyces were dominant in most of microbial communities (14.467-95.941%). The functional compositions were sediment-dependent and more divergent than community reassemblies. Network and co-occurrence analysis suggested that acidophiles such as Acidisoma and Acidiphilium were gaining more positive relations in the long-term stress. The acidophilic taxa and genes involved in resistance to the acidification and toxicity of HBCDs were enriched, for example, bacteria Acidisoma and Acidiphilium, archaea Thermogymnomonas, and eukaryotes Nitzschia, and genes kdpC, odc1, polA, gst, and sod-2. These genes involved in oxidative stress response, energy metabolism, DNA damage repair, potassium transportation, and decarboxylation. It suggested that the microbial communities might cope with the stress from HBCDs and acidification via multiple pathways. The present research shed light on the evolution of microbial communities under the long-term stress of HBCDs contamination and acidification.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Wei Xie
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Yuyang Li
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Yongjin Liu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Xueying Ye
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China.
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong Province, China.
| |
Collapse
|
8
|
Liu XL, Chen MQ, Jiang YL, Gao RY, Wang ZJ, Wang P. Rhodobacter sphaeroides as a model to study the ecotoxicity of 1-alkyl-3-methylimidazolium bromide. Front Mol Biosci 2023; 10:1106832. [PMID: 36793784 PMCID: PMC9923006 DOI: 10.3389/fmolb.2023.1106832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The purple non-sulfur bacterium Rhodobacter sphaeroides was selected as a biological model to investigate its response to the toxicity of 1-alkyl-3-methylimidazolium bromide ([Cnmim]Br), a type of ionic liquid (IL), with different alkyl chain lengths (n describes the number of carbon atoms in the alkyl chain). The inhibition of bacterial growth by [Cnmim]Br was positively correlated with n. Morphological characterization revealed that [Cnmim]Br caused cell membrane perforation. The signal amplitude of the electrochromic absorption band shift of endogenous carotenoids showed a negatively linear correlation with n, and the amplitude of the blue-shift of the B850 band in light-harvesting complex 2 showed a positively linear correlation with n. Furthermore, an increase in blocked ATP synthesis and increase in antioxidant enzyme activity were observed in chromatophores treated with ILs containing longer alkyl chains. In summary, the purple bacterium can be developed as a model to monitor ecotoxicity and examine the mechanism of IL toxicity.
Collapse
|
9
|
Borah S, Hazarika DJ, Baruah M, Bora SS, Gogoi M, Boro RC, Barooah M. Imidacloprid degrading efficiency of Pseudomonas plecoglossicida MBSB-12 isolated from pesticide contaminated tea garden soil of Assam. World J Microbiol Biotechnol 2022; 39:59. [PMID: 36572801 DOI: 10.1007/s11274-022-03507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Long-term use of toxic pesticides in agricultural grounds has led to adverse effects on the environment and human health. Microbe-mediated biodegradation of pollutants is considered an effective strategy for the removal of contaminants in agricultural and environmental sustainability. Imidacloprid, a neonicotinoid class of pesticides, was widely applied insecticide in the control of pests in agricultural fields including the tea gardens of Assam. Here, native bacteria from imidacloprid contaminating tea garden soils were isolated and screened for imidacloprid degradation efficiency under laboratory conditions. Out of the 30 bacterial isolates, 4 were found to tolerate high concentrations of imidacloprid (25,000 ppm), one of which isolate MBSB-12 showed the highest efficiency for imidacloprid tolerance and utilization as the sole carbon source. Morphological, biochemical, and 16 S ribosomal RNA gene sequencing-based characterization revealed the isolate as Pseudomonas plecoglossicida MBSB-12. The isolate reduced 87% of extractable imidacloprid from the treated soil in 90 days compared to the control soil (without bacterial treatment). High-Resolution Mass Spectrometry (HRMS) analysis indicated imidacloprid breakdown to comparatively less harmful products viz., imidacloprid guanidine olefin [m/z = 209.0510 (M + H)+], imidacloprid urea [m/z = 212.0502 (M + H)+] and a dechlorinated degraded product of imidacloprid with m/z value 175.0900 (M + H)+. Further investigation on the molecular machinery of P. plecoglossicida MBSB-12 involved in the degradation of imidacloprid is expected to provide a better understanding of the degradation pathway.
Collapse
Affiliation(s)
- Subangshi Borah
- Department of Agricultural Biotechnology, Faculty of Agriculture, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Dibya Jyoti Hazarika
- Department of Agricultural Biotechnology, Faculty of Agriculture, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Manjistha Baruah
- Department of Agricultural Biotechnology, Faculty of Agriculture, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Sudipta Sankar Bora
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Manuranjan Gogoi
- Department of Tea Husbandry and Technology, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Faculty of Agriculture, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Faculty of Agriculture, Assam Agricultural University, 785013, Jorhat, Assam, India.
| |
Collapse
|
10
|
Wu J, Zhai Y, Monikh FA, Arenas-Lago D, Grillo R, Vijver MG, Peijnenburg WJGM. The Differences between the Effects of a Nanoformulation and a Conventional Form of Atrazine to Lettuce: Physiological Responses, Defense Mechanisms, and Nutrient Displacement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12527-12540. [PMID: 34657419 PMCID: PMC8554755 DOI: 10.1021/acs.jafc.1c01382] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 05/10/2023]
Abstract
The rapid development of nanotechnology influences the developments within the agro-sector. An example is provided by the production of nanoenabled pesticides with the intention to optimize the efficiency of the pesticides. At the same time, it is important to collect information on the unintended and unwanted adverse effects of emerging nanopesticides on nontarget plants. Currently, this information is limited. In the present study, we compared the effects of a nanoformulation of atrazine (NPATZ) and the nonencapsulated atrazine formulation (ATZ) on physiological responses, defense mechanisms, and nutrient displacement in lettuce over time with the applied concentrations ranging from 0.3 to 3 mg atrazine per kg soil. Our results revealed that both NPATZ and ATZ induced significant decreases in plant biomass, chlorophyll content, and protein content. Additionally, exposure to NPATZ and ATZ caused oxidative stress to the lettuce plant and significantly elevated the activities of the tested ROS scavenger enzymes in plant tissues. These results indicate that NPATZ and ATZ cause distinct adverse impacts on lettuce plants. When comparing the adverse effects in plants after exposure to NPATZ and ATZ, no obvious differences in plant biomass and chlorophyll content were observed between NPATZ and ATZ treatments at the same exposure concentration regardless of exposure duration. An enhanced efficiency of the active ingredient of the nanopesticide as compared to the conventional formulation was observed after long-term exposure to the high concentration of NPATZ, as it induced higher impacts on plants in terms of the end points of the contents of protein, superoxide anion (O2̇-), and MDA, and the activities of stress-related enzymes as compared to the same concentration of ATZ. Furthermore, exposure to both NPATZ and ATZ disrupted the uptake of mineral nutrients in plants, and the differences in the displacement of nutrients between the NPATZ and ATZ treatments depended on the element type, plant organ, exposure concentration, and time. Overall, the application dose of a nanopesticide should balance their increased herbicidal efficiency with the long-term adverse effects in order to maximize the desired impact while minimizing adverse impacts; only then will we be able to understand the potential impact of nanopesticides on the environment.
