1
|
Zhao Y, Sokol H, Cao Q, Zhang H, Yan Y, Xie L, Wang H. Systemic inflammatory response to daily exposure to microcystin-LR and the underlying gut microbial mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135855. [PMID: 39303605 DOI: 10.1016/j.jhazmat.2024.135855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Cyanobacterial toxins have raised global concerns due to potential chronic disease implications from daily drinking water exposure, which remain largely unknown despite extensive research on their acute effects. To understand the mechanisms underlying microcystin-LR (MC-LR)-induced inflammation-associated diseases. Mice were exposed to MC-LR for one year at concentrations comparable to human environmental exposure levels. Comprehensive pathological observation and multi-omics approaches based on 16S rRNA gene sequencing, untargeted metabolomics, transcriptomics and proteomics were conducted across various organs. Daily exposure to MC-LR induced intestinal microbial dysbiosis and colitis-like changes. It also caused systemic chronic inflammation marked by elevated serum levels of inflammatory cytokines, inflammation-associated pathological changes, and identification of infection-related genes/proteins within the gut-brain-spleen-liver axis. Furthermore, multi-omics analysis across organs suggested that Muribaculaceae may promote a systemic infection-inflammatory response, relying on kynurenine metabolites signaling in peripheral tissues. In contrast, Lachnospiraceae may act an opposing role, dependent on intestinal indole derivatives via the neuroimmunomodulation pathway. A fecal microbiota transplantation experiment confirmed that alterations in Muribaculaceae and Lachnospiraceae resulting from exposure to MC-LR triggered the local and systemic chronic inflammation in mice. This study light on the potential strategies employed by gut microbial community in regulating MC-induced inflammation-associated chronic diseases under repeated exposure through drinking water.
Collapse
Affiliation(s)
- Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
| | - Harry Sokol
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, Paris, France; Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Qing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Hui Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Liqiang Xie
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Haotian Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China.
| |
Collapse
|
2
|
Song Y, Wang X, Lu X, Wang T. Exposure to microcystin-LR promotes the progression of colitis-associated colorectal cancer by inducing barrier disruption and gut microbiota dysbiosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116750. [PMID: 39053045 DOI: 10.1016/j.ecoenv.2024.116750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Microcystins (MCs) are secondary metabolites generated by cyanobacterial blooms, among which microcystin-LR (MC-LR) stands out as the most widely distributed variant in aquatic environments. However, the effects of MC-LR on the colorectum and its role in promoting colorectal tumor progression remain unclear. Therefore, this study aims to scrutinize the impact of MC-LR on a mice model of colitis-associated colorectal cancer and elucidate the potential underlying molecular mechanisms. In this study, we used AOM/DSS mice and orally administered MC-LR at doses of 40 µg/kg or 200 µg/kg. Exposure to MC-LR increased tumor burden, promoted tumor growth, shortened colon size, and decreased goblet cell numbers and tight junction protein levels in intestinal tissues. Additionally, exposure to MC-LR induced alterations in the structure of gut microbiota in the mouse colon, characterized by an increase in the relative abundance of Escherichia_coli and Shigella_sonnei, and a decline in the relative abundance of Akkermansia_muciniphila. Transcriptomic analysis revealed that MC-LR exposure activated the IL-17 signaling pathway in mouse colorectal tissues and participated in inflammation regulation and immune response. Immunofluorescence results demonstrated an increase in T-helper 17 (Th17) cell levels in mouse colorectal tumors following MC-LR exposure. The results from RT-qPCR revealed that MC-LR induced the upregulation of IL-6, IL-1β, IL-10, IL-17A, TNF-α, CXCL1, CXCL2, CXCL5 and CCL20. The novelty of this study lies in its comprehensive approach to understanding the mechanisms by which MC-LR may contribute to CRC progression, offering new perspectives and valuable reference points for establishing guidance standards regarding MC-LR in drinking water. Our findings suggest that even at guideline value, MC-LR can have profound effects on susceptible mice, emphasizing the need for a reevaluation of guideline value and a deeper understanding of the role of environmental toxins in cancer progression.
Collapse
Affiliation(s)
- Yuechi Song
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - Xiaochang Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - Xiaohui Lu
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, China
| | - Ting Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, China.
| |
Collapse
|
3
|
Guo M, Li X, Choi M, Zhang J, Yan S, Ma D, Zeng J, Ding W, Wen Y, Li D, Han X, Wang Y, Wu J. Microcystin-LR prenatal exposure induces coronary heart disease through macrophage polarization imbalance mediated by trophoblast-derived extracellular vesicles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174979. [PMID: 39053546 DOI: 10.1016/j.scitotenv.2024.174979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Microcystin-leucine arginine (MC-LR) has been reported to exhibit placental toxicity, leading to potential adverse pregnancy outcomes. Placental abnormalities often coincide with congenital heart defects (CHD). However, the extent to which MC-LR-induced placental abnormalities contribute to CHD and the cellular mechanisms underlying this association remain unknown. In this study, we observed abnormal polarization of placental macrophages in pregnant mice exposed to MC-LR during pregnancy, and the embryos developed cardiac developmental defects that persisted into adulthood. Trophoblast-derived extracellular vesicles (T-EVs) increase in number during pregnancy and act as a critical signal in macrophage polarization. However, MC-LR significantly affected the miRNA expression profile of T-EVs. Upon internalization into macrophages, T-EV-derived miR-377-3p specifically targets the 3'UTR region of NR6A1 to inhibit gene expression. Silencing of transcription suppressor NR6A1 leads to abnormal activation of the downstream mTOR/S6K1/SREBP pathway, inducing metabolic reprogramming and ultimately leading to M1 polarization of macrophages. This study elucidated the placental mechanism underlying MC-LR-induced CHD for the first time, providing insights into the environmental risks associated with CHD.
Collapse
Affiliation(s)
- Meihong Guo
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xinrui Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Manhou Choi
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jingwen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Songci Yan
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Danni Ma
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jing Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Weidong Ding
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yanting Wen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Dongmei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Jiang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
4
|
Khoo SC, Zhang N, Luang-In V, Goh MS, Sonne C, Ma NL. Exploring environmental exposomes and the gut-brain nexus: Unveiling the impact of pesticide exposure. ENVIRONMENTAL RESEARCH 2024; 250:118441. [PMID: 38350544 DOI: 10.1016/j.envres.2024.118441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
This review delves into the escalating concern of environmental pollutants and their profound impact on human health in the context of the modern surge in global diseases. The utilisation of chemicals in food production, which results in residues in food, has emerged as a major concern nowadays. By exploring the intricate relationship between environmental pollutants and gut microbiota, the study reveals a dynamic bidirectional interplay, as modifying microbiota profile influences metabolic pathways and subsequent brain functions. This review will first provide an overview of potential exposomes and their effect to gut health. This paper is then emphasis the connection of gut brain function by analysing microbiome markers with neurotoxicity responses. We then take pesticide as example of exposome to elucidate their influence to biomarkers biosynthesis pathways and subsequent brain functions. The interconnection between neuroendocrine and neuromodulators elements and the gut-brain axis emerges as a pivotal factor in regulating mental health and brain development. Thus, manipulation of gut microbiota function at the onset of stress may offer a potential avenue for the prevention and treatment for mental disorder and other neurodegenerative illness.
