1
|
Chen SR, Chen LH, Pan L, Wang B. Application of luminescent Photobacterium Phosphoreum T3 for the detection of zearalenone and estimating the efficiency of their enzymatic degradation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:979-988. [PMID: 38857317 DOI: 10.1080/19440049.2024.2363397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin, causes enormous economic losses in the food and feed industries. Simple, rapid, low-cost, and quantitative analysis of ZEN is particularly urgent in the fields of food safety and animal husbandry. Using the bioluminescent bacterium Photobacterium phosphoreum T3, we propose a bioluminescence inhibition assay to evaluate ZEN levels quickly. The limit of detection (LOD), limit of quantification (LOQ), and quantitative working range of this bioluminescence inhibition assay were 0.1 µg/mL, 5 µg/mL, and 5-100 µg/mL, respectively. The concentration-response curve of the bioluminescence inhibition rate and ZEN concentration was plotted within the range 5 to 100 μg/mL, as follows: y = 0.0069x2 - 0.0190x + 7.9907 (R2 = 0.9943, y is luminescence inhibition rate, x is ZEN concentration). First, we used the bioluminescence inhibition assay to detect the remaining ZEN in samples treated with purified lactonohydrolase ZHD101. The bioluminescence inhibition assay results showed a strong correlation with the HPLC analysis. Furthermore, we successfully evaluated the overall toxicity of samples treated with purified peroxidase Prx and H2O2 using the P. phosphoreum T3 bioluminescence inhibition assay. The results indicate that the degradation products of ZEN created by purified peroxidase Prx and H2O2 showed little toxicity to P. phosphoreum T3. In this study, a simple, rapid, and low-cost assay method of zearalenone by bioluminescent P. phosphoreum T3 was developed. The bioluminescence inhibition assay could be used to estimate the efficiency of enzymatic degradation of ZEN.
Collapse
Affiliation(s)
- Shu-Rong Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Li-Hong Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Li Pan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Bin Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Kong M, Shi Z, Liu F, Song N, Liu L, Li R, Wu Y, Xu H. Investigation and prediction of the biotoxicity of Cu 2+ to Chlorella vulgaris: modification of the biotic ligand model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110612-110622. [PMID: 37792195 DOI: 10.1007/s11356-023-30165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
The increased copper ion (Cu2+) concentrations in aquatic ecosystem significantly influence the environmental quality and ecosystem safety, while information on the Cu2+ biotoxicity to aquatic microorganisms and the models for biotoxicity prediction are still unclear. In this study, the toxicities of Cu2+ to Chlorella vulgaris under different environmental conditions (e.g., Na+, K+, Ca2+, Mg2+, pH, and dissolved organic matter) were explored, with the experimental results in comparison with those predicted by the biotic ligand model (BLM). Results showed that increased Cu2+ concentration caused obvious toxicities to C. vulgaris, whereas the commonly occurring cations and dissolved organic matters can protect the metabolism system of C. vulgaris. The presence of extracellular polymeric substances (EPS) matrix can alleviate the biotoxicity via increasing the surface biosorption but decreasing cell internalization of Cu2+ in C. vulgaris. Due to the presence of EPS matrix, the experimental biotoxicity results under each condition were significantly lower than those predicted by the BLM model, which was thus modified via taking the EPS matrix as the supplement of allochthonous organic matters. After that, the modified BLM was characterized with a higher degree of precision and can be used in natural waters for biotoxicity prediction. Results obtained can enhance our insights into the ecological effects and biotoxicity prediction of heavy metals in natural aquatic ecosystems.
Collapse
Affiliation(s)
- Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Zhiqiang Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Fei Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Na Song
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Lizhen Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Rongfu Li
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Yongming Wu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
3
|
Mechanistic study of electrooxidation of coexisting chloramphenicol and natural organic matter: Performance, DFT calculation and removal route. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
4
|
Li B, Zhang X, Tefsen B, Wells M. From speciation to toxicity: Using a "Two-in-One" whole-cell bioreporter approach to assess harmful effects of Cd and Pb. WATER RESEARCH 2022; 217:118384. [PMID: 35427828 DOI: 10.1016/j.watres.2022.118384] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Due to the sheer number of contaminated sites, bioavailability-based measurement and modeling of toxicity is used to triage response; despite advances, both remain relatively cumbersome. Cadmium (Cd) and lead (Pb) are two of the most toxic and globally prevalent pollutants, disproportionately impacting disadvantaged communities. Here we demonstrate the use of high throughput lights-on bioreporter technology to measure both speciation and toxicity. The organism's response is fit-for-purpose to parameterize the Biotic Ligand Model used in risk assessment of aquatic ecotoxicity and setting environmental Water Quality Criteria. Toxicity endpoints for analogous Cd and Pb models reported in literature average 71st and 44th rank-percentile sensitivity of Genus Mean Acute Values for acute toxicity (i.e., insensitive) in comparison to the bioreporter, the unique dual-mode measurement ability of which can predict toxicity endpoints from below the 5th percentile up to the 50th rank-percentile. These results are extensible to other reporters, paving the way to cost-efficient environmental risk assessment of aquatic ecotoxicity for a wide range of priority toxic pollutants.