Collapse
Affiliation(s)
- Juan Wu
- Leiden
University, Institute of Environmental Sciences (CML), P.O. Box 9518, 2300 RA Leiden, The Netherlands
| | - Yujia Zhai
- Leiden
University, Institute of Environmental Sciences (CML), P.O. Box 9518, 2300 RA Leiden, The Netherlands
| | - Fazel Abdolahpur Monikh
- Leiden
University, Institute of Environmental Sciences (CML), P.O. Box 9518, 2300 RA Leiden, The Netherlands
| | - Daniel Arenas-Lago
- University
of Vigo, Department of Plant Biology and
Soil Science, As Lagoas, Marcosende, 32004 Ourense, Spain
| | - Renato Grillo
- Department
of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), 15385-000 Ilha Solteira, SP Brazil
| | - Martina G. Vijver
- Leiden
University, Institute of Environmental Sciences (CML), P.O. Box 9518, 2300 RA Leiden, The Netherlands
| | - Willie J. G. M. Peijnenburg
- Leiden
University, Institute of Environmental Sciences (CML), P.O. Box 9518, 2300 RA Leiden, The Netherlands
- National
Institute of Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven 3720 BA, The
Netherlands
| |
Collapse
|
11
|
Basit A, Shah ST, Ullah I, Muntha ST, Mohamed HI. Microbe-assisted phytoremediation of environmental pollutants and energy recycling in sustainable agriculture. Arch Microbiol 2021; 203:5859-5885. [PMID: 34545411 DOI: 10.1007/s00203-021-02576-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 01/17/2023]
Abstract
The perception of phytoremediation is efficiently utilized as an eco-friendly practice of green plants combating and cleaning up the stressed environment without harming it. The industrial revolution was followed by the green revolution which fulfilled the food demands of the growing population caused an increase in yield per unit area in crop production, but it also increased the use of synthetic fertilizers in agriculture. Globally, the intensive use of inorganic fertilizers in agriculture has led to serious health problems and irreversible environmental damage. Biofertilizers improve the growth of the plant and can be applied as an alternative to chemical/synthetic fertilizers. Cyanobacteria, bacteria, and fungi are known as some of the principal microbe groups used to produce biofertilizers that form symbiotic associations with plants. Microorganisms perform a key role in phosphate solubilization and mobilization, nitrogen fixation, nutrient management, biotic elicitors and probiotics, and pollution management (biodegradation agents), specifically bacteria which also help in atmospheric nitrogen fixation and are thus available for the growth of the plant. Management or biodegradation of hazardous chemical residues and heavy metals produced by a huge number of large-scale industries should be given primary importance to be transformed by various bacterial strains, fungi, algae. Currently, modern omics technologies such as metagenomic, transcriptomic, and proteomic are being used to develop strategies for studying the ecology of microorganisms, as well as their use in environmental monitoring and bioremediation. This review briefly discusses some of the major groups of microorganisms that can perform different functions responsible for plant health, crop production, phytoremediation and also focus on the omics techniques reportedly used in environmental monitoring to tackle the pollution load.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Syed Tanveer Shah
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Izhar Ullah
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Sidra Tul Muntha
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
12
|
Xu N, Qiu C, Yang Q, Zhang Y, Wang M, Ye C, Guo M. Analysis of Phenol Biodegradation in Antibiotic and Heavy Metal Resistant Acinetobacter lwoffii NL1. Front Microbiol 2021; 12:725755. [PMID: 34566929 PMCID: PMC8461059 DOI: 10.3389/fmicb.2021.725755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Phenol is a common environmental contaminant. The purpose of this study was to isolate phenol-degrading microorganisms from wastewater in the sections of the Chinese Medicine Manufactory. The phenol-degrading Acinetobacter lwoffii NL1 was identified based on a combination of biochemical characteristics and 16S rRNA genes. To analyze the molecular mechanism, the whole genome of A. lwoffii NL1 was sequenced, yielding 3499 genes on one circular chromosome and three plasmids. Enzyme activity analysis showed that A. lwoffii NL1 degraded phenol via the ortho-cleavage rather than the meta-cleavage pathway. Key genes encoding phenol hydroxylase and catechol 1,2-dioxygenase were located on a megaplasmid (pNL1) and were found to be separated by mobile genetic elements; their function was validated by heterologous expression in Escherichia coli and quantitative real-time PCR. A. lwoffii NL1 could degrade 0.5 g/L phenol within 12 h and tolerate a maximum of 1.1 g/L phenol, and showed resistance against multiple antibiotics and heavy metal ions. Overall, this study shows that A. lwoffii NL1 can be potentially used for efficient phenol degradation in heavy metal wastewater treatment.
Collapse
Affiliation(s)
- Nan Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Chong Qiu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Qiyuan Yang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Yunzeng Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Mingqi Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Minliang Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Rovida AFDS, Costa G, Santos MI, Silva CR, Freitas PNN, Oliveira EP, Pileggi SAV, Olchanheski RL, Pileggi M. Herbicides Tolerance in a Pseudomonas Strain Is Associated With Metabolic Plasticity of Antioxidative Enzymes Regardless of Selection. Front Microbiol 2021; 12:673211. [PMID: 34239509 PMCID: PMC8258386 DOI: 10.3389/fmicb.2021.673211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022] Open
Abstract
Agriculture uses many food production chains, and herbicides participate in this process by eliminating weeds through different biochemical strategies. However, herbicides can affect non-target organisms such as bacteria, which can suffer damage if there is no efficient control of reactive oxygen species. It is not clear, according to the literature, whether the efficiency of this control needs to be selected by the presence of xenobiotics. Thus, the Pseudomonas sp. CMA 6.9 strain, collected from biofilms in an herbicide packaging washing tank, was selected for its tolerance to pesticides and analyzed for activities of different antioxidative enzymes against the herbicides Boral®, absent at the isolation site, and Heat®, present at the site; both herbicides have the same mode of action, the inhibition of the enzyme protoporphyrinogen oxidase. The strain showed tolerance to both herbicides in doses up to 45 times than those applied in agriculture. The toxicity of these herbicides, which is greater for Boral®, was assessed by means of oxidative stress indicators, growth kinetics, viability, and amounts of peroxide and malondialdehyde. However, the studied strain showed two characteristic antioxidant response systems for each herbicide: glutathione-s-transferase acting to control malondialdehyde in treatments with Boral®; and catalase, ascorbate peroxidase, and guaiacol peroxidase in the control of peroxide induced by Heat®. It is possible that this modulation of the activity of different enzymes independent of previous selection characterizes a system of metabolic plasticity that may be more general in the adaptation of microorganisms in soil and water environments subjected to chemical contaminants. This is relevant to the impact of pesticides on the diversity and abundance of microbial species as well as a promising line of metabolic studies in microbial consortia for use in bioremediation.
Collapse
Affiliation(s)
| | - Gessica Costa
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Mariana Inglês Santos
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Caroline Rosa Silva
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Paloma Nathane Nunes Freitas
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Elizangela Paz Oliveira
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Sônia Alvim Veiga Pileggi
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Ricardo Luiz Olchanheski
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Marcos Pileggi
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
14
|
James A, Singh DK. Atrazine detoxification by intracellular crude enzyme extracts derived from epiphytic root bacteria associated with emergent hydrophytes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:577-586. [PMID: 33999766 DOI: 10.1080/03601234.2021.1922043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present study demonstrated atrazine detoxification by intracellular crude enzyme extracts of Pseudomonas spp. strains ACB and TLB. Indigenous bacterial protein-based remediation techniques could be an alternative to bioaugmentation which pose multiple challenges when applied to the field. Intracellular enzymes were extracted from strains ACB and TLB and their degradation potential of 10 mg L-1 was determined using Gas Chromatography; further, enzyme extracts were subjected to protein profiling studies. In span of 6 h, enzyme extracts of strain ACB showed maximum degradation at 30 °C and 40 °C (71%) and enzyme extracts of strain TLB showed maximum degradation at 40 °C (48%). Atrazine degradation by enzyme extracts of strain ACB showed maximum degradation at pH 7 (71%) and pH 6 (69%) in 6 h. Similarly, enzyme extracts of strain TLB showed maximal degradation at pH 6 (46%) in 6 h. The present study demonstrated, for the first time, efficient atrazine remediation by intracellular crude enzyme extracts from epiphytic root bacteria at a range of temperature and pH conditions. Protein profiling studies indicated that atrazine induced expression of CoA ester lyase and alkyl hydroperoxide reductase in the strains ACB and TLB respectively. Expressions of these proteins have never been associated with atrazine exposure.
