1
|
Li X, Feng Y, Wang X, Chen H, Qiu L, Yu Y. Advanced degradation of refractory organic compounds in electroplating wastewater by an in-situ electro-catalytic biological coupling reactor: Removal performance, microbial community and possible mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167299. [PMID: 37742966 DOI: 10.1016/j.scitotenv.2023.167299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
A high-efficiency treatment system for advanced degradation of refractory organic compounds such as saccharin sodium (SS) and polyethylene glycol 6000 (PEG 6000) in electroplating wastewater was proposed, which coupled ion exchange, electrocatalysis, and microbial interactions through ion exchange particle electrode (IEPE) in a reactor, named in-situ electro-catalytic biological coupling reactor (i-SECBCR). A small-scale experimental test system was established and a feasibility investigation was conducted under the condition of 1.248 L/h continuous flow. The results revealed that (1) the i-SECBCR showed higher average removal rates of SS, PEG 6000, COD and NH4+-N, i.e. 88.48 %, 41.26 %, 66.81 % and 51.61 %,which meant an increase by 5.04 %, 12.05 %, 0.46 %, and 34.50 %, respectively, compared with BAF; (2) the optimal current intensity (CI) of i-SECBCR for simultaneous removal of SS, PEG 6000, COD and NH4+-N was 0.40 mA cm-2; (3) Rhodobacter, Defluviimonas, unclassified_f__Microscillaceae, Pseudoxanthomonas, Novosphingobium, and unclassified_f__Xanthobacteraccae accounted for the main bacterial community in i-SECBCR; (4) the possible degradation mechanism was attributed mainly to the synergistic effect of ion exchange, electrocatalytic oxidation and biology. Therefore, the i-SECBCR was suitable to simultaneously advanced remove SS, PEG 6000, COD and NH4+-N in electroplating wastewater.
Collapse
Affiliation(s)
- Xinxin Li
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - Yan Feng
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China.
| | - Xinwei Wang
- China Urban Construction Design & Research Institute Co. Ltd (Shan Dong), Jinan 250022, China
| | - Hao Chen
- Environmental Engineering Co., Ltd., Shandong Academy of Environmental Science, Jinan 250001, China
| | - Liping Qiu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Yanzhen Yu
- School of Civil Engineering and Architecture, Qilu Institute of Technology, Jinan 250022, China
| |
Collapse
|
2
|
Zuo J, Wang B, Kang J, Yan P, Shen J, Wang S, Fu D, Zhu X, She T, Zhao S, Chen Z. Activation of peroxymonosulfate by nanoscaled NiFe2O4 magnetic particles for the degradation of 2,4-dichlorophenoxyacetic acid in water: Efficiency, mechanism and degradation pathways. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Removal of organic matter and nutrients from hospital wastewater by electro bioreactor coupled with tubesettler. Sci Rep 2022; 12:9279. [PMID: 35661747 PMCID: PMC9166735 DOI: 10.1038/s41598-022-12166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Wastewater consisting of different pharmaceuticals and drug residues is quite challenging to treat and dispose of. This situation poses a significant impact on the health aspect of humans and other biotic organisms in the environment. The main concern of hospital wastewater (HWW) is the resistivity towards treatment using the different conventional methods. For the treatment of HWW, this study was performed using an electro bioreactor using hospital wastewater. The electro reduction overcomes the effect of toxic elements in hospital wastewater, and biodegradation removes organic matter and nutrients from wastewater. This study investigated electro bioreactor performance for treating hospital wastewater connected with tubesettler. The parameters of chemical oxygen demand, nitrate, and phosphate concentration were analyzed to evaluate an influent and effluent from electro bioreactor and tubesettler. Also, Kinetic modelling for chemical oxygen demand, nitrate, and phosphate removal was done. The chemical oxygen demand was reduced by 76% in electro bioreactor, and 31% in tubesettler, 84%. The nitrate and phosphate were reduced within permissible discharge limits with a final effluent concentration of 1.4 mg L-1 and 3 mg L-1. Further studies are required to assess the impact of pharmaceutical compounds in hospital wastewater on the system's performance.