Collapse
Affiliation(s)
- Boling Li
- Department of Environmental Science, University of Liverpool, Brownlow Hill, Liverpool L69 7ZX, UK; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Boris Tefsen
- Ronin Institute, 127 Haddon Place, Montclair, NJ 07043, United States.
| | - Mona Wells
- Ronin Institute, 127 Haddon Place, Montclair, NJ 07043, United States.
| |
Collapse
|
5
|
Li J, Yuan T, Ma Y, Shen Z, Tian Y, Gao L, Dong X. Acute toxicity assessment of indoor dust extracts by luminescent bacteria assays with Photobacterium Phosphoreum T 3. ENVIRONMENTAL RESEARCH 2021; 198:110447. [PMID: 33186576 DOI: 10.1016/j.envres.2020.110447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
In the last decades, there has been an increasing concern about the human exposure to indoor dust. Therefore, it is imperative to assess the toxicity of indoor dust and associated dust extracts. In this study, the acute toxicity assessment of indoor dust was performed using a bioluminescence test, with Photobacterium phosphoreum T3 (PPT3) chosen as the test bacterium. The different indoor dust samples were collected from residences, offices, dormitories and laboratories in Shanghai, China. Our data reveal that PPT3 is more active to water-soluble ions and organic contaminants at low concentrations, while extract solutions elicit increased bacterial toxicity at high concentrations. The results of a bioluminescence assay by PPT3 indicated that the dust organic extracts exhibited increased toxicity compared with the water exacts. Dust extracts from the laboratory exhibited the greatest bacterial toxicity when compared with office, dormitory and residence samples. Moreover, office dust exhibited higher bacterial toxicity than residence dust. Furthermore, the comprehensive toxicity of dust on PPT3 was assessed by extracts toxicity -addition (i.e. IRaddition). The calculated values were close to the corresponding experimental data. The bioluminescence test showed the indoor dust samples are weakly toxic to PPT3, which are equivalent to 0.046-0.123 mg Hg•L-1. Different dust extracts among the different sampling sites showed varying toxicity to PPT3. This study provides some important information to understand the potential health risk from different indoor environment using a rapid bioluminescence assay.
Collapse
Affiliation(s)
- Jiafan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yuning Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Gao
- School of Resource and Environment, Ningxia University, Yinchuan, 750021, China
| | - Xiaoyan Dong
- The Department of Pulmonary, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| |
Collapse
|
6
|
Ajitha V, Sreevidya CP, Sarasan M, Park JC, Mohandas A, Singh ISB, Puthumana J, Lee JS. Effects of zinc and mercury on ROS-mediated oxidative stress-induced physiological impairments and antioxidant responses in the microalga Chlorella vulgaris. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12950-6. [PMID: 33629160 DOI: 10.1007/s11356-021-12950-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The rapid growth of industrialization and urbanization results in deterioration of freshwater systems around the world, rescinding the ecological balance. Among many factors that lead to adverse effects in aquatic ecology, metals are frequently discharged into aquatic ecosystems from natural and anthropogenic sources. Metals are highly persistent and toxic substances in trace amounts and can potentially induce severe oxidative stress in aquatic organisms. In this study, adverse effects of the two metal elements zinc (maximum concentration of 167.25 mg/L) and mercury (104.2 mg/L) were examined using Chlorella vulgaris under acute and chronic exposure period (48 h and 7 days, respectively). The metal-induced adverse effects have been analyzed through photosynthetic pigment content, total protein content, reactive oxygen species (ROS) generation, antioxidant enzymatic activities, namely catalase and superoxide dismutase (SOD) along with morphological changes in C. vulgaris. Photosynthetic pigments were gradually reduced (~32-100% reduction) in a dose-dependent manner. Protein content was initially increased during acute (~8-12%) and chronic (~57-80%) exposure and decreased (~44-56%) at higher concentration of the two metals (80%). Under the two metal exposures, 5- to 7-fold increase in ROS generation indicated the induction of oxidative stress and subsequent modulations in antioxidant activities. SOD activity was varied with an initial increase (58-129%) followed by a gradual reduction (~3.7-79%), while ~1- to 12-fold difference in CAT activity was observed in all experimental condition (~83 to 1605%). A significant difference was observed in combined toxic exposure (Zn+Hg), while comparing the toxic endpoint data of individual metal exposure (Zn and Hg alone). Through this work, lethal effects caused by single and combined toxicity of zinc and mercury were assessed, representing the significance of appropriate monitoring system to trim down the release of metal contaminants into the aquatic ecosystems.
