1
|
Beretta G, Sangalli M, Sezenna E, Tofalos AE, Franzetti A, Saponaro S. Microbial electrochemical Cr(VI) reduction in a soil continuous flow system. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:2033-2049. [PMID: 38953765 DOI: 10.1002/ieam.4972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Microbial electrochemical technologies represent innovative approaches to contaminated soil and groundwater remediation and provide a flexible framework for removing organic and inorganic contaminants by integrating electrochemical and biological techniques. To simulate in situ microbial electrochemical treatment of groundwater plumes, this study investigates Cr(VI) reduction within a bioelectrochemical continuous flow (BECF) system equipped with soil-buried electrodes, comparing it to abiotic and open-circuit controls. Continuous-flow systems were tested with two chromium-contaminated solutions (20-50 mg Cr(VI)/L). Additional nutrients, buffers, or organic substrates were introduced during the tests in the systems. With an initial Cr(VI) concentration of 20 mg/L, 1.00 mg Cr(VI)/(L day) bioelectrochemical removal rate in the BECF system was observed, corresponding to 99.5% removal within nine days. At the end of the test with 50 mg Cr(VI)/L (156 days), the residual Cr(VI) dissolved concentration was two orders of magnitude lower than that in the open circuit control, achieving 99.9% bioelectrochemical removal in the BECF. Bacteria belonging to the orders Solirubrobacteriales, Gaiellales, Bacillales, Gemmatimonadales, and Propionibacteriales characterized the bacterial communities identified in soil samples; differently, Burkholderiales, Mycobacteriales, Cytophagales, Rhizobiales, and Caulobacterales characterized the planktonic bacterial communities. The complexity of the microbial community structure suggests the involvement of different microorganisms and strategies in the bioelectrochemical removal of chromium. In the absence of organic carbon, microbial electrochemical removal of hexavalent chromium was found to be the most efficient way to remove Cr(VI), and it may represent an innovative and sustainable approach for soil and groundwater remediation. Integr Environ Assess Manag 2024;20:2033-2049. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Gabriele Beretta
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy
| | - Michela Sangalli
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy
| | - Elena Sezenna
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy
| | - Anna Espinoza Tofalos
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
- Environmental Research and Innovation (ERIN) Department, Institute of Science and Technology (LIST), Luxembourg, Luxembourg
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| | - Sabrina Saponaro
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
2
|
Liu T, Wei R, Li J, Xie W, Sun S, Deng T, Wang S, Tang Y, Lin Q, Ni Z, Qiu R. Fe (hydr)oxides and organic colloids mediate colloid-bound chromium mobilization in Cr(VI) contaminated paddy soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125045. [PMID: 39357552 DOI: 10.1016/j.envpol.2024.125045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
The association of chromium (Cr) with colloidal particles transport in contaminated sites can affect hexavalent chromium (Cr(VI)) migration and transformation, which is an important mechanism for Cr pollutants in soil and groundwater systems. Here, we investigated colloid and particle-bound Cr migration and transformation effects on rice Cr accumulation during different rice growth stages and different redox conditions in Cr(VI) contaminated soil by pot experiment. Results showed that 13-29% of soil Cr was water dispersible colloid-bound (100-1000 nm) form during rice growth. Using transmission electron microscopy - energy dispersion spectroscopy and asymmetric flow field - flow separation, we identified colloid-bound organic matter (OM) and iron (Fe), most likely in the form of Fe (hydr)oxides - clay composites, as the primary Cr carrier. Specifically, colloid-bound Cr was mainly associated with 125-350 nm soil particle size. Under different redox conditions, colloid- and nanoparticle-bound Cr concentration decreased with increasing nanoparticles zero-valent iron (nZVI) dose. Soil reoxidation promoted the colloid- and nanoparticle-bound Cr release due to the weakly crystalline Fe-(hydr)oxides reprecipitation. Further quantitative analysis showed that colloid-bound Cr concentrations were positively correlated with colloid-bound Mn concentrations during the whole rice growth soils. Most important of all, Cr content in rice grain was positively correlated with colloid-bound Cr significantly. This study provides a quantitative and size-resolved understanding of particle-bound Cr in paddy soils, highlighting the importance of colloid-bound Cr and Fe interactions in Cr geochemical cycle of paddy soil.
Collapse
Affiliation(s)
- Ting Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ran Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jingjing Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Weipeng Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Shengsheng Sun
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Tenghaobo Deng
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shizhong Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yetao Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
3
|
Guo Q, Yu D, Yang J, Zhao T, Yu D, Li L, Wang D. A novel sequential extraction method for the measurement of Cr(VI) and Cr(III) species distribution in soil: New insights into the chromium speciation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135864. [PMID: 39298968 DOI: 10.1016/j.jhazmat.2024.135864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
The distribution characteristics of Cr(VI) species in contaminated soil is crucial for soil remediation; however, there is currently a lack of methods for analysing anionic Cr(VI) species in soil. This study has developed a novel sequential extraction method for speciation of Cr(VI) and Cr(III). Besides extraction experiments, simulated chromium species were prepared to verify the presence of proposed chromium species. The results show that Cr(VI) species in soil can be categorized into water-soluble Cr(VI), electrostatically adsorbed Cr(VI), Cr(VI) specifically adsorbed by minerals containing exchangeable Ca2+, Cr(VI) specifically adsorbed by hydrous metal oxides, calcium chromate Cr(VI) and stable complexed adsorption Cr(VI). These Cr(VI) species can be selectively extracted by specific solutions through ion exchange or weak acid dissolution. The most stable Cr(VI) species is Cr(VI) complexed by hydrous iron oxides through bidentate ligand binding; only by dissolution of hydrous iron oxides can this Cr(VI) species be leached. The distribution of Cr(VI) species is closely linked to particular soil compositions including exchangeable Ca2+ and hydrous iron oxides which determinate the Cr(VI) adsorption in soil. Cr(III) species comprise Fe-Cr coprecipitate hydroxides Cr(III), Fe-Mn oxide-bound Cr(III), organic matter-bound Cr(III) and residual Cr(III). Their distribution depends on the types of reductants present in the soil.
Collapse
Affiliation(s)
- Qian Guo
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Dongmei Yu
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Jing Yang
- Jiangbei District Ecological Environment Monitoring Station, Chongqing Bureau of Ecology and Environment, Chongqing 400025, PR China
| | - Ting Zhao
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Dan Yu
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Lei Li
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, PR China.
| | - Duanjie Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
4
|
Yang D, Fang W, Zhang H, Sun H, Gu X, Chen H, Luo J. Effects of nZVI on the migration and availability of Cr(VI) in soils under simulated acid rain leaching conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134985. [PMID: 38908184 DOI: 10.1016/j.jhazmat.2024.134985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Hexavalent chromium, Cr(VI), is a ubiquitous toxic metal that can be reduced to Cr(III) by nano-zero-valent iron (nZVI). Finding out effects of continuous rainfall leaching on the Cr(VI) release and availability remains a problem, needing to be addressed. Whether the Cr(VI) reduction by nZVI and continuous rainfall leaching lead to localized heterogeneity in soil is unclear. Therefore, two in situ high-resolution (HR) techniques of the diffusive gradients in thin-films (DGT) and planar optode were combined with ex situ sampling experiments here. Results demonstrate that nZVI decreased Cr(VI) leaching by 5.60-8.50 % compared to control soils. DGT-measured concentrations of Cr(VI), CDGT-Cr(VI), ranged from 7.31 to 19.4 μg L-1 in the control soils, increasing with depth while CDGT-Cr(VI) in nZVI-treated soils (2.41-6.18 μg L-1) decreased or remained stable with depth. However, simulated acid-rain leaching increases CDGT-Cr(VI) by 1.61-fold in nZVI-treated soils, negatively affecting the remediation. DGT measurements in bulk soils using disc devices are better at capturing the change of Cr(VI) availability at different conditions, whereas 2D-HR DGT mappings did not characterize significant mobilization of Cr(VI) at the micro-scale. These findings emphasize the importance of monitoring Cr(VI) release and availability in remediated soil under acid-rain leaching conditions for effective environment management.
Collapse
Affiliation(s)
- Danxing Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Wen Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Haitao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Haiyi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China.
| |
Collapse
|
5
|
Hojabri S, Rajic L, Zhao Y, Alshawabkeh AN. Simulation of hexavalent chromium removal by electrocoagulation using iron anode in flow-through reactor. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135195. [PMID: 39018592 DOI: 10.1016/j.jhazmat.2024.135195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
An electrocoagulation (EC) model is developed for hexavalent chromium reduction and precipitation, using iron electrodes. Parallel removal mechanisms such as adsorption of chromium on ferrihydrite and direct reduction at the cathode is assumed negligible due to low concentration of Cr(VI). The reaction model presented for batch system represents species complexation, precipitation/dissolution, acid/base, and oxidation-reduction reactions. Batch reactor simulation is verified using experimental data obtained by Sarahney et al. (2012), where the effect of initial chromium concentration, pH, volumetric current density, and ionic strength is considered (Sarahney et al., 2012). The model couples multicomponent ionic transport in MATLAB with chemical reaction model in PHREEQC, as a widely used computational programming tool and a geochemical reaction simulator with comprehensive geochemistry databases. The suggested current density is 0.05-0.3mA/cm2 and the surface to volume ratio in batch reactor is considered 0.017 1/cm. Design parameters are presented for operation of a flow-through hexavalent chromium removal using electrocoagulation by iron electrode to treat Cr(VI) in range of 10-50 mg/L. The operational parameters for a flow-through EC reactor for Cr(VI) removal is suggested to follow [Formula: see text] .
Collapse
Affiliation(s)
- Shayan Hojabri
- Civil and Environmental Engineering, Northeastern University, Boston MA 02115, United States
| | - Ljiljana Rajic
- Elateq Inc., 240 Thatcher road, Amherst, MA 01003, United States
| | - Yuwei Zhao
- Biotechnology Development and Applications Group, APTIM, Lawrenceville NJ 08648, United States
| | - Akram N Alshawabkeh
- Civil and Environmental Engineering, Northeastern University, Boston MA 02115, United States.
| |
Collapse
|
6
|
Wang C, Sun Q, Yang Q, Wei H, Yang Y. Removal of hypertoxic Cr(VI) from water by polyaniline-coated ZIF-67-derived nitrogen-doped magnetic carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46038-46051. [PMID: 38981963 DOI: 10.1007/s11356-024-34209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Heavy metals are highly toxic and nonbiodegradable, posing a serious threat to the water environment and human beings. Therefore, it is crucial to develop a highly efficient adsorbent that is easy to recover and separate for the removal of heavy metals. In this paper, nitrogen-doped magnetic carbon (NC-67) was prepared by carbonization and hydrochloric acid treatment using cobalt-containing MOF (ZIF-67) as precursor. Then, polyaniline (PANI) was grown directly on NC-67 with high specific surface area by in situ polymerization to prepare polyaniline-coated nitrogen-doped magnetic carbon (NC-67@PANI), which was characterized by XRD, SEM, TEM and VSM, etc. and used for the removal of Cr(VI)from wastewater. The experimental results showed that the adsorption process of Cr(VI) by NC-67@PANI was spontaneous and endothermic, which conformed to the pseudo-second-order model and Freundlich adsorption isotherm model. Due to the synergistic effect of adsorption and reduction, the experimental adsorption capacity of NC-67@PANI for Cr(VI) was 410.2 mg/g. NC-67@PANI maintained a removal efficiency of 65.8% for Cr(VI) after five cycles. In addition, NC-67@PANI had good magnetism and was easy to separate under external magnetic field. The excellent adsorption capacity and easy separation characteristics of NC-67@PANI indicate that it is a promising adsorbent for Cr(VI) removal from wastewater.