Collapse
|
4
|
Vinayagam R, Pai S, Murugesan G, Varadavenkatesan T, Narayanasamy S, Selvaraj R. Magnetic activated charcoal/Fe 2O 3 nanocomposite for the adsorptive removal of 2,4-Dichlorophenoxyacetic acid (2,4-D) from aqueous solutions: Synthesis, characterization, optimization, kinetic and isotherm studies. CHEMOSPHERE 2022; 286:131938. [PMID: 34426299 DOI: 10.1016/j.chemosphere.2021.131938] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/04/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Magnetic activated charcoal/Fe2O3 nanocomposite (AC/Fe2O3NC) was fabricated using Spondias dulcis leaf extract by a facile method and used for the adsorptive removal of 2,4-Dichlorophenoxyacetic acid (2,4-D) from aqueous solutions for the first time. The nanocomposite was characterized by methods such as FE-SEM, EDS, XRD, FTIR, TGA, VSM, and BET to identify and confirm the surface morphology, elemental composition, crystalline nature, functional groups, thermal stability, magnetic behavior, and surface area respectively. Box-Behnken Design (BBD) - an optimization method, which belongs to the Response surface methodology (RSM) and a modeling tool - Artificial Neural Network (ANN) were employed to design, optimize and predict the relationship between the input parameters (pH, initial concentration of 2,4-D, time and agitation speed) versus the output parameter (adsorption efficiency of 2,4-D). Adsorption efficiency of 98.12% was obtained at optimum conditions (pH: 2.05, initial concentration: 32 ppm, contact time: 100 min, agitation speed: 130 rpm, temperature: 30 °C, and dosage: 0.2 g/L). The predictive ability of the ANN was superior (R2 = 0.99) than the quadratic model, given by the RSM (R2 = 0.93). The equilibrium data were best-fitted to Langmuir isotherm (R2 = 0.9944) and the kinetics obeyed pseudo-second-order model (R2 = 0.9993) satisfactorily. Thermodynamic studies revealed the spontaneity and exothermic nature of adsorption. The maximum adsorption capacity, qm was found to be 255.10 mg/g, substantially larger than the reported values for 2,4-D adsorption by other magnetic nanoadsorbents. Therefore, this nanoadsorbent may be utilized as an excellent alternative for the elimination of 2,4-D from the waterbodies.
Collapse
Affiliation(s)
- Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shraddha Pai
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Gokulakrishnan Murugesan
- Department of Biotechnology, M.S.Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Selvaraju Narayanasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
5
|
Girón-Navarro R, Linares-Hernández I, Teutli-Sequeira EA, Martínez-Miranda V, Santoyo-Tepole F. Evaluation and comparison of advanced oxidation processes for the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D): a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26325-26358. [PMID: 33825107 DOI: 10.1007/s11356-021-13730-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Organochlorine pesticides have generated public concern worldwide because of their toxicity to human health and the environment, even at low concentrations, and their persistence, being mostly nonbiodegradable. The use of 2,4-dichlorophenoxyacetic acid (2,4-D) has increased in recent decades, causing severe water contamination. Several treatments have been developed to degrade 2,4-D. This manuscript presents an overview of the physicochemical characteristics, uses, regulations, environmental and human health impacts of 2,4-D, and different advanced oxidation processes (AOPs) to degrade this organic compound, evaluating and comparing operation conditions, efficiencies, and intermediaries. Based on this review, 2,4-D degradation is highly efficient in ozonation (system O3/plasma, 99.8% in 30 min). Photocatalytic, photo-Fenton, and electrochemical processes have the optimal efficiencies of degradation and mineralization: 97%/79.67% (blue TiO2 nanotube arrays//UV), 100%/98% (Fe2+/H2O2/UV), and 100%/84.3% (MI-meso SnO2), respectively. The ozonation and electrochemical processes show high degradation efficiencies, but energy costs are also high, and photocatalysis is more expensive with a separation treatment used to recover the catalyst in the solution. The Fenton process is a viable economic-environmental option, but degradation efficiencies are often low (50-70%); however, they are increased when solar UV radiation is used (90-100%). AOPs are promising technologies for the degradation of organic pollutants in real wastewater, so evaluating their strengths and weaknesses is expected to help select viable operational conditions and obtain optimal efficiencies.