Collapse
Affiliation(s)
- Shing Ching Khoo
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Nan Zhang
- Synerk Biotech, BioBay, Suzhou, 215000, China; Neuroscience Program, Department of Neurology, Houston Methodist Research Institute, TX, 77030, USA; Department of Neurology, Weill Cornell Medicine, New York, 10065, USA
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantharawichai, Mahasarakham, 44150, Thailand
| | - Meng Shien Goh
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Danish Centre for Environment and Energy (DCE), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Nyuk Ling Ma
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
5
|
Jia W, Zhong L, Ren Q, Teng D, Gong L, Dong H, Li J, Wang C, He YX, Yang J. Microcystin-RR promote lipid accumulation through CD36 mediated signal pathway and fatty acid uptake in HepG2 cells. ENVIRONMENTAL RESEARCH 2024; 249:118402. [PMID: 38309560 DOI: 10.1016/j.envres.2024.118402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/05/2024]
Abstract
Microcystins (MC)-RR is a significant analogue of MC-LR, which has been identified as a hepatotoxin capable of influencing lipid metabolism and promoting the progression of liver-related metabolic diseases. However, the toxicity and biological function of MC-RR are still not well understood. In this study, the toxic effects and its role in lipid metabolism of MC-RR were investigated in hepatoblastoma cells (HepG2cells). The results demonstrated that MC-RR dose-dependently reduced cell viability and induced apoptosis. Additionally, even at low concentrations, MC-RR promoted lipid accumulation through up-regulating levels of triglyceride, total cholesterol, phosphatidylcholines and phosphatidylethaolamine in HepG2 cells, with no impact on cell viability. Proteomics and transcriptomics analysis further revealed significant alterations in the protein and gene expression profiles in HepG2 cells treated with MC-RR. Bioinformatic analysis, along with subsequent validation, indicated the upregulation of CD36 and activation of the AMPK and PI3K/AKT/mTOR in response to MC-RR exposure. Finally, knockdown of CD36 markedly ameliorated MC-RR-induced lipid accumulation in HepG2 cells. These findings collectively suggest that MC-RR promotes lipid accumulation in HepG2 cells through CD36-mediated signal pathway and fatty acid uptake. Our findings provide new insights into the hepatotoxic mechanism of MC-RR.
Collapse
Affiliation(s)
- Wenjuan Jia
- School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China; Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China.
| | - Lin Zhong
- School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China; Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
| | - Qingmiao Ren
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Da Teng
- School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China; Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
| | - Lei Gong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
| | - Haibin Dong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
| | - Jun Li
- School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China; Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
| | - Chunxiao Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China.
| |
Collapse
|
6
|
Yamashita Y, Tokunaga A, Aoki K, Ishizuka T, Uematsu H, Sakamoto H, Fujita S, Tanoue S. Assessing the Safety of Mechanically Fibrillated Cellulose Nanofibers (fib-CNF) via Toxicity Tests on Mice: Single Intratracheal Administration and 28 Days' Oral Intake. TOXICS 2024; 12:121. [PMID: 38393216 PMCID: PMC10893282 DOI: 10.3390/toxics12020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 02/25/2024]
Abstract
Mechanically fibrillated cellulose nanofibers, known as fib-CNF (fiber length: 500 nm; diameter: 45 nm), are used in composites and as a natural thickener in foods. To evaluate their safety, we conducted a 28-day study in mice with inhalation exposure at 0.2 mg/body and oral administration of 400 mg/kg/day. Inhalation exposure to fib-CNF caused transient weight loss, changes in blood cell counts, and increased lung weights. These changes were attributed to adaptive responses. The oral administration of fib-CNF for 28 days resulted in no apparent toxic effects except for a slight decrease in platelet counts. The fib-CNF administration using the protocols studied appears to be safe in mice.
Collapse
Affiliation(s)
- Yoshihiro Yamashita
- Research Center for Fibers and Materials, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;
| | - Akinori Tokunaga
- Life Science Research Laboratory, University of Fukui, 23-3, Matsuoka Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan;
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
| | - Koji Aoki
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
- Department of Pharmacology, Faculty of Medicine, University of Fukui, 23-3, Matsuoka Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Tamotsu Ishizuka
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
- Third Department of Internal Medicine, Faculty of Medicine, University of Fukui, 23-3, Matsuoka Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Hideyuki Uematsu
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Hiroaki Sakamoto
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Satoshi Fujita
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Shuichi Tanoue
- Research Center for Fibers and Materials, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
| |
Collapse
|
7
|
Wang C, Fu RJ, Xu DQ, Zuo Q, Liu JP, Tang YP. A study integrated metabolomics and network pharmacology to investigate the effects of Shicao in alleviating acute liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117369. [PMID: 38380571 DOI: 10.1016/j.jep.2023.117369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 02/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shicao is the aerial part of Achillea alpina L., a common herb found mainly in Europe, Asia, and North America. Traditional Chinese medicine has a history of thousands of years and is widely used to treat various diseases. AIM OF STUDY To explore the hepatoprotective effects of Shicao on CCl4-induced acute liver injury. METHODS A rat model of acute liver injury was established and liver function indices were assessed to evaluate the protective effect of Shicao on the liver. Untargeted metabolomics of the serum and liver tissues was conducted using UPLC-Q-TOF/MS to identify differential metabolites related to acute liver injury. A network of metabolite-reaction-enzyme-gene constituents was constructed using network pharmacology. Hub targets and key components of the effect of Shicao on acute liver injury were screened from the network. RESULTS Compared to the model group, Shicao improved the degree of liver damage through the assessment of the liver index, ALT and AST levels, and hepatic pathology slices, demonstrating its hepatoprotective effect against acute liver injury in rats. 10 and 38 differential metabolites involved in acute liver injury were identified in serum and liver tissues, respectively. Most of these were regulated or restored following treatment with Shicao, which mainly consisted of bile acids, lipids, and nucleotides such as taurocholic acid, LysoPC (17:0), and adenosine diphosphate ribose. Through the network of metabolite-reaction-enzyme-gene-constituents, 10 key components and 5 hub genes, along with 7 crucial differential metabolites, were mainly involved in glycerophospholipid metabolism, purine metabolism, biosynthesis of unsaturated fatty acids, and primary bile acid biosynthesis, which may play important roles in the prevention of acute liver injury by Shicao. CONCLUSION This study revealed that Shicao had protective effects against CCl4-induced liver injury in rats. It was speculated that the ingredients of Shicao might be closely related to the hub targets, thereby regulating the levels of key metabolites, affecting inflammatory response and oxidative stress and attenuate the liver injury consequently. This study provides a basis for further investigation of its therapeutic potential and the mechanism of action.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Qian Zuo
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Ji-Ping Liu
- Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| |
Collapse
|
8
|
Ou-Yang K, Kuang Y, Yang H, He Y, Wang L, Wang X, Li D, Li L. Multi-omics analysis reveals the toxic mechanism of ammonia-enhanced Microcystis aeruginosa exposure causing liver fat deposition and muscle nutrient loss in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132631. [PMID: 37816294 DOI: 10.1016/j.jhazmat.2023.132631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/12/2023]
Abstract
Microcystis aeruginosa and ammonia pollution are two important environmental stress factors in water eutrophication. Herein, we simulated environmental conditions to investigate the effects of chronic exposure (single and combined) to M. aeruginosa and total ammonia nitrogen (TAN) on lipid metabolism and muscle quality in zebrafish. Our results showed that M. aeruginosa and TAN significantly induced lipid deposition and tissue damage in the liver of zebrafish. Liver transcriptomic analysis revealed that M. aeruginosa and TAN disrupted the balance in lipid synthesis, decomposition, and transport, ultimately leading to hepatic lipid accumulation. Moreover, exposure to M. aeruginosa or TAN alone resulted in decreased crude protein content and increased lipid content in muscle, as well as disrupted muscle fatty acid composition. Metabolomic analysis of muscle revealed significant alterations in metabolites such as glycerolipids, glycerophospholipids and fatty acids. The co-exposure of M. aeruginosa and TAN had a more significant effect on liver lipid dysfunction and muscle quality deterioration in zebrafish. These findings provide valuable insights into the potential risks and hazards of M. aeruginosa and TAN in eutrophic water bodies subject to Microcystis blooms, and can help inform effective strategies for monitoring and managing these toxins in aquatic ecosystems.
