1
|
Nithya K, Anbuselvan N, Anbarasan R, Vasantha VS, Suresh D, Amali AJ. Impacting the Surface Chemistry of NiAu by Immobilizing on MgO/N-Rich Nanoporous Carbon Heterostructures for Boosting Catalytic Activities. Chempluschem 2024:e202400441. [PMID: 39185689 DOI: 10.1002/cplu.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 08/27/2024]
Abstract
Tuning the physical and chemical interaction between metal-metal' (M-M') and metal-support is an ideal way to realize enhanced catalytic activity of metal nanoparticles (NPs). As a proof of concept, herein we report the fabrication of nickel-gold (Ni-Au) alloy nanoparticles attached to N-doped nanoporous carbon (NPC) intervened with MgO (Ni73Au27@MgO-NPC), achieved through the impregnation of metal precursors into Schiff-base network polymer (SNP) framework along with Mg(OH)2 and pyrolysis at 800 °C in N2 atmosphere. With high stability and heterogeneity, the nickel rich Ni73Au27@MgO-NPC exhibited higher catalytic activities with turnover frequencies of 29,272 h-1 (hydrogenation of p-nitrophenol), 93,843 h-1 (degradation of methyl orange), and 2,218 h-1 (epoxidation of stilbene), compared to commercial 10 wt % Pd/C. Enhanced catalytic activity is correlated to the synchronized electron density enhancement in Au, by Ni and MgO/N-rich nanoporous carbon heterostructures, as evident from detailed X-ray photoelectron spectroscopic studies.
Collapse
Affiliation(s)
- Kesavan Nithya
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Tamil Nadu, 625 021, India
| | - Natarajan Anbuselvan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India
| | - Rajagopal Anbarasan
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Tamil Nadu, 625 021, India
| | - Vairathevar Sivasamy Vasantha
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Tamil Nadu, 625 021, India
| | - Devarajan Suresh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India
| | - Arlin Jose Amali
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Tamil Nadu, 625 021, India
| |
Collapse
|
2
|
El Sharkawy M, AL-Huqail AA, Aljuaid AM, Kamal N, Mahmoud E, Omara AED, El-Kader NA, Li J, Mahmoud NN, El Baroudy AA, Ghoneim AM, Ismail SM. Nano-Bioremediation of Arsenic and Its Effect on the Biological Activity and Growth of Maize Plants Grown in Highly Arsenic-Contaminated Soil. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1164. [PMID: 38998769 PMCID: PMC11242945 DOI: 10.3390/nano14131164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Arsenic (As)-contaminated soil reduces soil quality and leads to soil degradation, and traditional remediation strategies are expensive or typically produce hazardous by-products that have negative impacts on ecosystems. Therefore, this investigation attempts to assess the impact of As-tolerant bacterial isolates via a bacterial Rhizobim nepotum strain (B1), a bacterial Glutamicibacter halophytocola strain (B2), and MgO-NPs (N) and their combinations on the arsenic content, biological activity, and growth characteristics of maize plants cultivated in highly As-contaminated soil (300 mg As Kg-1). The results indicated that the spectroscopic characterization of MgO-NPs contained functional groups (e.g., Mg-O, OH, and Si-O-Si) and possessed a large surface area. Under As stress, its addition boosted the growth of plants, biomass, and chlorophyll levels while decreasing As uptake. Co-inoculation of R. nepotum and G. halophytocola had the highest significant values for chlorophyll content, soil organic matter (SOM), microbial biomass (MBC), dehydrogenase activity (DHA), and total number of bacteria compared to other treatments, which played an essential role in increasing maize growth. The addition of R. nepotum and G. halophytocola alone or in combination with MgO-NPs significantly decreased As uptake and increased the biological activity and growth characteristics of maize plants cultivated in highly arsenic-contaminated soil. Considering the results of this investigation, the combination of G. halophytocola with MgO-NPs can be used as a nanobioremediation strategy for remediating severely arsenic-contaminated soil and also improving the biological activity and growth parameters of maize plants.
Collapse
Affiliation(s)
- Mahmoud El Sharkawy
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China (J.L.)
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt; (N.K.); (A.A.E.B.)
| | - Arwa A. AL-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Alya M. Aljuaid
- Biology Department, College of Science and Humanities, Shaqra University, Shaqra 15571, Saudi Arabia
| | - Nourhan Kamal
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt; (N.K.); (A.A.E.B.)
| | - Esawy Mahmoud
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt; (N.K.); (A.A.E.B.)
| | - Alaa El-Dein Omara
- Agricultural Research Center, Department of Microbiology, Soils, Water and Environment Research Institute, Giza 12112, Egypt;
| | - Nasser Abd El-Kader
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt; (N.K.); (A.A.E.B.)
| | - Jian Li
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China (J.L.)
| | - Nashaat N. Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Ahmed A. El Baroudy
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt; (N.K.); (A.A.E.B.)
| | - Adel M. Ghoneim
- Agricultural Research Center, Field Crops Research Institute, Cairo 12619, Egypt
| | - Sahar Mohamed Ismail
- Soil Physics and Chemistry Department, Desert Research Center, Cairo 11753, Egypt;
| |
Collapse
|
3
|
Carneiro MA, Pintor AMA, Boaventura RAR, Botelho CMS. Arsenic and antimony desorption in water treatment processes: Scaling up challenges with emerging adsorbents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172602. [PMID: 38653411 DOI: 10.1016/j.scitotenv.2024.172602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The metalloids arsenic (As) and antimony (Sb) belong to the pnictogen group of the periodic table; they share many characteristics, including their toxic and carcinogenic properties; and rank as high-priority pollutants in the United States and the European Union. Adsorption is one of the most effective techniques for removing both elements and desorption, for further reuse, is a part of the process to make adsorption more sustainable and feasible. This review presents the current state of knowledge on arsenic and antimony desorption from exhausted adsorbents previously used in water treatment, that has been reported in the literature. The application of different types of eluents to desorb As and Sb and their desorption performance are described. The regeneration of saturated adsorbents and adsorbate recovery techniques are outlined, including the fate of spent media and possible alternatives for waste disposal of exhausted materials. Future research directions are discussed, as well as current issues including the lack of environmental impact analysis of emerging adsorbents.
Collapse
Affiliation(s)
- Mariko A Carneiro
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Ariana M A Pintor
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rui A R Boaventura
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cidália M S Botelho
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
4
|
Xu ZL, Xu DM, Li HX, Li HK, Fu RB. The longevity evaluation of multi-metal stabilization by MgO in Pb/Zn smelter-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28153-28165. [PMID: 38528219 DOI: 10.1007/s11356-024-32790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/01/2024] [Indexed: 03/27/2024]
Abstract
The re-mobilization risks of potentially toxic elements (PTEs) during stabilization deserve to be considered. In this study, artificial simulation evaluation methods based on the environmental stress of freeze-thaw (F-T), acidification and variable pH were conducted to assess the long-term effectiveness of PTEs stabilized by MgO in Pb/Zn smelter contaminated soils. Among common stabilizing materials, MgO was considered as the best remediation material, since PTEs bioavailability reduced by 55.48% for As, 19.58% for Cd, 10.57% for Cu, and 26.33% for Mn, respectively. The stabilization effects of PTEs by MgO were best at the dosage of 5 wt%, but these studied PTEs would re-mobilize after 30 times F-T cycles. Acid and base buffering capacity results indicated that the basicity of contaminated soils with MgO treatment reduced under F-T action, and the leached PTEs concentrations would exceed the safety limits of surface water quality standard in China (GB3838-2002) after acidification of 2325 years. No significant changes were found in the pH-dependent patterns of PTEs before and after F-T cycles. However, after F-T cycles, the leaching concentrations of PTEs increased due to the destruction of soil microstructure and the functionality of hydration products formed by MgO, as indicated by scanning electron microscopy (SEM) coupled with energydispersive Xray spectroscopy (EDS) results. Hence, these findings would provide beneficial references for soil remediation assessments of contaminated soils under multi-environmental stress.