Collapse
Affiliation(s)
- Anina James
- Department of Zoology, University of Delhi, Delhi, India
| | | |
Collapse
|
15
|
Zhang Y, Shi H, Gu J, Jiao Y, Han S, Akindolie MS, Wang Y, Zhang L, Tao Y. Anthraquinone-2,6-disulfonate enhanced biodegradation of dibutyl phthalate: Reducing membrane damage and oxidative stress in bacterial degradation. BIORESOURCE TECHNOLOGY 2020; 302:122845. [PMID: 32000129 DOI: 10.1016/j.biortech.2020.122845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Plasticizer dibutyl phthalate (DBP) pollution has received more and more attention. In this study, a DBP degrading bacteria Enterobacter sp. DNB-S2 was found to suffer membrane damage and oxidative stress during DBP degradation. Physiological and transcriptome analysis showed that 100 μmol L-1 anthraquinone-2,6-disulfonate (AQDS) could enhance the ability of strain DNB-S2 for biodegradation of DBP. AQDS adjusted the cell surface structure, including increase levels of hydrophobic and unsaturated fatty acids. These changes increased the chemotactic ability of the strain DNB-S2 to the hydrophobic pollutant DBP and the fluidity of the cell membrane. The expression of methyl chemotactic protein and genes associated with cell membrane-fixed components were up-regulated. AQDS also improved the scavenging ability of ·OH and H2O2 of DNB-S2 by promoting expression genes related to glutathione metabolism, thereby reducing oxidative stress. These results will provide new insights into the biodegradation of DBP.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongtao Shi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jidong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Siyue Han
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Modupe Sarah Akindolie
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Lin Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
16
|
Cao B, Zhang Y, Wang Z, Li M, Yang F, Jiang D, Jiang Z. Insight Into the Variation of Bacterial Structure in Atrazine-Contaminated Soil Regulating by Potential Phytoremediator: Pennisetum americanum (L.) K. Schum. Front Microbiol 2018; 9:864. [PMID: 29780374 PMCID: PMC5945882 DOI: 10.3389/fmicb.2018.00864] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
Although plants of the genus Pennisetum can accelerate the removal of atrazine from its rhizosphere, the roles played by this plant in adjusting the soil environment and soil microorganism properties that might contribute to pollutant removal are incompletely understood. We selected Pennisetum americanum (L.) K. Schum (P. americanum) as the test plant and investigated the interaction between P. americanum and atrazine-contaminated soil, focusing on the adjustment of the soil biochemical properties as well as bacterial functional and community diversity in the rhizosphere using Biolog EcoPlates and high-throughput sequencing of the 16S rRNA gene. The results demonstrate that the rhizosphere soil of P. americanum exhibited higher catalase activity, urease activity and water soluble organic carbon (WSOC) content, as well as a suitable pH for microorganisms after a 28-day incubation. The bacterial functional diversity indices (Shannon and McIntosh) for rhizosphere soil were 3.17 ± 0.04 and 6.43 ± 0.86 respectively, while these indices for non-rhizosphere soil were 2.95 ± 0.06 and 3.98 ± 0.27. Thus, bacteria in the P. americanum rhizosphere exhibited better carbon substrate utilization than non-rhizosphere bacteria. Though atrazine decreased the richness of the soil bacterial community, rhizosphere soil had higher bacterial community traits. For example, the Shannon diversity indices for rhizosphere and non-rhizosphere soil were 5.821 and 5.670 respectively. Meanwhile, some bacteria, such as those of the genera Paenibacillus, Rhizobium, Sphingobium, and Mycoplana, which facilitate soil nutrient cycling or organic pollutants degradation, were only found in rhizosphere soil after a 28-day remediation. Moreover, redundancy analysis suggests that the soil biochemical properties that were adjusted by the test plant exhibited correlations with the bacterial community composition and functional diversity. These results suggest that the soil environment and bacterial properties could be adjusted by P. americanum during phytoremediation of atrazine-contaminated soil.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, China
| |
Collapse
|
17
|
Dobrzanski T, Gravina F, Steckling B, Olchanheski LR, Sprenger RF, Espírito Santo BC, Galvão CW, Reche PM, Prestes RA, Pileggi SAV, Campos FR, Azevedo RA, Sadowsky MJ, Beltrame FL, Pileggi M. Bacillus megaterium strains derived from water and soil exhibit differential responses to the herbicide mesotrione. PLoS One 2018; 13:e0196166. [PMID: 29694403 PMCID: PMC5918998 DOI: 10.1371/journal.pone.0196166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/06/2018] [Indexed: 02/07/2023] Open
Abstract
The intense use of herbicides for weed control in agriculture causes selection pressure on soil microbiota and water ecosystems, possibly resulting in changes to microbial processes, such as biogeochemical cycles. These xenobiotics may increase the production of reactive oxygen species and consequently affect the survival of microorganisms, which need to develop strategies to adapt to these conditions and maintain their ecological functionality. This study analyzed the adaptive responses of bacterial isolates belonging to the same species, originating from two different environments (water and soil), and subjected to selection pressure by herbicides. The effects of herbicide Callisto and its active ingredient, mesotrione, induced different adaptation strategies on the cellular, enzymatic, and structural systems of two Bacillus megaterium isolates obtained from these environments. The lipid saturation patterns observed may have affected membrane permeability in response to this herbicide. Moreover, this may have led to different levels of responses involving superoxide dismutase and catalase activities, and enzyme polymorphisms. Due to these response systems, the strain isolated from water exhibited higher growth rates than did the soil strain, in evaluations made in oligotrophic culture media, which would be more like that found in semi-pristine aquatic environments. The influence of the intracellular oxidizing environments, which changed the mode of degradation of mesotrione in our experimental model and produced different metabolites, can also be observed in soil and water at sites related to agriculture. Since the different metabolites may present different levels of toxicity, we suggest that this fact should be considered in studies on the fate of agrochemicals in different environments.
Collapse
Affiliation(s)
- Tatiane Dobrzanski
- Laboratório de Microbiologia Ambiental, Setor de Ciências Biológicas e da Saúde, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Fernanda Gravina
- Laboratório de Microbiologia Ambiental, Setor de Ciências Biológicas e da Saúde, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Bruna Steckling
- Laboratório de Microbiologia Ambiental, Setor de Ciências Biológicas e da Saúde, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Luiz R. Olchanheski
- Laboratório de Biologia Molecular e Ecologia Microbiana, Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Ricardo F. Sprenger
- Separare - Núcleo de Cromatografia, Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Bruno C. Espírito Santo
- Laboratório de Biotecnologia Microbiana, Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Carolina W. Galvão
- Laboratório de Biologia Molecular Microbiana, Setor de Ciências Biológicas e da Saúde, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Péricles M. Reche
- Laboratório de Pesquisa em Recursos Hídricos, Setor de Ciências Biológicas e da Saúde, Departamento de Enfermagem e Saúde Pública, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Rosilene A. Prestes
- Departamento Acadêmico, Campus Ponta Grossa, Universidade Tecnológica Federal do Paraná, UTFPR, Campus Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Sônia A. V. Pileggi
- Laboratório de Microbiologia Ambiental, Setor de Ciências Biológicas e da Saúde, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Francinete R. Campos
- Laboratório de Biociências e Espectrometria de Massas, Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Ricardo A. Azevedo
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Michael J. Sadowsky
- Department of Soil, Water, and Climate, and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Flávio L. Beltrame
- Laboratório de Fitoterapia, Tecnologia e Química de Produtos Naturais, Departamento de Ciências Farmacêuticas, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Marcos Pileggi
- Laboratório de Microbiologia Ambiental, Setor de Ciências Biológicas e da Saúde, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
- * E-mail:
| |
Collapse
|
18
|
Jiang C, Lu YC, Xu JY, Song Y, Song Y, Zhang SH, Ma LY, Lu FF, Wang YK, Yang H. Activity, biomass and composition of microbial communities and their degradation pathways in exposed propazine soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:398-407. [PMID: 28763756 DOI: 10.1016/j.ecoenv.2017.07.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Propazine is a s-triazine herbicide widely used for controlling weeds for crop production. Its persistence and contamination in environment nagatively affect crop growth and food safety. Elimination of propazine residues in the environment is critical for safe crop production. This study identified a microbial community able to degrade propazine in a farmland soil. About 94% of the applied propazine was degraded within 11 days of incubation when soil was treated with 10mgkg-1 propazine as the initial concentration. The process was accompanied by increased microbial biomass and activities of soil enzymes. Denaturing gradient gel electrophoresis (DGGE) revealed multiple bacterial strains in the community as well as dynamic change of the composition of microbial community with a reduced microbial diversity (H' from 3.325 to 2.78). Tracking the transcript level of degradative genes AtzB, AtzC and TrzN showed that these genes were induced by propazine and played important roles in the degradation process. The activities of catalase, dehydrogenase and phenol oxidase were stimulated by propazine exposure. Five degradation products (hydroxyl-, methylated-, dimeric-propazine, ammeline and ammelide) were characterized by UPLC-MS2, revealing a biodegradation of propazine in soil. Several novel methylated and dimeric products of propazine were characterized in thepropazine-exposed soil. These data help understand the pathway, detailed mechanism and efficiency of propazine biodegradation in soil under realistic field condition.