Collapse
Affiliation(s)
- Changlong Wang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qian Sun
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qing Yang
- Monitoring Center for Estuary Ecological Environment of Dongying City Ecological Environment Bureau, Shandong Province, Dongying, 257200, P. R. China
| | - Huiying Wei
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yanzhao Yang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
| |
Collapse
|
7
|
Wang L, Jia B, Teng Z, Cao H, Miao Y, Guo H, Li T. Iron-based materials functionalized with carbon and phosphorus recovered from sludge enhanced the formation of stable minerals to passivate lead and chromium in wastewater and soil. CHEMOSPHERE 2024; 359:142340. [PMID: 38754487 DOI: 10.1016/j.chemosphere.2024.142340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
The bioaccumulation and toxicity of heavy metals are serious threats to human activities and ecological health. The exploitation of environmentally friendly passivated materials is major importance for the remediation of heavy metal contaminated soil. This research developed a new type of environmental functional material with a core-shell structure, which is an iron-based material functionalized with phosphorus and carbon from sludge for heavy metal pollution remediation. The results indicated that the C/P@Fe exhibits excellent heavy metal removal ability, and the maximum removal rates of the two heavy metals in simulated wastewater could reach 100% under optimum reaction conditions. It also effectively converts the labile Cr/Pb into the stable fraction after 28 days of incubation, which increased the maximum residual fraction percentage of Cr and Pb by 32.43% and 160% in soil. Further analysis found that the carbon layer wrapped around the iron base could improve the electron transport efficiency of reducing iron, phosphorus and ferrum could react with heavy metal ions to form stable minerals, such as FeCr2O4, FeO·Cr2O3, Pb5(PO4)3OH, PbCO3, 2PbCO3·Pb(OH)2 and PbS, after reacting with C/P@Fe. The study demonstrated that the Iron-based materials functionalized with carbon and phosphorus from sludge provided a more efficient way to remove heavy metals.
Collapse
Affiliation(s)
- Liyan Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Bojie Jia
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China; CAS Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green, Recycling for Strategic Metal Resources, Innovation Academy for Green Manufacture, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zedong Teng
- CAS Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green, Recycling for Strategic Metal Resources, Innovation Academy for Green Manufacture, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hao Cao
- CAS Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green, Recycling for Strategic Metal Resources, Innovation Academy for Green Manufacture, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Miao
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China; CAS Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green, Recycling for Strategic Metal Resources, Innovation Academy for Green Manufacture, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huiyuan Guo
- CAS Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green, Recycling for Strategic Metal Resources, Innovation Academy for Green Manufacture, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tinggang Li
- CAS Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green, Recycling for Strategic Metal Resources, Innovation Academy for Green Manufacture, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Rare Earths, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341119, China; State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Ran M, Lu Y, Ren Y, He L, Li J. Efficient reduction of Cr(VI) by guava (Psidium guajava) leaf extract and its mitigation effect on Cr toxicity in rice seedlings. J Environ Sci (China) 2024; 141:1-15. [PMID: 38408812 DOI: 10.1016/j.jes.2023.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 02/28/2024]
Abstract
Hexavalent chromium (Cr(VI)) is a toxic element that has negative impacts on crop growth and yield. Using plant extracts to convert toxic Cr(VI) into less toxic Cr(III) may be a more favorable option compared to chemical reducing agents. In this study, the potential effects and mechanisms of using an aqueous extract of Psidium guajava L. leaves (AEP) in reducing Cr(VI) toxicity in rice were comprehensively studied. Firstly, the reducing power of AEP for Cr(VI) was confirmed by the cyclic voltammetry combined with X-ray photoelectron spectroscopy (XPS) assays. The highest Cr(VI) reduction efficiency reached approximately 78% under 1.5 mg gallic acid equivalent (GAE)/mL of AEP and 10 mg/L Cr(VI) condition. Additionally, Cr(VI) stress had a significant inhibitory effect on rice growth. However, the exogenous application of AEP alleviated the growth inhibition and oxidative damage of rice under Cr(VI) stress by increasing the activity and level of enzymatic and non-enzymatic antioxidants. Furthermore, the addition of AEP restored the ultrastructure of root cells, promoted Cr adsorption onto root cell walls, and limited the translocation Cr to shoots. In shoots, AEP application also triggered the expression of specific genes involved in Cr defense and detoxification response, including photosynthesis pathways, antioxidant systems, flavonoids biosynthesis, and plant hormone signal transduction. These results suggest that AEP is an efficient reduction agent for Cr(VI), and exogenous application of AEP may be a promising strategy to mitigate the harm of Cr(VI) on rice, ultimately contributing to improved crop yield in Cr-contaminated environments.
Collapse
Affiliation(s)
- Maodi Ran
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yongqing Lu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yanzhen Ren
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Li He
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| |
Collapse
|
9
|
Luo Y, Pang J, Pan S, Wang J, Jiang X, Xu Q, Zhang H, Ruan C, Ren J, Zhang C, Shi J. Penicillium oxalicum SL2-enhanced nanoscale zero-valent iron effectively reduces Cr(VI) and shifts soil microbiota. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134058. [PMID: 38508106 DOI: 10.1016/j.jhazmat.2024.134058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/27/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Most current researches focus solely on reducing soil chromium availability. It is difficult to reduce soil Cr(VI) concentration below 5.0 mg kg-1 using single remediation technology. This study introduced a sustainable soil Cr(VI) reduction and stabilization system, Penicillium oxalicum SL2-nanoscale zero-valent iron (nZVI), and investigated its effect on Cr(VI) reduction efficiency and microbial ecology. Results showed that P. oxalicum SL2-nZVI effectively reduced soil total Cr(VI) concentration from 187.1 to 3.4 mg kg-1 within 180 d, and remained relatively stable at 360 d. The growth curve of P. oxalicum SL2 and microbial community results indicated that γ-ray irradiation shortened the adaptation time of P. oxalicum SL2 and facilitated its colonization in soil. P. oxalicum SL2 colonization activated nZVI and its derivatives, and increased soil iron bioavailability. After restoration, the negative effect of Cr(VI) on soil microorganisms was markedly alleviated. Cr(VI), Fe(II), bioavailable Cr/Fe, Eh, EC and urease (SUE) were the key environmental factors of soil microbiota. Notably, Penicillium significantly stimulated the growth of urease-positive bacteria, Arthrobacter, Pseudarthrobacter, and Microvirga, synergistically reducing soil chromium availability. The combination of P. oxalicum SL2 and nZVI is expected to form a green, economical and long-lasting Cr(VI) reduction stabilization strategy.
Collapse
Affiliation(s)
- Yating Luo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Soil Contamination Bioremediation, College of Environment and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jingli Pang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyi Pan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Jiang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiao Xu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 China
| | - Haonan Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chendao Ruan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiayu Ren
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chun Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Wu H, Wang R, Ma Y, Zhang TC, Yu Y, Lan J, Du Y. Changes of MRGs and ARGs in Acinetobacter sp. SL-1 used for treatment of Cr(VI)-contaminated wastewater with waste molasses as carbon source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170770. [PMID: 38340823 DOI: 10.1016/j.scitotenv.2024.170770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Antibiotic resistance genes (ARGs) may be synergistic selected during bio-treatment of chromium-containing wastewater and causing environmental risks through horizontal transfer. This research explored the impact of self-screening bacterium Acinetobacter sp. SL-1 on the treatment of chromium-containing wastewater under varying environmental conditions. The findings indicated that the optimal Cr(VI) removal conditions were an anaerobic environment, 30 °C temperature, 5 g/L waste molasses, 100 mg/L Cr(VI), pH = 7, and a reaction time of 168 h. Under these conditions, the removal of Cr(VI) reached 99.10 %, however, it also developed cross-resistance to tetracycline, gentamicin, clarithromycin, ofloxacin following exposure to Cr(VI). When decrease Cr(VI) concentration to 50 mg/L at pH of 9 with waste molasses as carbon source, the expression of ARGs was down regulated, which decreased the horizontal transfer possibility of ARGs and minimized the potential environmental pollution risk caused by ARGs. The study ultimately emphasized that the treatment of chromium-containing wastewater with waste molasses in conjunction with SL-1 not only effectively eliminates hexavalent chromium but also mitigates the risk of environmental pollution.
Collapse
Affiliation(s)
- Hui Wu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South Central Minzu University, Wuhan 430074, PR China
| | - Rongxiao Wang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South Central Minzu University, Wuhan 430074, PR China
| | - Yanping Ma
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South Central Minzu University, Wuhan 430074, PR China
| | - Tian C Zhang
- Civil and Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| | - Yexing Yu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South Central Minzu University, Wuhan 430074, PR China
| | - Jirong Lan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Yaguang Du
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
11
|
Zhao R, Zhang X, Zhou Y, Li J, Guo B, Oyama K, Tokoro C. Influence of elevated temperature on the species and mobility of chromium in ferrous sulfate-amended contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120457. [PMID: 38503231 DOI: 10.1016/j.jenvman.2024.120457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/22/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024]
Abstract
Ferrous sulfate (FeSO4) combined with acid pretreatment is usually employed to remediate contaminated soils containing Cr(VI). However, the long-term efficiency of this stabilization method is important for its sustainability. In this study, a gradient temperature-elevating exposure test was employed to investigate the stability of Cr in FeSO4-remediated soil when exposed to elevated temperatures (40 °C, 120 °C, and 500 °C), possibly caused by hot weather and/or wildfires. The results of chemical extraction and X-ray absorption near edge structure spectroscopy (XANES) showed that the Cr(VI) in contaminated soil was successfully transformed to Cr(III) after stabilization, resulting in the dramatic decrease of water-leachable Cr(VI). The stabilization efficiency was further improved under 40 °C treatment after 30 days. Subsequently, the 120 °C treatment (7 days) had relatively little effect on the Cr speciation and mobility in soils. However, even one day of 500 °C calcination resulted in the deterioration of stabilization efficiency, and the water-leachable Cr(VI) re-increased and became higher than the Chinese environmental standards (total Cr 15 mg/L, Cr(VI) 5 mg/L) for the classification of hazardous solid wastes. XANES results reflected that heating at 500 °C facilitate the formation of Cr2O3, which was mainly caused by thermal decomposition and dehydration of Cr(OH)3 in the soil. Besides, the transformation of Cr species resulted in the enhanced association of Cr with the most stable residual fraction (88.3%-91.6%) in soil. Based on chemical extraction results, it was suggested that the oxidation of Cr(III) to Cr(VI) contributed to the re-increased mobility of Cr(VI) in soil. However, the XANES results showed that almost no significant re-oxidization of Cr(III) to Cr(VI) happened after heating at 500 °C, which was probably caused by XANES linear combination fits (LCF) uncertainties. Moreover, the changes in soil properties, including a rise in pH to a slightly alkaline range and/or the decomposition of organic matter, possibly contributed to the enhanced mobility of Cr(VI) in soil. This study contributes to clarifying the mobility and transformation of Cr in contaminated soils and provides a support for the sustainable management of remediated soils.