Collapse
Affiliation(s)
- Rocío Girón-Navarro
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, carretera Toluca-Atlacomulco, C, .P 50200, Toluca, Estado de México, México
| | - Ivonne Linares-Hernández
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, carretera Toluca-Atlacomulco, C, .P 50200, Toluca, Estado de México, México.
| | - Elia Alejandra Teutli-Sequeira
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, carretera Toluca-Atlacomulco, C, .P 50200, Toluca, Estado de México, México
- Cátedras del Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor. Alcaldía Benito Juárez, C.P 03940, Ciudad de México, México
| | - Verónica Martínez-Miranda
- Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, carretera Toluca-Atlacomulco, C, .P 50200, Toluca, Estado de México, México.
| | - Fortunata Santoyo-Tepole
- Escuela Nacional de Ciencias Biológicas, Unidad Profesional Lázaro Cárdenas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Ciudad de México, México
| |
Collapse
|
6
|
Carvalho LM, Soares-Filho AF, Lima MS, Cruz-Filho JF, Dantas TCM, Luz GE. 2,4-Dichlorophenoxyacetic acid (2,4-D) photodegradation on WO 3-TiO 2-SBA-15 nanostructured composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7774-7785. [PMID: 33037546 DOI: 10.1007/s11356-020-11085-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
A current environmental problem is the uncontrolled use of various pesticides that are harmful to the environment and public health. The herbicide 2,4-D is widely used, making it a vector of contamination for aquatic bodies, air, soil, and biomass. In recent decades, researchers have studied remediation of this compound in the environment. In this work, WO3 and TiO2 were supported on SBA-15 molecular sieve by the in situ anchoring (ISA) method, with different molar percentages of WO3 in relation to the oxide content: X = 25%, 50%, and 75%. The W-Ti-S (X) samples were characterized by XDR, XRF, Raman, FTIR, diffuse reflectance of UV-vis, and adsorption and desorption of N2. SBA-15 mesoporous structure was not destroyed even after the incorporation of the oxides. XRD analyses associated with Raman result found a predominance of the anatase phase for titanium oxide, and the FRX showed low incorporation of nanoparticles. Photocatalytic tests indicated that the catalytic activity depends on WO3 and TiO2 content, although all W-Ti-S (X) samples exhibited similar TOF value. The W-Ti-S (25) sample had the highest photocatalytic activity, 76% herbicide photodegradation under ultraviolet irradiation, at 270 min. The analysis of the catalytic cycles indicated that W-Ti-S (25) keeps out 70% of photocatalytic activity in the fourth catalytic cycle. In addition, the W-Ti-S (25) catalytic activity under direct sunlight irradiation was similar to that under artificial UV irradiation.
Collapse
Affiliation(s)
- Laíse M Carvalho
- PPGQ- DQ, Universidade Federal do Piauí-UFPI, Teresina, PI, 64049-550, Brazil
| | | | - Maciel S Lima
- PPGQ-GERATEC-DQ-Universidade Estadual do Piauí, Rua: João Cabral, N. 2231, Teresina, PI, 64002-150, Brazil
| | - João F Cruz-Filho
- PPGQ-GERATEC-DQ-Universidade Estadual do Piauí, Rua: João Cabral, N. 2231, Teresina, PI, 64002-150, Brazil
| | - Taisa C M Dantas
- PPGQ- DQ, Universidade Federal do Piauí-UFPI, Teresina, PI, 64049-550, Brazil
| | - Geraldo E Luz
- PPGQ- DQ, Universidade Federal do Piauí-UFPI, Teresina, PI, 64049-550, Brazil.
- PPGQ-GERATEC-DQ-Universidade Estadual do Piauí, Rua: João Cabral, N. 2231, Teresina, PI, 64002-150, Brazil.