Collapse
Affiliation(s)
- Kang Ou-Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yu Kuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Liangmou Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xinyu Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
9
|
Li T, Fan X, Cai M, Jiang Y, Wang Y, He P, Ni J, Mo A, Peng C, Liu J. Advances in investigating microcystin-induced liver toxicity and underlying mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167167. [PMID: 37730048 DOI: 10.1016/j.scitotenv.2023.167167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Microcystins (MCs) are a class of biologically active cyclic heptapeptide pollutants produced by the freshwater alga Microcystis aeruginosa. With increased environmental pollution, MCs have become a popular research topic. In recent years, the hepatotoxicity of MCs and associated effects and mechanisms have been studied extensively. Current epidemiological data indicate that long-term human exposure to MCs can lead to severe liver toxicity, acute toxicity, and death. In addition, current toxicological studies on the liver, a vital target organ of MCs, indicate that MC contamination is associated with the development of liver cancer, nonalcoholic fatty liver, and liver fibrosis. MCs produce hepatotoxicity that affects the metabolic homeostasis of the liver, induces apoptosis, and acts as a pro-cancer factor, leading to liver lesions. MCs mainly mediate the activation of signaling pathways, such as the ERK/JNK/p38 MAPK and IL-6-STAT3 pathways, which leads to oxidative damage and even carcinogenesis. Moreover, MCs can act synergistically with other pollutants to produce combined toxicity. However, few systematic reviews have been performed on these new findings. This review systematically summarizes the toxic effects and mechanisms of MCs on the liver and discusses the combined liver toxicity effects of MCs and other pollutants to provide reference for subsequent research. The toxicity of different MC isomers deserves further study. The detection methods and limit standards of MCs in agricultural and aquatic products will represent important research directions in the future. Standard protocols for fish sampling during harmful algal blooms or to evaluate the degree of MC toxicity in nature are lacking. In future, bioinformatics can be applied to offer insights into MC toxicology research and potential drug development for MC poisoning. Further research is essential to understand the molecular mechanisms of liver function damage in combined-exposure toxicology studies to establish treatment for MC-induced liver damage.
Collapse
Affiliation(s)
- Tong Li
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Xinting Fan
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Meihan Cai
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Yuanyuan Jiang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Yaqi Wang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Peishuang He
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Juan Ni
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Aili Mo
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Cuiying Peng
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Jun Liu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
10
|
Guo M, Yan P, Zhu M, Choi M, Li X, Huang J, Zou J, Yuan J, Ding W, Li D, Han X, Wang Y, Wu J. Microcystin-LR prenatal exposure drives preeclampsia-like changes in mice by inhibiting the expression of TGF-β and VEGFA. Food Chem Toxicol 2023; 182:114189. [PMID: 37980977 DOI: 10.1016/j.fct.2023.114189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
Microcystin-leucine-arginine (MC-LR) is widespread in the water and food, which has suspected to be associated with adverse pregnancy outcomes. In the present study, we aim to assess the interaction between MC-LR exposure and preeclampsia development and elucidate the molecular events involved. After exposure to MC-LR during pregnancy, the mice developed hypertension and proteinuria, the typical symptoms of preeclampsia. This was associated with decreased invasiveness of placental trophoblast and vascular dysplasia caused by MC-LR through down-regulating VEGFA and TGF-β expression via AKT/m-TOR/HIF-1α pathway. In addition, this conclusion has been confirmed in a case-control study. Significantly, the addition of Deferoxamine (DFM), a phosphorylated serine-threonine protein kinases (p-AKT) specific agonist, can antagonize the inhibitory effect of MC-LR on the expression of related proteins, which further ameliorate the migration and invasion ability of HTR-8/Svneo cells. To sum up, our study revealed the pathologic mechanism by which MC-LR lead to preeclampsia and emphasized the importance of pregnancy management.
Collapse
Affiliation(s)
- Meihong Guo
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Pinru Yan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Mengjiao Zhu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Manhou Choi
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xinrui Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jiahao Huang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jianghao Zou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jintao Yuan
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, 212300, China
| | - Weidong Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yong Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
11
|
Dos Santos FCF, da Costa CS, Graceli JB. Effects of microcystin-LR on mammalian ovaries. Reprod Toxicol 2023; 120:108441. [PMID: 37473929 DOI: 10.1016/j.reprotox.2023.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
The ovaries play critical roles in regulating oocyte maturation and sex steroid hormone production and thus are critical for female reproduction. Ovarian function relies on hormone receptors and signaling pathways, making the ovaries potential targets for environmental factors, such as microcystins (MCs). MCs are a diverse group of cyanobacterial toxins generally found in eutrophic water or algal blooms. Here, we review relevant research on the associations between MC exposure and ovarian dysfunction, including their effects on ovarian morphology, folliculogenesis, steroid production, oxidative stress, endoplasmic reticulum stress, apoptosis, autophagy, and fertility. This review covers the most recent in vitro and in vivo studies in mammals. We also discuss important gaps in the literature. Overall, current evidence indicates that MC exposure causes impairments in ovarian function, but further studies are needed to elucidate the mechanisms through which MCs affect ovarian function and other female endocrine functions.
Collapse
Affiliation(s)
| | - Charles S da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil.
| |
Collapse
|
12
|
Dolce A, Della Torre S. Sex, Nutrition, and NAFLD: Relevance of Environmental Pollution. Nutrients 2023; 15:nu15102335. [PMID: 37242221 DOI: 10.3390/nu15102335] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease and represents an increasing public health issue given the limited treatment options and its association with several other metabolic and inflammatory disorders. The epidemic, still growing prevalence of NAFLD worldwide cannot be merely explained by changes in diet and lifestyle that occurred in the last few decades, nor from their association with genetic and epigenetic risk factors. It is conceivable that environmental pollutants, which act as endocrine and metabolic disruptors, may contribute to the spreading of this pathology due to their ability to enter the food chain and be ingested through contaminated food and water. Given the strict interplay between nutrients and the regulation of hepatic metabolism and reproductive functions in females, pollutant-induced metabolic dysfunctions may be of particular relevance for the female liver, dampening sex differences in NAFLD prevalence. Dietary intake of environmental pollutants can be particularly detrimental during gestation, when endocrine-disrupting chemicals may interfere with the programming of liver metabolism, accounting for the developmental origin of NAFLD in offspring. This review summarizes cause-effect evidence between environmental pollutants and increased incidence of NAFLD and emphasizes the need for further studies in this field.
Collapse
Affiliation(s)
- Arianna Dolce
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
13
|
Feng S, Cao M, Tang P, Deng S, Chen L, Tang Y, Zhu L, Chen X, Huang Z, Shen M, Yang F. Microcystins Exposure Associated with Blood Lipid Profiles and Dyslipidemia: A Cross-Sectional Study in Hunan Province, China. Toxins (Basel) 2023; 15:toxins15040293. [PMID: 37104231 PMCID: PMC10143012 DOI: 10.3390/toxins15040293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Increasing evidence from experimental research suggests that exposure to microcystins (MCs) may induce lipid metabolism disorder. However, population-based epidemiological studies of the association between MCs exposure and the risk of dyslipidemia are lacking. Therefore, we conducted a population-based cross-sectional study involving 720 participants in Hunan Province, China, and evaluated the effects of MCs on blood lipids. After adjusting the lipid related metals, we used binary logistic regression and multiple linear regression models to examine the associations among serum MCs concentration, the risk of dyslipidemia and blood lipids (triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C)). Moreover, the additive model was used to explore the interaction effects on dyslipidemia between MCs and metals. Compared to the lowest quartile of MCs exposure, the risk of dyslipidemia [odds ratios (OR) = 2.27, 95% confidence interval (CI): 1.46, 3.53] and hyperTG (OR = 3.01, 95% CI: 1.79, 5.05) in the highest quartile was significantly increased, and showed dose-response relationships. MCs were positively associated with TG level (percent change, 9.43%; 95% CI: 3.53%, 15.67%) and negatively associated with HDL-C level (percent change, -3.53%; 95% CI: -5.70%, -2.10%). In addition, an additive antagonistic effect of MCs and Zn on dyslipidemia was also reported [relative excess risk due to interaction (RERI) = -1.81 (95% CI: -3.56, -0.05)], and the attributable proportion of the reduced risk of dyslipidemia due to the antagonism of these two exposures was 83% (95% CI: -1.66, -0.005). Our study first indicated that MCs exposure is an independent risk factor for dyslipidemia in a dose-response manner.