Collapse
Affiliation(s)
- Chen Jiang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Chen Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Jiang Yan Xu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Song
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Song
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Hao Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Ya Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Fan Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ya Kun Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
19
|
Cabrera-Orozco A, Galíndez-Nájera SP, Ruiz-Ordaz N, Galíndez-Mayer J, Martínez-Jerónimo F. Biodegradation of a commercial mixture of the herbicides atrazine and S-metolachlor in a multi-channel packed biofilm reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25656-25665. [PMID: 26897582 DOI: 10.1007/s11356-016-6204-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
Atrazine and S-metolachlor are two of the most widely used herbicides for agricultural purposes; consequently, residues of both compounds and their metabolites had been detected in ground and superficial waters. Unlike atrazine, the complete degradation of metolachlor has not been achieved. Hence, the purpose of this research is to study the biodegradation of a commercial mixture of atrazine and S-metolachlor in a prototype of a multi-channel packed-bed-biofilm reactor (MC-PBR) designed with the aim of solving the problems of pressure drop and oxygen transfer, typically found on this type of bioreactors.Because the removal efficiency of the herbicides was increased when Candida tropicalis was added to the original microbial community isolated, the reactor was inoculated with this enriched community. The operational conditions tested in batch and continuous mode did not affect the removal efficiency of atrazine; however, this was not the case for S-metolachlor. The removal rates and efficiencies showed a notable variation along the MC-PBR operation.
Collapse
Affiliation(s)
- Alberto Cabrera-Orozco
- Laboratorio de Bioingeniería, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Carpio y Plan de Ayala, Col. Santo Tomás, CP 11340, ENCB-IPN, México, D.F, Mexico
| | - Silvia Patricia Galíndez-Nájera
- School of Chemical Engineering and Analytical Sciences, The University of Manchester, UK. Oxford Rd, Manchester, M60 1QD, UK
| | - Nora Ruiz-Ordaz
- Laboratorio de Bioingeniería, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Carpio y Plan de Ayala, Col. Santo Tomás, CP 11340, ENCB-IPN, México, D.F, Mexico.
| | - Juvencio Galíndez-Mayer
- Laboratorio de Bioingeniería, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Carpio y Plan de Ayala, Col. Santo Tomás, CP 11340, ENCB-IPN, México, D.F, Mexico.
| | - Fernando Martínez-Jerónimo
- Laboratorio de Bioingeniería, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Carpio y Plan de Ayala, Col. Santo Tomás, CP 11340, ENCB-IPN, México, D.F, Mexico
| |
Collapse
|
20
|
Huang X, He J, Yan X, Hong Q, Chen K, He Q, Zhang L, Liu X, Chuang S, Li S, Jiang J. Microbial catabolism of chemical herbicides: Microbial resources, metabolic pathways and catabolic genes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:272-297. [PMID: 29183604 DOI: 10.1016/j.pestbp.2016.11.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 06/07/2023]
Abstract
Chemical herbicides are widely used to control weeds and are frequently detected as contaminants in the environment. Due to their toxicity, the environmental fate of herbicides is of great concern. Microbial catabolism is considered the major pathway for the dissipation of herbicides in the environment. In recent decades, there have been an increasing number of reports on the catabolism of various herbicides by microorganisms. This review presents an overview of the recent advances in the microbial catabolism of various herbicides, including phenoxyacetic acid, chlorinated benzoic acid, diphenyl ether, tetra-substituted benzene, sulfonamide, imidazolinone, aryloxyphenoxypropionate, phenylurea, dinitroaniline, s-triazine, chloroacetanilide, organophosphorus, thiocarbamate, trazinone, triketone, pyrimidinylthiobenzoate, benzonitrile, isoxazole and bipyridinium herbicides. This review highlights the microbial resources that are capable of catabolizing these herbicides and the mechanisms involved in the catabolism. Furthermore, the application of herbicide-degrading strains to clean up herbicide-contaminated sites and the construction of genetically modified herbicide-resistant crops are discussed.
Collapse
Affiliation(s)
- Xing Huang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Jian He
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Xin Yan
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Qing Hong
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Kai Chen
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Qin He
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Long Zhang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Xiaowei Liu
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Shaochuang Chuang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Shunpeng Li
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China.
| |
Collapse
|
21
|
Siewiera P, Różalska S, Bernat P. Estrogen-mediated protection of the organotin-degrading strain Metarhizium robertsii against oxidative stress promoted by monobutyltin. CHEMOSPHERE 2017; 185:96-104. [PMID: 28688342 DOI: 10.1016/j.chemosphere.2017.06.130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/20/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Dibutyltin (DBT) is a global pollutant characterized by pro-oxidative properties. The fungal strain Metarhizium robertsii can eliminate high levels of DBT efficiently. In this study, induction of oxidative stress as well as its alleviation through the application of natural estrogens during the elimination of DBT by M. robertsii were evaluated. During the first 24 h of incubation, the initial concentration of DBT (20 mg l-1) was reduced to 3.1 mg l-1, with simultaneous formation of a major byproduct - monobutyltin (MBT). In the presence of estrone (E1) or 17β-estradiol (E2), the amounts of dibutyltin residues in the fungal cultures were found to be approximately 2-fold higher compared to cultures without estrogens, which was associated with the simultaneous utilization of the compounds by cytochrome P450 enzymes. On the other hand, MBT levels were approximately 2.5 times lower in the fungal cultures with the addition of one of the estrogens. MBT (not DBT) promotes the generation of O2-, H2O2, and NO at levels 65.89 ± 18.08, 4.04 ± 3.62, and 27.92 ± 1.95, respectively. Superoxide dismutase and catalase activities did not show any response of the M. robertsii strain against the overproduction of superoxide anion and hydrogen peroxide. Application of E1 as well as E2 ensured non-enzymatic defense against nitrosative and oxidative stress through scavenging of nitrogen and oxygen reactive species, and limited their levels from 1.5-fold to 21-fold, depending on the used estrogen.
Collapse
Affiliation(s)
- Paulina Siewiera
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| |
Collapse
|
22
|
Li X, Peng W, Jia Y, Lu L, Fan W. Removal of cadmium and zinc from contaminated wastewater using Rhodobacter sphaeroides. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:2489-2498. [PMID: 28617267 DOI: 10.2166/wst.2016.608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rhodobacter sphaeroides was used for bioremediation of wastewater polluted with cadmium (Cd) and zinc (Zn). The tolerance of the microorganism to selected heavy metals (HMs), as well as the effects of pH, temperature and inoculum size on the removal rate, was investigated. The remediation effects of R. sphaeroides were analysed at different initial concentrations of HMs. Bioremediation mechanisms were thoroughly discussed based on the results from the cell characterisation analysis. Cd and Zn could inhibit the growth of R. sphaeroides. However, Cd was more toxic than Zn, with corresponding EC50 values of 5.34 and 69.79 mg L-1. Temperature and pH had greater influence on the removal rate of HMs than inoculum size. The optimal conditions for temperature and pH were 35 °C-40 °C and pH 7, respectively. Initial concentration of HMs and remediation time also affected the removal rate. Rhodobacter sphaeroides had a relatively higher remediation effect under the present experimental conditions. The removal rates for Cd and Zn reached 97.92% and 97.76%, respectively. Results showed that biosorption and HM precipitation were the main bioremediation mechanisms. This information is necessary to better understand the removal mechanism of R. sphaeroides, and is significant for its pilot test and future practical application.