| |
Collapse
|
7
|
Synthesis and Application of Fe-Doped TiO2 Nanoparticles for Photodegradation of 2,4-D from Aqueous Solution. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-05071-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
8
|
Czinnerová M, Vološčuková O, Marková K, Ševců A, Černík M, Nosek J. Combining nanoscale zero-valent iron with electrokinetic treatment for remediation of chlorinated ethenes and promoting biodegradation: A long-term field study. WATER RESEARCH 2020; 175:115692. [PMID: 32199189 DOI: 10.1016/j.watres.2020.115692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Nanoscale zero-valent iron (nZVI) is recognized as a powerful tool for the remediation of groundwater contaminated by chlorinated ethenes (CEs). This long-term field study explored nZVI-driven degradation of CEs supported by electrokinetic (EK) treatment, which positively affects nZVI longevity and migration, and its impact on indigenous bacteria. In particular, the impact of combined nZVI-EK treatment on organohalide-respiring bacteria, ethenotrophs and methanotrophs (all capable of CE degradation) was assessed using molecular genetic markers detecting Dehalococcoides spp., Desulfitobacterium spp., the reductive dehalogenase genes vcrA and bvcA and ethenotroph and methanotroph functional genes. The remediation treatment resulted in a rapid decrease of the major pollutant cis-1,2-dichloroethene (cDCE) by 75% in the affected area, followed by an increase in CE degradation products methane, ethane and ethene. The newly established geochemical conditions in the treated aquifer not only promoted growth of organohalide-respiring bacteria but also allowed for the concurrent presence of vinyl chloride- and cDCE-oxidizing methanotrophs and (especially) ethenotrophs, which proliferated preferentially in the vicinity of an anode where low levels of oxygen were produced. The nZVI treatment resulted in a temporary negative impact on indigenous bacteria in the application well close to the cathode; but even there, the microbiome was restored within 15 days. The nZVI-EK treatment proved highly effective in reducing CE contamination and creating a suitable environment for subsequent biodegradation by changing groundwater conditions, promoting transport of nutrients and improving CE availability to soil and groundwater bacteria.
Collapse
Affiliation(s)
- Marie Czinnerová
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, CZ-46117, Liberec, Czech Republic; Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, CZ-46117, Liberec, Czech Republic
| | - Ondřejka Vološčuková
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, CZ-46117, Liberec, Czech Republic
| | - Kristýna Marková
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, CZ-46117, Liberec, Czech Republic
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, CZ-46117, Liberec, Czech Republic
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, CZ-46117, Liberec, Czech Republic
| | - Jaroslav Nosek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, CZ-46117, Liberec, Czech Republic.
| |
Collapse
|
9
|
Wu Q, Jiao S, Ma M, Peng S. Microbial fuel cell system: a promising technology for pollutant removal and environmental remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6749-6764. [PMID: 31956948 DOI: 10.1007/s11356-020-07745-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/14/2020] [Indexed: 05/20/2023]
Abstract
The microbial fuel cell (MFC) system is a promising environmental remediation technology due to its simple compact design, low cost, and renewable energy producing. MFCs can convert chemical energy from waste matters to electrical energy, which provides a sustainable and environmentally friendly solution for pollutant degradations. In this review, we attempt to gather research progress of MFC technology in pollutant removal and environmental remediation. The main configurations and pollutant removal mechanism by MFCs are introduced. The research progress of MFC systems in pollutant removal and environmental remediation, including wastewater treatment, soil remediation, natural water and groundwater remediation, sludge and solid waste treatment, and greenhouse gas emission control, as well as the application of MFCs in environmental monitoring have been reviewed. Subsequently, the application of MFCs in environmental monitoring and the combination of MFCs with other technologies are described. Finally, the current limitations and potential future research has been demonstrated in this review.
Collapse
Affiliation(s)
- Qing Wu
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China.
| | - Shipu Jiao
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Mengxing Ma
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Sen Peng
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| |
Collapse
|
10
|
Xu Y, Ge Z, Zhang X, Feng H, Ying X, Huang B, Shen D, Wang M, Zhou Y, Wang Y, Yu H. Validation of effective roles of non-electroactive microbes on recalcitrant contaminant degradation in bioelectrochemical systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:794-800. [PMID: 30951963 DOI: 10.1016/j.envpol.2019.03.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/10/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
Bioelectrochemical systems (BESs) have been widely investigated for recalcitrant waste treatment mainly because of their waste removal effectiveness. Electroactive microbes (EMs) have long been thought to contribute to the high effectiveness by interacting with electrodes via electron chains. However, this work demonstrated the dispensable role of EMs for enhanced recalcitrant contamination degradation in BESs. We revealed enhanced p-fluoronitrobenzene (p-FNB) degradation in a BES by observing a defluorination efficiency that was three times higher than that in biodegradation or electrochemical processes. Such an improvement was achieved by the collaborative roles of electrode biofilms and planktonic microbes, as their individual contributions to p-FNB degradation were found to be similarly stimulated by electricity. However, no bioelectrochemical activity was found in either the electrode biofilms or the planktonic microbes during stimulated p-FNB degradation; because no biocatalytically reductive or oxidative turnovers were observed on cyclic voltammetry curves. The non-involvement of EMs was further proven by the similar microbial community evolution for biofilms and planktonic microbes. In summary, we proposed a mechanism for indirect electrical stimulation of microbial metabolism by electrochemically generating the active mediator p-fluoroaniline (p-FA) and further degradation by a sequential combination of electrochemical p-FNB reduction and biological p-FA oxidation by non-EMs.