Collapse
Affiliation(s)
- Shuidong Feng
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Mengyue Cao
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Peng Tang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuxiang Deng
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Limou Chen
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yan Tang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Lemei Zhu
- School of Public Health, Changsha Medical University, Changsha 410219, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
| | - Zhijun Huang
- Furong Laboratory, Changsha 410008, China
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Minxue Shen
- Furong Laboratory, Changsha 410008, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Department of Social Medicine and Health Management, Central South University, Changsha 410000, China
| | - Fei Yang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Department of Social Medicine and Health Management, Central South University, Changsha 410000, China
| |
Collapse
|
14
|
Hernandez BY, Zhu X, Nagata M, Loo L, Chan O, Wong LL. Cyanotoxin exposure and hepatocellular carcinoma. Toxicology 2023; 487:153470. [PMID: 36863303 PMCID: PMC10358828 DOI: 10.1016/j.tox.2023.153470] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
Cyanobacteria are ubiquitous in aquatic and terrestrial environments worldwide and include a number of species producing tumor-promoting hepatotoxins. Human exposure to cyanobacteria and cyanotoxins primarily occurs though ingestion of contaminated drinking water and food sources. In a Northeast U.S. population, we recently reported an independent association of oral cyanobacteria with risk of hepatocellular carcinoma (HCC). In a cross-sectional study of 55 HCC patients in Hawaii, U.S.A., serum microcystin/nodularin (MC/NOD), cylindrospermopsin (CYN), and anabaenopeptin (AB) were measured by ELISA. In a subset of 16 patients, cyanotoxin levels were compared by tumor expression of over 700 genes analyzed via the Nanostring nCounter Fibrosis panel. MC/NOD, CYN, and AB were detected in all HCC patients. MC/NOD and CYN levels significantly varied by etiology with the highest levels in cases attributed to metabolic risk factors, specifically, hyperlipidemia, type 2 diabetes, and non-alcoholic fatty liver disease/non-alcoholic steatohepatitis. Cyanotoxin levels were significantly positively correlated with tumor expression of genes functioning in PPAR signaling and lipid metabolism. Our study provides novel albeit limited evidence that cyanotoxins may a role in the pathogenesis of HCC through the dysregulation of lipid metabolism and progression of hepatic steatosis.
Collapse
Affiliation(s)
- Brenda Y Hernandez
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, United States.
| | - Xuemei Zhu
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, United States
| | - Michelle Nagata
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, United States
| | - Lenora Loo
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, United States
| | - O Chan
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, United States
| | - Linda L Wong
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, United States
| |
Collapse
|
15
|
Yang X, Zhu J, Hu C, Yang W, Zheng Z. Integration of Transcriptomics and Microbiomics Reveals the Responses of Bellamya aeruginosa to Toxic Cyanobacteria. Toxins (Basel) 2023; 15:toxins15020119. [PMID: 36828433 PMCID: PMC9958990 DOI: 10.3390/toxins15020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Frequent outbreaks of harmful cyanobacterial blooms and the cyanotoxins they produce not only seriously jeopardize the health of freshwater ecosystems but also directly affect the survival of aquatic organisms. In this study, the dynamic characteristics and response patterns of transcriptomes and gut microbiomes in gastropod Bellamya aeruginosa were investigated to explore the underlying response mechanisms to toxic cyanobacterial exposure. The results showed that toxic cyanobacteria exposure induced overall hepatopancreatic transcriptome changes. A total of 2128 differentially expressed genes were identified at different exposure stages, which were mainly related to antioxidation, immunity, and metabolism of energy substances. In the early phase (the first 7 days of exposure), the immune system may notably be the primary means of resistance to toxin stress, and it performs apoptosis to kill damaged cells. In the later phase (the last 7 days of exposure), oxidative stress and the degradation activities of exogenous substances play a dominant role, and nutrient substance metabolism provides energy to the body throughout the process. Microbiomic analysis showed that toxic cyanobacteria increased the diversity of gut microbiota, enhanced interactions between gut microbiota, and altered microbiota function. In addition, the changes in gut microbiota were correlated with the expression levels of antioxidant-, immune-, metabolic-related differentially expressed genes. These results provide a comprehensive understanding of gastropods and intestinal microbiota response to toxic cyanobacterial stress.
Collapse
|
16
|
Chu H, Du C, Yang Y, Feng X, Zhu L, Chen J, Yang F. MC-LR Aggravates Liver Lipid Metabolism Disorders in Obese Mice Fed a High-Fat Diet via PI3K/AKT/mTOR/SREBP1 Signaling Pathway. Toxins (Basel) 2022; 14:toxins14120833. [PMID: 36548730 PMCID: PMC9784346 DOI: 10.3390/toxins14120833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Obesity, a metabolic disease caused by excessive fat accumulation in the body, has attracted worldwide attention. Microcystin-LR (MC-LR) is a hepatotoxic cyanotoxin which has been reportedly to cause lipid metabolism disorder. In this study, C57BL/6J mice were fed a high-fat diet (HFD) for eight weeks to build obese an animal model, and subsequently, the obese mice were fed MC-LR for another eight weeks, and we aimed to determine how MC-LR exposure affects the liver lipid metabolism in high-fat-diet-induced obese mice. The results show that MC-LR increased the obese mice serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT), indicating damaged liver function. The lipid parameters include serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), and liver TG, which were all increased, whilst the high-density lipoprotein cholesterol (HDL-c) was decreased. Furthermore, after MC-LR treatment, histopathological observation revealed that the number of red lipid droplets increased, and that steatosis was more severe in the obese mice. In addition, the lipid synthesis-related genes were increased and the fatty acid β-oxidation-related genes were decreased in the obese mice after MC-LR exposure. Meanwhile, the protein expression levels of phosphorylation phosphatidylinositol 3-kinase (p-PI3K), phosphorylation protein kinase B (p-AKT), phosphorylation mammalian target of rapamycin (p-mTOR), and sterol regulatory element binding protein 1c (SREBP1-c) were increased; similarly, the p-PI3K/PI3K, p-AKT/AKT, p-mTOR/mTOR, and SREBP1/β-actin were significantly up-regulated in obese mice after being exposed to MC-LR, and the activated PI3K/AKT/mTOR/SREBP1 signaling pathway. In addition, MC-LR exposure reduced the activity of superoxide dismutase (SOD) and increased the level of malondialdehyde (MDA) in the obese mice's serum. In summary, the MC-LR could aggravate the HFD-induced obese mice liver lipid metabolism disorder by activating the PI3K/AKT/mTOR/SREBP1 signaling pathway to hepatocytes, increasing the SREBP1-c-regulated key enzymes for lipid synthesis, and blocking fatty acid β-oxidation.
Collapse
Affiliation(s)
- Hanyu Chu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China
| | - Can Du
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Yue Yang
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Lemei Zhu
- School of Public Health, Changsha Medical University, Changsha 410219, China
| | - Jihua Chen
- Xiangya School of Public Health, Central South University, Changsha 410078, China
- Correspondence: (J.C.); (F.Y.)
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China
- Xiangya School of Public Health, Central South University, Changsha 410078, China
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
- Correspondence: (J.C.); (F.Y.)
| |
Collapse
|
17
|
Liu S, Gao Z, He W, Wu Y, Liu J, Zhang S, Yan L, Mao S, Shi X, Fan W, Song S. The gut microbiota metabolite glycochenodeoxycholate activates TFR-ACSL4-mediated ferroptosis to promote the development of environmental toxin-linked MAFLD. Free Radic Biol Med 2022; 193:213-226. [PMID: 36265794 DOI: 10.1016/j.freeradbiomed.2022.10.270] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has become the most common chronic liver disorders in the world, and yet has no approved pharmacotherapy due to the etiology is complex. In the last ten years, increasing evidence have identified the environmental pollutants as risk factors for MAFLD. However, the underlying mechanism remains unclear. Our study found that bromoacetic acid (BAA, a typical kind of environmental toxin) increased triglycerides and total cholesterol levels as well as induced obvious hepatic steatosis and inflammation. The lipidomics showed that ferroptosis was implicated in the environmental toxin-linked MAFLD. Besides, the analysis of microbial metabolomics showed significant change of gut microbiome in BAA groups and the content of gut microbiota metabolite (glycochenodeoxycholate, GCDCA) increased sharply. In vitro study, we observed features of ferroptotic cells by transmission electron microscopy after BAA/GCDCA treatment. Besides, we demonstrated that BAA/GCDCA significantly increased iron contents, with upregulating transferrin receptor (TFR) and acyl-CoA synthetase long-chain family 4 (ACSL4) expression levels. By contrast, iron chelator or silencing TFR relieved BAA/GCDCA-induced lipid metabolism disorder and inflammation. What's more, the interaction between TFR and ACSL4 was also identified. Taken together, we found that, in response to environmental toxin, gut microbiota metabolite GCDCA activates TFR-ACSL4-mediated ferroptosis, which triggered subsequent lipid metabolism disorder and inflammation. Moreover, these findings firstly highlighted the functional relevance among ferroptosis, lipid metabolism and gut microbiota metabolite during environmental pollutant exposure, which shed light on the deep mechanism of environmental toxin-related MAFLD, providing potential targets for the prevention of MAFLD.