Collapse
Affiliation(s)
- Ze-Lin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Da-Mao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Hai-Xuan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Hao-Kai Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Rong-Bing Fu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
- Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
5
|
Aktar S, Mia S, Makino T, Rahman MM, Rajapaksha AU. Arsenic removal from aqueous solution: A comprehensive synthesis with meta-data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160821. [PMID: 36509267 DOI: 10.1016/j.scitotenv.2022.160821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Removal of arsenic from drinking water is one of the most important global concerns. Among the various techniques, adsorptive removal of arsenic is considered as a viable most effective method. However, limited attention is given to understand the overall relative sorption capacity of different sorbents (e.g., biocomposite, biochar and nano-composite etc.) since various factors influence the sorption capacity. The aim of this study is to assess the effectiveness of various adsorbents with quantitative estimation (Langmuir adsorption maxima, Qmax) as well as to evaluate the influence of experimental conditions on the achievement of maximum adsorption. A number of analyses including meta-analysis, analysis of variance (ANOVA), scientometric and regression were performed. The results revealed that among the sorbents, nanoparticles show the greatest sorption capacity while pre-doped biochar performed the best among different biochars. Average across all sorbents, As (V) removal efficacy was higher than As (III). As expected, a high point of zero charge (PZC) and higher positive surface charge favored adsorption. The relative contribution of different mechanisms was also discussed. Our scientometric analyses revealed that, research should focus on the development of low-cost adsorbents and increase their reusability, safe disposal of adsorbed arsenic. Altogether, our findings provide a molecular understanding of arsenic sorption to different sorbents with implications for tailoring a good sorbent for arsenic removal from drinking water.
Collapse
Affiliation(s)
- Sanjida Aktar
- Department of Environmental Science, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Shamim Mia
- Department of Agronomy, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh.
| | - Tomoyuki Makino
- Graduate School of Agricultural Science, Tohoku University, Japan
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of General Educational Development, Faculty of Science & Information Technology, Daffodil International University, Ashulia, Savar, Dhaka 1207, Bangladesh
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Instrument Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
6
|
Din SU, Hussain B, Haq S, Imran M, Ahmad P, Khandaker MU, Rehman FU, Eldin SM, Mousa AAA, Khan I, Emran TB. Efficient Arsenate Decontamination from Water Using MgO-Itsit Biochar Composite: An Equilibrium, Kinetics and Thermodynamic Study. WATER 2022; 14:3559. [DOI: 10.3390/w14213559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
(1) Background: In this investigation, a composite of MgO nanoparticles with Itsit biochar (MgO-IBC) has been used to remove arsenate from contaminated water. The reduced adsorption capacity of biochar (IBC), due to loss of functionalities under pyrolysis, is compensated for with the composite MgO-IBC. (2) Methods: Batch scale adsorption experiments were conducted by using MgO-IBC as an adsorbent for the decontamination of arsenate from water. Functional groups, elemental composition, surface morphology, and crystallinity of the adsorbent were investigated by using FTIR, EDX, SEM and XRD techniques. The effect of pH on arsenate adsorption by MgO-IBC was evaluated in the pH range of 2 to 8, whereas the temperature effect was investigated in the range of 303 K to 323 K. (3) Results: Both pH and temperature were found to significantly influence the overall adsorption efficiency of MgO-IBC for arsenate adsorption with lower pH and higher temperature being suitable for higher arsenate adsorption. A kinetics study of arsenate adsorption confirmed an equilibrium time of 240 min and a pseudo-second-order model well-explained the kinetic adsorption data, whereas the Langmuir model best fitted with the equilibrium arsenate adsorption data. The spontaneity and the chemisorptive nature of arsenate adsorption was confirmed by enthalpy, entropy, and activation energy. Comparison of adsorbents in the literature with the current study indicates that MgO-IBC composite has better adsorption capacity for arsenate adsorption than several previously explored adsorbents. (4) Conclusions: The higher adsorption capacity of MgO-IBC confirms its suitability and efficient utilization for the removal of arsenate from water.
Collapse
|
7
|
Kamata A, Ueshima M, Sakanakura H, Miura T, Katoh M. The effects of redox conditions on arsenic re-release from excavated marine sedimentary rock with naturally suppressed arsenic release. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4157-4171. [PMID: 35022878 DOI: 10.1007/s10653-021-01178-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Massive quantities of marine sedimentary rock are excavated from urban coastal areas. The excavated rock often releases arsenic with concurrent oxidation of framboidal pyrite, but the arsenic release is naturally suppressed with subsequent atmospheric exposure. The present study evaluated the re-release of arsenic from excavated rock in which arsenic release has been naturally suppressed by the atmospheric exposure in the presence of sulfate ions under various redox conditions using the biological reduction method. The atmospheric exposure and subsequent batch leaching test revealed that the amount of arsenic release that was naturally suppressed corresponded to 1.2% of the total arsenic content. The sequential extraction analysis also showed that the arsenic in the exposed rock was altered to insoluble phases. We observed a re-release of 6.0-18.2% of the total arsenic content under reductive conditions (< + 70 mV of Eh), exceeding the amount of arsenic that was naturally suppressed, even in the presence of sulfate ions. The correlation in the amount of arsenic and iron re-released demonstrates that arsenic re-release under reductive conditions is mainly regulated by the iron dissolution up to 10 mg kg-1 even in the presence of sulfate ion. Further reduction and dissolution of iron did not cause further increase in the arsenic re-release. Therefore, excavated marine sedimentary rock should be reused under redox conditions in which iron is not reduced. Otherwise, treatments such as chemical immobilization should be performed.