Collapse
Affiliation(s)
- Xiaomin Li
- School of Space and Environment, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China E-mail:
| | - Weihua Peng
- School of Space and Environment, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China E-mail:
| | - Yingying Jia
- School of Space and Environment, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China E-mail:
| | - Lin Lu
- School of Space and Environment, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China E-mail:
| | - Wenhong Fan
- School of Space and Environment, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China E-mail:
| |
Collapse
|
23
|
Baćmaga M, Wyszkowska J, Kucharski J. Bioaugmentation of Soil Contaminated with Azoxystrobin. WATER, AIR, AND SOIL POLLUTION 2016; 228:19. [PMID: 28018009 PMCID: PMC5145903 DOI: 10.1007/s11270-016-3200-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
The presence of fungicides in the natural environment, either resulting from deliberate actions or not, has become a serious threat to many ecosystems, including soil. This can be prevented by taking appropriate measures to clear the environment of organic contamination, including fungicides. Therefore, a study was conducted aimed at determining the effect of bioaugmentation of soil exposed to azoxystrobin on its degradation and activity of selected enzymes (dehydrogenases, catalase, urease, acidic phosphatase, alkaline phosphatase). A model experiment was conducted for 90 days on two types of soil: loamy sand (pHKCl-5.6) and sandy loam (pHKCl-7.0), which were contaminated by azoxystrobin at 22.50 mg kg-1 DM of soil and inoculated with a specific consortium of microorganisms. Four strains of bacteria were used in the experiment (Bacillus sp. LM655314.1, B. cereus KC848897.1, B. weihenstephanensis KF831381.1, B. megaterium KJ843149.1) and two strains of mould fungi (Aphanoascus terreus AB861677.1, A. fulvescens JN943451.1). Inoculation of soil with the consortium of microorganisms accelerated the degradation of azoxystrobin. The isolated microorganisms were more active in loamy sand because within 90 days azoxystrobin was degraded by 24% (Bacillus sp., B. cereus, B. weihenstephanensis, B. megaterium) to 78% (Aphanoascus terreus, A. fulvescens). In sandy loam, azoxystrobin was degraded by 9% (Aphanoascus terreus, A. fulvescens) to 29% (Bacillus sp., B. cereus, B. weihenstephanensis, B. megaterium and Aphanoascus terreus, A. fulvescens). The activity of soil enzymes was also changed as a result of inoculation of soil with microorganisms. The activity of all of the enzymes under study was found to have increased when soil augmentation was performed.
Collapse
Affiliation(s)
- Małgorzata Baćmaga
- Department of Microbiology, University of Warmia and Mazury, Olsztyn|Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Microbiology, University of Warmia and Mazury, Olsztyn|Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jan Kucharski
- Department of Microbiology, University of Warmia and Mazury, Olsztyn|Plac Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
24
|
Jiang Z, Ma B, Erinle KO, Cao B, Liu X, Ye S, Zhang Y. Enzymatic antioxidant defense in resistant plant: Pennisetum americanum (L.) K. Schum during long-term atrazine exposure. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 133:59-66. [PMID: 27742362 DOI: 10.1016/j.pestbp.2016.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 05/25/2023]
Abstract
Plants belonging to the genus Pennisetum have been reported to be resistant to atrazine, a widely used herbicide that also can cause serious pollution of soil and water. To evaluate the enzymatic antioxidant defense mechanism to the oxidative stress of atrazine, experiments focusing on the malondialdehyde (MDA) content and antioxidant enzyme in the leaf and root of Pennisetum americanum (L.) K. Schum (P. americanum) during long-term (68days) atrazine exposure were carried out. The test plant had not suffered obvious lipid membrane peroxidation, which was further confirmed by the result that the MDA content in the root and the leaf of the test plant did not significantly increase when treated with various concentrations of atrazine. The activity of the well-known antioxidases, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD), was increased when the plants were exposed to atrazine, especially at moderate concentrations (20mgkg-1 or below). These results revealed that antioxidant enzymes played important roles in protecting P. americanum from the oxidative damage induced by atrazine. The increased and more stable SOD activity in the leaf compared to in the root portion of the plant under increasing atrazine concentrations and increasing exposure time indicated that the leaf exhibited more pronounced superoxide radical scavenging ability than the root. Furthermore, correlation analysis showed that the studied antioxidases were positively correlated with the exposure time, suggesting that the antioxidant defense in P. americanum seedlings might become stronger as the plant matures. In conclusion, the increasing antioxidant enzyme activities enable P. americanum seedlings to cope with the oxidative stress induced by moderate concentrations (20mgkg-1 or below) of atrazine.
Collapse
Affiliation(s)
- Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Bingbing Ma
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Kehinde Olajide Erinle
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Bo Cao
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaoxue Liu
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Siyuan Ye
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
25
|
Baćmaga M, Wyszkowska J, Kucharski J. The effect of the Falcon 460 EC fungicide on soil microbial communities, enzyme activities and plant growth. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1575-1587. [PMID: 27631526 PMCID: PMC5566183 DOI: 10.1007/s10646-016-1713-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/16/2016] [Indexed: 05/15/2023]
Abstract
Fungicides are considered to be effective crop protection chemicals in modern agriculture. However, they can also exert toxic effects on non-target organisms, including soil-dwelling microbes. Therefore, the environmental fate of fungicides has to be closely monitored. The aim of this study was to evaluate the influence of the Falcon 460 EC fungicide on microbial diversity, enzyme activity and resistance, and plant growth. Samples of sandy loam with pHKCl 7.0 were collected for laboratory analyses on experimental days 30, 60 and 90. Falcon 460 EC was applied to soil in the following doses: control (soil without the fungicide), dose recommended by the manufacturer, 30-fold higher than the recommended dose, 150-fold higher than the recommended dose and 300-fold higher than the recommended dose. The observed differences in the values of the colony development index and the eco-physiological index indicate that the mixture of spiroxamine, tebuconazole and triadimenol modified the biological diversity of the analyzed groups of soil microorganisms. Bacteria of the genus Bacillus and fungi of the genera Penicillium and Rhizopus were isolated from fungicide-contaminated soil. The tested fungicide inhibited the activity of dehydrogenases, catalase, urease, acid phosphatase and alkaline phosphatase. The greatest changes were induced by the highest fungicide dose 300-fold higher than the recommended dose. Dehydrogenases were most resistant to soil contamination. The Phytotoxkit test revealed that the analyzed fungicide inhibits seed germination capacity and root elongation. The results of this study indicate that excessive doses of the Falcon 460 EC fungicide 30-fold higher than the recommended dose to 300-fold higher than the recommended dose) can induce changes in the biological activity of soil. The analyzed microbiological and biochemical parameters are reliable indicators of the fungicide's toxic effects on soil quality.