Collapse
Affiliation(s)
- Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanqiu He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuting Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiwen Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuo Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengyong Mao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
18
|
Yang Y, Wang H, Wang X, Chen L, Liu W, Cai D, Deng S, Chu H, Liu Y, Feng X, Chen J, Chen M, Wang C, Liu R, Pu Y, Ding Z, Cao D, Long D, Cao Y, Yang F. Long-term environmental levels of microcystin-LR exposure induces colorectal chronic inflammation, fibrosis and barrier disruption via CSF1R/Rap1b signaling pathway. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129793. [PMID: 36029734 DOI: 10.1016/j.jhazmat.2022.129793] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023]
Abstract
Microcystin-LR (MC-LR) is a very common toxic cyanotoxins threating ecosystems and the public health. This study aims to explore the long-term effects and potential toxicity mechanisms of MC-LR exposure at environmental levels on colorectal injury. We performed histopathological, biochemical indicator and multi-omics analyses in mice with low-dose MC-LR exposure for 12 months. Long-term environmental levels of MC-LR exposure caused epithelial barrier disruption, inflammatory cell infiltration and an increase of collagen fibers in mouse colorectum. Integrated proteotranscriptomics revealed differential expression of genes/proteins, including CSF1R, which were mainly involved in oxidative stress-induced premature senescence and inflammatory response. MC-LR induced chronic inflammation and fibrosis through oxidative stress and CSF1R/Rap1b signaling pathway were confirmed in cell models. We found for the first time that long-term environmental levels of MC-LR exposure caused colorectal chronic inflammation, fibrosis and barrier disruption via a novel CSF1R/Rap1b signaling pathway. Moreover, MC-LR changed the gut microbiota and microbial-related metabolites in a vicious cycle aggravating colorectal injury. These findings provide novel insights into the effects and toxic mechanisms of MC-LR and suggest strategies for the prevention and treatment of MC-caused intestinal diseases.
Collapse
Affiliation(s)
- Yue Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Hui Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoyan Wang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling Chen
- First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wenya Liu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Danping Cai
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuxiang Deng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Hanyu Chu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Ying Liu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiangling Feng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jihua Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Mengshi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Chengkun Wang
- Department of Medical Pathology, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Zhen Ding
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Deliang Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
19
|
Duan Y, Xing Y, Zeng S, Dan X, Mo Z, Zhang J, Li Y. Integration of metagenomic and metabolomic insights into the effects of microcystin-LR on intestinal microbiota of Litopenaeus vannamei. Front Microbiol 2022; 13:994188. [PMID: 36212851 PMCID: PMC9537473 DOI: 10.3389/fmicb.2022.994188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
Microcystin-LR (MC-LR) is a hazardous substance that threaten the health of aquatic animals. Intestinal microbes and their metabolites can interact with hosts to influence physiological homeostasis. In this study, the shrimp Litopenaeus vannamei were exposed to 1.0 μg/l MC-LR for 72 h, and the toxic effects of MC-LR on the intestinal microbial metagenomic and metabolomic responses of the shrimp were investigated. The results showed that MC-LR stress altered the gene functions of intestinal microbial, including ABC transporter, sulfur metabolism and riboflavin (VB2) metabolism, and induced a significant increase of eight carbohydrate metabolism enzymes. Alternatively, intestinal metabolic phenotypes were also altered, especially ABC transporters, protein digestion and absorption, and the biosynthesis and metabolism of amino acid. Furthermore, based on the integration of intestinal microbial metagenomic and metabolome, four bacteria species (Demequina globuliformis, Demequina sp. NBRC 110055, Sphingomonas taxi and Sphingomonas sp. RIT328) and three metabolites (yangonin, α-hederin and soyasaponin ii) biomarkers were identified. Overall, our study provides new insights into the effects of MC-LR on the intestinal microbial functions of L. vannamei.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yifu Xing
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Shimin Zeng
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xueming Dan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zequan Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jiasong Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- *Correspondence: Jiasong Zhang,
| | - Yanwei Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Yanwei Li,
| |
Collapse
|
20
|
Du C, Zheng S, Yang Y, Feng X, Chen J, Tang Y, Wang H, Yang F. Chronic exposure to low concentration of MC-LR caused hepatic lipid metabolism disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113649. [PMID: 35605325 DOI: 10.1016/j.ecoenv.2022.113649] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Microcystin-LR (MC-LR), a potent hepatotoxin can cause liver damages. However, research on hepatic lipid metabolism caused by long-term exposure to environmental concentrations MC-LR is limited. In the current study, mice were exposed to various low concentrations of MC-LR (0, 1, 30, 60, 90, 120 μg/L in the drinking water) for 9 months. The general parameters, serum and liver lipids, liver tissue pathology, lipid metabolism-related genes and proteins of liver were investigated. The results show that chronic MC-LR exposure had increased the levels of triglyceride (TG) and total cholesterol (TC) in serum and liver. In addition, histological observation revealed that hepatic lobules were disordered with obvious inflammatory cell infiltration and lipid droplets. More importantly, the mRNA and proteins expression levels of lipid synthesis-related nuclear sterol regulatory element binding protein-1c (nSREBP-1c), SREBP-1c, cluster of differentiation 36 (CD36), acetyl-CoA-carboxylase1 (ACC1), stearoyl-CoA desaturase1 (SCD1) and fatty acid synthase (FASN) were increased in MC-LR treated groups, the expression levels of fatty acids β-oxidation related genes peroxisomal acyl-coenzyme A oxidase 1 (ACOX1) was decreased after exposure to 60-120 μg/L MC-LR. Furthermore, the inflammatory factors interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) were higher than that in the control group. All the findings indicated that mice were exposed to chronic low concentrations MC-LR caused liver inflammation and hepatic lipid metabolism disorder .
Collapse
Affiliation(s)
- Can Du
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Shuilin Zheng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Yue Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Xiangling Feng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Jihua Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Yan Tang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China
| | - Hui Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China
| | - Fei Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
21
|
He J, Chen J, Chen F, Chen L, Giesy JP, Guo Y, Liang G, Deng X, Wang W, Xie P. Health Risks of Chronic Exposure to Small Doses of Microcystins: An Integrative Metabolomic and Biochemical Study of Human Serum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6548-6559. [PMID: 35510355 DOI: 10.1021/acs.est.2c00973] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Health risks of chronic exposure to microcystins (MCs), a family of aquatic contaminants produced mainly by cyanobacteria, are critical yet unsolved problems. Despite a few epidemiological studies, the metabolic profiles of humans exposed to MCs remain unknown, hindering the deep understanding of the molecular toxicity mechanisms. Here, sensitive nuclear magnetic resonance (NMR)- and liquid chromatography-mass spectrometry (LC-MS)-based metabolomics were applied to investigate the serum metabolic profiles of humans living near Lake Chao, where toxic cyanobacterial blooms occur annually. MCs were positively detected in 92 of 144 sera by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with a median concentration of 0.016 μg/L. The estimated daily intake (0.15-0.27 μg MC-LReq/day) was less than the tolerable daily intake (TDI, 2.4 μg MC-LR for 60 kg adults) recommended by the World Health Organization (WHO). Obvious disruptions of the amino acid metabolism were confirmed and played important roles in renal impairments associated with serum MC burdens. Chronic oral exposure of mice to 30 μg MC-LR/kg body mass, which is less than the no observed adverse effect level, also led to obvious renal lesions and metabolic dysfunction. These observations provide the first evidence of metabolic disturbance of humans exposed to MCs and indicate that the WHO's TDI value determined traditionally should be lessened to protect human health effectively.