Collapse
Affiliation(s)
- Vayampully Ajitha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, 16, India
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, Kerala, 22, India
| | | | - Manomi Sarasan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, 16, India
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Ambat Mohandas
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, 16, India
| | - Isaac Sarojini Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, 16, India
| | - Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, 16, India.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
7
|
Yuan S, Ji X, Ma M, Ding F, Rao K, Wang Z, Yang R, Liu Y. Comparative toxicity study of a novel non-ionic surfactant, vanillin ethoxylates, and nonylphenol ethoxylates in Chinese hamster ovary cells in vitro. J Environ Sci (China) 2019; 82:70-81. [PMID: 31133271 DOI: 10.1016/j.jes.2019.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
Surfactants such as alkylphenol polyethoxylates (APEOs) and nonylphenol ethoxylates (NPEOs) are commonly used worldwide, but the majority of these compounds, together with their metabolites, have been reported to induce severe biological toxicity. Here, we evaluated for the first time the cytotoxicity, genotoxicity and mitochondrial damage in Chinese hamster ovary (CHO-K1) cells caused by a novel non-ionic surfactant, vanillin ethoxylates (VAEOs), an alternative to APEOs. In parallel, the same in vitro bioassays were conducted on NPEOs along with their metabolic byproducts 4-nonylphenol (4-NP) and vanillin. The results showed that the cytotoxic potency order was NPEOs > 4-NP > VAEOs>vanillin using CCK-8 assays. Also, 4-NP showed potential direct DNA damage in SOS/umu tests, whereas NPEOs, VAEOs and vanillin showed no positive result with and without S9 addition. In addition, none of the test compounds showed obvious genotoxic effects with low olive tail moment value using comet assays. However, all test compounds were shown to cause mitochondrial impairment by increasing mitochondrial mass and decreasing mitochondrial membrane potential in a concentration-dependent manner. And further analysis of reactive oxygen species (ROS) and mitochondrial superoxide (MNSOD) measurement showed that mitochondrial impairment was induced by oxidative stress with intracellular ROS and MNSOD overproduction. It's worth noting that VAEOs and vanillin cause relative lower cytotoxic, genotoxic and mitochondrial damage effects than NPEOs and 4-NP, indicating that VAEOs have the potential to substitute NPEOs as suitable surfactants. Take together, this study elucidates the toxicity profiles of VAEOs and NPEOs relatively comprehensively, and further toxicity analyses are suggested in the population, community and ecosystem.
Collapse
Affiliation(s)
- Shengwu Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoya Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fengmei Ding
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Kaifeng Rao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rong Yang
- Beijing Water Quality Monitoring Center for South-to-North Water Diversion, Beijing 100093, China
| | - Yihong Liu
- Beijing Water Quality Monitoring Center for South-to-North Water Diversion, Beijing 100093, China
| |
Collapse
|
8
|
Combined Toxicity of Nitro-Substituted Benzenes and Zinc to Photobacterium Phosphoreum: Evaluation and QSAR Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16061041. [PMID: 30909451 PMCID: PMC6466268 DOI: 10.3390/ijerph16061041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/16/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022]
Abstract
The single toxicity (IC50) of zinc (Zn) and 11 nitro-substituted benzenes to Photobacterium phosphoreum were determined, respectively. On basis of single toxicity, the joint toxicity of binary mixtures of Zn and 11 nitro-substituted benzenes at different Zn concentrations of 0.2 IC50, 0.5 IC50, and 0.8 IC50 were measured. The joint toxicity was evaluated by toxic unit (TU) and additive index (AI) methods. The results indicated that the joint toxicity was not only depending on the Zn concentrations but also on the substituted groups of nitro-substituted benzenes. The quantitative structure-activity relation (QSAR) equations were developed and the results showed that the toxicity of nitro-substituted benzenes has different joint effect at the different Zn concentrations. At the Zn concentration of 0.2 IC50, the binary joint effects were mainly antagonism and the joint toxicity was negatively related to descriptors called VE2_B(p) and TIC3. At the Zn concentration of 0.5 IC50 and 0.8 IC50, the binary joint effects were mainly antagonism and simple addition, and the joint toxicity was related to the same descriptor Eig06_ AEA(dm). It indicated that the joint toxic actions were similar when combined at the medium and high concentrations of Zn.
Collapse
|
9
|
Bhattacharjee B, Pal PK, Ghosh AK, Mishra S, Chattopadhyay A, Bandyopadhyay D. Aqueous bark extract of Terminalia arjuna protects against cadmium-induced hepatic and cardiac injuries in male Wistar rats through antioxidative mechanisms. Food Chem Toxicol 2018; 124:249-264. [PMID: 30529122 DOI: 10.1016/j.fct.2018.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/23/2022]
Abstract
Cadmium (Cd) is one of the most ubiquitous toxic heavy metal in the environment. The present study was conducted to evaluate the protective role of aqueous bark extract of Terminalia arjuna (TA) against Cd induced oxidative damage in hepatic and cardiac tissues as the TA bark extract has folkloric medicinal use in the treatment of various hepatic and cardiac disorders. Male Wistar rats were divided into 4 groups. The control group was treated with normal saline as the vehicle; the second group orally administered with TA (20 mg/kg bw) daily for 15 days; the third group injected with Cd-acetate (0.44 mg/kg bw, s.c.) every alternate day for a period of 15 days; and the fourth group was administered with TA, 60 min prior to Cd treatment. The biomarkers of organ damage were significantly increased in the Cd treated groups. Besides, a significant alteration in the tissue levels of biomarkers of oxidative stress, the activities and the levels of antioxidant enzymes was observed following treatment with Cd. Additionally, some of the enzymes were found to be inhibited uncompetitively by Cd when tested in an in vitro system. Furthermore, evidence gathered from studies on the histological parameters and mitochondrial membrane potential in both the tissues argue in favour of the possible protective role of TA against Cd induced damage. Finally, gas chromatography-mass spectrometry revealed the presence of eight major bioactive phytochemicals in aqueous bark extract of TA having potent free radical scavenging property. The results indicate that the extract could protect hepatic and cardiac tissues against Cd-induced oxidative stress mediated damages through antioxidant mechanism(s).