Collapse
Affiliation(s)
- Ruolin Zhao
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China
| | - Xinqing Zhang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China
| | - Yiwen Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong province, 510650, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong province, 510650, China.
| | - Binglin Guo
- School of Civil Engineering, Hefei University of Technology, Hefei, Anhui province, 230009, China.
| | - Keishi Oyama
- Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Chiharu Tokoro
- Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan; Faculty of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| |
Collapse
|
12
|
Liu J, Sun S, Zhang H, Kong Q, Li Q, Yao X. Remediation materials for the immobilization of hexavalent chromium in contaminated soil: Preparation, applications, and mechanisms. ENVIRONMENTAL RESEARCH 2023; 237:116918. [PMID: 37611786 DOI: 10.1016/j.envres.2023.116918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/01/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Hexavalent chromium is a toxic metal that can induce severe chromium contamination of soil, posing a potential risk to human health and ecosystems. In recent years, the immobilization of Cr(VI) using remediation materials including inorganic materials, organic materials, microbial agents, and composites has exhibited great potential in remediating Cr(VI)-contaminated soil owing to the environmental-friendliness, short period, simple operation, low cost, applicability on an industrial scale, and high efficiency of these materials. Therefore, a systematical summary of the current progress on various remediation materials is essential. This work introduces the production (sources) of remediation materials and examines their characteristics in detail. Additionally, a critical summary of recent research on the utilization of remediation materials for the stabilization of Cr(VI) in the soil is provided, together with an evaluation of their remediation efficiencies toward Cr(VI). The influences of remediation material applications on soil physicochemical properties, microbial community structure, and plant growth are summarized. The immobilization mechanisms of remediation materials toward Cr(VI) in the soil are illuminated. Importantly, this study evaluates the feasibility of each remediation material application for Cr(VI) remediation. The latest knowledge on the development of remediation materials for the immobilization of Cr(VI) in the soil is also presented. Overall, this review will provide a reference for the development of remediation materials and their application in remediating Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Jiwei Liu
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Shuyu Sun
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China; Dongying Institute, Shandong Normal University, Dongying, Shandong, 257092, China
| | - Qian Li
- School of Modern Agriculture and Environment, Weifang Institute of Technology, Weifang, Shandong, 261000, China
| | - Xudong Yao
- Project Department, Shandong Luqiao Detection Technology Co., Ltd., Rizhao, Shandong, 276800, China
| |
Collapse
|
13
|
Xu R, Wang YN, Li S, Sun Y, Gao Y, Guo L, Wang H. Effective Cr(VI) reduction and immobilization in chromite ore processing residue (COPR) contaminated soils by ferrous sulfate and digestate: A comparative investigation with typical reducing agents. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115522. [PMID: 37769582 DOI: 10.1016/j.ecoenv.2023.115522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/30/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Chemical reduction combined with microbial stabilization is a green and efficient method for the remediation of hexavalent chromium (Cr(VI)) contaminated soil. In this study, the combination of ferrous sulfate with kitchen waste digestate was applied to reduce and immobilize Cr(VI) in chromite ore processing residue (COPR) contaminated soils, and systematically evaluated the remediation performance of Cr(VI) compared with several typical reducing agents (i.e., ferrous sulfate, zero valent iron, sodium thiosulfate, ferrous sulfide, and calcium polysulfide). The results showed that the combination of ferrous sulfate and digestate had superior advantages of a lower dosage of reducing agent and a long-term remediation effect compared to other single chemical reductants. Under an Fe(II):Cr(VI) molar ratio of 3:1% and 4% digestate (wt), the content of Cr(VI) in the soil decreased to 5.07 mg/kg after 60 days of remediation. Meanwhile, the leaching concentrations of Cr(VI) were below detection limit, which can meet the hazardous waste toxicity leaching standard. The risk level of Cr pollution was decreased from very high risk to low risk. The X-ray photoelectron spectroscopy (XPS) results further demonstrated that the combined treatments were beneficial to Cr(VI) reduction and stabilization. The abundance of bacteria with Cr(VI) reducing ability was higher than other treatments. Moreover, the high abundance of carbon and nitrogen metabolism in the combined treatments demonstrated that the addition of digestate was beneficial to the recovery and flourishing of Cr(VI)-reducing related microorganisms in COPR contaminated soils. This work provided an alternative way on Cr(VI) remediation in COPR contaminated soils.
Collapse
Affiliation(s)
- Rong Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Ya-Nan Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Shupeng Li
- Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, China; National Engineering Laboratory for Safety Remediation of Contaminated Sites, Beijing 100015, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Ying Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Lili Guo
- Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, China; National Engineering Laboratory for Safety Remediation of Contaminated Sites, Beijing 100015, China
| | - Huawei Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| |
Collapse
|
14
|
He C, Ding Y, Li C, Yan W, Mao A, Wei S, Li M. Cost-effective core@shell structured zero-valent iron nanoparticles @ magnetic (nZVI@Fe 3O 4) for Cr(vi) removal from aqueous solutions: preparation by disproportionation of Fe(ii). RSC Adv 2023; 13:26983-26994. [PMID: 37692341 PMCID: PMC10485737 DOI: 10.1039/d3ra03133k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/06/2023] [Indexed: 09/12/2023] Open
Abstract
Nanoscale zero-valent iron (nZVI) and its composites are known for their excellent ability to remove Cr(vi), but their preparation can be expensive due to the reduction processes. This study presents a cost-effective method to prepare core@shell structured nZVI@Fe3O4 nanocomposites using a novel Fe(ii) disproportionation reaction. The nZVI@Fe3O4 was thoroughly characterized using various techniques, including FESEM, HRTEM, EDS, XPS, XRD, FTIR, and VSM. Batch experiments were performed to evaluate the removal efficiency of nZVI@Fe3O4 in eliminating Cr(vi) ions from aqueous solutions, while classical models were employed to investigate the influencing factors associated with the removal process. The results showed that a 0.7 mg per ml NaOH solution reacted with Fe(ii) at 150 °C for 0.5 h could be used to prepare nZVI@Fe3O4 composites efficiently and inexpensively. nZVI@Fe3O4 was able to remove more than 99% of Cr(vi) from both simulated Cr(vi) solutions and real electroplating wastewater, and the recovery and preparation could be easily performed using external magnets to separate it from the solution. At pH 6.0, the maximum adsorption capacity (qmax) for Cr(vi) reached 58.67 mg g-1. The reaction mechanism was discussed from the perspective of electron transfer. Overall, the results suggest that nZVI@Fe3O4, an efficient adsorbent prepared using an environmentally friendly and inexpensive Fe(ii) disproportionation reaction, is a promising option for the treatment of Cr(vi) from industrial wastewater and other contaminated water sources.
Collapse
Affiliation(s)
- Chuan He
- College of Metallurgical Engineering, Anhui University of Technology Ma'anshan 243000 China
- Jiuquan Vocational and Technical College Jiuquan 735000 China
| | - Yarong Ding
- College of Metallurgical Engineering, Anhui University of Technology Ma'anshan 243000 China
| | - Canhua Li
- College of Metallurgical Engineering, Anhui University of Technology Ma'anshan 243000 China
- Xuancheng Industrial Technology Research Institute, Anhui University of Technology Xuancheng 242002 China
| | - Wang Yan
- Jiuquan Vocational and Technical College Jiuquan 735000 China
| | - Aiqin Mao
- School of Materials Science and Engineering, Anhui University of Technology Ma'anshan 243000 China
| | - Shuxian Wei
- College of Metallurgical Engineering, Anhui University of Technology Ma'anshan 243000 China
| | - Minghui Li
- College of Metallurgical Engineering, Anhui University of Technology Ma'anshan 243000 China
| |
Collapse
|
15
|
Das PK, Das BP, Das BK, Dash P. Rhizospheric soil chromium toxicity and its remediation using plant hyperaccumulators. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:193-207. [PMID: 37417937 DOI: 10.1080/15226514.2023.2231572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The hyper-accumulation of chromium in its hexavalent form is treated as a hazardous soil pollutant at industrial and mining sites. Excessive accumulation of Cr6+ in soil threatens the environmental health and safety of living organisms. Out of two stable forms of chromium, Cr6+ is highly responsible for ecotoxicity. The expression of the high toxicity of Cr6+ at low concentrations in the soil environment indicates its lethality. It is usually released into the soil during various socio-economic activities. Sustainable remediation of Cr6+ contaminated soil is of utmost need and can be carried out by employing suitable plant hyperaccumulators. Alongside the plant's ability to sequester toxic metals like Cr6+, the rhizospheric soil parameters play a significant role in this technique and are mostly overlooked. Here we review the application of a cost-effective and eco-friendly remediation technology at hyperaccumulators rhizosphere to minimize the Cr6+ led soil toxicity. The use of selected plant species along with effective rhizospheric activities has been suggested as a technique to reduce Cr6+ toxicity on soil and its associated biota. This soil rectification approach may prove to be sustainable and advantageous over other possible techniques. Further, it may open up new solutions for soil Cr6+ management at polluted sites.
Collapse
Affiliation(s)
- Pratyush Kumar Das
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Bidyut Prava Das
- Department of Botany, Rama Devi Women's University, Bhubaneswar, Odisha, India
| | - Bikash Kumar Das
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Patitapaban Dash
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
16
|
Yu H, Zhu H, Zhang D, Wang X. Understanding and eliminating the reductant interference on Chromium VI measurement with USEPA method 3060A. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163192. [PMID: 37003340 DOI: 10.1016/j.scitotenv.2023.163192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Excessive reductants are used in engineering to ensure a reliable remediation effect of chromite ore processing residue (COPR), however, re-yellowing phenomenon of remediated COPR occurs after some time though the Cr(VI) content meets regulatory requirements after curing period. This problem is due to a negative bias on Cr(VI) determination using USEPA method 3060A. To address this issue, this study tried to reveal the interference mechanisms and proposed two methods to amend the bias. Results of ion concentrations, UV-Vis spectrum, XRD, and XPS together showed that Cr(VI) was reduced by ions (Fe2+, S52-) in the digestion stage of USEPA method 3060A, and as a result, method 7196A would not reflect the true Cr(VI) concentration. The interference on Cr(VI) determination generated by excess reductants mainly occurs during the curing period of remediated COPR, but it decreases over time as reductants being oxidized gradually by the air. Compared with the thermal oxidation, the chemical oxidation with K2S2O8 prior to alkaline digestion performs better to eliminate the masking effect brought by excess reductants. This study provides an approach on how to accurately determine the Cr(VI) concentration in the remediated COPR. It might be helpful to reduce the occurrence possibility of re-yellowing phenomenon.
Collapse
Affiliation(s)
- Huilin Yu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Danfeng Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Xingrun Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
17
|
Ma Q, Chen J, Li W, Wu N. Studying the Properties of Chromium-Contaminated Soil Solidified by Polyurethane. Polymers (Basel) 2023; 15:polym15092118. [PMID: 37177264 PMCID: PMC10181012 DOI: 10.3390/polym15092118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The solidification of chromium-contaminated soil using polyurethane (PU) was systematically investigated. The unconfined compression test was conducted to investigate the effects of the curing time, PU dosage and the content of chromium ions on the unconfined compressive strength (UCS) of chromium-contaminated soil. The effect of the PU dosage on the pore structure was investigated using nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM), and the mechanism of strength change was revealed by combining the strength law with the pore structure development law. In addition, the ability of the PU to solidify the chromium-contaminated soil was studied by the toxicity characteristic leaching procedure (TCLP). According to the above test results, the UCS and the ability of the PU to solidify the chromium ions increased with the increase in curing time. The NMR tests showed that with the increase in PU dosage, the porosity decreased and the soil became more compact, hence increasing the strength. When the chromium ion content was 2000 mg/kg and the PU dosage was 8%, the strength of the sample was 0.37 MPa after curing for 24 h, which met the requirement of 0.35 MPa set by the U.S. Environmental Protection Agency. Consequently, PU is a solidification agent with high-early strength.