Collapse
Affiliation(s)
- Akihide Kamata
- Department of Agricultural Chemistry, Graduate School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama, Kawasaki, Kanagawa, 214-8571, Japan
| | - Masato Ueshima
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
- Research and Development Center, Yoshino Gypsum Co. Ltd., 2-1-1 Kohoku, Adachi-ku, Tokyo, 123-0872, Japan
| | - Hirofumi Sakanakura
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Toshihiko Miura
- Technical Research Institute, Obayashi Corporation, 4-640 Shimokiyoto, Kiyose-shi, Tokyo, 204-8558, Japan
| | - Masahiko Katoh
- Department of Agricultural Chemistry, Graduate School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
8
|
Effects of Silicic Acid on Leaching Behavior of Arsenic from Spent Magnesium-Based Adsorbents Containing Arsenite. SUSTAINABILITY 2022. [DOI: 10.3390/su14074236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The spent adsorbents left after treating arsenic-contaminated water contain large amounts of arsenic. These spent adsorbents may come into contact with silicic acid leached from soil or cementitious solidification materials in the disposal environment. Thus, it is important to evaluate the effects of silicic acid on spent adsorbents containing arsenic. In this study, the effects of silicic acid on spent Mg-based adsorbents (magnesium oxide (MgO) and magnesium hydroxide (Mg(OH)2)) containing arsenite were investigated. The arsenic leaching ratios of both spent adsorbents decreased slightly with an increase in the initial silicic acid concentration of the eluent. The arsenic leaching ratio decreased from 1.24% to 0.69% for MgO and from 5.97% to 4.71% for Mg(OH)2 at an initial Si-normalized concentration of 100 mg/L. The primary mechanism behind the inhibition of arsenic leaching by silicic acid was determined to be the difficulty of arsenic desorption due to the coating effect following the adsorption of silicic acid species. The results indicate that the arsenic leaching related to the ion exchange reaction with silicic acid hardly occurred for the spent Mg-based adsorbents. Compared with various spent Mg-based and Ca-based adsorbents, the spent MgO adsorbent exhibited the highest environmental stability and best performance.
Collapse
|
9
|
Wang D, Zhi T, Liu L, Yan L, Yan W, Tang Y, He B, Hu L, Jing C, Jiang G. 3D printing of TiO 2 nano particles containing macrostructures for As(III) removal in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152754. [PMID: 34995588 DOI: 10.1016/j.scitotenv.2021.152754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Nanomaterials play a crucial role in various areas due to their extraordinary chemical and physical properties. Loading microscopic nanomaterials onto macrostructures is inevitable for their implementation from laboratory experiments to practical applications. Nevertheless, the geometries of conventional supporting structures are usually limited and nanomaterials are easy to be inhomogeneously distributed, aggregated, and lost. Therefore, controllably configuring nanomaterials into sophisticated three-dimensional macroscopic structures without sacrificing their inherent properties remains challenging. Here we utilize the advantages of 3D printing technology to realize this purpose. As a proof-of-concept, the application of 3D stereolithography printed macrostructures containing TiO2 nano particles (TiO2 NPs) for direct adsorption removal of As(III) in water was demonstrated. The morphology and distribution of TiO2 NPs mounted on printed macrostructures were initially characterized. Then batch adsorption experiments were conducted to investigate the effect of the 3D printing process, TiO2 NPs doped concentration and TiO2 NP size as well as adsorption kinetics and isotherms. We also demonstrated that 3D printed adsorption structures could be easily reused over 10 times and were effective for raw arsenic-polluted groundwater samples. Our findings show that 3D printing provides a promising route to design and fabricate customized macrostructures endowed with specific properties of nanomaterials.
Collapse
Affiliation(s)
- Dingyi Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tingting Zhi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Li Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yinyin Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China.
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
10
|
The Effect of Fe(II), Fe(III), Al(III), Ca(II) and Mg(II) on Electrocoagulation of As(V). WATER 2022. [DOI: 10.3390/w14020215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The interaction between metal chlorides and electrocoagulation was tested. Precipitation of As(V) was found to be optimal at pH 4.9 using FeCl2, 2.6 for FeCl3, 3.8 using AlCl3, 11.6 using CaCl2 and 8.6 using MgCl2. As(V) removal through electrocoagulation went down as initial pH (pHi) of the solution increased. Addition of FeCl2 increased removal of As(V) at all pHi but was not able to achieve full removal at pHi 7. FeCl3 had a similar effect but a lower Fe(III) concentration of 30 mg/L was not sufficient for full removal at pHi 5 either. AlCl3 addition reduced removal efficiency at pHi 3 but removed all or most As(V) through precipitation at pHi 5 and 7, with complete removal followed through electrocoagulation. The addition of CaCl2 and MgCl2 resulted in nearly identical behavior. Addition of either at pHi 3 had no influence, but at pHi 5 and 7 caused complete removal to take place.
Collapse
|
11
|
Effects of Silicic Acid on Leaching Behavior of Arsenic from Spent Calcium-Based Adsorbents with Arsenite. SUSTAINABILITY 2021. [DOI: 10.3390/su132312937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The spent adsorbents that remain after being used to purify As-contaminated water constitute waste containing a large amount of As. These spent adsorbents, after being disposed, are likely to come into contact with silicic acid leached from the soil or cementitious solidification materials. Thus, it is crucial the evaluate the effects of silicic acid on spent adsorbents. In this study, the effects of silicic acid on spent Ca-based (CaO and Ca(OH)2) adsorbents with arsenite were investigated. The As leaching ratio for the spent adsorbents decreased with an increase in the initial concentration of silicic acid in the liquid. Under the tested conditions, the As leaching ratio decreased from 8–9% to less than 0.7% in the presence of silicic acid at an initial Si-normalized concentration of 100 mg/L. The primary mechanism behind the inhibition of As leaching by silicic acid was determined to be re-immobilization via the incorporation of arsenite during the formation of calcium silicates. In the presence of silicic acid, spent Ca-based adsorbents with arsenite had a lower As leaching ratio than those with arsenate. Therefore, spent Ca-based adsorbents with arsenite were found to have a higher environmental stability than those with arsenate.
Collapse
|
12
|
Usman M, Katsoyiannis I, Rodrigues JH, Ernst M. Arsenate removal from drinking water using by-products from conventional iron oxyhydroxides production as adsorbents coupled with submerged microfiltration unit. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59063-59075. [PMID: 32277417 PMCID: PMC8541963 DOI: 10.1007/s11356-020-08327-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/04/2020] [Indexed: 06/02/2023]
Abstract
Arsenic is among the major drinking water contaminants affecting populations in many countries because it causes serious health problems on long-term exposure. Two low-cost micro-sized iron oxyhydroxide-based adsorbents (which are by-products of the industrial production process of granular adsorbents), namely, micro granular ferric hydroxide (μGFH) and micro tetravalent manganese feroxyhyte (μTMF), were applied in batch adsorption kinetic tests and submerged microfiltration membrane adsorption hybrid system (SMAHS) to remove pentavalent arsenic (As(V)) from modeled drinking water. The adsorbents media were characterized in terms of iron content, BET surface area, pore volume, and particle size. The results of adsorption kinetics show that initial adsorption rate of As(V) by μTMF is faster than μGFH. The SMAHS results revealed that hydraulic residence time of As(V) in the slurry reactor plays a critical role. At longer residence time, the achieved adsorption capacities at As(V) permeate concentration of 10 μg/L (WHO guideline value) are 0.95 and 1.04 μg/mg for μGFH and μTMF, respectively. At shorter residence time of ~ 3 h, μTMF was able to treat 1.4 times more volumes of arsenic-polluted water than μGFH under the optimized experimental conditions due to its fast kinetic behavior. The outcomes of this study confirm that micro-sized iron oyxhydroxides, by-products of conventional adsorbent production processes, can successfully be employed in the proposed hybrid water treatment system to achieve drinking water guideline value for arsenic, without considerable fouling of the porous membrane. Graphical abstract.