Collapse
Affiliation(s)
- Małgorzata Baćmaga
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, Olsztyn, 10-727 Poland
| | - Jadwiga Wyszkowska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, Olsztyn, 10-727 Poland
| | - Jan Kucharski
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, Olsztyn, 10-727 Poland
| |
Collapse
|
26
|
Millerick KA, Johnston JT, Finneran KT. Photobiological transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using Rhodobacter sphaeroides. CHEMOSPHERE 2016; 159:138-144. [PMID: 27285383 DOI: 10.1016/j.chemosphere.2016.05.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/15/2016] [Accepted: 05/18/2016] [Indexed: 06/06/2023]
Abstract
Pump-and-treat strategies for groundwater containing explosives may be necessary when the contaminated water approaches sensitive receptors. This project investigated bacterial photosynthesis as a strategy for ex situ treatment, using light as the primary energy source to facilitate RDX transformation. The objective was to characterize the ability of photosynthetic Rhodobacter sphaeroides (strain ATCC(®) 17023 ™) to transform the high-energy explosive RDX. R. sphaeroides transformed 30 μM RDX within 40 h under light conditions; RDX was not fully transformed in the dark (non-photosynthetic conditions), suggesting that photosynthetic electron transfer was the primary mechanism. Experiments with RDX demonstrated that succinate and malate were the most effective electron donors for photosynthesis, but glycerol was also utilized as a photosynthetic electron donor. RDX was transformed irrespective of the presence of carbon dioxide. The electron shuttling compound anthraquinone-2,6-disulfonate (AQDS) increased transformation kinetics in the absence of CO2, when the cells had excess NADPH that needed to be re-oxidized because there was limited CO2 for carbon fixation. When CO2 was added, the cells generated more biomass, and AQDS had no stimulatory effect. End products indicated that RDX carbon became CO2, biomass, and a soluble, uncharacterized aqueous metabolite, determined using (14)C-labeled RDX. These data are the first to suggest that photobiological explosives transformation is possible and will provide a framework for which phototrophy can be used in environmental restoration of explosives contaminated water.
Collapse
Affiliation(s)
- Kayleigh A Millerick
- Environmental Engineering and Earth Sciences, Clemson University, 312 Biosystems Research Complex, Clemson, SC 29634, United States; Department of Civil, Environmental & Construction Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Juliet T Johnston
- Environmental Engineering and Earth Sciences, Clemson University, 312 Biosystems Research Complex, Clemson, SC 29634, United States
| | - Kevin T Finneran
- Environmental Engineering and Earth Sciences, Clemson University, 312 Biosystems Research Complex, Clemson, SC 29634, United States.
| |
Collapse
|
27
|
Li X, Peng W, Jia Y, Lu L, Fan W. Bioremediation of lead contaminated soil with Rhodobacter sphaeroides. CHEMOSPHERE 2016; 156:228-235. [PMID: 27179240 DOI: 10.1016/j.chemosphere.2016.04.098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/13/2016] [Accepted: 04/24/2016] [Indexed: 05/17/2023]
Abstract
Bioremediation with microorganisms is a promising technique for heavy metal contaminated soil. Rhodobacter sphaeroides was previously isolated from oil field injection water and used for bioremediation of lead (Pb) contaminated soil in the present study. Based on the investigation of the optimum culturing conditions and the tolerance to Pb, we employed the microorganism for the remediation of Pb contaminated soil simulated at different contamination levels. It was found that the optimum temperature, pH, and inoculum size for R. sphaeroides is 30-35 °C, 7, and 2 × 10(8) mL(-1), respectively. Rhodobacter sphaeroides did not remove the Pb from soil but did change its speciation. During the bioremediation process, more available fractions were transformed to less accessible and inert fractions; in particular, the exchangeable phase was dramatically decreased while the residual phase was substantially increased. A wheat seedling growing experiment showed that Pb phytoavailability was reduced in amended soils. Results inferred that the main mechanism by which R. sphaeroides treats Pb contaminated soil is the precipitation formation of inert compounds, including lead sulfate and lead sulfide. Although the Pb bioremediation efficiency on wheat was not very high (14.78% root and 24.01% in leaf), R. sphaeroides remains a promising alternative for Pb remediation in contaminated soil.
Collapse
Affiliation(s)
- Xiaomin Li
- School of Space and Environment, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, PR China
| | - Weihua Peng
- School of Space and Environment, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, PR China
| | - Yingying Jia
- School of Space and Environment, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, PR China
| | - Lin Lu
- School of Space and Environment, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, PR China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, PR China.
| |
Collapse
|
28
|
Baćmaga M, Kucharski J, Wyszkowska J. Microbial and enzymatic activity of soil contaminated with azoxystrobin. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:615. [PMID: 26343782 PMCID: PMC4561232 DOI: 10.1007/s10661-015-4827-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/24/2015] [Indexed: 05/13/2023]
Abstract
The use of fungicides in crop protection still effectively eliminates fungal pathogens of plants. However, fungicides may dissipate to various elements of the environment and cause irreversible changes. Considering this problem, the aim of the presented study was to evaluate changes in soil biological activity in response to contamination with azoxystrobin. The study was carried out in the laboratory on samples of sandy loam with a pH of 7.0 in 1 Mol KCl dm(-3). Soil samples were treated with azoxystrobin in one of four doses: 0.075 (dose recommended by the manufacturer), 2.250, 11.25 and 22.50 mg kg(-1) soil DM (dry matter of soil). The control soil sample did not contain fungicide. Bacteria were identified based on 16S rRNA gene sequencing, and fungi were identified by internal transcribed spacer (ITS) region sequencing. The study revealed that increased doses of azoxystrobin inhibited the growth of organotrophic bacteria, actinomycetes and fungi. The fungicide also caused changes in microbial biodiversity. The lowest values of the colony development (CD) index were recorded for fungi and the ecophysiological (EP) index for organotrophic bacteria. Azoxystrobin had an inhibitory effect on the activity of dehydrogenases, catalase, urease, acid phosphatase and alkaline phosphatase. Dehydrogenases were found to be most resistant to the effects of the fungicide, while alkaline phosphatase in the soil recovered the balance in the shortest time. Four species of bacteria from the genus Bacillus and two species of fungi from the genus Aphanoascus were isolated from the soil contaminated with the highest dose of azoxystrobin (22.50 mg kg(-1)).
Collapse
Affiliation(s)
- Małgorzata Baćmaga
- University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jan Kucharski
- University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
29
|
Zhang Y, Tao Y, Zhang H, Wang L, Sun G, Sun X, Erinle KO, Feng C, Song Q, Li M. Effect of di-n-butyl phthalate on root physiology and rhizosphere microbial community of cucumber seedlings. JOURNAL OF HAZARDOUS MATERIALS 2015; 289:9-17. [PMID: 25702635 DOI: 10.1016/j.jhazmat.2015.01.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/24/2015] [Accepted: 01/28/2015] [Indexed: 05/20/2023]
Abstract
The authors investigated the effects of di-n-butyl phthalate (DBP) on root physiology and rhizosphere microbial communities of cucumber seedlings (sativus L. cv Jinyan No. 4). Root protein content and root activity were observed to decrease. From the ultrastructural micrographs, visible impact on the mitochondria, endoplasmic reticulum and vacuole were detected. Moreover, the number of starch grains increased, and some were adhered to other cell components which might be the most direct evidence of DBP causing cellular damage. Results of PCR-DGGE (denaturing gradient gel electrophoresis) indicated that DBP significantly changed the abundance, structure and composition of rhizosphere bacteria when the concentration was higher than 50 mg L(-1). The relative abundances of Firmicutes increased while that of Bacteroidetes decreased. Bacillus was detected as the dominant bacteria in DBP contaminated cucumber rhizospheric soil. The amount of Actinobacteridae and Pseudomonas decreased until it disappeared in the rhizosphere soil when exposed to DBP concentrations higher than 50 mg L(-1).