Collapse
Affiliation(s)
- Qiang Ma
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Junjie Chen
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Wentao Li
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Nianze Wu
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
18
|
Zhang X, Li Q, Nie K, Cao K, Liao Q, Si M, Yang Z, Yang W. Synergistic effect of sulfidated nano zerovalent iron and proton-buffering montmorillonite in reductive immobilization of alkaline Cr(VI)-contaminated soil. CHEMOSPHERE 2023; 321:138132. [PMID: 36780997 DOI: 10.1016/j.chemosphere.2023.138132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Effective remediation of Cr(VI)-contaminated soil with strong alkalinity and high Cr(VI) concentration is a severe challenge. Herein, a proton-buffering montmorillonite-supported sulfidated nano zerovalent iron (nFeS/Fe0@H-Mt) was developed for remediation of alkaline Cr(VI)-contaminated soil. The reductive efficiencies of water-soluble Cr(VI) reached 99.7%, 99.3% and 99.8% in three tested soils with initial concentrations of 439.6, 3307.5 and 4626.7 mg kg-1, respectively, after 15 d of nFeS/Fe0@H-Mt treatment. Further speciation analyses demonstrated most available Cr species (exchangeable and carbonate-bound Cr) were transformed into more stable Cr species. The leachable Cr(VI) and total Cr obtained by toxicity leaching procedures decreased to extremely low levels and maintained long-term stability for 120 d. Such superior reductive immobilization performance of FeS/Fe0@H-Mt was attributed to the synergistic effect of sulfidated nano zerovalent iron and proton-buffering montmorillonite, which induced the coordination of proton donation and electron transfer. The proton-buffering montmorillonite (H-Mt) could prevent the aggregation of nanoparticles and provide protons to accelerate the corrosion of Fe0. In addition, the FeS component improved electron selectivity and facilitated electron transfer of Fe0 to Cr(VI). Our study demonstrated that the coordination of proton donation and electron transfer significantly enhanced the Cr(VI) reduction under the alkaline condition thus leading to effective remediation of alkaline Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China
| | - Qi Li
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China
| | - Kai Nie
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China
| | - Kaiting Cao
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China
| | - Qi Liao
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China
| | - Mengying Si
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China
| | - Zhihui Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Weichun Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China.
| |
Collapse
|
19
|
Xu R, Wang YN, Sun Y, Wang H, Gao Y, Li S, Guo L, Gao L. External sodium acetate improved Cr(VI) stabilization in a Cr-spiked soil during chemical-microbial reduction processes: Insights into Cr(VI) reduction performance, microbial community and metabolic functions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114566. [PMID: 36680991 DOI: 10.1016/j.ecoenv.2023.114566] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Interest combined chemical and microbial reduction for Cr(VI) remediation in contaminated sites has greatly increased. However, the effect of external carbon sources on Cr(VI) reduction during chemical-microbial reduction processes has not been studied. Therefore, in this study, the role of external sodium acetate (SA) in improving Cr(VI) reduction and stabilization in a representative Cr(VI)-spiked soils was systemically investigated. The results of batch experiments suggested that the soil Cr(VI) content declined from 1000 mg/kg to 2.6-5.1 mg/kg at 1-5 g C/kg SA supplemented within 15 days of reaction. The external addition of SA resulted in a significant increase in the relative abundances of Cr(VI)-reducing microorganisms, such as Tissierella, Proteiniclasticum and Proteiniclasticum. The relative abundance of Tissierella increased from 9.1% to 29.8% with the SA treatment at 5 g C/kg soil, which was the main contributors to microbial Cr(VI) reduction. Redundancy analysis indicated that pH and SA were the predominant factors affecting the microbial community in the SA treatments at 2 g C/kg soil and 5 g C/kg soil. Functional prediction suggested that the addition of SA had a positive effect on the metabolism of key substances involved in Cr(VI) microbial reduction. This work provides new insightful guidance on Cr(VI) remediation in contaminated soils.
Collapse
Affiliation(s)
- Rong Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Ya-Nan Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Huawei Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China.
| | - Ying Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Shupeng Li
- Beijing Construction Engineering Environmental Remediation Co., Ltd., National Engineering Laboratory for Safety Remediation of Contaminated Sites, Beijing 100015, China
| | - Lili Guo
- Beijing Construction Engineering Environmental Remediation Co., Ltd., National Engineering Laboratory for Safety Remediation of Contaminated Sites, Beijing 100015, China
| | - Lei Gao
- School of Marine Sciences and Engineering, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
20
|
Yang J, Guo Q, Li L, Wang R, Chen Y, Wang X. Insights into the evolution of Cr(VI) species in long-term hexavalent chromium contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160149. [PMID: 36372161 DOI: 10.1016/j.scitotenv.2022.160149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Compare to the content of Cr(VI), the distribution of specific Cr(VI) species in soil is rarely paid attention to, which may lead to an inaccurate environmental risk assessment of Cr(VI) contaminated soil or inability to meet stringent requirement for soil remediation. Herein, to reveal the primary mechanisms and factors controlling the evolution of Cr(VI) species in soil, the distribution of Cr(VI) and Cr(III) species in soils with different particle sizes and textures was systematically investigated by using a modified sequential extraction procedure and spectroscopy characterizations (e.g., SEM-EDS mapping). The results show that a significant proportion of Cr(VI) can be captured by minerals containing exchangeable calcium ions and metal oxide hydrates in the soil, forming a relatively stable adsorbed Cr(VI). Also, a small fraction of Cr(VI) can precipitate as calcium chromate with free calcium ion which is the most stable Cr(VI) species in the soil. The majority of Cr(VI) discharged into soil tends to be reduced by ferrous ions or minerals containing ferrous ions with a product of Fe(III)-Cr(III) coprecipitate. Therefore, the speciation of Cr in the soil is closely correlated to Fe and Ca. After the equilibrium of adsorption, precipitation, and reduction reactions of Cr(VI), the rest of Cr(VI) retains as the form of its original water-soluble state in soil. The evolution of Cr(VI) species and the content of specific Cr species in soil are mainly determined by the contents of iron, exchangeable calcium ions and metal oxide hydrates, which effect the Cr(VI) reduction, precipitation and adsorption, respectively.
Collapse
Affiliation(s)
- Jing Yang
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Qian Guo
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Lei Li
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China.
| | - Ruixue Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Yucheng Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Engineering Research Center of Rural Cleaning, Chongqing 400716, PR China
| | - Xingrun Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
21
|
Zulfiqar U, Haider FU, Ahmad M, Hussain S, Maqsood MF, Ishfaq M, Shahzad B, Waqas MM, Ali B, Tayyab MN, Ahmad SA, Khan I, Eldin SM. Chromium toxicity, speciation, and remediation strategies in soil-plant interface: A critical review. FRONTIERS IN PLANT SCIENCE 2023; 13:1081624. [PMID: 36714741 PMCID: PMC9880494 DOI: 10.3389/fpls.2022.1081624] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
In recent decades, environmental pollution with chromium (Cr) has gained significant attention. Although chromium (Cr) can exist in a variety of different oxidation states and is a polyvalent element, only trivalent chromium [Cr(III)] and hexavalent chromium [Cr(VI)] are found frequently in the natural environment. In the current review, we summarize the biogeochemical procedures that regulate Cr(VI) mobilization, accumulation, bioavailability, toxicity in soils, and probable risks to ecosystem are also highlighted. Plants growing in Cr(VI)-contaminated soils show reduced growth and development with lower agricultural production and quality. Furthermore, Cr(VI) exposure causes oxidative stress due to the production of free radicals which modifies plant morpho-physiological and biochemical processes at tissue and cellular levels. However, plants may develop extensive cellular and physiological defensive mechanisms in response to Cr(VI) toxicity to ensure their survival. To cope with Cr(VI) toxicity, plants either avoid absorbing Cr(VI) from the soil or turn on the detoxifying mechanism, which involves producing antioxidants (both enzymatic and non-enzymatic) for scavenging of reactive oxygen species (ROS). Moreover, this review also highlights recent knowledge of remediation approaches i.e., bioremediation/phytoremediation, or remediation by using microbes exogenous use of organic amendments (biochar, manure, and compost), and nano-remediation supplements, which significantly remediate Cr(VI)-contaminated soil/water and lessen possible health and environmental challenges. Future research needs and knowledge gaps are also covered. The review's observations should aid in the development of creative and useful methods for limiting Cr(VI) bioavailability, toxicity and sustainably managing Cr(VI)-polluted soils/water, by clear understanding of mechanistic basis of Cr(VI) toxicity, signaling pathways, and tolerance mechanisms; hence reducing its hazards to the environment.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Muhammad Mohsin Waqas
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | | | - Syed Amjad Ahmad
- Department of Mechanical Engineering, NFC IEFR, Faisalabad, Pakistan
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Sayed M. Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo, Egypt
| |
Collapse
|
22
|
Xu H, Fan Y, Xia X, Liu Z, Yang S. Effect of Ginkgo biloba leaves on the removal efficiency of Cr(VI) in soil and its underlying mechanism. ENVIRONMENTAL RESEARCH 2023; 216:114431. [PMID: 36167113 DOI: 10.1016/j.envres.2022.114431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Cr(VI) is a toxic, teratogenic, and carcinogenic heavy metal element in soil that poses major ecological and human health risks. In this study, microcosm tests combined with X-ray absorption near-edge spectra (XANES) and 16Sr DNA amplification techniques were used to explore the effect of Ginkgo biloba leaves on the removal efficiency of Cr(VI) in soil and its underlying mechanism. Ginkgo biloba leaves had a favorable remediation effect on soil varying in Cr(VI) contamination levels, and the optimal effect was observed when 5% Ginkgo biloba leaves were added. The occurrence state of Cr(VI) in soil before and after the addition of Ginkgo biloba leaves was analyzed by XANES, which revealed that Cr(VI) was fully converted to the more biologically innocuous Cr(III), and the hydroxyl-containing quercetin in Ginkgo biloba leaves was one of the primary components mediating this reduction reaction. The Cr(VI) content was significantly lower in non-sterilized soil than in sterilized soil, suggesting that soil microorganisms play a key role in the remediation process. The addition of Ginkgo biloba leaves decreased the α-diversity and altered the β-diversity of the soil bacterial community. Actinobacteria was the dominant phylum in the soil remediated by Ginkgo biloba leaves; four genera of Cr(VI)-reducing bacteria were also enriched, including Agrococcus, Klebsiella, Streptomyces, and Microbacterium. Functional gene abundances predicted by PICRUST indicated that the expression of glutathione synthesis genes was substantially up-regulated, which might be the main metabolic pathway underlying the mitigation of Cr(VI) toxicity in soil by Cr(VI)-reducing bacteria. In sum, Ginkgo biloba leaves can effectively remove soil Cr(VI) and reduce Cr(VI) to Cr(III) via quercetin in soil, which also functions as a carbon source to drive the production of glutathione via Cr(VI)-reducing bacteria and mitigate Cr(VI) toxicity. The findings of this study elucidate the chemical and microbial mechanisms of Cr(VI) removal in soil by Ginkgo biloba leaves and provide insights that could be used to enhance the remediation of Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Hefeng Xu
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China
| | - Yanling Fan
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China
| | - Xu Xia
- Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, 100081, Beijing, PR China
| | - Zengjun Liu
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China.
| | - Shuo Yang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China
| |
Collapse
|
23
|
Li Y, Huang Y, Li Z, Tang X, Liu X, Hughes SS. Mechanisms of chromium isotope fractionation and the applications in the environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113948. [PMID: 35999763 DOI: 10.1016/j.ecoenv.2022.113948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Chromium (Cr) is a toxic heavy metal that gives rise to environmental pollution and human risk. Chromium stable isotopes have a wide range of applications in both environmental field and earth science field. In this contribution, we focus on the application of the Cr isotope in both tracing pollution sources and monitoring Cr(Ⅵ) pollution. Meanwhile, we also provide a description of the main influencing factors controlling Cr isotope fractionation, chromium isotope analytical methods, and terrestrial Cr release. Chromium isotope tracing of contaminant sources is a new application method, it has a tremendous advantage in searching for the source of Cr pollution, which has not been covered in previous reviews. At the end of the article, the current status of Cr isotope applications in the paleo-environment is explained. Although there are still some uncertainties in practical applications, chromium isotope system shows great promise in the environmental aspects.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China; State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China.
| | - Zijing Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Xue Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Xiaowen Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Scott S Hughes
- Department of Geosciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
24
|
Chromium removal from tannery wastewaters with a strong cation exchange resin and species analysis of chromium by MINEQL+ . Sci Rep 2022; 12:9618. [PMID: 35688864 PMCID: PMC9187660 DOI: 10.1038/s41598-022-14423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
Chromium (III) salts are highly applied for tanning purpose in tannery industries. The purpose of this study was removal and recovery of chromium(III) from tannery wastewater with a strong cation exchange resin. For this purpose, Amberlite 252 ZU was chosen as a strong cation exchange resin. In the first part of this study, The MINEQL+ computer program was applied depending on the optimum concentration and pH for determining Cr species in aqueous solutions. The second part of the work consists of measuring the exchange equilibrium of H+ ions and Cr(III) ions. Therefore, solutions containing fixed amounts of chromium were brought into contact with different amounts of resins. The evaluation of the obtained equilibrium parameters was done by surface complexing theory. Retention and regeneration steps were successfully performed in the column without any significant change up to 10 cycles. Efficiency was between 90 and 98% in removal studies, and between 81 and 92% in recovery studies. The results showed that a strong cation exchange resin Amberlite 252 ZU can be successfully used for chromium removal and recovery.