Collapse
Affiliation(s)
- Yingfeng Xu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Zhipeng Ge
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xueqin Zhang
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Huajun Feng
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xianbin Ying
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Baocheng Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Meizhen Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Yuyang Zhou
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yanfeng Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hanqing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| |
Collapse
|
11
|
Improvement of 2,4-dichlorophenol degradation and analysis of functional bacteria in anaerobic microbial system enhanced with electric assistance. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Cao Z, Zhang J, Zhang J, Zhang H. Degradation pathway and mechanism of Reactive Brilliant Red X-3B in electro-assisted microbial system under anaerobic condition. JOURNAL OF HAZARDOUS MATERIALS 2017; 329:159-165. [PMID: 28131972 DOI: 10.1016/j.jhazmat.2017.01.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
The degradations of Reactive Brilliant Red X-3B (RBRX-3B) in an electric-assisted microbial system (EAMS), a microbial system (MS) and an electrochemical system (ECS) were compared. The degradation efficiency of RBRX-3B in EAMS (99.8%) was 10.8% higher than the sum in MS (61.9%) and ECS (27.1%) at 24h at the optimal voltage of 0.4V, indicating that there was a synergistic effect between the electrode reaction and the biodegradation. The RBRX-3B degradation in EAMS followed first-order kinetic model. The activation energy of RBRX-3B degradation in EAMS was calculated to be 60.53kJmol-1 by the Arrhenius equation, showing that the degradation rate of RBRX-3B mainly depended on bio-chemical reaction. RBRX-3B was degraded to both low-strength toxic compounds and nontoxic compounds in EAMS and those intermediates were easier to be further degraded. The pathway of RBRX-3B degradation in EAMS was different from that in MS.
Collapse
Affiliation(s)
- Zhanping Cao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Jinghui Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Jingli Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Hongwei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
| |
Collapse
|
13
|
Pęziak-Kowalska D, Fourcade F, Niemczak M, Amrane A, Chrzanowski Ł, Lota G. Removal of herbicidal ionic liquids by electrochemical advanced oxidation processes combined with biological treatment. ENVIRONMENTAL TECHNOLOGY 2017; 38:1093-1099. [PMID: 27553250 DOI: 10.1080/09593330.2016.1217941] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recently a new group of ionic liquids (ILs) with herbicidal properties has been proposed for use in agriculture. Owing to the design of specific physicochemical properties, this group, referred to as herbicidal ionic liquids (HILs), allows for reducing herbicide field doses. Several ILs comprising phenoxy herbicides as anions and quaternary ammonium cations have been synthesized and tested under greenhouse and field conditions. However, since they are to be introduced into the environment, appropriate treatment technologies should be developed in order to ensure their proper removal and avoid possible contamination. In this study, didecyldimethylammonium (4-chloro-2-methylphenoxy) acetate was selected as a model HIL to evaluate the efficiency of a hybrid treatment method. Electrochemical oxidation or electro-Fenton was considered as a pretreatment step, whereas biodegradation was selected as the secondary treatment method. Both processes were carried out in current mode, at 10 mA with carbon felt as working electrode. The efficiency of degradation, oxidation and mineralization was evaluated after 6 h. Both processes decreased the total organic carbon and chemical oxygen demand (COD) values and increased the biochemical oxygen demand (BOD5) on the COD ratio to a value close to 0.4, showing that the electrolyzed solutions can be considered as 'readily biodegradable.'