Collapse
Affiliation(s)
- Bharati Bhattacharjee
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Palash Kumar Pal
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Arnab Kumar Ghosh
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Sanatan Mishra
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India; Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India.
| |
Collapse
|
10
|
Park J, Ra JS, Rho H, Cho J, Kim SD. Validation of a biotic ligand model on site-specific copper toxicity to Daphnia magna in the Yeongsan River, Korea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 149:108-115. [PMID: 29154134 DOI: 10.1016/j.ecoenv.2017.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
The objective of this study was to determine whether the water effect ratio (WER) or biotic ligand model (BLM) could be applied to efficiently develop water quality criteria (WQC) in Korea. Samples were collected from 12 specific sites along the Yeongsan River (YSR), Korea, including two sewage treatment plants and one estuary lake. A copper toxicity test using Daphnia magna was performed to determine the WER and to compare to the BLM prediction. The results of the WER from YSR samples also indicated significantly different copper toxicities in all sites. The model-based predictions showed that effluent and estuary waters had significantly different properties in regard to their ability to be used to investigate water characteristics and copper toxicity. It was supposed that the slight water characteristics changes, such as pH, DOC, hardness, conductivity, among others, influence copper toxicity, and these variable effects on copper toxicity interacted with the water composition. The 38% prediction was outside of the validation range by a factor of two in all sites, showing a poor predictive ability, especially in STPs and streams adjacent to the estuary, while the measured toxicity was more stable. The samples that ranged from pH 7.3-7.7 generated stable predictions, while other samples, including those with lower and the higher pH values, led to more unstable predictions. The results also showed that the toxicity of Cu in sample waters to D. magna was closely proportional to the amounts of acidity, including the carboxylic and phenolic groups, as well as the DOC concentrations. Consequently, the acceptable prediction of metal toxicity in various water samples needs the site-specific results considering the water characteristics such as pH and DOC properties particularly in STPs and estuary regions.
Collapse
Affiliation(s)
- Jinhee Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jin-Sung Ra
- Korea Institute of Industrial Technology, 143 Hanggaulro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Hojung Rho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Jaeweon Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
11
|
Extracellular Electron Transfer and Biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 167:15-38. [PMID: 29071406 DOI: 10.1007/10_2017_34] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter summarizes in the beginning our current understanding of extracellular electron transport processes in organisms belonging to the genera Shewanella and Geobacter. Organisms belonging to these genera developed strategies to transport respiratory electrons to the cell surface that are defined by modules of which some seem to be rather unique for one or the other genus while others are similar. We use this overview regarding our current knowledge of extracellular electron transfer to explain the physiological interaction of microorganisms in direct interspecies electron transfer, a process in which one organism basically comprises the electron acceptor for another microbe and that depends also on extended electron transport chains. This analysis of mechanisms for the transport of respiratory electrons to insoluble electron acceptors ends with an overview of questions that remain so far unanswered. Moreover, we use the description of the biochemistry of extracellular electron transport to explain the fundamentals of biosensors based on this process and give an overview regarding their status of development and applicability. Graphical Abstract.
Collapse
|
12
|
Feng M, Yan L, Zhang X, Sun P, Yang S, Wang L, Wang Z. Fast removal of the antibiotic flumequine from aqueous solution by ozonation: Influencing factors, reaction pathways, and toxicity evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:167-175. [PMID: 26409146 DOI: 10.1016/j.scitotenv.2015.09.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/17/2015] [Accepted: 09/10/2015] [Indexed: 05/10/2023]
Abstract
As one of the first generation of fluoroquinolone antibiotics, flumequine (FLU) has been detected ubiquitously in surface waters and municipal wastewaters. In light of FLU's possible adverse effects on aquatic species, the removal of this antibiotic has received worldwide attention. In this study, the kinetics, transformation products, mechanisms and toxicity variations of the ozonation process for FLU were systematically determined. The possible effects of solution pH, addition of inorganic ions, dissolved organic matter, and tert-butyl-alcohol (a radical scavenger), as well as the type of water matrices on FLU removal by ozonation, were studied from the perspective of the degradation kinetics. The data obtained suggested that ozone can be used as an effective oxidant for the fast removal of FLU from natural waters. Using liquid chromatography-mass spectrometry, a total of thirteen transformation products of FLU during ozonation were identified, and their specific reaction mechanisms were also proposed. The degradation pathways involving the hydroxylation, decarboxylation and defluorination were tentatively proposed. Meanwhile, the generation of three low-molecular-weight carboxylic acids was also observed. In addition, the potential toxicity of the transformation mixtures of FLU by ozone was evaluated. Overall, this paper can be a unique contribution to the systematic elucidation of the ozonation process of this antibiotic in water.