Collapse
|
25
|
Choppala G, Karimian N, Burton ED. An X-ray absorption spectroscopic study of the Fe(II)-induced transformation of Cr(VI)-substituted schwertmannite. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128580. [PMID: 35359110 DOI: 10.1016/j.jhazmat.2022.128580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The environmental chemistry of Cr is of widespread interest due to the hazardous nature of Cr(VI). Because of similar atomic size and charge, CrVIO42- can substitute for SO42- within schwertmannite - an Fe(III) oxyhydroxysulfate mineral that occurs widely in acidic and sulfate-rich systems. The presence of aqueous Fe(II) can induce transformation of schwertmannite to more stable Fe(III) phases (e.g. goethite) which may potentially impact the behaviour of co-associated Cr(VI). Here, we investigate the Fe(II)-induced transformation of Cr(VI)-substituted schwertmannite as a function of pH (4-8) and the degree of Cr(VI) substitution (0.16-13 mol% CrVIO42--for-SO42- substitution). Iron K-edge EXAFS spectroscopy revealed that higher levels of Cr(VI) substitution inhibited Fe(II)-induced schwertmannite transformation. Chromium K-edge XANES spectroscopy indicated that this outcome could be partly attributed to consumption of Fe(II) by reaction with Cr(VI), and the resulting formation of a passivating Cr(III)-Fe(III) hydroxide phase which stabilizes schwertmannite at greater levels of Cr(VI) substitution and at higher pH while also decreasing further reduction of structural Cr(VI). Overall, this study enriches our understanding of interactions between hazardous Cr(VI) and schwertmannite in environmental and engineered systems.
Collapse
Affiliation(s)
- Girish Choppala
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia.
| | - Niloofar Karimian
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; CSIRO Mineral Resources, Clayton 3168, Australia
| | - Edward D Burton
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
26
|
Zhang L, He F, Guan Y. Immobilization of hexavalent chromium in contaminated soil by nano-sized layered double hydroxide intercalated with diethyldithiocarbamate: Fraction distribution, plant growth, and microbial evolution. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128382. [PMID: 35739652 DOI: 10.1016/j.jhazmat.2022.128382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 06/15/2023]
Abstract
Soil contamination by hexavalent chromium (Cr(VI)) poses great risks to human health and ecosystem safety. We introduced a new cheap and efficient layered double hydroxide intercalated with diethyldithiocarbamate (DDTC-LDH) for in-situ remediation of Cr(VI)-contaminated soil. The content of Cr(VI) in contaminated soil (134.26 mg kg-1) was rapidly reduced to 1.39 mg kg-1 within 10 days by 0.5% of DDTC-LDH. This result attains to or even exceeds the effectiveness of most of reported soil amendments for Cr(VI) removal in soils. The production cost of DDTC-LDH ($4.02 kg-1) was relatively low than some common materials, such as nano zero-valent iron ($22.80-140.84 kg-1). The growth of water spinach became better with the increase of DDTC-LDH dose from 0% to 0.5%, suggesting the recovery of soil function. DDTC-LDH significantly altered the structure and function of soil microbial communities. The species that have Cr(VI)-resistant or Cr(VI)-reductive ability were enriched in DDTC-LDH remediated soils. Network analysis revealed a significant functional niche differentiation of soil microbial communities. In addition to the enhancement of Cr(VI) reduction, the stimulation of plant growth promoting traits, including siderophore biosynthesis, oxidation resistance to reactive oxygen species, and phosphorus availability by DDTC-LDH was another essential mechanism for the immediate remediation of Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Lixun Zhang
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Fangxin He
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Yuntao Guan
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
27
|
Neutralization of Industrial Alkali-Contaminated Soil by Different Agents: Effects and Environmental Impact. SUSTAINABILITY 2022. [DOI: 10.3390/su14105850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Industrial soil is susceptible to acid or alkali pollution, but studies focused on the remediation of such soil are still limited. This manuscript investigated the neutralization effect of five agents (hydrochloric acid, citric acid, ferrous sulfate, calcium superphosphate and raw gypsum) to alkali polluted soil. The results showed that regarding the initial pH after the neutralizing agent addition, it was better to set it lower than the target, as the pH would rebound. None of the five agents caused an obvious increase in the heavy metal contents of the leachates, but they all caused an increase in electrical conductivity, which indicated an increase in soil salinity. The leachates showed a luminous gain to Vibrio fischeri. However, remediation with hydrochloric acid would cause significant inhibition of germination and root elongation of pakchoi. In addition, the addition of neutralizing agents reshaped the soil microbial community structure in different patterns. Soils treated with hydrochloric acid and ferrous sulfate seemed to improve the microbial richness. The neutralization might be favorable for the biodegradation of polycyclic aromatic hydrocarbons (PAHs), which usually coexist in industrial contaminated soil. In general, the neutralization of alkaline industrial soils using ferrous sulfate, superphosphate and gypsum brought minimal environmental risk, among which ferrous sulfate was the first recommendation in industrial soil after a comprehensive comparison.
Collapse
|
28
|
Lin WH, Chen CC, Ou JH, Sheu YT, Hou D, Kao CM. Bioremediation of hexavalent-chromium contaminated groundwater: Microcosm, column, and microbial diversity studies. CHEMOSPHERE 2022; 295:133877. [PMID: 35131270 DOI: 10.1016/j.chemosphere.2022.133877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/11/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Sulfate reducing bacteria (SRB) have the capability of bioreducing hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] under sulfate-reducing conditions for toxicity reduction. However, a high amount of sulfate addition would cause elevated sulfide production, which could inhibit the growth of SRB and result in reduced Cr(VI) bioreduction efficiency. A slow release reagent, viscous carbon and sulfate-releasing colloidal substrates (VCSRCS), was prepared for a long-lasting carbon and sulfate supplement. In the column study, VCSRCS was injected into the column system to form a VCSRCS biobarrier for Cr(VI) containment and bioreduction. A complete Cr(VI) removal was observed via the adsorption and bioreduction mechanisms in the column with VCSRCS addition. Results from X-ray diffractometer analyses indicate that Cr(OH)3(s) and Cr2O3(s) were detected in precipitates, indicating the occurrence of Cr(VI) reduction followed by Cr(III) precipitation. Results from the Fourier-transform infrared spectroscopy analyses show that cell deposits carried functional groups, which could adsorb Cr. Addition of VCSRCS caused increased populations of total bacteria and dsrA, which also enhanced Cr(VI) reduction. Microbial diversity results indicate that VCSRCS addition resulted in the growth of Cr(VI)-reducing bacteria including Exiguobacterium, Citrobacter, Aerococcus, and SRB. Results of this study will be helpful in developing an effective and green VCSRCS biobarrier for the bioremediation of Cr(VI)-polluted groundwater.
Collapse
Affiliation(s)
- Wei-Han Lin
- School of Environment, Tsinghua University, Beijing, China
| | - Chien-Cheng Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Jiun-Hau Ou
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yih-Terng Sheu
- General Education Center, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, China.
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
29
|
Li J, Su J, Wang Y, Yang Z, Yang Q. Efficient removal of hexavalent chromium by a novel magnetic zirconium-iron composite oxide (MZIO) from aqueous solution: Kinetic, isotherm, and mechanism. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Bao Z, Feng H, Tu W, Li L, Li Q. Method and mechanism of chromium removal from soil: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35501-35517. [PMID: 35226261 DOI: 10.1007/s11356-022-19452-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal pollution has increasingly affected human life, and the treatment of heavy metal pollution, especially chromium pollution, is still a major problem in the field of environmental governance. As a commonly used industrial metal, chromium can easily enter the environment with improperly treated industrial waste or wastewater, then pollute soil and water sources, and eventually accumulate in the human body through the food chain. Many countries and regions in the world are threatened by soil chromium pollution, resulting in the occurrence of cancer and a variety of metabolic diseases. However, as a serious threat to agriculture, food, and human health. Notwithstanding, there are limited latest and systematic review on the removal methods, mechanisms, and effects of soil chromium pollution in recent years. Hence, this article outlines some of the methods and mechanisms for the removal of chromium in soil, including physical, chemical, biological, and biochar methods, which provide a reference for the treatment and research on soil chromium pollution drawn from existing publications.
Collapse
Affiliation(s)
- Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Huiyu Feng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
31
|
Li Q, Zhang L, Ji W, Chang Z, Chong R, Li D, Li J. Feasibility of using ammonium iron (II) sulphate to passivate hexavalent chromium in polluted soil. ENVIRONMENTAL TECHNOLOGY 2022; 43:1522-1531. [PMID: 33086947 DOI: 10.1080/09593330.2020.1841305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
ABSTRACTThe use of ammonium iron (II) sulphate ((NH4)2Fe(SO4)2) to remediate soil contaminated with Cr (VI) was assessed. (NH4)2Fe(SO4)2 effectively remediated soil contaminated with Cr (VI) and, acted as a fertilizer by supplying nitrogen because it contains ammonium. The effects of the (NH4)2Fe(SO4)2 dose, water content, pH of the soil and the contact time were investigated. The amount of Cr (VI) leached from the most-polluted soil, determined using a leaching toxicity procedure using optimized conditions, was 347.64 mg kg-1 when the soil was untreated and 6.74 mg kg-1 when the soil was treated with (NH4)2Fe(SO4)2. Bio-utilizable Cr contributed 59.44% and 0.16% of the total Cr contents of the untreated and treated soil, respectively. The relatively stable Cr species contributed 24.92% and 98.38% of the total Cr contents of the untreated and treated soil, respectively. The results indicated that adding (NH4)2Fe(SO4)2 markedly decreased the risk of Cr being released from heavily contaminated soil by decreasing the availability of Cr in the soil. Overall, the results indicated that adding (NH4)2Fe(SO4)2 causes some Cr (VI) in contaminated soil to be reduced to Cr (III), and to form a precipitate, which decreases the risk of Cr being released. (NH4)2Fe(SO4)2 can be applied to soil contaminated with Cr (VI) on a large scale because it is cheap and simple to achieve.
Collapse
Affiliation(s)
- Quanwei Li
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
| | - Liwen Zhang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
| | - Wenwen Ji
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
| | - Zhixian Chang
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Kaifeng, People's Republic of China
| | - Ruifeng Chong
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
| | - Deliang Li
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
- School of Education, Henan University, Kaifeng, People's Republic of China
| | - Jingyi Li
- School of Education, Henan University, Kaifeng, People's Republic of China
| |
Collapse
|
32
|
Iron nanoparticles to recover a co-contaminated soil with Cr and PCBs. Sci Rep 2022; 12:3541. [PMID: 35241772 PMCID: PMC8894337 DOI: 10.1038/s41598-022-07558-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/03/2022] [Indexed: 11/08/2022] Open
Abstract
Little attention has been given to the development of remediation strategies for soils polluted with mixture of pollution (metal(loid)s and organic compounds). The present study evaluates the effectiveness of different types of commercial iron nanoparticles (nanoscale zero valent iron (nZVI), bimetallic nZVI-Pd, and nano-magnetite (nFe3O4)), for the remediation of an industrial soil co-contaminated with Cr and PCBs. Soil samples were mixed with nZVI, nZVI-Pd, or nFe3O4 at doses selected according to their reactivity with PCBs, homogenized, saturated with water and incubated at controlled conditions for 15, 45 and 70 days. For each sampling time, PCBs and chromium were analyzed in aqueous and soil fractions. Cr(VI) and Cr leachability (TCLP test) were determined in the soil samples. The treatment with the three types of iron nanoparticles showed significant reduction in Cr concentration in aqueous extracts at the three sampling times (> 98%), compared to the control samples. The leachability of Cr in treated soil samples also decreased and was stable throughout the experiment. Results suggested that nZVI and nZVI-Pd immobilized Cr through adsorption of Cr(VI) on the shell and reduction to Cr(III). The mechanism of interaction of nFe3O4 and Cr(VI) included adsorption and reduction although its reducing character was lower than those of ZVI nanoparticles. PCBs significantly decreased in soil samples (up to 68%), after 15 days of treatment with the three types of nanoparticles. However, nFe3O4 evidenced reversible adsorption of PCBs after 45 days. In general, nZVI-Pd reduced PCB concentration in soil faster than nZVI. Control soils showed a similar reduction in PCBs concentration as those obtained with nZVI and nZVI-Pd after a longer time (45 days). This is likely due to natural bioremediation, although it was not effective for Cr remediation. Results suggest that the addition of nZVI or nZVI-Pd and pseudo-anaerobic conditions could be used for the recovery of soil co-contaminated with Cr and PCBs.