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China.
| | - Yue Tao
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Hui Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Lei Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Guoqiang Sun
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Xin Sun
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Kehinde O Erinle
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Chengcheng Feng
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Qiuxia Song
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Mo Li
- School of Geography, University of Nottingham, Nottinghamshire NG72RD, UK
| |
Collapse
|
30
|
Fang H, Lian J, Wang H, Cai L, Yu Y. Exploring bacterial community structure and function associated with atrazine biodegradation in repeatedly treated soils. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:457-65. [PMID: 25603295 DOI: 10.1016/j.jhazmat.2015.01.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/16/2014] [Accepted: 01/03/2015] [Indexed: 05/21/2023]
Abstract
Substantial application of the herbicide atrazine in agriculture leads to persistent contamination, which may damage the succeeding crops and pose potential threats to soil ecology and environmental health. Here, the degradation characteristics of atrazine and dynamic change of soil bacterial community structure and function as well as their relations were studied during three repeated treatments at the recommended, double, and five-fold doses. The results showed that the degradation half-life of atrazine obviously decreased with increased treatment frequency. Soil microbial functional diversity displayed a variation trend of suppression-recovery-stimulation, which was associated with increased degradation rate of atrazine. 16S amplicon sequencing was conducted to explore bacterial community structure and correlate the genus to potential atrazine degradation. A total of seven potentially atrazine-degrading bacterial genera were found including Nocardioides, Arthrobacter, Bradyrhizobium, Burkholderia, Methylobacterium, Mycobacterium, and Clostridium. These bacterial genera showed almost complete atrazine degradation pathways including dechlorination, dealkylation, hydroxylation, and ring cleavage. Furthermore, the relative abundance of four of them (i.e., Nocardioides, Arthrobacter, Methylobacterium, and Bradyrhizobium) increased with treatment frequency and atrazine concentration, suggesting that they may participate in atrazine degradation during repeated treatments. Our findings reveal the potential relationship between atrazine degradation and soil bacterial community structure in repeatedly treated soils.
Collapse
Affiliation(s)
- Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianjun Lian
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huifang Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lin Cai
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
31
|
Pan H, Xu J, Kweon OG, Zou W, Feng J, He GX, Cerniglia CE, Chen H. Differential gene expression in Staphylococcus aureus exposed to Orange II and Sudan III azo dyes. J Ind Microbiol Biotechnol 2015; 42:745-57. [PMID: 25720844 DOI: 10.1007/s10295-015-1599-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/10/2015] [Indexed: 12/22/2022]
Abstract
We previously demonstrated the effects of azo dyes and their reduction metabolites on bacterial cell growth and cell viability. In this report, the effects of Orange II and Sudan III on gene expression profiling in Staphylococcus aureus ATCC BAA 1556 were analyzed using microarray and quantitative RT-PCR technology. Upon exposure to 6 μg/ml Orange II for 18 h, 21 genes were found to be differently expressed. Among them, 8 and 13 genes were up- and down-regulated, respectively. Most proteins encoded by these differentially expressed genes involve stress response caused by drug metabolism, oxidation, and alkaline shock indicating that S. aureus could adapt to Orange II exposure through a balance between up and down regulated gene expression. Whereas, after exposure to 6 μg/ml Sudan III for 18 h, 57 genes were differentially expressed. In which, 51 genes were up-regulated and 6 were down-regulated. Most proteins encoded by these differentially expressed genes involve in cell wall/membrane biogenesis and biosynthesis, nutrient uptake, transport and metabolite, and stress response, suggesting that Sudan III damages the bacterial cell wall or/and membrane due to binding of the dye. Further analysis indicated that all differentially expressed genes encoded membrane proteins were up-regulated and most of them serve as transporters. The result suggested that these genes might contribute to survival, persistence and growth in the presence of Sudan III. Only one gene msrA, which plays an important role in oxidative stress resistance, was found to be down-regulated after exposure to both Orange II and Sudan III. The present results suggested that both these two azo dyes can cause stress in S. aureus and the response of the bacterium to the stress is mainly related to characteristics of the azo dyes.
Collapse
Affiliation(s)
- Hongmiao Pan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR, 72079-9502, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Peters LP, Carvalho G, Martins PF, Dourado MN, Vilhena MB, Pileggi M, Azevedo RA. Differential responses of the antioxidant system of ametryn and clomazone tolerant bacteria. PLoS One 2014; 9:e112271. [PMID: 25380132 PMCID: PMC4224425 DOI: 10.1371/journal.pone.0112271] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 10/02/2014] [Indexed: 12/26/2022] Open
Abstract
The herbicides ametryn and clomazone are widely used in sugarcane cultivation, and following microbial degradation are considered as soil and water contaminants. The exposure of microorganisms to pesticides can result in oxidative damage due to an increase in the production of reactive oxygen species (ROS). This study investigated the response of the antioxidant systems of two bacterial strains tolerant to the herbicides ametryn and clomazone. Bacteria were isolated from soil with a long history of ametryn and clomazone application. Comparative analyses based on 16S rRNA gene sequences revealed that strain CC07 is phylogenetically related to Pseudomonas aeruginosa and strain 4C07 to P. fulva. The two bacterial strains were grown for 14 h in the presence of separate and combined herbicides. Lipid peroxidation, reduced glutathione content (GSH) and antioxidant enzymes activities were evaluated. The overall results indicated that strain 4C07 formed an efficient mechanism to maintain the cellular redox balance by producing reactive oxygen species (ROS) and subsequently scavenging ROS in the presence of the herbicides. The growth of bacterium strain 4C07 was inhibited in the presence of clomazone alone, or in combination with ametryn, but increased glutathione reductase (GR) and glutathione S-transferase (GST) activities, and a higher GSH concentration were detected. Meanwhile, reduced superoxide dismutase (SOD), catalase (CAT) and GST activities and a lower concentration of GSH were detected in the bacterium strain CC07, which was able to achieve better growth in the presence of the herbicides. The results suggest that the two bacterial strains tolerate the ametryn and clomazone herbicides with distinctly different responses of the antioxidant systems.
Collapse
Affiliation(s)
- Leila Priscila Peters
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Giselle Carvalho
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Paula Fabiane Martins
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Manuella Nóbrega Dourado
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Milca Bartz Vilhena
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Marcos Pileggi
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| |
Collapse
|
33
|
Bedekar PA, Saratale RG, Saratale GD, Govindwar SP. Oxidative stress response in dye degrading bacterium Lysinibacillus sp. RGS exposed to Reactive Orange 16, degradation of RO16 and evaluation of toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:11075-11085. [PMID: 24888611 DOI: 10.1007/s11356-014-3041-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
Lysinibacillus sp. RGS degrades sulfonated azo dye Reactive Orange 16 (RO16) efficiently. Superoxide dismutase and catalase activity were tested to study the response of Lysinibacillus sp. RGS to the oxidative stress generated by RO16. The results demonstrated that oxidative stress enzymes not only protect the cell from oxidative stress but also has a probable role in decolorization along with an involvement of oxidoreductive enzymes. Formation of three different metabolites after degradation of RO16 has been confirmed by GC-MS analysis. FTIR analysis verified the degradation of functional groups of RO16, and HPTLC confirmed the removal of auxochrome group from the RO16 after degradation. Toxicity studies confirmed the genotoxic, cytotoxic, and phytotoxic nature of RO16 and the formation of less toxic products after the treatment of Lysinibacillus sp. RGS. Therefore, Lysinibacillus sp. RGS has a better perspective of bioremediation for textile wastewater treatment.
Collapse
Affiliation(s)
- Priyanka A Bedekar
- Department of Biotechnology, Shivaji University, Kolhapur, 416004, India
| | | | | | | |
Collapse
|
34
|
Olchanheski LR, Dourado MN, Beltrame FL, Zielinski AAF, Demiate IM, Pileggi SAV, Azevedo RA, Sadowsky MJ, Pileggi M. Mechanisms of tolerance and high degradation capacity of the herbicide mesotrione by Escherichia coli strain DH5-α. PLoS One 2014; 9:e99960. [PMID: 24924203 PMCID: PMC4055684 DOI: 10.1371/journal.pone.0099960] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/20/2014] [Indexed: 11/19/2022] Open
Abstract
The intensive use of agrochemicals has played an important role in increasing agricultural production. One of the impacts of agrochemical use has been changes in population structure of soil microbiota. The aim of this work was to analyze the adaptive strategies that bacteria use to overcome oxidative stress caused by mesotrione, which inhibits 4-hydroxyphenylpyruvate dioxygenase. We also examined antioxidative stress systems, saturation changes of lipid membranes, and the capacity of bacteria to degrade mesotrione. Escherichia coli DH5-á was chosen as a non-environmental strain, which is already a model bacterium for studying metabolism and adaptation. The results showed that this bacterium was able to tolerate high doses of the herbicide (10× field rate), and completely degraded mesotrione after 3 h of exposure, as determined by a High Performance Liquid Chromatography. Growth rates in the presence of mesotrione were lower than in the control, prior to the period of degradation, showing toxic effects of this herbicide on bacterial cells. Changes in the saturation of the membrane lipids reduced the damage caused by reactive oxygen species and possibly hindered the entry of xenobiotics in the cell, while activating glutathione-S-transferase enzyme in the antioxidant system and in the metabolizing process of the herbicide. Considering that E. coli DH5-α is a non-environmental strain and it had no previous contact with mesotrione, the defense system found in this strain could be considered non-specific. This bacterium system response may be a general adaptation mechanism by which bacterial strains resist to damage from the presence of herbicides in agricultural soils.