Collapse
Affiliation(s)
- Muhammad Usman
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173, Hamburg, Germany.
| | - Ioannis Katsoyiannis
- Department of Chemistry, Laboratory of Chemical and Environmental Technology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Josma Henna Rodrigues
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173, Hamburg, Germany
| | - Mathias Ernst
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173, Hamburg, Germany.
| |
Collapse
|
13
|
Ma S, Yang F, Chen X, Khor CM, Jung B, Iddya A, Sant G, Jassby D. Removal of As(III) by Electrically Conducting Ultrafiltration Membranes. WATER RESEARCH 2021; 204:117592. [PMID: 34469809 DOI: 10.1016/j.watres.2021.117592] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
As(III) species are the predominant form of arsenic found in groundwater. However, nanofiltration (NF) and reverse osmosis (RO) membranes are often unable to effectively reject As(III). In this study, we fabricate highly conducting ultrafiltration (UF) membranes for effective As(III) rejection. These membranes consist of a hydrophilic nickel-carbon nanotubes layer deposited on a UF support, and used as cathodes. Applying cathodic potentials significantly increased As(III) rejection in synthetic/real tap water, a result of locally elevated pH that is brought upon through water electrolysis at the membrane/water interface. The elevated pH conditions convert H3ASO3 to H2AsO3-/HAsO32- that are rejected by the negatively charged membranes. In addition, it was found that Mg(OH)2 that precipitates on the membrane can further trap arsenic. Importantly, almost all As(III) passing through the membranes is oxidized to As(V) by hydrogen peroxide produced on the cathode, which significantly decreased its overall toxicity and mobility. Although the high pH along the membrane surface led to mineral scaling, this scale could be partially removed by backwashing the membrane. To the best of our knowledge, this is the first report of effective As(III) removal using low-pressure membranes, with As(III) rejection higher than that achieved by NF and RO, and high water permeance.
Collapse
Affiliation(s)
- Shengcun Ma
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Fan Yang
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xin Chen
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States; Laboratory for the Chemistry of Construction Materials (LC2), University of California, Los Angeles, CA, United States; Institute for Carbon Management (ICM), University of California, Los Angeles, CA, United States
| | - Chia Miang Khor
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bongyeon Jung
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Arpita Iddya
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gaurav Sant
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States; Laboratory for the Chemistry of Construction Materials (LC2), University of California, Los Angeles, CA, United States; Institute for Carbon Management (ICM), University of California, Los Angeles, CA, United States; Department of Materials Science and Engineering, University of California, Los Angeles, CA, United States; California Nano systems Institute (CNSI), University of California, Los Angeles, CA, United States
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, United States; Institute for Carbon Management (ICM), University of California, Los Angeles, CA, United States.
| |
Collapse
|
14
|
Chen T, Wei Y, Yang W, Liu C. Highly efficient As(III) removal in water using millimeter-sized porous granular MgO-biochar with high adsorption capacity. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125822. [PMID: 34492784 DOI: 10.1016/j.jhazmat.2021.125822] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/27/2021] [Accepted: 04/04/2021] [Indexed: 06/13/2023]
Abstract
Biochar adsorbents for removing As(III) suffer from the problems of low adsorption capacity and ineffective removal. Herein, a granular MgO-embedded biochar (g-MgO-Bc) adsorbent is fabricated in the form of millimeter-sized particles through a simple gelation-calcination method using chitosan as biochar sources. High-density MgO nanoparticles are evenly dispersed throughout the biochar matrix and can be fully exposed to As(III) through the rich pores in g-MgO-Bc. These features endow the adsorbent with a high adsorption capacity of 249.1 mg/g for As(III). The g-MgO-Bc can efficiently remove As(III) over a wide pH of 3-10. The coexisting carbonate, nitrate, sulfate, silicate, and humic acid exert a negligible influence on As(III) removal. 300 μg/L of As(III) can be purified to far below 10 μg/L using only 0.3 g/L g-MgO-Bc. The spent g-MgO-Bc could be well regenerated by simple calcination. In fixed-bed column experiments, the effective treatment volume of As(III)-spiked groundwater achieves 1500 BV (30 L) (3 g of adsorbent, solution flow rate of 2.0 mL/min, C0 = 50 μg/L). The Mg(OH)2 generated in situ in g-MgO-Bc is responsible for the adsorption of As(III) through the inner-sphere complex mechanism. The work would extend the potential applicability of biochar adsorbent for As(III) removal to a great extent.
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Yuanfeng Wei
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Weijian Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
15
|
Yang M, Li PH, Chen SH, Xiao XY, Tang XH, Lin CH, Huang XJ, Liu WQ. Nanometal Oxides with Special Surface Physicochemical Properties to Promote Electrochemical Detection of Heavy Metal Ions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001035. [PMID: 32406188 DOI: 10.1002/smll.202001035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/26/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal ions (HMIs) are one of the major environmental pollution problems currently faced. To monitor and control HMIs, rapid and reliable detection is required. Electrochemical analysis is one of the promising methods for on-site detection and monitoring due to high sensitivity, short response time, etc. Recently, nanometal oxides with special surface physicochemical properties have been widely used as electrode modifiers to enhance sensitivity and selectivity for HMIs detection. In this work, recent advances in the electrochemical detection of HMIs using nanometal oxides, which are attributed to specific crystal facets and phases, surficial defects and vacancies, and oxidation state cycle, are comprehensively summarized and discussed in aspects of synthesis, characterization, electroanalysis application, and mechanism. Moreover, the challenges and opportunities for the development and application of nanometal oxides with functional surface physicochemical properties in electrochemical determination of HMIs are presented.
Collapse
Affiliation(s)
- Meng Yang
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Shi-Hua Chen
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Xiang-Yu Xiao
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Xiang-Hu Tang
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Chu-Hong Lin
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, and Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Wen-Qing Liu
- Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
16
|
Devi P, Kothari P, Dalai AK. Stabilization and solidification of arsenic and iron contaminated canola meal biochar using chemically modified phosphate binders. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121559. [PMID: 31732344 DOI: 10.1016/j.jhazmat.2019.121559] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/27/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Adsorption is a widely used process for removal of heavy metals, but the management of spent adsorbent containing concentrated amounts of heavy metals is a problem due to potential risk of groundwater contamination from leaching of heavy metals. Generally, cementitious binder and additives are used for stabilization and solidification treatment, however heavy metals tend to leach from such matrices. Therefore, this research investigated the effectiveness of chemically modified phosphate biochar (CMPB) composite for the simultaneous solidification and stabilization of arsenic (As) and iron (Fe) contaminated canola meal biochar. Results showed that the performance of spent biochar added CMPB composites was significantly better than the pure composites (without biochar) due to filling of inter-aggregate pores using biochar and availability of sufficient amount of MgKPO4 for binding of biochar particles. Moreover, leaching test and risk assessment studies indicated that there is no potential adverse effect as the concentrations of As and Fe in TCLP leachate were well below the Universal Treatment Standard (UTS) in optimized CMPB composites. In conclusion, chemically modified phosphate binders were found effective in stabilization and solidification of As and Fe contaminated biochar into thermodynamically stable material with high immobilization capacity and low leachability.