Collapse
|
33
|
Liu M, Wang J, Xu M, Tang S, Zhou J, Pan W, Ma Q, Wu L. Nano zero-valent iron-induced changes in soil iron species and soil bacterial communities contribute to the fate of Cd. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127343. [PMID: 34600388 DOI: 10.1016/j.jhazmat.2021.127343] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Nano zero-valent iron (nZVI) is used for soil remediation; however, the impact of nZVI on soil solid iron phases and its interactions with soil microorganisms in relation to the fate of Cd in soil remains unclear. In the current study, we investigated the mechanisms underlying the change in mobility of Cd in exogenous Cd-contaminated soil with nZVI and γ radiation treatments. The results showed that nZVI treatment decreased Cd availability but also increased the soil pH and dissolved Mn and poorly crystalline Fe contents. However, the increased poorly crystalline Fe(II) levels contributed to a reduction in Cd availability in soils treated with nZVI by immobilizing Cd associated with Fe oxides, rather than by increasing pH or Mn oxide levels. Moreover, Cd stabilization efficiency was higher in γ-irradiated soils than in non-irradiated soils regardless of the Cd level, with noticeable differences in bacterial community composition between the non-irradiated and irradiated soils. The genera Bacillus, Pullulanibacillus, and Alicyclobacillus are important in the redox of poorly crystalline Fe(II)-containing minerals in non-irradiated soil. This research provides a new method for further improving the Cd stabilization efficiency of nZVI in combination with microbial iron oxidization inhibitors.
Collapse
Affiliation(s)
- Mengjiao Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Wang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meng Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng Tang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingjie Zhou
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wankun Pan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingxu Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; School of Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK.
| | - Lianghuan Wu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
34
|
Fei YH, Li M, Ye Z, Guan J, Huang Z, Xiao T, Zhang P. The pH-sensitive sorption governed reduction of Cr(VI) by sludge derived biochar and the accelerating effect of organic acids. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127205. [PMID: 34844345 DOI: 10.1016/j.jhazmat.2021.127205] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/25/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Reduction coupling immobilization is one of the most commonly adopted strategies for the remediation of Cr(VI) contamination. Biochar is a carbon-rich material with abundant active functional groups for sorption and reduction reactions. In previous reports, phytomass derived biochars and organic functional groups have been emphasized, while the performance of sludge derived biochar (SBC) has often been understated. In the present study, a 30 d kinetic study proved that the removal route involved the sorption of Cr(VI), reduction to Cr(III) and immobilization of Cr(III), and that the sorption process was the primary and rate determining step. As a result of the SBC alkalinity, the solution pH increased, and sorption was largely inhibited, which then governed the overall removal ratio. The FTIR spectra suggested the involvement of hydroxyls in these processes. Low molecular weight organic acids accelerated the removal process in the early phase and improved the reduction process.
Collapse
Affiliation(s)
- Ying-Heng Fei
- School of Environment Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Manzhi Li
- School of Environment Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhuofeng Ye
- School of Environment Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jieyang Guan
- School of Environment Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhenhong Huang
- School of Environment Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- School of Environment Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ping Zhang
- School of Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
35
|
Gao Y, Wang H, Xu R, Wang YN, Sun Y, Bian R, Li W. Remediation of Cr(VI)-contaminated soil by combined chemical reduction and microbial stabilization: The role of biogas solid residue (BSR). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113198. [PMID: 35033874 DOI: 10.1016/j.ecoenv.2022.113198] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In this work, the use of chemical reduction combined with microbial stabilization to remediate Cr(VI) in contaminated soil was systematically investigated. The effectiveness, phytotoxicity and microbial diversity resulting from the combination of ferrous sulfate with microbial stabilization by biogas solid residue (BSR) were determined. The stabilization experiments showed that the optimum Cr(VI) conversion rate of 99.92% was achieved with an Fe (II)/Cr(VI) molar ratio of 3:1, a BSR dose of 5.2% (wt), and a water content of 40%. Under these conditions, the residual Cr(VI) content was 0.80 mg/kg, which satisfied the risk screening value (≤ 5.7 mg/kg) for soil contamination of land for general development in China. The remaining Cr(VI) level was stable for 90 days during the chemical reduction and biogenic stabilization process. Moreover, Zucconi test analysis suggested that the soil phytotoxicity to Brassica campestris L. disappeared. The results of microbial diversity analysis indicated that the bacterial community changed significantly during chemical reduction and microbial stabilization processes, and Bacillus, Pseudomonas and Psychrobacter may participate in the reduction of Cr(VI) into Cr(III).
Collapse
Affiliation(s)
- Ying Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Huawei Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China.
| | - Rong Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Ya-Nan Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China.
| | - Rongxing Bian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Weihua Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| |
Collapse
|
36
|
Biotic and Abiotic Biostimulation for the Reduction of Hexavalent Chromium in Contaminated Aquifers. WATER 2022. [DOI: 10.3390/w14010089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hexavalent chromium is a carcinogenic heavy metal that needs to be removed effectively from polluted aquifers in order to protect public health and the environment. This work aims to evaluate the reduction of Cr(VI) to Cr(III) in a contaminated aquifer through the stimulation of indigenous microbial communities with the addition of reductive agents. Soil-column experiments were conducted in the absence of oxygen and at hexavalent chromium (Cr(VI)) groundwater concentrations in the 1000–2000 μg/L range. Two carbon sources (molasses and EVO) and one iron electron donor (FeSO4·7H2O) were used as ways to stimulate the metabolism and proliferation of Cr(VI) reducing bacteria in-situ. The obtained results indicate that microbial anaerobic respiration and electron transfer can be fundamental to alleviate polluted groundwater from hazardous Cr(VI). The addition of organic electron donors increased significantly Cr(VI) reduction rates in comparison to natural soil attenuation rates. Furthermore, a combination of organic carbon and iron electron donors led to a longer life span of the remediation process and thus increased total Cr(VI) removal. This is the first study to investigate biotic and abiotic Cr(VI) removal by conducting experiments with natural soil and by applying biostimulation to modify the natural existing microbial communities.
Collapse
|
37
|
Min X, Li Q, Zhang X, Liu L, Xie Y, Guo L, Liao Q, Yang Z, Yang W. Characteristics, kinetics, thermodynamics and long-term effects of zerovalent iron/pyrite in remediation of Cr(VI)-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117830. [PMID: 34325095 DOI: 10.1016/j.envpol.2021.117830] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Development of efficient, green and low-cost natural mineral-based reductive materials is promising to remediation of hexavalent chromium(Cr(VI))-contaminated soil. Considering the synergetic effect between pyrite and zerovalent iron (ZVI), an activated pyrite supported ZVI(ZVI/FeS2) with high reducing activity was developed by ball milling activation of natural pyrite and sulfidation of ZVI. The remediation property of ZVI/FeS2 for Cr(VI)-contaminated soil was evaluated with different ZVI/FeS2 dosage, soil-water ratio, initial pH, time and temperature, as well as the stability of Cr. The results showed that ZVI/FeS2 possessed high reduction activity with soil Cr(VI) removal rate up to 99 % even under alkaline condition, and soil with different pH values eventually converged to neutral after 90 days, indicating that ZVI/FeS2 has a good self-regulating alkaline ability. The reduction process conformed to Langmuir-Hinshelwood first-order kinetics and was a spontaneous and endothermic process. The lower activation energy of 17.97 kJ mol-1 (usually 60-250 kJ mol-1) indicated that the reduction reaction of Cr(VI) was particularly easy to occur. The speciation change of Cr in soil within 30 days demonstrated that the Cr in the soil was converted from a readily migratable state to a more stable state, where the Fe-Mn oxide bound fraction reached 85.03 % due to the generation of Cr(III)/Fe(III) co-precipitation. The results of long-term stability experiments showed that the leaching concentrations of Cr(VI) and total Cr decreased significantly after the ZVI/FeS2 treatment and remained stable at very low levels for 180 days. This study provided a sustainable way to fully utilize natural pyrite minerals to obtain iron-bearing reductive materials for feasible, effective and long-term stable immobilization of Cr(VI) in soil.
Collapse
Affiliation(s)
- Xiaobo Min
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Qi Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Xiaoming Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Lu Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Yan Xie
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Lili Guo
- BCEG Environmental Remediation Co., LTD., Beijing, 100015, PR China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China.
| |
Collapse
|
38
|
Zhang Q, Liu G, Peng S, Zhou C. Synthesis of Calcium Silicate Hydrate from Coal Gangue for Cr(VI) and Cu(II) Removal from Aqueous Solution. Molecules 2021; 26:molecules26206192. [PMID: 34684772 PMCID: PMC8537422 DOI: 10.3390/molecules26206192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
Both the accumulation of coal gangue and potentially toxic elements in aqueous solution have caused biological damage to the surrounding ecosystem of the Huainan coal mining field. In this study, coal gangue was used to synthesize calcium silicate hydrate (C-S-H) to remove Cr(VI) and Cu(II)from aqueous solutions and aqueous solution. The optimum parameters for C-S-H synthesis were 700 °C for 1 h and a Ca/Si molar ratio of 1.0. Quantitative sorption analysis was done at variable temperature, C-S-H dosages, solution pH, initial concentrations of metals, and reaction time. The solution pH was precisely controlled by a pH meter. The adsorption temperature was controlled by a thermostatic gas bath oscillator. The error of solution temperature was controlled at ± 0.3, compared with the adsorption temperature. For Cr(VI) and Cu(II), the optimum initial concentration, temperature, and reaction time were 200 mg/L, 40 °C and 90 min, pH 2 and 0.1 g C-S-H for Cr(VI), pH 6 and 0.07 g C-S-H for Cu(II), respectively. The maximum adsorption capacities of Cr(VI) and Cu(II) were 68.03 and 70.42 mg·g−1, respectively. Furthermore, the concentrations of Cu(II) and Cr(VI) in aqueous solution could meet the surface water quality standards in China. The adsorption mechanism of Cu(II) and Cr(VI) onto C-S-H were reduction, electrostatic interaction, chelation interaction, and surface complexation. It was found that C-S-H is an environmentally friendly adsorbent for effective removal of metals from aqueous solution through different mechanisms.
Collapse
Affiliation(s)
- Qing Zhang
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (Q.Z.); (C.Z.)
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi’an 710075, China;
| | - Guijian Liu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi’an 710075, China;
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Shuchuan Peng
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (Q.Z.); (C.Z.)
- Correspondence: ; Tel.: +86-551-3603714; Fax: +86-551-3621485
| | - Chuncai Zhou
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (Q.Z.); (C.Z.)
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi’an 710075, China;
| |
Collapse
|
39
|
Hu S, Li D, Man Y, Wen Y, Huang C. Evaluation of remediation of Cr(VI)-contaminated soils by calcium polysulfide: Long-term stabilization and mechanism studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148140. [PMID: 34102445 DOI: 10.1016/j.scitotenv.2021.148140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/03/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
In the remediation of Cr(VI)-contaminated soils, the effectiveness and long-term stability are critical qualities for the selection of a reductant. In current engineering practices, iron-based materials and sulfides are the most prevalent reductants, and calcium polysulfide (CaS4) is considered as the one with the highest effectiveness and strongest long-term stabilization ability. But this opinion is questioned by the high interference ability of CaS4 to soil Cr(VI) analysis. This study provides a pretreatment method to eliminate the interference of residual ferrous and sulfides to soil Cr(VI) analysis. By this pretreatment method and comparing with FeSO4 and Na2S, the mechanisms of the false high effectiveness and strong long-term stabilization ability of CaS4 is revealed. In the remediation process, CaS4 produces much elemental sulfur (S0) which remains in the soils. During the alkaline digestion, the S0 generates polysulfide which reduces the extracted Cr(VI), inducing serious negative analysis bias. When this negative bias is eliminated by pretreatment method, analysis results show that CaS4 exhibits lowest effectiveness. The S0 cannot be leached away from soils and oxidized by oxygen under natural conditions, this makes CaS4 exhibit a persistent interference ability, which is mistaken for a strong long-term stabilization ability.