Collapse
Affiliation(s)
- Daria Pęziak-Kowalska
- a Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry , Poznan , Poland
| | - Florence Fourcade
- b Université Rennes 1/Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226 , Rennes , France
| | - Michał Niemczak
- c Poznan University of Technology, Institute of Chemical Technology and Engineering , Poznan , Poland
| | - Abdeltif Amrane
- b Université Rennes 1/Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226 , Rennes , France
| | - Łukasz Chrzanowski
- c Poznan University of Technology, Institute of Chemical Technology and Engineering , Poznan , Poland
| | - Grzegorz Lota
- a Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry , Poznan , Poland
| |
Collapse
|
14
|
Wang Y, Zhang X, Feng H, Liang Y, Shen D, Long Y, Zhou Y, Dai Q. Biocatalysis mechanism for p-fluoronitrobenzene degradation in the thermophilic bioelectrocatalysis system: Sequential combination of reduction and oxidation. CHEMOSPHERE 2016; 159:44-49. [PMID: 27268793 DOI: 10.1016/j.chemosphere.2016.05.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/21/2016] [Accepted: 05/26/2016] [Indexed: 06/06/2023]
Abstract
To verify the potentially synthetic anodic and cathodic biocatalysis mechanism in bioelectrocatalysis systems (BECSs), a single-chamber thermophilic bioelectrocatalysis system (R3) was operated under strictly anaerobic conditions using the biocathode donated dual-chamber (R1) and bioanode donated dual-chamber (R2) BECSs as controls. Direct bioelectrocatalytic oxidation was found to be infeasible while bioelectrocatalytic reduction was the dominant process for p-Fluoronitrobenzene (p-FNB) removal, with p-FNB removal of 0.188 mM d(-1) in R1 and 0.182 mM d(-1) in R3. Cyclic voltammetry experiments confirmed that defluorination in the BECSs was an oxidative metabolic process catalyzed by bioanodes following the reductive reaction, which explained the 0.034 mM d(-1) defluorination in R3, but negligible defluorination in controls. Taken together, these results revealed a sequentially combined reduction and oxidation mechanism in the thermophilic BECS for p-FNB removal. Moreover, the enrichment of Betaproteobacteria and uniquely selected Bacilli in R3 were probably functional populations for p-FNB degradation.
Collapse
Affiliation(s)
- Yanfeng Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Xueqin Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China.
| | - Yuxiang Liang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Yuyang Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Qizhou Dai
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
15
|
Cao Z, Zhang M, Zhang J, Zhang H. Impact of continuous and intermittent supply of electric assistance on high-strength 2,4-dichlorophenol (2,4-DCP) degradation in electro-microbial system. BIORESOURCE TECHNOLOGY 2016; 212:138-143. [PMID: 27092992 DOI: 10.1016/j.biortech.2016.03.165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
The high-strength 2,4-DCP, which exists in two states: dissolved and colloidal, was studied by a continuously electro-microbial system (CEMS) and an intermittently electro-microbial system (IEMS). The hydrolysis rate of colloidal 2,4-DCP in the IEMS without electric assistance was much higher than that in the CEMS. However, the degradation rate of the dissolved 2,4-DCP and the dissolved intermediates (2-chlorophenol and 4-chlorophenol) in the IEMS without electric assistance were much lower than that in the CEMS. By adjusting the intermittent operation mode, the degradation time of 2,4-DCP was shortened greatly. Microbial characteristics in the CEMS and the IEMS were different. The correlation analysis for the main factors affecting the hydrolysis was performed by SPSS, and it was found that the correlation coefficient (rp) was -0.912 for extracellular polymeric substances (EPS) content, 0.823 for zeta potential and 0.632 for relative hydrophobicity, respectively.