Collapse
Affiliation(s)
- Luiz R. Olchanheski
- Universidade Estadual de Ponta Grossa, UEPG, Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| | - Manuella N. Dourado
- Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, Brazil
| | - Flávio L. Beltrame
- Universidade Estadual de Ponta Grossa, UEPG, Departamento de Ciências Farmacêuticas, Ponta Grossa, PR, Brazil
| | - Acácio A. F. Zielinski
- Programa de Pós-Graduação em Engenharia de Alimentos, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Ivo M. Demiate
- Universidade Estadual de Ponta Grossa, UEPG, Departamento de Engenharia de Alimentos, Ponta Grossa, PR, Brazil
| | - Sônia A. V. Pileggi
- Universidade Estadual de Ponta Grossa, UEPG, Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| | - Ricardo A. Azevedo
- Escola Superior de Agricultura Luiz de Queiroz, ESALQ, Universidade de São Paulo, USP, Piracicaba, SP, Brazil
| | - Michael J. Sadowsky
- Department of Soil, Water, and Climate, and BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Marcos Pileggi
- Universidade Estadual de Ponta Grossa, UEPG, Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| |
Collapse
|
35
|
Marchetti G, Minella M, Maurino V, Minero C, Vione D. Photochemical transformation of atrazine and formation of photointermediates under conditions relevant to sunlit surface waters: laboratory measures and modelling. WATER RESEARCH 2013; 47:6211-6222. [PMID: 23972676 DOI: 10.1016/j.watres.2013.07.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/03/2013] [Accepted: 07/25/2013] [Indexed: 06/02/2023]
Abstract
By combination of laboratory experiments and modelling, we show here that the main photochemical pathways leading to the transformation of atrazine (ATZ, 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) in surface waters would be direct photolysis, reaction with ·OH and with the triplet states of chromophoric dissolved organic matter ((3)CDOM*). Reaction with (3)CDOM* would be favoured by elevated water depth and dissolved organic carbon content, while opposite conditions would favour direct photolysis and OH reaction. Desethylatrazine (DEA, 4-amino-2-chloro-6-isopropylamino-1,3,5-triazine) was the main detected intermediate of ATZ phototransformation. Its formation yield from ATZ (ratio of DEA formation to ATZ transformation rate) would be 0.93 ± 0.14 for ·OH, 0.55 ± 0.05 for (3)CDOM*, and 0.20 ± 0.02 for direct photolysis. Direct photolysis and ·OH reaction also yielded 4-amino-2-hydroxy-6-isopropylamino-1,3,5-triazine (DEAOH) and 6-amino-2-chloro-4-ethylamino-1,3,5-triazine (DIA). Reaction with excited triplet states also produced 2-hydroxy-4,6-diamino-1,3,5-triazine (AN) and 2-chloro-4,6-diamino-1,3,5-triazine (CAAT). Therefore, if biological processes can be neglected and if the low formation yields do not prevent detection, DEAOH and DIA could be used as markers of ATZ direct photolysis and ·OH reaction, while AN and CAAT could be markers of ATZ reaction with (3)CDOM*. Model predictions concerning ATZ phototransformation were compared with available field data from the literature. When sufficiently detailed field information was provided, good agreement was found with the model.
Collapse
Affiliation(s)
- Giulia Marchetti
- Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino, Italy(1); LAV s.r.l., Strada Carignano 58/14, 10024 Moncalieri (TO), Italy(2)
| | | | | | | | | |
Collapse
|
36
|
Wang JH, He HZ, Wang MZ, Wang S, Zhang J, Wei W, Xu HX, Lv ZM, Shen DS. Bioaugmentation of activated sludge with Acinetobacter sp. TW enhances nicotine degradation in a synthetic tobacco wastewater treatment system. BIORESOURCE TECHNOLOGY 2013; 142:445-53. [PMID: 23748093 DOI: 10.1016/j.biortech.2013.05.067] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
Bioaugmentation (BA) using Acinetobacter sp. TW with high nicotine-degrading efficiency was applied in a bioreactor receiving a load of COD (3,200 ± 50 mg/L) and nicotine (1.0 ± 0.1g/L). The results showed that because of the colonization of strain TW, the COD removal was stable at 80-90%, while nicotine removal reached 98% in the BA system. Furthermore, according to PCR-DGGE fingerprinting, compared with the originally activated sludge, more bacteria existed in the BA systems while some bacteria disappeared from the non-BA system. In terms of the quorum sensing, short chain AHLs increased to assist colonization of strain TW, and long chain AHLs were secreted and helped to resist the nicotine toxicity. Compared with the non-BA system, the amounts of ROS, protein carbonyls and 8-OHdG were significant lower in the BA systems, which suggested that strain TW played an important role in eliminating the nicotine toxicity from the bioreactors.
Collapse
Affiliation(s)
- Jue-Hua Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Coba de la Peña T, Redondo FJ, Fillat MF, Lucas MM, Pueyo JJ. Flavodoxin overexpression confers tolerance to oxidative stress in beneficial soil bacteria and improves survival in the presence of the herbicides paraquat and atrazine. J Appl Microbiol 2013; 115:236-46. [PMID: 23594228 DOI: 10.1111/jam.12224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/09/2013] [Accepted: 04/14/2013] [Indexed: 12/01/2022]
Abstract
AIM To determine whether expression of a cyanobacterial flavodoxin in soil bacteria of agronomic interest confers protection against the widely used herbicides paraquat and atrazine. METHODS AND RESULTS The model bacterium Escherichia coli, the symbiotic nitrogen-fixing bacterium Ensifer meliloti and the plant growth-promoting rhizobacterium Pseudomonas fluorescens Aur6 were transformed with expression vectors containing the flavodoxin gene of Anabaena variabilis. Expression of the cyanobacterial protein was confirmed by Western blot. Bacterial tolerance to oxidative stress was tested in solid medium supplemented with hydrogen peroxide, paraquat or atrazine. In all three bacterial strains, flavodoxin expression enhanced tolerance to the oxidative stress provoked by hydrogen peroxide and by the reactive oxygen species-inducing herbicides, witnessed by the enhanced survival of the transformed bacteria in the presence of these oxidizing agents. CONCLUSIONS Flavodoxin overexpression in beneficial soil bacteria confers tolerance to oxidative stress and improves their survival in the presence of the herbicides paraquat and atrazine. Flavodoxin could be considered as a general antioxidant resource to face oxidative challenges in different micro-organisms. SIGNIFICANCE AND IMPACT OF THE STUDY The use of plant growth-promoting rhizobacteria or nitrogen-fixing bacteria with enhanced tolerance to oxidative stress in contaminated soils is of significant agronomic interest. The enhanced tolerance of flavodoxin-expressing bacteria to atrazine and paraquat points to potential applications in herbicide-treated soils.
Collapse
Affiliation(s)
- T Coba de la Peña
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | |
Collapse
|
38
|
Al-Sawafi AGA, Yan Y. Bioconcentration and Antioxidant Status Responses in Zebrafish (Danio Rerio) Under Atrazine Exposure. ACTA ACUST UNITED AC 2013. [DOI: 10.7763/ijcea.2013.v4.295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|