Collapse
Affiliation(s)
- Jun He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Feng Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - John P Giesy
- Toxicology Center, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatoon S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatoon S7N 5B4, Canada
- Zoology Department, Institute for Integrative Toxicology, Michigan State University, 1129 Farm Lane Road, East Lansing, Michigan 48824, United States
- Department of Environmental Sciences, Baylor University, Waco 76706, Texas, United States
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
| | - Gaodao Liang
- Wuhan Centers for Disease Control and Prevention, Wuhan 430072, China
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wenjing Wang
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| |
Collapse
|
22
|
Li J, Sun H, Wang C, Li S, Cai Y. Subchronic Toxicity of Microcystin-LR on Young Frogs (Xenopus laevis) and Their Gut Microbiota. Front Microbiol 2022; 13:895383. [PMID: 35633706 PMCID: PMC9134123 DOI: 10.3389/fmicb.2022.895383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Although toxic effects of microcystins (MCs) in mammals and fish have been extensively studied, the effects of MCs on the immune system and gut microbiota of amphibians have not received sufficient attention. As MCs cause general damage to the vertebrate liver and immune system and trigger an inflammatory response, and the gut microbiota is closely related to host metabolism and immunity, we speculated that MCs can cause changes in the immune system and gut microbiota of amphibians. To verify this, we examined the intestinal and liver injury of Xenopus laevis exposed to different microcystin-leucine-arginine (MC-LR) concentrations and the effects on the gut microbiota through high-throughput sequencing of 16S rDNA of the gut microbiota combined with histopathological analysis, enzyme activity determination, and qRT-PCR. Our results showed that MC-LR caused focal infiltration of inflammatory cells and increased the number of T cells and local congestion and vacuolization in X. laevis liver, but reduced the number, density, height, and regularity of villi. These liver and intestinal injuries became more obvious with an increase in MC-LR concentration. MC-LR significantly decreased the activities of malondialdehyde and alkaline phosphatase and the expression of TGF-β in the liver. Moreover, MC-LR significantly altered the gut microbiota of X. laevis. The relative abundance of Firmicutes and Bacteroidetes in high-concentration MC-LR groups was significantly reduced compared to that in low-concentration MC-LR groups, whereas Fusobacteria was significantly enriched. The metabolic gene composition of the gut microbiota in low-concentration MC-LR (≤5 μg/L) groups was significantly different from that in high-concentration MC-LR (≥20 μg/L) groups. These results deepen our understanding of the toxicity of MCs to aquatic organisms and assessment of the ecological risk of MCs in amphibians.
Collapse
Affiliation(s)
- Jinjin Li
- School of Life Sciences, Qilu Normal University, Jinan, China
- *Correspondence: Jinjin Li,
| | - Hongzhao Sun
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Chun Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China
| | - Shangchun Li
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Yunfei Cai
- School of Life Sciences, Qilu Normal University, Jinan, China
| |
Collapse
|
23
|
Duan Y, Zeng S, Lu Z, Dan X, Mo Z, Xing Y, Zhang J, Li Y. Responses of lipid metabolism and lipidomics in the hepatopancreas of Pacific white shrimp Litopenaeus vannamei to microcystin-LR exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153245. [PMID: 35065121 DOI: 10.1016/j.scitotenv.2022.153245] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/25/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Microcystin-LR (MC-LR) is a toxic substance that threatens the health of aquatic animals. Hepatopancreas is the target organ of MC-LR toxicity. In this study, we investigated the effects of MC-LR on hepatopancreas lipid metabolism and lipidomic responses in Litopenaeus vannamei. After MC-LR exposure for 72 h, the hepatopancreas showed obvious tissue damage, and the activities of several lipase isoenzymes were decreased. Furthermore, the relative gene expression levels of lipolysis (CPT1, AMPKα), lipogenesis (SREBP, FAS, ACC, 6PGD), and long-chain fatty acid β-oxidation (ACDL, ACDVL, ACBP) were increased. MC-LR exposure also affected lipidomics homeostasis. Specifically, the levels of glycerophospholipids (phosphatidylcholine, phosphatidic acid, lyso-phosphatidylcholine, lyso-phosphatidylethanolamine, lyso-phosphatidylglycerol), sphingolipids (sphingomyelin and ceramides) and cholesteryl ester were increased, and those of phosphatidylinositol and triglyceride were decreased. The significantly altered lipid molecules were mainly associated with the pathways of lipid and fatty acid metabolism and autophagy. These results reveal that MC-LR exposure influences lipid metabolism and lipidomic homeostasis in the shrimp hepatopancreas.
Collapse
Affiliation(s)
- Yafei Duan
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Shimin Zeng
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China
| | - Zijun Lu
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China
| | - Xueming Dan
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China
| | - Zequan Mo
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China
| | - Yifu Xing
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jiasong Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| | - Yanwei Li
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China.
| |
Collapse
|
24
|
Chi C, Giri SS, Yu XW, Liu Y, Chen KK, Liu WB, Zhang DD, Jiang GZ, Li XF, Gao X, Chen BL, Park SC. Lipid metabolism, immune and apoptosis transcriptomic responses of the hepatopancreas of Chinese mitten crab to the exposure to microcystin-LR. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113439. [PMID: 35367891 DOI: 10.1016/j.ecoenv.2022.113439] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Global warming is favouring the incidence, intensity and duration of harmful cyanobacterial blooms. Microcystin-LR (MC-LR), a hepatotoxic agent, is produced during cyanobacterial blooms. To understand the molecular mechanisms of acute hepatotoxic effect of low doses of MC-LR in crab, we examined differentially expressed genes in samples of the hepatopancreas of Chinese mitten crab (Eriocheir sinensis) collected in 48 h after injections of MC-LR at doses of 0, 25, 50, and 75 µg/kg. The results revealed that MC-LR induced changes in corresponding gene led to the accumulation of triglycerides. MC-LR exposure affected sterol metabolism. Apoptosis-related genes such as Fas-L, Bcl-XL, Cytc, AiF, p53, PERK, calpain, CASP2, CASP7, α-tubulin, PARP, GF, G12, and PKC were upregulated. Conversely, expression levels of CASP10 and ASK1 were downregulated. Genes related to the regulation of actin cytoskeleton (Rho, ROCK, MLCP, MLC, PAK, and PFN) were upregulated. Further, expression levels of genes encoding fatty acid elongation-related enzymes were upregulated, but the expression of genes related to fatty acid synthesis was slightly down regulated. Taken together, these results demonstrated the hepatic toxicity and molecular mechanisms of changes in lipid metabolism, immune and apoptosis in Chinese mitten crab under the MC-LR-induced stress, which is the first report on crabs and performs a comprehensive analysis and a new insight of the molecular toxicological responses in crabs.
Collapse
Affiliation(s)
- Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China.
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Xia Wei Yu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Yuan Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Ke Ke Chen
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Wen Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Ding Dong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Guang Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Xiang Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Xin Gao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Bin Lin Chen
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| |
Collapse
|
25
|
Hendrickson OD, Zvereva EA, Zherdev AV, Dzantiev BB. Ultrasensitive lateral flow immunoassay of phycotoxin microcystin-LR in seafood based on magnetic particles and peroxidase signal amplification. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
He J, Shu Y, Dai Y, Gao Y, Liu S, Wang W, Jiang H, Zhang H, Hong P, Wu H. Microcystin-leucine arginine exposure induced intestinal lipid accumulation and MC-LR efflux disorder in Lithobates catesbeianus tadpoles. Toxicology 2022; 465:153058. [PMID: 34863901 DOI: 10.1016/j.tox.2021.153058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/05/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
Few studies exist on the toxic effects of chronic exposure to microcystins (MCs) on amphibian intestines, and the toxicity mechanisms are unclear. Here, we evaluated the impact of subchronic exposure (30 days) to environmentally realistic microcystin-leucine arginine (MC-LR) concentrations (0 μg/L, 0.5 μg/L and 2 μg/L) on tadpole (Lithobates catesbeianus) intestines by analyzing the histopathological and subcellular microstructural damage, the antioxidative and oxidative enzyme activities, and the transcriptome levels. Histopathological results showed severe damage accompanied by inflammation to the intestinal tissues as the MC-LR exposure concentration increased from 0.5 μg/L to 2 μg/L. RNA-sequencing analysis identified 634 and 1,147 differentially expressed genes (DEGs) after exposure to 0.5 μg/L and 2 μg/L MC-LR, respectively, compared with those of the control group (0 μg/L). Biosynthesis of unsaturated fatty acids and the peroxisome proliferator-activated receptor (PPAR) signaling pathway were upregulated in the intestinal tissues of the exposed groups, with many lipid droplets being observed on transmission electron microscopy, implying that MC-LR may induce lipid accumulation in frog intestines. Moreover, 2 μg/L of MC-LR exposure inhibited the xenobiotic and toxicant biodegradation related to detoxification, implying that the tadpoles' intestinal detoxification ability was weakened after exposure to 2 μg/L MC-LR, which may aggravate intestinal toxicity. Lipid accumulation and toxin efflux disorder may be caused by MC-LR-induced endoplasmic reticular stress. This study presents new evidence that MC-LR harms amphibians by impairing intestinal lipid metabolism and toxin efflux, providing a theoretical basis for evaluating the health risks of MC-LR to amphibians.