Collapse
Affiliation(s)
- Siyang Hu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Dong Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China; Key Laboratory of Southwest Resources Exploitation and Environmental Hazards Controlling Engineering of Education Ministry, Chongqing University, Chongqing 400044, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China.
| | - Yidong Man
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Yongyue Wen
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Chuan Huang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China; Key Laboratory of Southwest Resources Exploitation and Environmental Hazards Controlling Engineering of Education Ministry, Chongqing University, Chongqing 400044, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
40
|
El-Naggar A, Ahmed N, Mosa A, Niazi NK, Yousaf B, Sharma A, Sarkar B, Cai Y, Chang SX. Nickel in soil and water: Sources, biogeochemistry, and remediation using biochar. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126421. [PMID: 34171670 DOI: 10.1016/j.jhazmat.2021.126421] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/30/2021] [Accepted: 06/14/2021] [Indexed: 05/11/2023]
Abstract
Nickel (Ni) is a potentially toxic element that contaminates soil and water, threatens food and water security, and hinders sustainable development globally. Biochar has emerged as a promising novel material for remediating Ni-contaminated environments. However, the potential for pristine and functionalized biochars to immobilize/adsorb Ni in soil and water, and the mechanisms involved have not been systematically reviewed. Here, we critically review the different dimensions of Ni contamination and remediation in soil and water, including its occurrence and biogeochemical behavior under different environmental conditions and ecotoxicological hazards, and its remediation using biochar. Biochar is effective in immobilizing Ni in soil and water via ion exchange, electrostatic attraction, surface complexation, (co)precipitation, physical adsorption, and reduction due to the biogeochemistry of Ni and the interaction of Ni with surface functional groups and organic/inorganic compounds contained in biochar. The efficiency for Ni removal is consistently greater with functionalized than pristine biochars. Physical (e.g., ball milling) and chemical (e.g., alkali/acidic treatment) activation achieve higher surface area, porosity, and active surface groups on biochar that enhance Ni immobilization. This review highlights possible risks and challenges of biochar application in Ni remediation, suggests future research directions, and discusses implications for environmental agencies and decision-makers.
Collapse
Affiliation(s)
- Ali El-Naggar
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Naveed Ahmed
- US Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, 76062 Sindh, Pakistan
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, 4350 Queensland, Australia
| | - Balal Yousaf
- Department of Environmental Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, China; Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada.
| |
Collapse
|
41
|
Wang J, Liu X, Zhu Z, Yuan L, Zhao D, Deng H, Lin Z. Microwave-enhanced reductive immobilization of high concentrations of chromium in a field soil using iron polysulfide. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126293. [PMID: 34118547 DOI: 10.1016/j.jhazmat.2021.126293] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
High concentrations of Cr(VI) are often detected in contaminated soil. Yet, cost-effective remediation technologies have been lacking. In this study, we prepared a type of FeSx based on commercial FeSO4.7H2O and CaSx and tested a microwave-assisted technology based on FeSx for reductive immobilization of high concentrations of Cr(VI) in a field contaminated soil. The as-prepared FeSx particles appeared as a honeycomb-like and highly porous structure. The microwave-assisted FeSx reduction process was able to rapidly reduce the TCLP-based reachability of Cr(VI) from 391.8 to 2.6 mg·L-1. The dosage of FeSx, S/Fe molar ratio, initial moisture content, microwave power, and irradiation time can all affect the treatment effectiveness. After 500 days curing under atmospheric conditions, the TCLP-leached concentration of Cr remained below the regulatory limit of 5 mg·L-1, while other treatments failed to meet the goal. Sx2- or S2- served as the primary electron donors, whereas Fe facilitated the microwave absorption and the formation of the stable final product of FeCr2O4. S and Fe are mostly precipitated in soil. The microwave-assisted FeSx reduction was shown to be an effective approach to rapidly reduce the leachability of Cr(VI) in contaminated soil, especially in heavily contaminated soil.
Collapse
Affiliation(s)
- Jianle Wang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Xueming Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Zhihua Zhu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Le Yuan
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Dongye Zhao
- Auburn University, Department of Civil and Environmental Engineering, Auburn, AL 36849 USA
| | - Hong Deng
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China.
| | - Zhang Lin
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China; School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
42
|
Liu L, Zhao J, Yin W, Lv S, Su M, Li P, Zheng X, Chiang P, Wu J. Enhanced immobilization of Cr(VI) by a Fe 0 -microorganisms composite system: Benchmark and pot experiments. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1123-1134. [PMID: 34213024 DOI: 10.1002/jeq2.20261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
In this study, a collaborative system of Fe0 and mixed anaerobic microorganisms was established for remediating chromium (Cr)-contaminated soil and restraining the translocation of Cr from soil to swamp cabbage (Ipomoea aquatica Forssk.). Solid phase characterization demonstrated that more reactive secondary minerals such as green rust, magnetite, and lepidocrocite were generated in the composite system as compared with the Fe0 -only system. Hence, the Fe0 -microorganisms composite system achieved a remarkably higher aqueous Cr(VI) removal of 85.6%, 2.9 times higher than that in the Fe0 -only system. After 14 d remediation, easily available Cr(VI) and Crtotal species such as water-soluble, exchangeable, and bound-to-carbonates were converted to less available Cr(III) and Crtotal species (e.g., Fe-Mn oxides-bound and organic matter-bound species) because of the production of Cr-Fe hydroxides and oxides [Crx Fe1-x (OH)3 or Crx Fe1-x OOH] on the Fe0 surface. A pot experiment showed that Cr uptake by swamp cabbage after the composite system remediation was suppressed by 69.1%, two times higher than that after the Fe0 -only system remediation. Excessive Fe uptake by swamp cabbage also was efficiently inhibited by the composite system treatment due to enhanced Fe hydroxides and oxides production on the Fe0 surface because of biological corrosion and mineralization. These results indicated that Fe0 -microorganisms composite system remediation could efficiently enhance Cr(VI) immobilization and decrease its bioavailability and bioaccumulation by plants, which is a promising technology in Cr-contaminated soil remediation.
Collapse
Affiliation(s)
- Li Liu
- School of Environment and Energy, South China Univ. of Technology, Guangzhou, 510006, China
| | - Jinxin Zhao
- School of Environment, Jinan Univ., Guangzhou, 510632, China
| | - Weizhao Yin
- School of Environment, Jinan Univ., Guangzhou, 510632, China
| | - Sihao Lv
- School of Chemistry and Environmental Engineering, Dongguan Univ. of Technology, Dongguan, 523808, China
| | - Mei Su
- School of Environment and Energy, South China Univ. of Technology, Guangzhou, 510006, China
| | - Ping Li
- School of Environment and Energy, South China Univ. of Technology, Guangzhou, 510006, China
| | - Xiangyu Zheng
- School of Environment and Energy, South China Univ. of Technology, Guangzhou, 510006, China
| | - Penchi Chiang
- School of Environment and Energy, South China Univ. of Technology, Guangzhou, 510006, China
| | - Jinhua Wu
- School of Environment and Energy, South China Univ. of Technology, Guangzhou, 510006, China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, China
| |
Collapse
|
43
|
Li D, Li G, Zhang D. Field-scale studies on the change of soil microbial community structure and functions after stabilization at a chromium-contaminated site. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125727. [PMID: 34088197 DOI: 10.1016/j.jhazmat.2021.125727] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 05/20/2023]
Abstract
Various remediation strategies have been developed to eliminate soil chromium (Cr) contamination which challenges the ecosystem and human health, and chemical stabilization is the most popular one. Limited work focuses on the change of soil microbial community and functions after chemical stabilization. The present study examined the diversity and structure of bacterial, fungal and archaeal communities in 20 soils from a Cr-contaminated site in China after chemical stabilization and ageing. Cr contamination significantly reduced microbial diversity and shaped microbial community structure. After chemical stabilization, bacterial and fungal communities had higher richness and evenness, whereas archaea behaved oppositely. Microbial community structure after stabilization were more similar to uncontaminated soils. Among all environmental variables, pH and Al explained 25.2% and 9.4% of the total variance of bacterial diversity, whereas the major variable affecting fungal community was pH (29.3%). Cr, organic matters, extractable-Al and moisture explained 25.8%, 22.4%, 9.9% and 9.9% of the total variance in archaeal community, respectively. This work for the first time unraveled the change of the whole soil microbial community structures and functions at Cr-contaminated sites after chemical stabilization on field scale and proved chemical stabilization as an effective approach to detoxicate Cr(VI) and recover microbial communities in soils.
Collapse
Affiliation(s)
- Danni Li
- School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China.
| |
Collapse
|
44
|
Yang Z, Zhang X, Jiang Z, Li Q, Huang P, Zheng C, Liao Q, Yang W. Reductive materials for remediation of hexavalent chromium contaminated soil - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145654. [PMID: 33582355 DOI: 10.1016/j.scitotenv.2021.145654] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Chemical reduction of Cr(VI) to Cr(III) by reductive materials is the most widely used technology for the remediation of Cr(VI)-contaminated soil due to its high efficiency, adaptability and low cost. This paper reviews chromium chemistry and the materials that can effectively reduce Cr(VI) to Cr(III) for the remediation of Cr(VI)-contaminated soil, namely iron-bearing reductants, sulfur-based compounds and organic amendments. Moreover, we discuss the corresponding mechanisms involved in the process of immobilization of Cr(VI) in polluted soil, and emphasize the relationship between the materials remediation performance and soil environmental conditions. Besides, perspectives on the potential future researches of novel materials design and technological development in the remediation of Cr(VI) contaminated soil are also put forward.
Collapse
Affiliation(s)
- Zhihui Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Xiaoming Zhang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan 410083, PR China
| | - Zhi Jiang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan 410083, PR China
| | - Qi Li
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan 410083, PR China
| | - Peicheng Huang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan 410083, PR China
| | - Chujing Zheng
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan 410083, PR China
| | - Qi Liao
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Weichun Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China.
| |
Collapse
|
45
|
Li X, Yu X, Liu L, Yang J. Cyclic drying and wetting tests on combined remediation of chromium-contaminated soil by calcium polysulfide, synthetic zeolite and cement. Sci Rep 2021; 11:11643. [PMID: 34079041 PMCID: PMC8172870 DOI: 10.1038/s41598-021-91282-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/24/2021] [Indexed: 11/09/2022] Open
Abstract
Using calcium polysulfide as the reducing agent, synthetic zeolite as the adsorbent, and cement as the curing agent, the dual-index orthogonal test method was used to determine the best remediation dosage of chromium-contaminated soil. On this basis, through the dry-wet cycle test, the durability of the chromium-contaminated soil after repair is analyzed from the perspectives of unconfined compressive strength, toxic leaching concentration, quality loss, and microscopic characterization. Test results showed that the optimal ratio for the joint repair of chromium-contaminated soil was 3 times the amount of CaS5, 15% synthetic zeolite, and 20% cement. With the increase in the number of wet-dry cycles, the unconfined compressive strength of the composite preparation combined to repair chromium-contaminated soil was first increased and then reduced, and the concentration of Cr(VI) and total chromium in the leachate was first decreased and then increased. The higher the chromium content of the contaminated soil was, the lower the unconfined compressive strength, and the higher the leaching concentration of Cr(VI) and total chromium were. With the increase in cycle times, the cumulative mass-loss rate of composite preparations for repairing chromium-contaminated soil gradually increased, and the higher the chromium content was, the higher the cumulative mass-loss rate, which was less than 2%, reflecting the combination of composite preparations for repairing chromium-contaminated soil to have good durability. Microscopic and macroscopic results are consistent with each other.