Collapse
Affiliation(s)
- Mingbao Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Liqing Yan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Xiaoling Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Ping Sun
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Shaogui Yang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Liansheng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China.
| |
Collapse
|
13
|
Feng M, Qu R, Zhang X, Sun P, Sui Y, Wang L, Wang Z. Degradation of flumequine in aqueous solution by persulfate activated with common methods and polyhydroquinone-coated magnetite/multi-walled carbon nanotubes catalysts. WATER RESEARCH 2015; 85:1-10. [PMID: 26281959 DOI: 10.1016/j.watres.2015.08.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
In recent years, flumequine (FLU) has been ubiquitously detected in surface waters and municipal wastewaters. In light of its potential negative impacts to aquatic species, growing concern has been arisen for the removal of this antibiotic from natural waters. In this study, the kinetics, degradation mechanisms and pathways of aqueous FLU by persulfate (PS) oxidation were systematically determined. Three common activation methods, including heat, Fe(2+) and Cu(2+), and a novel heterogeneous catalyst, namely, polyhydroquinone-coated magnetite/multi-walled carbon nanotubes (Fe3O4/MWCNTs/PHQ), were investigated to activate PS for FLU removal. It was found that these three common activators enhanced FLU degradation obviously, while several influencing factors, such as solution pH, inorganic ions (especially HCO3(-) at 5 mmol/L) and dissolved organic matter extracts, exerted their different effects on FLU removal. The catalysts were characterized, and an efficient catalytic degradation performance, high stability and excellent reusability were observed. The measured total organic carbon levels suggested that FLU can be effectively mineralized by using the catalysts. Radical mechanism was studied by combination of the quenching tests and electron paramagnetic resonance analysis. It was assumed that sulfate radicals predominated in the activation of PS with Fe3O4/MWCNTs/PHQ for FLU removal, while hydroxyl radicals also contributed to the catalytic oxidation process. In addition, a total of fifteen reaction intermediates of FLU were identified, from which two possible pathways were proposed involving hydroxylation, decarbonylation and ring opening. Overall, this study represented a systematical evaluation regarding the transformation process of FLU by PS, and showed that the heterogeneous catalysts can efficiently activate PS for FLU removal from the water environment.
Collapse
Affiliation(s)
- Mingbao Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Xiaoling Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Ping Sun
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Yunxia Sui
- Centre of Modern Analysis, Nanjing University, Jiangsu, Nanjing 210093, PR China
| | - Liansheng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China.
| |
Collapse
|
14
|
Liu H, Sun P, Liu H, Yang S, Wang L, Wang Z. Acute toxicity of benzophenone-type UV filters for Photobacterium phosphoreum and Daphnia magna: QSAR analysis, interspecies relationship and integrated assessment. CHEMOSPHERE 2015; 135:182-188. [PMID: 25950412 DOI: 10.1016/j.chemosphere.2015.04.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
The hazardous potential of benzophenone (BP)-type UV filters is becoming an issue of great concern due to the wide application of these compounds in many personal care products. In the present study, the toxicities of BPs to Photobacterium phosphoreum and Daphnia magna were determined. Next, density functional theory (DFT) and comparative molecular field analysis (CoMFA) descriptors were used to obtain more detailed insight into the structure - activity relationships and to preliminarily discuss the toxicity mechanism. Additionally, the sensitivities of the two organisms to BPs and the interspecies toxicity relationship were compared. Moreover, an approach for providing a global index of the environmental risk of BPs to aquatic organisms is proposed. The results demonstrated that the mechanism underlying the toxicity of BPs to P. phosphoreum is primarily related to their electronic properties, and the mechanism of toxicity to D. magna is hydrophobicity. Additionally, D. magna was more sensitive than P. phosphoreum to most of the BPs, with the exceptions of the polyhydric BPs. Moreover, comparisons with published data revealed a high interspecies correlation coefficient among the experimental toxicity values for D. magna and Dugesia japonica. Furthermore, hydrophobicity was also found to be the most important descriptor of integrated toxicity. This investigation will provide insight into the toxicity mechanisms and useful information for assessing the potential ecological risk of BP-type UV filters.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China; College of Biological and Chemical Engineering, Jiaxing University, Zhejiang, Jiaxing 314001, PR China
| | - Ping Sun
- College of Biological and Chemical Engineering, Jiaxing University, Zhejiang, Jiaxing 314001, PR China
| | - Hongxia Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China; College of Biological and Chemical Engineering, Jiaxing University, Zhejiang, Jiaxing 314001, PR China
| | - Shaogui Yang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Liansheng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China.