Collapse
Affiliation(s)
- Zhanping Cao
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Minghui Zhang
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Jingli Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Hongwei Zhang
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
16
|
Feng H, Zhang X, Guo K, Vaiopoulou E, Shen D, Long Y, Yin J, Wang M. Electrical stimulation improves microbial salinity resistance and organofluorine removal in bioelectrochemical systems. Appl Environ Microbiol 2015; 81:3737-44. [PMID: 25819966 PMCID: PMC4421048 DOI: 10.1128/aem.04066-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/17/2015] [Indexed: 11/20/2022] Open
Abstract
Fed batch bioelectrochemical systems (BESs) based on electrical stimulation were used to treat p-fluoronitrobenzene (p-FNB) wastewater at high salinities. At a NaCl concentration of 40 g/liter, p-FNB was removed 100% in 96 h in the BES, whereas in the biotic control (BC) (absence of current), p-FNB removal was only 10%. By increasing NaCl concentrations from 0 g/liter to 40 g/liter, defluorination efficiency decreased around 40% in the BES, and in the BC it was completely ceased. p-FNB was mineralized by 30% in the BES and hardly in the BC. Microorganisms were able to store 3.8 and 0.7 times more K(+) and Na(+) intracellularly in the BES than in the BC. Following the same trend, the ratio of protein to soluble polysaccharide increased from 3.1 to 7.8 as the NaCl increased from 0 to 40 g/liter. Both trends raise speculation that an electrical stimulation drives microbial preference toward K(+) and protein accumulation to tolerate salinity. These findings are in accordance with an enrichment of halophilic organisms in the BES. Halobacterium dominated in the BES by 56.8% at a NaCl concentration of 40 g/liter, while its abundance was found as low as 17.5% in the BC. These findings propose a new method of electrical stimulation to improve microbial salinity resistance.
Collapse
Affiliation(s)
- Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China Laboratory of Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Xueqin Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Kun Guo
- Laboratory of Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Eleni Vaiopoulou
- Laboratory of Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| | - Jun Yin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| |
Collapse
|
17
|
Rapid adsorption of 2,4-dichlorophenoxyacetic acid by iron oxide nanoparticles-doped carboxylic ordered mesoporous carbon. J Colloid Interface Sci 2015; 445:1-8. [DOI: 10.1016/j.jcis.2014.12.074] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 11/21/2022]
|
18
|
Zhang X, Feng H, Liang Y, Zhao Z, Long Y, Fang Y, Wang M, Yin J, Shen D. The relief of microtherm inhibition for p-fluoronitrobenzene mineralization using electrical stimulation at low temperatures. Appl Microbiol Biotechnol 2015; 99:4485-94. [DOI: 10.1007/s00253-014-6357-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/17/2014] [Accepted: 12/20/2014] [Indexed: 10/24/2022]
|
19
|
Feng H, Zhang X, Liang Y, Wang M, Shen D, Ding Y, Huang B, Shentu J. Enhanced removal of p-fluoronitrobenzene using bioelectrochemical system. WATER RESEARCH 2014; 60:54-63. [PMID: 24821195 DOI: 10.1016/j.watres.2014.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/08/2014] [Accepted: 03/13/2014] [Indexed: 06/03/2023]
Abstract
p-Fluoronitrobenzene (p-FNB) tends to accumulate in industrial effluents because of its recalcitrant properties. Approaches to the removal of p-FNB always encounter conflicts between treatment efficiency and economic efficiency. A bioelectrochemical system (BES) was established to facilitate the removal and mineralization of p-FNB. The treatment cost was reduced by using inexpensive electrode materials and reducing the electrical energy used. p-FNB was effectively removed using the BES, and the reaction rate was higher than the sum of the rates of two control systems, i.e., a biological system (BS) and an electrocatalytic system (ECS), by a maximum of 62.9% under a voltage of 1.4 V. The voltage is a crucial kinetic factor for the BES performance; as the voltage increased from 0 to 1.4 V, the reaction rate constants for p-FNB removal and defluorination increased from 0.0520 to 0.1811 h(-1) and 0 to 0.0107 h(-1). The synergistic effect of multistrains gave a TOC removal efficiency in the BES of about 34.05%, yet the removal efficiencies were low for the two control. The defluorination reaction rate was significantly slower than the p-FNB removal rate, which indicated that defluorination lagged p-FNB removal, and p-FNB transformation to p-fluoroaniline (p-FA) was the fastest step. The electrochemical assistance provided electrons and accelerated the electron transfer rate in the microbial reduction of p-FNB to p-FA. In this study, the critical voltage for defluorination in the BES was 0.8 V, which was approximately 0.2 V lower than that in the ECS. The decrease in the critical voltage for defluorination was based on the production of p-FA, which is more electrocatalytically activated. These results demonstrate the mechanism of efficient p-FNB removal and mineralization in a BES.
Collapse
Affiliation(s)
- Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Xueqin Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Yuxiang Liang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Baocheng Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Jiali Shentu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China.
| |
Collapse
|
20
|
The effect of electricity on 2–fluoroaniline removal in a bioelectrochemically assisted microbial system (BEAMS). Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.05.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|