Collapse
Affiliation(s)
- Parmila Devi
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | - Prachi Kothari
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India
| | - Ajay K Dalai
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada.
| |
Collapse
|
17
|
Kalaitzidou K, Nikoletopoulos AA, Tsiftsakis N, Pinakidou F, Mitrakas M. Adsorption of Se(IV) and Se(VI) species by iron oxy-hydroxides: Effect of positive surface charge density. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:1197-1206. [PMID: 31412455 DOI: 10.1016/j.scitotenv.2019.06.174] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/20/2019] [Accepted: 06/11/2019] [Indexed: 05/26/2023]
Abstract
Batch and continuous mode experiments were used to determine the influence of physic-chemicals characteristics of iron oxy-hydroxides (FeOOHs) on selenium adsorption. Batch experiments and continuous flow rapid small-scale column tests (RSSCTs) at pH 7 and NSF (National Sanitation Foundation) water matrix, showed that the adsorption capacity of FeOOHs for Se(IV) is strongly related to positive surface charge density (PSCD), and gradually increases when synthesis pH is lowered. The highest PSCD value of 3.25 mmol [OH-]/g was observed at synthesis pH 2.5 (FeOOH/2.5) and the lowest, 0.45 mmol [OH-]/g, was observed at synthesis pH 9 (FeOOH/9). A thermodynamic study verified the endothermic (ΔΗ° 21.4 kJ/mol) chemisorption of Se(IV) by the qualified FeOOH/2.5. EXAFS data showed that Se(IV) is involved in three types of surface complexes: bidentate mononuclear edge-sharing (1E) and two types of binuclear inner-sphere (2C) linkage between the SeO32- pyramids, and Fe(O,OH)6 octahedra. The FeOOHs were evaluated by their adsorption capacity (Q10) at residual concentrations equal to the EU drinking water regulation limit of 10 μg/L, e.g. in conditions implemented in full-scale water treatment plants. The qualified FeOOH/2.5 was found to be the most effective for Se(IV) adsorption with a Q10 value 4.3 mg Se(IV)/g. In contrast, the Q10 value for Se(VI) was almost three orders of magnitude lower (10 μg Se(VI)/g) than that for Se(IV). Finally, regeneration experiments showed that FeOOHs reuse for Se(IV) removal is economically feasible and the recovery of selenium by precipitation as elemental Se contributes to green chemistry.
Collapse
Affiliation(s)
- Kyriaki Kalaitzidou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | | | - Nickolaos Tsiftsakis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Fani Pinakidou
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Manassis Mitrakas
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
18
|
Cusack PB, Callery O, Courtney R, Ujaczki É, O'Donoghue LMT, Healy MG. The use of rapid, small-scale column tests to determine the efficiency of bauxite residue as a low-cost adsorbent in the removal of dissolved reactive phosphorus from agricultural waters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:273-283. [PMID: 31009815 DOI: 10.1016/j.jenvman.2019.04.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/03/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Bauxite residue, the by-product produced in the alumina industry, is a potential low-cost adsorbent in the removal of phosphorus (P) from aqueous solution, due to its high composition of residual iron oxides such as hematite. Several studies have investigated the performance of bauxite residue in removing P; however, the majority have involved the use of laboratory "batch" tests, which may not accurately estimate its actual performance in filter systems. This study investigated the use of rapid, small-scale column tests to predict the dissolved reactive phosphorus (DRP) removal capacity of bauxite residue when treating two agricultural waters of low (forest run-off) and high (dairy soiled water) phosphorus content. Bauxite residue was successful in the removal of DRP from both waters, but was more efficient in treating the forest run-off. The estimated service time of the column media, based on the largest column studied, was 1.08 min g-1 media for the forest run-off and 0.28 min g-1 media for the dairy soiled water, before initial breakthrough time, which was taken to be when the column effluent reached approximately 5% of the influent concentration, occurred. Metal(loid) leaching from the bauxite residue, examined using ICP-OES, indicated that aluminium and iron were the dominant metals present in the treated effluent, both of which were above the EPA parametric values (0.2 mg L-1 for both Al and Fe) for drinking water.
Collapse
Affiliation(s)
- Patricia B Cusack
- Department of Biological Sciences, University of Limerick, Castletroy, Co. Limerick, Ireland; Civil Engineering, National University of Ireland, Galway, Ireland; The Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland
| | - Oisín Callery
- Earth and Ocean Sciences, National University of Ireland, Galway, Ireland
| | - Ronan Courtney
- Department of Biological Sciences, University of Limerick, Castletroy, Co. Limerick, Ireland; The Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland
| | - Éva Ujaczki
- The Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland; Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary; School of Engineering, University of Limerick, Castletroy, Co. Limerick, Ireland
| | - Lisa M T O'Donoghue
- School of Engineering, University of Limerick, Castletroy, Co. Limerick, Ireland
| | - Mark G Healy
- Civil Engineering, National University of Ireland, Galway, Ireland.
| |
Collapse
|
19
|
Fukushi K, Miyashita S, Kasama T, Takahashi Y, Morodome S. Superior removal of selenite by periclase during transformation to brucite under high-pH conditions. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:370-380. [PMID: 30865903 DOI: 10.1016/j.jhazmat.2019.02.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/04/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
The sorption of selenite (Se(IV)) at trace (sub-ppm) to high concentrations on periclase (MgO) under high-pH conditions (pH > 10) was examined by macroscopic sorption experiments and nanoscale solid phase analyses via transmission electron microscopy and X-ray absorption spectroscopy. The maximum distribution coefficient (Kd) of Se(IV) on MgO was 100 L/g, the highest among any reported mineral sorbents at pH > 10. Since MgO is a metastable phase under ambient conditions, it transforms instantaneously to brucite (Mg(OH)2) in solution. Se(IV) was preferentially and homogeneously distributed onto the newly formed Mg(OH)2. The Mg(OH)2 formed thin flake-like platelets, which appeared to be aggregates of nanoscale Mg(OH)2 particles, the primary alteration product of MgO. The chemical form of Se(VI) adsorbed on nanoscale particles was outer-sphere complexes. Therefore, the outer-spherically adsorbed Se(IV) was occluded into the large flake-like Mg(OH)2 particles, resulting in its effective isolation from the solution.
Collapse
Affiliation(s)
- Keisuke Fukushi
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan.
| | - Shun Miyashita
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Takeshi Kasama
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yoshio Takahashi
- Department of Earth and Planetary Sciences, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Shoji Morodome
- Kunimine Industries Co., Ltd., Chiyoda-ku, Tokyo 101-0032, Japan
| |
Collapse
|
20
|
Yue Y, Peng Z, Wang W, Cai Y, Tan F, Wang X, Qiao X. Facile preparation of MgO-loaded SiO2 nanocomposites for tetracycline removal from aqueous solution. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.02.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Bey S, Semghouni H, Criscuoli A, Benamor M, Drioli E, Figoli A. Extraction Kinetics of As(V) by Aliquat-336 Using Asymmetric PVDF Hollow-Fiber Membrane Contactors. MEMBRANES 2018; 8:membranes8030053. [PMID: 30072606 PMCID: PMC6161088 DOI: 10.3390/membranes8030053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 12/02/2022]
Abstract
This work focuses on the study of the mass transfer of arsenic(V) through asymmetric polyvinylidene fluoride hollow-fiber membrane contactors using Aliquat-336 as an extractant. In the first part of this work, the fibers were prepared and characterized by SEM and by determining their thickness and porosity. From SEM pictures, an asymmetric structure was obtained that was characterized by an inner sponge-like structure and outer finger-like structure with a pore radius and porosity about 0.11 µm and 80%, respectively. In the second part, the prepared fibers were used as membrane contactors for the study of mass transfer of arsenic(V), investigating the effect of several parameters such as pH, temperature, and initial concentration of the feed. The overall mass transfer coefficient of As(V) was around 6 × 10–6 cm/s.