| |
Collapse
|
15
|
Zeng Y, Wang L, Jiang L, Cai X, Li Y. Joint Toxicity of Lead, Chromium, Cobalt and Nickel to Photobacterium phosphoreum at No Observed Effect Concentration. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95:260-264. [PMID: 26032300 DOI: 10.1007/s00128-015-1568-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/22/2015] [Indexed: 06/04/2023]
Abstract
Joint toxicity of Pb2+, Cr3+, Co2+ and Ni2+ toward Photobacterium phosphoreum (Ph. phosphoreum) at the no observed effect concentration (NOEC) was determined through a factorial experiment. A neural network model was designed according to experimental results and employed for toxicity prediction of unary, binary, ternary and quaternary combinations. The mechanism and trends of joint toxicity were interpreted by quantitative structure-activity relationship, Michaelis-Menten kinetic model, and concentration addition (CA) theory. Toxicity was directly related to the covalent index (Xm2r), covalent binding reaction presented a first and zero order reaction at low and high concentration, respectively, and CA accurately predicted toxicity. Additionally, the results showed that low concentrations of heavy metals should be considered when conducting environment risk assessment.
Collapse
Affiliation(s)
- Yaling Zeng
- Resources and Environmental Research Academy, North China Electric Power University, Beijing, 102206, China
| | | | | | | | | |
Collapse
|
16
|
Kudryasheva NS, Rozhko TV. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2015; 142:68-77. [PMID: 25644753 DOI: 10.1016/j.jenvrad.2015.01.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1--absence of effects (stress recognition), 2--activation (adaptive response), and 3--inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure.
Collapse
Affiliation(s)
- N S Kudryasheva
- Institute of Biophysics SB RAS, Akademgorodok 50, 660036, Krasnoyarsk, Russia; Siberian Federal University, Svobodny 79, 660041, Krasnoyarsk, Russia.
| | - T V Rozhko
- Siberian Federal University, Svobodny 79, 660041, Krasnoyarsk, Russia; Krasnoyarsk State Medical Academy, P. Zheleznyaka 1, 660022, Krasnoyarsk, Russia
| |
Collapse
|
17
|
Sivakumar S, Prabha D, Barathi S, Nityanandi D, Subbhuraam CV, Lakshmipriya T, Kamala-Kannan S, Jang SH, Yi PI. The influence of the earthworm Lampito mauritii (Kinberg) on the activity of selected soil enzymes in cadmium-amended soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:74. [PMID: 25647789 DOI: 10.1007/s10661-014-4253-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
The effects of cadmium (CdCl2·7H2O) on cellulase, urease, amylase, invertase and phosphatase were assessed for a period of 45 days in the presence and absence of earthworms [Lampito mauritii (Kinberg)] in alfisol soil. The activities of all enzymes significantly increased with longer incubation times (45 days) under laboratory conditions in both control and Cd-amended soils (both with and without earthworm incubation). However, the activities of all enzymes decreased with increasing Cd concentrations under laboratory conditions, both in the presence and absence of earthworms. In the presence of earthworms, cellulase, urease, invertase and amylase activities increased. However, phosphatase activity was lower in most of the Cd-amended soils in the presence of earthworms compared to its activity levels in soils lacking earthworms. These results show that earthworms modulated the stress imposed by Cd by providing suitable substrates, which in turn acted as stimulants for extracellular enzyme secretion by microbes, and by removing Cd through its accumulation in the tissues of the earthworms.
Collapse
Affiliation(s)
- S Sivakumar
- Department of Bioenvironmental Energy, College of Natural Resource and Life Science, Pusan National University, Miryang, 627-706, South Korea,
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kudryasheva NS, Tarasova AS. Pollutant toxicity and detoxification by humic substances: mechanisms and quantitative assessment via luminescent biomonitoring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:155-167. [PMID: 25146119 DOI: 10.1007/s11356-014-3459-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
The paper considers mechanisms of detoxification of pollutant solutions by water-soluble humic substances (HSs), natural detoxifying agents. The problems and perspectives of bioassay application for toxicity monitoring of complex solutions are discussed from ecological point of view. Bioluminescence assays based on marine bacteria and their enzymes are of special attention here; they were shown to be convenient tools to study the detoxifying effects on cellular and biochemical levels. The advantages of bioluminescent enzymatic assay for monitoring both integral and oxidative toxicities in complex solutions of model pollutants and HS were demonstrated. The efficiencies of detoxification of the solutions of organic oxidizers and salts of metals (including radioactive ones) by HS were analyzed. The dependencies of detoxification efficiency on time of exposure to HS and HS concentrations were demonstrated. Antioxidant properties of HS were considered in detail. The detoxifying effects of HS were shown to be complex and regarded as 'external' (binding and redox processes in solutions outside the organisms) and/or 'internal' organismal processes. The paper demonstrates that the HS can stimulate a protective response of bacterial cells as a result of (1) changes of rates of biochemical reactions and (2) stabilization of mucous layers outside the cell walls. Acceleration of auto-oxidation of NADH, endogenous reducer, by HS was suggested as a reason for toxicity increase in the presence of HS due to abatement of reduction ability of intracellular media.