Collapse
Affiliation(s)
- Jun He
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Yue Dai
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Yuxin Gao
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Shuyi Liu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Wenchao Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Huiling Jiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Pei Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| |
Collapse
|
27
|
Pound HL, Gann ER, Wilhelm SW. A comparative study of metatranscriptomic assessment methods to characterize Microcystis blooms. LIMNOLOGY AND OCEANOGRAPHY, METHODS 2021; 19:846-854. [PMID: 35528780 PMCID: PMC9075346 DOI: 10.1002/lom3.10465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Harmful algal blooms are increasing in duration and severity globally, resulting in increased research interest. The use of genetic sequencing technologies has provided a wealth of opportunity to advance knowledge, but also poses a risk to that knowledge if handled incorrectly. The vast numbers of sequence processing tools and protocols provide a method to test nearly every hypothesis, but each method has inherent strengths and weaknesses. Here, we tested six methods to classify and quantify metatranscriptomic activity from a harmful algal bloom dominated by Microcystis spp. Three online tools were evaluated (Kaiju, MG-RAST, and GhostKOALA) in addition to three local tools that included a command line BLASTx approach, recruitment of reads to individual Microcystis genomes, and recruitment to a combined Microcystis composite genome generated from sequenced isolates with complete, closed genomes. Based on the analysis of each tool presented in this study, two recommendations are made that are dependent on the hypothesis to be tested. For researchers only interested in the function and physiology of Microcystis spp., read recruitments to the composite genome, referred to as "Frankenstein's Microcystis", provided the highest total estimates of transcript expression. However, for researchers interested in the entire bloom microbiome, the online GhostKOALA annotation tool, followed by subsequent read recruitments, provided functional and taxonomic characterization, in addition to transcript expression estimates. This study highlights the critical need for careful evaluation of methods before data analysis.
Collapse
Affiliation(s)
- Helena L. Pound
- Department of MicrobiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Eric R. Gann
- Department of MicrobiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Steven W. Wilhelm
- Department of MicrobiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
28
|
Wang Z, Chen WD, Wang YD. Nuclear receptors: a bridge linking the gut microbiome and the host. Mol Med 2021; 27:144. [PMID: 34740314 PMCID: PMC8570027 DOI: 10.1186/s10020-021-00407-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background The gut microbiome is the totality of microorganisms, bacteria, viruses, protozoa, and fungi within the gastrointestinal tract. The gut microbiome plays key roles in various physiological and pathological processes through regulating varieties of metabolic factors such as short-chain fatty acids, bile acids and amino acids. Nuclear receptors, as metabolic mediators, act as a series of intermediates between the microbiome and the host and help the microbiome regulate diverse processes in the host. Recently, nuclear receptors such as farnesoid X receptor, peroxisome proliferator-activated receptors, aryl hydrocarbon receptor and vitamin D receptor have been identified as key regulators of the microbiome-host crosstalk. These nuclear receptors regulate metabolic processes, immune activity, autophagy, non-alcoholic and alcoholic fatty liver disease, inflammatory bowel disease, cancer, obesity, and type-2 diabetes. Conclusion In this review, we have summarized the functions of the nuclear receptors in the gut microbiome-host axis in different physiological and pathological conditions, indicating that the nuclear receptors may be the good targets for treatment of different diseases through the crosstalk with the gut microbiome.
Collapse
Affiliation(s)
- Zixuan Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Wei-Dong Chen
- Key Laboratory of Molecular Pathology, Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People's Republic of China. .,School of Medicine, Key Laboratory of Receptors-Mediated Gene Regulation, The People' Hospital of Hebi, Henan University, Henan, People's Republic of China.
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China.
| |
Collapse
|
29
|
Zhang Y, Wu D, Fan Z, Li J, Gao L, Wang Y, Wang L. Microcystin-LR induces ferroptosis in intestine of common carp (Cyprinus carpio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112610. [PMID: 34365207 DOI: 10.1016/j.ecoenv.2021.112610] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Previous studies provide comprehensive evidence of the environmental hazards and intestinal toxicity of microcystin-LR (MC-LR) exposure. However, little is known about the mechanisms underlying the injury of intestine exposed to MC-LR. Juvenile common carp (Cyprinus carpio) were exposed to MC-LR (0 and 10 μg/L) for 15 days. The results suggest that organic anion-transporting polypeptides 3a1, 4a1, 2b1, and 1d1 mediate MC-LR entry into intestinal tissues. Lesion morphological features (vacuolization, deformation and dilation of the endoplasmic reticulum [ER], absence of mitochondrial cristae in mid-intestine), up-regulated mRNA expressions of ER stress (eukaryotic translation initiation factor 2-alpha kinase 3, endoplasmic reticulum to nucleus signaling 1, activating transcription factor [ATF] 6, ATF4, DNA damage-inducible transcript 3), iron accumulation, and down-regulated activity of glutathione peroxidase (GPx) and glutathione (GSH) content were all typical characteristics of ferroptosis in intestinal tissue following MC-LR exposure. GSH levels in intestinal tissue corroborated as the most influential GSH/GPx 4- related metabolic pathway in response to MC-LR exposure. Verrucomicrobiota, Planctomycetes, Bdellovibrionota, Firmicutes and Cyanobacteria were correlated with the ferroptosis-related GSH following MC-LR exposure. These findings provide new perspectives of the ferroptosis mechanism of MC-LR-induced intestinal injury in the common carp.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Di Wu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Ze Fan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Jinnan Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Lei Gao
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Yu'e Wang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| |
Collapse
|
30
|
Zheng S, Yang Y, Wen C, Liu W, Cao L, Feng X, Chen J, Wang H, Tang Y, Tian L, Wang X, Yang F. Effects of environmental contaminants in water resources on nonalcoholic fatty liver disease. ENVIRONMENT INTERNATIONAL 2021; 154:106555. [PMID: 33857709 DOI: 10.1016/j.envint.2021.106555] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) has been increasing rapidly in recent years, which is now estimated to be over 25%. NAFLD is one of the most common chronic liver diseases in the world. At present, with the rapid development of economy and industrialization, many chemicals are released into the environment. These chemical contaminants in the environment might cause harm to human health and result in lipid metabolism disorder during long-term exposure. Moreover, the incentive of many NAFLD cases is unknown, and the environmental risk factors of NAFLD need to be urgently identified. Hence, we focus on the impacts of several popular environmental contaminants in water environment on the development and progression of NAFLD. These contaminants mainly include microcystins (MCs), disinfection by-products (DBPs), heavy metals (HMs), dioxins and polychlorinated biphenyls (PCBs). Through analyzing a great many epidemiological and toxicological studies, we have found positive associations between NAFLD and chronic exposure to these contaminants at the environmental levels. This review may enhance the understanding of liver damage caused by environmental pollutants, which are considered as tangible environmental risk factors for NAFLD.
Collapse
Affiliation(s)
- Shuilin Zheng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Yue Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Cong Wen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Wenya Liu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Linghui Cao
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Xiangling Feng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Jihua Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Hui Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China
| | - Yan Tang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China
| | - Li Tian
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health Southeast University, Nanjing 210009, China.
| |
Collapse
|
31
|
Ma Y, Liu H, Du X, Shi Z, Liu X, Wang R, Zhang S, Tian Z, Shi L, Guo H, Zhang H. Advances in the toxicology research of microcystins based on Omics approaches. ENVIRONMENT INTERNATIONAL 2021; 154:106661. [PMID: 34077854 DOI: 10.1016/j.envint.2021.106661] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs) are the most widely distributed cyanotoxins, which can be ingested by animals and human body in multiple ways, resulting in a threat to human health and the biodiversity of wildlife. Therefore, the study on toxic effects and mechanisms of MCs is one of the focuses of attention. Recently, the Omics techniques, i.e. genomics, transcriptomics, proteomics and metabolomics, have significantly contributed to the comprehensive understanding and revealing of the molecular mechanisms about the toxicity of MCs. This paper mainly reviews current literature using the Omics approaches to explore the toxicity mechanism of MCs in liver, gonad, spleen, brain, intestine and lung of multiple species. It was found that MCs can exert strong toxic effects on various metabolic activities and cell signal transduction in cell cycle, apoptosis, destruction of cell cytoskeleton and redox disorder, at protein, transcription and metabolism level. Meanwhile, it was also revealed that the alteration of non-coding RNAs (miRNA, circRNA and lncRNA, etc.) and gut microbiota plays an essential regulatory role in the toxic effects of MCs, especially in hepatotoxicity and reproductive toxicity. In addition, we summarized current research gaps and pointed out the future directions for research. The detailed information in this paper shows that the application and development of Omics techniques have significantly promoted the research on MCs toxicity, and it is also a valuable resource for exploring the toxic mechanism of MCs.