Collapse
Affiliation(s)
- Said Bey
- Laboratoire des Procédés Membranaires et des Techniques de Séparation et de Récupération, Faculté de Technologie, Université de Bejaia, Béjaïa 06000, Algérie.
| | - Hassina Semghouni
- Institute on Membrane Technology (ITM-CNR), Via P.Bucci 17/C, 87030 Rende (CS), Italy.
| | - Alessandra Criscuoli
- Institute on Membrane Technology (ITM-CNR), Via P.Bucci 17/C, 87030 Rende (CS), Italy.
| | - Mohamed Benamor
- Laboratoire des Procédés Membranaires et des Techniques de Séparation et de Récupération, Faculté de Technologie, Université de Bejaia, Béjaïa 06000, Algérie.
| | - Enrico Drioli
- Institute on Membrane Technology (ITM-CNR), Via P.Bucci 17/C, 87030 Rende (CS), Italy.
| | - Alberto Figoli
- Institute on Membrane Technology (ITM-CNR), Via P.Bucci 17/C, 87030 Rende (CS), Italy.
| |
Collapse
|
22
|
Wu C, Tu J, Tian C, Geng J, Lin Z, Dang Z. Defective magnesium ferrite nano-platelets for the adsorption of As(V): The role of surface hydroxyl groups. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:11-19. [PMID: 29274533 DOI: 10.1016/j.envpol.2017.12.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
In this work, magnesium ferrite (MgFe2O4) nano-platelets with rich defects and abundant surface hydroxyl groups were synthesized, and used for the removal of low concentration As(V) in aqueous solution. Results from scanning electron microscopy (SEM) showed that the as-synthesized MgFe2O4 nano-platelets were consisted of many individual nanospheres. Rietveld refinement of X-ray diffraction (XRD) data indicated that the Mg2+ ions substituted the Fe3+ ions at both the octahedral and the tetrahedral sites of the crystal structure. Batch adsorption experiment showed that the equilibrium concentration of As(V) could be reduced down to 4.9 μg·L-1 when the initial concentration of As(V) is 1 mg·L-1, which complied with the drinking water standard of WHO (10 μg·L-1). The adsorption capacity of synthesized MgFe2O4 towards As(V) was higher than commonly used iron oxide adsorbents (Fe3O4, γ-Fe2O3 and α-Fe2O3). Mechanistic studies proved that the superior adsorption capacity was attributed to: (1) increased amount of surface hydroxyl groups that resulted from the surface defects. (2) formation of tridentate hexanuclear surface complexes instead of bidentate binuclear complexes, and (3) formation of excess Mg-OH surface hydroxyl groups and As-Mg monodentate mononuclear surface complexes. This work disclosed the correlation of the superior As(V) adsorption ability with the surface hydroxyl groups in defective MgFe2O4, and propose MgFe2O4 as a potential candidate for the remediation of As-contaminated water.
Collapse
Affiliation(s)
- Can Wu
- School of Environment and Energy, South China University of Technology, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China
| | - Jingwei Tu
- School of Environment and Energy, South China University of Technology, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China
| | - Chen Tian
- School of Environment and Energy, South China University of Technology, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China
| | - Junjie Geng
- School of Environment and Energy, South China University of Technology, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China.
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China
| |
Collapse
|
23
|
Liu B, Jian M, Wang H, Zhang G, Liu R, Zhang X, Qu J. Comparing adsorption of arsenic and antimony from single-solute and bi-solute aqueous systems onto ZIF-8. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.068] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Kameda K, Hashimoto Y, Ok YS. Stabilization of arsenic and lead by magnesium oxide (MgO) in different seawater concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:952-959. [PMID: 29122367 DOI: 10.1016/j.envpol.2017.09.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Ongoing sea level rise will have a major impact on mobility and migration of contaminants by changing a number of natural phenomena that alter geochemistry and hydrology of subsurface environment. In-situ immobilization techniques may be a promising remediation strategy for mitigating contaminant mobility induced by sea level rise. This study investigated the reaction mechanisms of magnesium oxide (MgO) with aqueous Pb and As under freshwater and seawater using XAFS spectroscopy. Initial concentrations of Pb and As in freshwater strongly controlled the characteristics of the reaction product of MgO. Our study revealed that i) the removal of aqueous Pb and As by MgO was increased by the elevation of seawater concentration, and ii) the removal of As was attributed primarily to (inner-sphere) surface adsorption on MgO, independent on seawater concentrations, and iii) the retention mechanism of Pb was dependent on seawater concentrations where formations of Pb oxides and adsorption on the MgO surface were predominant in solutions with low and high salinity, respectively. The release of As fixed with MgO significantly increased in seawater compared to freshwater, although the amount of As desorbed accounted for <0.2% of total As.
Collapse
Affiliation(s)
- Kentaro Kameda
- Department of Bioapplications and Systems Engineering, Tokyo University of Agriculture and Technology, Japan; Obayashi Corporation, Japan
| | - Yohey Hashimoto
- Department of Bioapplications and Systems Engineering, Tokyo University of Agriculture and Technology, Japan.
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Republic of Korea
| |
Collapse
|
25
|
Tresintsi S, Kokkinos E, Kamou A, Simeonidis K, Kyriakou G, Zouboulis A, Mitrakas M. One step preparation of ZnFe2O4/Zn5(OH)6(CO3)2 nanocomposite with improved As(V) removal capacity. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1413390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S. Tresintsi
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - E. Kokkinos
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A. Kamou
- Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - K. Simeonidis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - G. Kyriakou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A. Zouboulis
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - M. Mitrakas
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
26
|
Rathore VK, Mondal P. Stabilization of arsenic and fluoride bearing spent adsorbent in clay bricks: Preparation, characterization and leaching studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 200:160-169. [PMID: 28577453 DOI: 10.1016/j.jenvman.2017.05.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/20/2017] [Accepted: 05/26/2017] [Indexed: 05/12/2023]
Abstract
The presence of arsenic and fluoride in groundwater has been observed throughout the world. Many technologies have been developed by various research groups in order to tackle this problem. Adsorption has emerged as one of the best possible technique for the removal of arsenic, fluoride and many other pollutants from drinking water. Although a considerable amount of work has been published on the adsorptive removal of arsenic and fluoride, the area related to the management of spent adsorbent is not well explored. Present paper deals with the adsorptive removal of arsenic and fluoride from aqueous solution by three different types of adsorbents, namely, thermally treated laterite (TTL), acid-base treated laterite (ABTL) and aluminum oxide/hydroxide nanoparticles (AHNP). Under the experimental conditions in batch operation, the adsorption capacities of TTL, ABLT and AHNP for arsenic are found to be 6.43 μg/g, 9.25 μg/g and 48.5 μg/g respectively, whereas for fluoride, these values are found as 0.21 mg/g, 0.85 mg/g and 4.65 mg/g respectively. After adsorption, the spent adsorbents have been stabilized in the form of clay bricks. The effects of spent adsorbent concentration on the properties of bricks and their leaching properties are investigated. The bricks have been tested for various properties like density, percentage water absorption, shrinkage, compressive strength and efflorescence. The maximum values of density and shrinkage of the bricks formed are found as 2.3 g/cm3 and 10.2%, whereas the percentage water absorption and compressive strength of the bricks are found between 11 and 14% and 35 to 150 kgf/cm2 respectively. All the test results are in accordance with the criteria set by Indian Standards. The leaching test of arsenic and fluoride from the bricks reveals that their maximum values in leachate are 510 μg/L and 2.1 mg/L respectively, which are below the permissible limits of USEPA standards.