Collapse
Affiliation(s)
- N S Kudryasheva
- Institute of Biophysics SB RAS, Krasnoyarsk, Russia, 660036,
| | | |
Collapse
|
19
|
Wyke S, Peña-Fernández A, Brooke N, Duarte-Davidson R. The importance of evaluating the physicochemical and toxicological properties of a contaminant for remediating environments affected by chemical incidents. ENVIRONMENT INTERNATIONAL 2014; 72:109-118. [PMID: 24874001 DOI: 10.1016/j.envint.2014.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/01/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
In the event of a major chemical incident or accident, appropriate tools and technical guidance need to be available to ensure that a robust approach can be adopted for developing a remediation strategy. Remediation and restoration strategies implemented in the aftermath of a chemical incident are a particular concern for public health. As a result an innovative methodology has been developed to help design an effective recovery strategy in the aftermath of a chemical incident that has been developed; the UK Recovery Handbook for Chemical Incidents (UKRHCI). The handbook consists of a six-step decision framework and the use of decision trees specifically designed for three different environments: food production systems, inhabited areas and water environments. It also provides a compendium of evidence-based recovery options (techniques or methods for remediation) that should be selected in relation to their efficacy for removing contaminants from the environment. Selection of effective recovery options in this decision framework involves evaluating the physicochemical and toxicological properties of the chemical(s) involved. Thus, the chemical handbook includes a series of tables with relevant physicochemical and toxicological properties that should be assessed in function of the environment affected. It is essential that the physicochemical properties of a chemical are evaluated and interpreted correctly during the development of a remedial plan in the aftermath of a chemical incident to ensure an effective remedial response. This paper presents a general overview of the key physicochemical and toxicological properties of chemicals that should be evaluated when developing a recovery strategy. Information on how physicochemical properties have impacted on previous remedial responses reported in the literature is also discussed and a number of challenges for remediation are highlighted to include the need to develop novel approaches to remediate sites contaminated by mixtures of chemicals as well as methods for interpreting chemical reactions in different environmental matrices to include how climate change may affect the speciation and mobility of chemicals in the environment.
Collapse
Affiliation(s)
- S Wyke
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, UK.
| | - A Peña-Fernández
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, UK
| | - N Brooke
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, UK
| | - R Duarte-Davidson
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, UK
| |
Collapse
|
20
|
Peña-Fernández A, Wyke S, Brooke N, Duarte-Davidson R. Factors influencing recovery and restoration following a chemical incident. ENVIRONMENT INTERNATIONAL 2014; 72:98-108. [PMID: 24874002 DOI: 10.1016/j.envint.2014.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/01/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
Chemicals are an important part of our society. A wide range of chemicals are discharged into the environment every day from residential, commercial and industrial sources. Many of these discharges do not pose a threat to public health or the environment. However, global events have shown that chemical incidents or accidents can have severe consequences on human health, the environment and society. It is important that appropriate tools and technical guidance are available to ensure that a robust and efficient approach to developing a remediation strategy is adopted. The purpose of remediation is to protect human health from future exposure and to return the affected area back to normal as soon as possible. There are a range of recovery options (techniques or methods for remediation) that are applicable to a broad range of chemicals and incidents. Recovery options should be evaluated according to their appropriateness and efficacy for removing contaminants from the environment; however economic drivers and social and political considerations often influence decision makers on which remedial actions are implemented during the recovery phase of a chemical incident. To date, there is limited information in the literature on remediation strategies and recovery options that have been implemented following a chemical incident, or how successful they have been. Additional factors that can affect the approach taken for recovery are not well assessed or understood by decision makers involved in the remediation and restoration of the environment following a chemical incident. The identification of this gap has led to the development of the UK Recovery Handbook for Chemical Incidents to provide a framework for choosing an effective recovery strategy. A compendium of practical evidence-based recovery options (techniques or methods for remediation) for inhabited areas, food production systems and water environments has also been developed and is included in the chemical handbook. This paper presents the key factors that should be considered when developing a recovery strategy with respect to how these may impact on its effectiveness. The paper also highlights the importance of these factors through an evaluation of recovery strategies implemented following real chemical incidents that have been reported in the literature.
Collapse
Affiliation(s)
- A Peña-Fernández
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, UK.
| | - S Wyke
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, UK
| | - N Brooke
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, UK
| | - R Duarte-Davidson
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, UK
| |
Collapse
|
21
|
Jin H, Wang C, Shi J, Chen L. Evaluation on joint toxicity of chlorinated anilines and cadmium to Photobacterium phosphoreum and QSAR analysis. JOURNAL OF HAZARDOUS MATERIALS 2014; 279:156-162. [PMID: 25058936 DOI: 10.1016/j.jhazmat.2014.06.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 06/03/2023]
Abstract
The individual IC50 (the concentrations causing a 50% inhibition of bioluminescence after 15min exposure) of cadmium ion (Cd) and nine chlorinated anilines to Photobacterium phosphoreum (P. phosphoreum) were determined. In order to evaluate the combined effects of the nine chlorinated anilines and Cd, the toxicities of chlorinated anilines combined with different concentrations of Cd were determined, respectively. The results showed that the number of chlorinated anilines manifesting synergy with Cd decreased with the increasing Cd concentration, and the number manifesting antagonism decreased firstly and then increased. The joint toxicity of mixtures at low Cd concentration was weaker than that of most binary mixtures when combined with Cd at medium and high concentrations as indicated by TUTotal. QSAR analysis showed that the single toxicity of chlorinated anilines was related to the energy of the lowest unoccupied molecular orbital (ELUMO). When combined with different concentrations of Cd, the toxicity was related to the energy difference (EHOMO-ELUMO) with different coefficients. Van der Waals' force or the complexation between chlorinated anilines and Cd had an impact on the toxicity of combined systems, which could account for QSAR models with different physico-chemical descriptors.