Collapse
Affiliation(s)
- Xilin Li
- School of Civil Engineering, Liaoning Technical University, Fuxin, 123000, Liaoning Province, China.
| | - Xiaowan Yu
- School of Civil Engineering, Liaoning Technical University, Fuxin, 123000, Liaoning Province, China
| | - Ling Liu
- School of Civil Engineering, Liaoning Technical University, Fuxin, 123000, Liaoning Province, China
| | - Jianlin Yang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin, 123000, Liaoning Province, China
| |
Collapse
|
46
|
Aparicio JD, Lacalle RG, Artetxe U, Urionabarrenetxea E, Becerril JM, Polti MA, Garbisu C, Soto M. Successful remediation of soils with mixed contamination of chromium and lindane: Integration of biological and physico-chemical strategies. ENVIRONMENTAL RESEARCH 2021; 194:110666. [PMID: 33359700 DOI: 10.1016/j.envres.2020.110666] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Soils contaminated by organic and inorganic pollutants like Cr(VI) and lindane, is currently a main environmental challenge. Biological strategies, such as biostimulation, bioaugmentation, phytoremediation and vermiremediation, and nanoremediation with nanoscale zero-valent iron (nZVI) are promising approaches for polluted soil health recovery. The combination of different remediation strategies might be key to address this problem. For this reason, a greenhouse experiment was performed using soil without or with an organic amendment. Both soils were contaminated with lindane (15 mg kg-1) and Cr(VI) (100 or 300 mg kg-1). After one month of aging, the following treatments were applied: (i) combination of bioaugmentation (actinobacteria), phytoremediation (Brassica napus), and vermiremediation (Eisenia fetida), or (ii) nanoremediation with nZVI, or (iii) combination of biological treatments and nanoremediation. After 60 days, the wellness of plants and earthworms was assessed, also, soil health was evaluated through physico-chemical parameters and biological indicators. Cr(VI) was more toxic and decreased soil health, however, it was reduced to Cr(III) by the amendment and nZVI and, to a lesser extent, by the biological treatment. Lindane was more effectively degraded through bioremediation. In non-polluted soils, nZVI had strong deleterious effects on soil biota when combined with the organic matter, but this effect was reverted in soils with a high concentration of Cr(VI). Therefore, under our experimental conditions bioremediation might be the best for soils with a moderate concentration of Cr(VI) and organic matter. The application of nZVI in soils with a high content of organic matter should be avoided except for soils with very high concentrations of Cr(VI). According to our study, among the treatments tested, the combination of an organic amendment, biological treatment, and nZVI was shown to be the strategy of choice in soils with high concentrations of Cr(VI) and lindane, while for moderate levels of chromium, the organic amendment plus biological treatment is the most profitable treatment.
Collapse
Affiliation(s)
- Juan Daniel Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, Tucumán, 4000, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, Tucumán, 4000, Argentina
| | - Rafael G Lacalle
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, E-48940, Spain
| | - Unai Artetxe
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, E-48940, Spain
| | - Erik Urionabarrenetxea
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, 48940, Spain; Department of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), Areatza Z-G, Plentzia, E-48620, Spain
| | - José María Becerril
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, E-48940, Spain
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, Tucumán, 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, Tucumán, 4000, Argentina.
| | - Carlos Garbisu
- NEIKER, Department of Conservation of Natural Resources, C/Berreaga 1, Derio, E-48160, Spain
| | - Manuel Soto
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, 48940, Spain; Department of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), Areatza Z-G, Plentzia, E-48620, Spain
| |
Collapse
|
47
|
Toli A, Mystrioti C, Xenidis A, Papassiopi N. Continuous Flow Process for Cr(VI) Removal from Aqueous Solutions Using Resin Supported Zero-Valent Iron. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:409-414. [PMID: 32300827 DOI: 10.1007/s00128-020-02843-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
The objective of the present study was to evaluate the performance of a nanocomposite material consisting of nano zero valent iron and a cation exchange resin, for the reduction of chromate, by conducting column tests. A cationic resin, Amberlyst 15, was selected as porous host material. The synthesis of the nanocomposite material (R-nFe) was carried out using Green Tea extract to obtain the reduction of adsorbed Fe(III) to the elemental state Fe(0). Three column tests were implemented with different dimensions, corresponding to variable contact times between the aqueous solution and the resin beads loaded with Fe(0), namely 168, 744 and 1260 s respectively for columns I, II and III. The results indicated that the removal of Cr(VI) follows a first order kinetic law with a chemical constant equal to 0.0526 min-1 (8.8 × 10-4 s-1).
Collapse
Affiliation(s)
- A Toli
- Sch. of Mining and Metallurgical Eng., National Technical University of Athens, 15780, Athens, Greece.
| | - Ch Mystrioti
- Sch. of Mining and Metallurgical Eng., National Technical University of Athens, 15780, Athens, Greece
| | - A Xenidis
- Sch. of Mining and Metallurgical Eng., National Technical University of Athens, 15780, Athens, Greece
| | - N Papassiopi
- Sch. of Mining and Metallurgical Eng., National Technical University of Athens, 15780, Athens, Greece
| |
Collapse
|
48
|
Akbarzadeh R, Farhadian N, Asadi A, Hasani T, Salehi Morovat S. Highly efficient visible-driven reduction of Cr(VI) by a novel black TiO 2 photocatalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9417-9429. [PMID: 33150507 DOI: 10.1007/s11356-020-11330-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Finding a facile and practical method to produce black TiO2 remains a challenge. Bismuth-vanadium co-doped black TiO2 (BVBT) was synthesized as a visible light driven photocatalyst by a simple one-pot hydrothermal method. The synthesized BVBT was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), UV-vis diffuse reflectance spectroscopy (UV-Vis DRS). The light absorption of the synthesized Bi-V co-coped black TiO2 nanoparticles was significantly improved in the visible and infrared regions. The XRD patterns indicated that the black TiO2 contained mixed phases of brookite, anatase, and rutile of TiO2. This was further confirmed by Raman spectroscopy. The photocatalytic activity of the sample was evaluated by reduction of hexavalent chromium (Cr(VI)) under visible light irradiation. Among investigated hole (h+) scavengers, ethylenediaminetetraacetic acid (EDTA) led to the highest reduction of Cr(VI) with a molar ratio of 1:5 (EDTA:Cr(VI)). The results indicated that the Bi-V co-coped black TiO2 nanocomposite can reduce 94% of 1 mg/L of Cr(VI) within 20 min irradiation time (pH 3 and catalyst dose of 1 g/L). Introducing a simple method to synthesize black TiO2 which has absorption in the visible and infrared region can open up new applications.
Collapse
Affiliation(s)
- Rokhsareh Akbarzadeh
- Energy, Sensors and Multifunctional Nanomaterials Research Group, Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa
| | - Negin Farhadian
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Anvar Asadi
- Research Center for Environmental Determinants of Health, Health Institute, Department of Environmental Health Engineering, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Tahereh Hasani
- Students Research Committee, Department of Environmental Health Engineering, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Setaya Salehi Morovat
- Shahid Beheshti Medical Education Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
49
|
Wang D, Li G, Qin S, Tao W, Gong S, Wang J. Remediation of Cr(VI)-contaminated soil using combined chemical leaching and reduction techniques based on hexavalent chromium speciation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111734. [PMID: 33396063 DOI: 10.1016/j.ecoenv.2020.111734] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Hexavalent chromium [Cr(VI)] has strong mobility and it can enter into deep regions of soil. Cr(VI)-contaminated soil remediation is the process of removing Cr(VI) present in deep soils and any residual Cr(VI). In this study, the Cr(VI)-contaminated soil in Chongqing was investigated, and the remediation and economic feasibility of chemical leaching and reduction combined with a soil repairing approach was explored. The results showed that the leaching reagent, liquid-solid ratio, leaching time, reduction agent dosage, reduction temperature and reduction time had significant (P < 0.05) effects on the remediation of Cr(VI). At 0.02 mol/L oxalic acid and citric acid using a liquid-solid ratio of 5:1 and leaching time of 45 min, the removal rate of Cr(VI) was 62.7%, the residual Cr(VI) in soil was 126 mg/kg, and the soil pH was 4.09 after leaching. Between 25 and 90 °C, and at a molar ratio of 25:1 of FeSO4•7 H2O to Cr(VI), the reduction rate of Cr(VI) in soil after reduction was 54.0-98.4%, and the leaching concentration of Cr(VI) in soil was 0.01-0.29 mg/L. The optimal reduction was at 90 °C for 60 min, resulting in only 2.7 mg/kg of residual Cr(VI) in soil. The cost of this technology to treat the area studied was 826 ¥/ton of soil, which represents an economically feasible method for Cr(VI)-contaminated soil remediation.
Collapse
Affiliation(s)
- Donghui Wang
- China Merchants Ecological Environmental Protection Technology Co., LTD, Chongqing 400067, China
| | - Guanghui Li
- China Merchants Ecological Environmental Protection Technology Co., LTD, Chongqing 400067, China.
| | - Shiqiang Qin
- China Merchants Ecological Environmental Protection Technology Co., LTD, Chongqing 400067, China
| | - Weiguang Tao
- China Merchants Ecological Environmental Protection Technology Co., LTD, Chongqing 400067, China
| | - Shihui Gong
- China Merchants Ecological Environmental Protection Technology Co., LTD, Chongqing 400067, China
| | - Jing Wang
- China Merchants Ecological Environmental Protection Technology Co., LTD, Chongqing 400067, China
| |
Collapse
|
50
|
Wu J, Yan M, Lv S, Yin W, Bu H, Liu L, Li P, Deng H, Zheng X. Preparation of highly dispersive and antioxidative nano zero-valent iron for the removal of hexavalent chromium. CHEMOSPHERE 2021; 262:127733. [PMID: 32763574 DOI: 10.1016/j.chemosphere.2020.127733] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
In this study, carboxymethyl cellulose (CMC) was employed to stabilize zero-valent iron nanoparticles (CMC-nFe0) to improve their dispersity and antioxidation for enhanced hexavalent chromium (Cr(VI)) removal. Scanning electron microscope (SEM) observation revealed that the nFe0 agglomerated in clusters, while the CMC-nFe0 connected as chains and presented higher dispersity. Therefore, compared with 54% of the nFe0, the Cr(VI) removal rate of the CMC-nFe0 increased by 0.8 time, reaching 97%. Besides, the nFe0 precipitated in 1 d and was obviously oxidized within 7 d under anoxic condition, leading to a rapid decease of Cr(VI) removal efficiency from 54% to 3% in 56 d. In contrast, the CMC-nFe0 showed no obvious subsidence and oxidized phenomenon within 14 d, which retained a relatively high Cr(VI) removal efficiency of 63% in 56 d, contributing to effective blockage of dissolved oxygen infiltrating from solution to nFe0 particles in presence of CMC. After reaction, the valence state distribution of Cr between solution and material surface indicated that Cr(VI) reduction was dominant comparing to physical adsorption to particles in the remediation process conducted by CMC-nFe0. In addition, lower initial pH and higher iron dosage facilitated Cr(VI) removal. Those results indicated that the dispersive and antioxidative characteristics of CMC-nFe0 were significantly superior to those of nFe0, and CMC stabilization thereafter can be a promising method to promote Cr(VI) elimination by nFe0.
Collapse
Affiliation(s)
- Jinhua Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Mingjia Yan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Sihao Lv
- School of Chemistry and Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Weizhao Yin
- School of Environment, Jinan University, Guangzhou, 510632, China
| | - Huaitian Bu
- SINTEF Industry, Department of Materials and Nanotechnology, Forskningsveien 1, 0373, Oslo, Norway
| | - Li Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Ping Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Hong Deng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiangyu Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, China
| |
Collapse
|