Collapse
Affiliation(s)
- Vineet Kumar Rathore
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| | - Prasenjit Mondal
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
27
|
Wang F, Jin F, Shen Z, Al-Tabbaa A. Three-year performance of in-situ mass stabilised contaminated site soils using MgO-bearing binders. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:302-307. [PMID: 27427896 DOI: 10.1016/j.jhazmat.2016.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
This paper provides physical and chemical performances of mass stabilised organic and inorganic contaminated site soils using a new group of MgO-bearing binders over 3 years and evaluated the time-dependent performance during the 3 years. This study took place at a contaminated site in Castleford, UK in 2011, where MgO, ground granulated blastfurnace slag (GGBS) and Portland cement (PC) were mixed with the contaminated soils in a dry form using the ALLU mass mixing equipment. Soil cores were retrieved 40-day, 1-year and 3-year after the treatment. The core quality, strength, and the leaching properties were determined via physical observation, unconfined compressive strength (UCS) and batch leaching tests. After 3-year treatment, the UCS values of ALLU mixes were in the range of 50-250kPa; the leachate concentrations of Cd, Pb, Cu and Zn (except Ni) in all mixes were lower than their drinking water standards; and the leachability of total organics was in the range of 10-105mg/L. No apparent degradation of the mass stabilised materials after 3 years' exposure to the field conditions was found. MgO-GGBS blends were found able to provide higher strength and less leachability of contaminants compared to PC and MgO-only mixes in mass stabilised soils.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing, 210096, China; Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK.
| | - Fei Jin
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK.
| | - Zhengtao Shen
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK.
| | - Abir Al-Tabbaa
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK.
| |
Collapse
|
28
|
AbdulRahman A, Latiff AAA, Daud Z, Ridzuan MB, D NFM, Jagaba A. Preparation and Characterization of Activated Cow Bone Powder for the Adsorption of Cadmium from Palm Oil Mill Effluent. ACTA ACUST UNITED AC 2016. [DOI: 10.1088/1757-899x/136/1/012045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Jin F, Wang F, Al-Tabbaa A. Three-year performance of in-situ solidified/stabilised soil using novel MgO-bearing binders. CHEMOSPHERE 2016; 144:681-688. [PMID: 26408974 DOI: 10.1016/j.chemosphere.2015.09.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/19/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
A new group of MgO-bearing binders has been developed recently which showed improved sustainability and technical performance compared to Portland cement (PC). However, the application of these MgO-bearing binders in the Solidification/Stabilisation (S/S) techniques is very limited. This study investigates the three-year performance of a highly contaminated soil treated by in-situ S/S using MgO-bearing binders and PC. The core quality, strength, permeability and the leaching properties of the S/S materials were evaluated. The effects of binder composition, addition of inorgano-organo-clay (IOC) and the grout content on the properties of the 3-y S/S materials are discussed. It is found that although MgO alone provided negligible strength to the soil, it is superior in immobilising both inorganic and organic contaminants. Replacing MgO by ground granulated blast-furnace slag (GGBS) significantly enhanced the strength while also performed well in immobilising the contaminants. The improved pH buffering capacity was attributed to the low solubilities of brucite and hydrotalcite-like phases formed in the MgO-bearing binders, and was also the reason for the improved performance in stabilising contaminants. The addition of IOC slightly decreased the strength and the permeability of the S/S materials but inconsistent effect on the contaminant immobilisation was found depending on the binder composition. This study showed no degradation of the S/S materials after 3 y exposure to field conditions and has proved the applicability and the advantages of MgO-bearing binders over PC in S/S.
Collapse
Affiliation(s)
- Fei Jin
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK.
| | - Fei Wang
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK
| | - Abir Al-Tabbaa
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK
| |
Collapse
|
30
|
Suzuki T, Nakahara F, Kawamoto T, Niinae M. Immobilization of arsenate in kaolinite by the addition of magnesium oxide: An experimental and modeling investigation. JOURNAL OF HAZARDOUS MATERIALS 2015; 300:680-687. [PMID: 26292055 DOI: 10.1016/j.jhazmat.2015.07.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 06/04/2023]
Abstract
MgO was chosen as an As(V) immobilization agent and a series of immobilization experiments was performed to obtain insights into the behavior of As(V) and MgO during leaching tests. Our experimental and modeling results demonstrated that As(V) immobilization by MgO consists of the following steps: (i) an increase in sample pH, (ii) desorption of As(V) from the samples, and (iii) the re-immobilization of As(V) by MgO/Mg(OH)2 particles. Regarding the behavior of MgO, the modeling results showed that when the MgO dosage was 25 mgMgO/4 g-drysample or less, the majority of MgO was used to increase pH, and less than 1% of MgO was used to sorb As(V), which was consistent with the result of leaching tests showing that a high level of As(V) was leached at the MgO dosages. On the other hand, when the MgO dosage was above 25 mgMgO/4 g-drysample, the percentage of MgO used for As(V) sorption increased up to 35%, and correspondingly, the As(V) leaching level decreased to below 0.01 mgAs/L at an MgO dosage of 75 mgMgO/4 g-drysample. Additionally, when the MgO dosage was 50 mgMgO/4 g-drysample or more, it was found that more than 40% of MgO remained as fresh MgO without undergoing chemical reactions.