Collapse
Affiliation(s)
- Hao Jin
- School of Life and Chemistry, Jiangsu Second Normal University, Nanjing, Jiangsu 210013, PR China.
| | - Chao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Jiaqi Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Lei Chen
- School of Life and Chemistry, Jiangsu Second Normal University, Nanjing, Jiangsu 210013, PR China
| |
Collapse
|
22
|
Di Lorenzo M, Thomson AR, Schneider K, Cameron PJ, Ieropoulos I. A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosens Bioelectron 2014; 62:182-8. [PMID: 25005554 DOI: 10.1016/j.bios.2014.06.050] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
Abstract
The heavy use of chemicals for agricultural, industrial and domestic purposes has increased the risk of freshwater contamination worldwide. Consequently, the demand for efficient new analytical tools for on-line and on-site water quality monitoring has become particularly urgent. In this study, a small-scale single chamber air-cathode microbial fuel cell (SCMFC), fabricated by rapid prototyping layer-by-layer 3D printing, was tested as a biosensor for continuous water quality monitoring. When acetate was fed as the rate-limiting substrate, the SCMFC acted as a sensor for chemical oxygen demand (COD) in water. The linear detection range was 3-164 ppm, with a sensitivity of 0.05 μA mM(-1) cm(-2) with respect to the anode total surface area. The response time was as fast as 2.8 min. At saturating acetate concentrations (COD>164 ppm), the miniature SCMFC could rapidly detect the presence of cadmium in water with high sensitivity (0.2 μg l(-1) cm(-2)) and a lower detection limit of only 1 μg l(-1). The biosensor dynamic range was 1-25 μg l(-1). Within this range of concentrations, cadmium affected only temporarily the electroactive biofilm at the anode. When the SCMFCs were again fed with fresh wastewater and no pollutant, the initial steady-state current was recovered within 12 min.
Collapse
Affiliation(s)
- Mirella Di Lorenzo
- University of Bath, Department of Chemical Engineering, Bath BA2 7AY, UK.
| | | | | | - Petra J Cameron
- University of Bath, Department of Chemistry, Bath BA2 7AY, UK
| | - Ioannis Ieropoulos
- Bristol Robotics Laboratory, University of the West of England, Bristol, UK
| |
Collapse
|
23
|
Wang X, Qu R, Wei Z, Yang X, Wang Z. Effect of water quality on mercury toxicity to Photobacterium phosphoreum: Model development and its application in natural waters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 104:231-238. [PMID: 24726934 DOI: 10.1016/j.ecoenv.2014.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
Mercury (Hg) compounds are widely distributed toxic environmental and industrial pollutants and they may bring danger to growth and development of aquatic organisms. The distribution of Hg species in the 3 percent NaCl solution was calculated using the chemical equilibrium model Visual MINTEQ, which demonstrated that Hg was mainly complexed by chlorides in the pH range 5.0-9.0 and the proportions of HgCl4(2-), HgCl3(-) and HgCl2(aq) reached to 95 percent of total Hg. Then the effects of cations (Ca(2+), Mg(2+), K(+) and H(+)), anions (HCO3(-), NO3(-), SO4(2-) and HPO4(2-)) and complexing agents (ethylene diamine tetraacetic acid (EDTA) and dissolved organic matter (DOM)) on Hg toxicity to Photobacterium phosphoreum were evaluated in standardized 15min acute toxicity tests. The significant increase of 6.3-fold in EC50 data with increasing pH was observed over the tested pH range of 5.0-8.0, which suggested the possible competition between hydroxyl and the negatively charged chloro-complex. By contrast, it was found that major cations (Ca(2+), Mg(2+) and K(+)) have little effect on Hg toxicity to P. phosphoreum. An interesting finding was that the addition of HPO4(2-) significantly increased Hg toxicity, which may imply that the addition of phosphate increased the soluble Hg-chloro complex species. Additions of complexing agents (EDTA and DOM) into the exposure water increased Hg bioavailability via complexation of Hg. Finally, a model which incorporated the effect of pH, HPO4(2-), HCO3(-), SO4(2-) and DOM on Hg toxicity was developed to predict acute Hg toxicity for P. phosphoreum, which may be a useful tool in setting realistic water quality criteria for different types of water.
Collapse
Affiliation(s)
- Xinghao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210026, Jiangsu, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210026, Jiangsu, PR China
| | - Zhongbo Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210026, Jiangsu, PR China
| | - Xi Yang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210026, Jiangsu, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210026, Jiangsu, PR China.
| |
Collapse
|