Collapse
Affiliation(s)
- Tasuma Suzuki
- Department of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
| | - Fumiya Nakahara
- Department of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
| | - Takakuni Kawamoto
- Department of Sustainable Environmental Engineering, Faculty of Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
| | - Masakazu Niinae
- Department of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
| |
Collapse
|
31
|
Xiong C, Wang W, Tan F, Luo F, Chen J, Qiao X. Investigation on the efficiency and mechanism of Cd(II) and Pb(II) removal from aqueous solutions using MgO nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2015; 299:664-674. [PMID: 26280371 DOI: 10.1016/j.jhazmat.2015.08.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
In this study, the removal of Cd(II) and Pb(II) from aqueous solutions using MgO nanoparticles prepared by a simple sol-gel method was investigated. The efficiency of Cd(II) and Pb(II) removal was examined through batch adsorption experiments. For the single adsorption of Cd(II) and Pb(II), The adsorption kinetics and isotherm data obeyed well Pseudo-second-order and Langmuir models, indicating the monolayer chemisorption of heavy metal ions. The maximum adsorption capacities calculated by Langmuir equation were 2294 mg/g for Cd(II) and 2614 mg/g for Pb(II), respectively. The adsorption process was controlled simultaneously by external mass transfer and intraparticle diffusion. In the binary system, a competitive adsorption was observed, showing preference of adsorption followed Pb(II) >Cd(II). Significantly, the elution experiments confirmed that neither Cd(II) nor Pb(II) could be greatly desorbed after water washing even for five times. XRD and XPS measurements revealed the mechanism of Cd(II) and Pb(II) removal by MgO nanoparticles was mainly involved in precipitation and adsorption on the surface of MgO, resulting from the interaction between active sites of MgO and heavy metal ions. Easy preparation, remarkable removal efficiency and firmly adsorptive ability make the MgO nanoparticles to be an efficient material in the treatment of heavy metal-contaminated water.
Collapse
Affiliation(s)
- Chunmei Xiong
- State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Wei Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| | - Fatang Tan
- State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Fan Luo
- State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Jianguo Chen
- State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Xueliao Qiao
- State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| |
Collapse
|
32
|
Tresintsi S, Mitrakas M, Simeonidis K, Kostoglou M. Kinetic modeling of AS(III) and AS(V) adsorption by a novel tetravalent manganese feroxyhyte. J Colloid Interface Sci 2015; 460:1-7. [DOI: 10.1016/j.jcis.2015.07.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/23/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
|
33
|
Chaudhary BK, Farrell J. Understanding Regeneration of Arsenate-Loaded Ferric Hydroxide-Based Adsorbents. ENVIRONMENTAL ENGINEERING SCIENCE 2015; 32:353-360. [PMID: 25873779 PMCID: PMC4378614 DOI: 10.1089/ees.2014.0453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/15/2014] [Indexed: 05/28/2023]
Abstract
Adsorbents comprising ferric hydroxide loaded on a variety of support materials are commonly used to remove arsenic from potable water. Although several studies have investigated the effects of support properties on arsenic adsorption, there have been no investigations of their effects on adsorbent regeneration. Furthermore, the effect of regenerant solution composition and the kinetics of regeneration have not been investigated. This research investigated the effects of adsorbent and regenerant solution properties on the kinetics and efficiency of regeneration of arsenate-loaded ferric hydroxide-based adsorbents. Solutions containing only 0.10-5.0 M NaOH or 0.10-1.0 M NaCl, as well as solutions containing both compounds, were used as regenerants. On all media, >99% of arsenate was adsorbed through complexation with ferric hydroxide. Arsenate recovery was controlled by both equilibrium and kinetic limitations. Adsorbents containing support material with weak base anion-exchange functionality or no anion-exchange functionality could be regenerated with NaOH solutions alone. Regeneration of media containing strong base anion (SBA)-exchange functionality was greatly enhanced by addition of 0.10 M NaCl to the NaOH regenerant solutions. Adsorbed silica had a significant effect on NaOH regeneration of media containing type I SBA-exchange functionality, but on other media, adsorbed silica had little impact on regeneration. On all media, 5-25% of arsenate was resistant to desorption in 1.0 M NaOH solutions. However, the use of 2.5-5.0 M NaOH solutions significantly reduced the desorption-resistant fraction.
Collapse
Affiliation(s)
| | - James Farrell
- Corresponding author: Department of Chemical and Environmental Engineering, University of Arizona, 1133 E James E. Rogers Way, Room 108, Tucson, AZ 85721. Phone: (520) 621 2465; Fax: (520) 621 6048; E-mail:
| |
Collapse
|
34
|
Wang F, Wang H, Jin F, Al-Tabbaa A. The performance of blended conventional and novel binders in the in-situ stabilisation/solidification of a contaminated site soil. JOURNAL OF HAZARDOUS MATERIALS 2015; 285:46-52. [PMID: 25479144 DOI: 10.1016/j.jhazmat.2014.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
This paper presents an investigation of the effects of novel binders and pH values on the effectiveness of the in-situ stabilisation/solidification technique in treating heavy metals and organic contaminated soils after 1.5-year treatment. To evaluate the performance of different binders, made ground soils of SMiRT site, upto 5 m depth, were stabilised/solidified with the triple auger system and cores were taken for laboratory testing after treatment. Twenty four different binders were used including Portland cement (PC), ground granulated blastfurnace slag (GGBS), pulverised fuel ash (PFA), MgO and zeolite. Unconfined compressive strength (UCS), leachate pH and the leachability of heavy metals and total organics were applied to study the behaviours of binders in treating site soils. Under various contaminant level and binder level, the results show that UCS values were 22-3476 kPa, the leachability of the total organics was in the range of 22-241 mg/l and the heavy metals was in the range of 0.002-0.225 mg/l. In addition, the combination of GGBS and MgO at a ratio of 9:1 shows better immobilisation efficiency in treating heavy metals and organic contaminated soils after 1.5-year treatment, and the binding mechanisms under different binders were also discussed in this paper.
Collapse
Affiliation(s)
- Fei Wang
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| | - Hailing Wang
- College of Environment, Nanjing Tech University, Nanjing 210009, China.
| | - Fei Jin
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| | - Abir Al-Tabbaa
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| |
Collapse
|
35
|
Lescano M, Zalazar C, Brandi R. Arsenic removal from water employing a combined system: photooxidation and adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3865-3875. [PMID: 25273516 DOI: 10.1007/s11356-014-3280-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
A combined system employing photochemical oxidation (UV/H2O2) and adsorption for arsenic removal from water was designed and evaluated. In this work, a bench-scale photochemical annular reactor was developed being connected alternately to a pair of adsorption columns filled with titanium dioxide (TiO2) and granular ferric hydroxide (GFH). The experiences were performed by varying the relation of As concentration (As (III)/As (V) weight ratio) at constant hydrogen peroxide concentration and incident radiation. Experimental oxidation results were compared with theoretical predictions using an intrinsic kinetic model previously obtained. In addition, the effectiveness of the process was evaluated using a groundwater sample. The mathematical model of the entire system was developed. It could be used as an effective tool for the design and prediction of the behaviour of these types of systems. The combined technology is efficient and promising for arsenic removal to small and medium scale.
Collapse
Affiliation(s)
- Maia Lescano
- INTEC (UNL-CONICET), Güemes, 3450 3000, Santa Fe, Argentina
| | | | | |
Collapse
|
36
|
Ouzounis K, Katsoyiannis I, Zouboulis A, Mitrakas M. Is the Coagulation-Filtration Process with Fe(III) Efficient for As(III) Removal from Groundwaters? SEP SCI TECHNOL 2015. [DOI: 10.1080/01496395.2014.978470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Feng J, Zou L, Wang Y, Li B, He X, Fan Z, Ren Y, Lv Y, Zhang M, Chen D. Synthesis of high surface area, mesoporous MgO nanosheets with excellent adsorption capability for Ni(II) via a distillation treating. J Colloid Interface Sci 2015; 438:259-267. [DOI: 10.1016/j.jcis.2014.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
|