Collapse
Affiliation(s)
- Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Ziang Shi
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, PR China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, PR China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
32
|
Shi L, Du X, Liu H, Chen X, Ma Y, Wang R, Tian Z, Zhang S, Guo H, Zhang H. Update on the adverse effects of microcystins on the liver. ENVIRONMENTAL RESEARCH 2021; 195:110890. [PMID: 33617868 DOI: 10.1016/j.envres.2021.110890] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs) are the most common cyanobacteria toxins in eutrophic water, which have strong hepatotoxicity. In the past decade, epidemiological and toxicological studies on liver damage caused by MCs have proliferated, and new mechanisms of hepatotoxicity induced by MCs have also been discovered and confirmed. However, there has not been a comprehensive and systematic review of these new findings. Therefore, this paper summarizes the latest advances in studies on the hepatotoxicity of MCs to reveal the effects and mechanisms of hepatotoxicity induced by MCs. Current epidemiological studies have confirmed that symptoms or signs of liver damage appear after human exposure to MCs, and a long time of exposure can even lead to liver cancer. Toxicological studies have shown that MCs can affect the expression of oncogenes by activating cell proliferation pathways such as MAPK and Akt, thereby promoting the occurrence and development of cancer. The latest evidence shows that epigenetic modifications may play an important role in MCs-induced liver cancer. MCs can cause damage to the liver by inducing hepatocyte death, mainly manifested as apoptosis and necrosis. The imbalance of liver metabolic homeostasis may be involved in hepatotoxicity induced by MCs. In addition, the combined toxicity of MCs and other toxins are also discussed in this article. This detailed information will be a valuable reference for further exploring of MCs-induced hepatotoxicity.
Collapse
Affiliation(s)
- Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
33
|
Lei H, Song Y, Dong M, Chen G, Cao Z, Wu F, Chen C, Zhang C, Liu C, Shi Z, Zhang L. Metabolomics safety assessments of microcystin exposure via drinking water in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111989. [PMID: 33524913 DOI: 10.1016/j.ecoenv.2021.111989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Drinking water exposure to microcystin-leucine-arginine (MC-LR), the most widely occurring cyanotoxins, poses a highly potential risk for human health. However, the health risk of MC-LR exposure at current guideline value in drinking water has not yet entirely evaluated. In the current study, we used 1H NMR-based metabolomics combined with targeted metabolic profiling by GC/LC-MS to explore the toxic effects of MC-LR exposure at environmentally relevant concentrations via drinking water in rats. The results revealed that multiple biological consequences of MC-LR exposure on host metabolism in rats. Both relatively low and high doses of MC-LR used here induced hepatic lipogenesis and inflammation. While only relatively high dose MC-LR (10 μg/L) in drinking water caused more metabolic disorders including inhibition of gluconeogenesis and promotion of β-oxidation of fatty acid. Although the dose of 1.0 μg/L MC-LR is extremely low for rats, alterations of metabolic profiles were unexpectedly found in rat liver and serum, alarming potential health risk of MC-LR at the WHO guideline level.
Collapse
Affiliation(s)
- Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Yuchen Song
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manyuan Dong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gui Chen
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Cao
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan Chen
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caixiang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Zunji Shi
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China.
| | - Limin Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China.
| |
Collapse
|
34
|
Liu W, Feng H, Zheng S, Xu S, Massey IY, Zhang C, Wang X, Yang F. Pb Toxicity on Gut Physiology and Microbiota. Front Physiol 2021; 12:574913. [PMID: 33746764 PMCID: PMC7970193 DOI: 10.3389/fphys.2021.574913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Lead (Pb) is a toxic heavy metal, having profound threats to the global population. Multiple organs such as kidney, and liver, as well as nervous, hematologic, and reproductive systems, are commonly considered the targets of Pb toxicity. Increasing researches reported that the effects of Pb on gastrointestinal tracts are equally intensive, especially on intestinal microbiota. This review summarized Pb toxicity on gut physiology and microbiota in different animal models and in humans, of which the alterations may further have effects on other organs in host. To be more specific, Pb can impair gut barrier and increase gut permeability, which make inflammatory cytokines, immunologic factors, as well as microbial metabolites such as bile acids (BA) and short-chain fatty acids (SCFAs) enter the enterohepatic circulation easily, and finally induce multiple systematic lesion. In addition, we emphasized that probiotic treatment may be one of the feasible and effective strategies for preventing Pb toxicity.
Collapse
Affiliation(s)
- Wenya Liu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Hai Feng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Shuilin Zheng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Shuaishuai Xu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Isaac Yaw Massey
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Chengcheng Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China
| |
Collapse
|
35
|
Xiao W, Zhong Q, Sun F, Wang W, Zhao Z, Gu K. Differences in Abnormal Water Metabolism between SD Rats and KM Mice Intoxicated by Microcystin-RR. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1900. [PMID: 33669356 PMCID: PMC7920292 DOI: 10.3390/ijerph18041900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/17/2023]
Abstract
The effects of microcystin-RR (MC-RR) on water metabolism were studied on Sprague-Dawley (SD) rats and KunMing (KM) mice. In the single dose toxicity test, polydipsia, polyuria, hematuria and proteinuria were found in group of rats receiving a MC-RR dose of 574.7 μg/kg, and could be relieved by dexamethasone (DXM). Gradient damage was observed in kidney and liver in rats with gradient MC-RR doses of 574.7, 287.3, and 143.7 μg/kg. No significant water metabolic changes or kidney injuries were observed in mice treated with MC-RR doses of 210.0, 105.0, and 52.5 μg/kg. In the continuous exposure test, in which mice were administrated with 140.0, 70.0, and 35.0 μg/kg MC-RR for 28 days, mice in the 140.0 μg/kg group presented increasing polydipsia, polyuria, and liver damage. However, no anatomic or histological changes, including related serological and urinary indices, were found in the kidney. In summary, abnormal water metabolism can be induced by MC-RR in rats through kidney injury in single dose exposure; the kidney of SD rats is more sensitive to MC-RR than that of KM mouse; and polydipsia and polyuria in mice exposed to MC-RR for 28 days occurred but could not be attributed to kidney damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Kangding Gu
- MOE Key Lab of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (W.X.); (Q.Z.); (F.S.); (W.W.); (Z.Z.)
| |
Collapse
|
36
|
Zhang Y, Zhu P, Wu X, Yuan T, Su Z, Chen S, Zhou Y, Tao WA. Microcystin-LR Induces NLRP3 Inflammasome Activation via FOXO1 Phosphorylation, Resulting in Interleukin-1β Secretion and Pyroptosis in Hepatocytes. Toxicol Sci 2021; 179:53-69. [PMID: 33078829 DOI: 10.1093/toxsci/kfaa159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Microcystin-LR (MC-LR), the most common and toxic microcystin (MC) present in freshwater, poses a substantial threat to human health, especially hepatotoxicity. Recent evidence reveals that the NLRP3 inflammasome plays an important role in liver injury by activating caspase-1 to promote interleukin-1β (IL-1β) secretion. In this study, we investigated the possible role of NLRP3 inflammasome activation in MC-LR-induced mouse liver inflammatory injury. We found that MC-LR administered to mice by oral gavage mainly accumulated in liver and induced the activation of the NLRP3 inflammasome and production of mature IL-1β. Additionally, we observed an increase in the levels of NLRP3 inflammasome-related proteins and the proportion of pyroptosis in MC-LR-treated AML-12 cells. We also found that inhibition of NLRP3 in mice attenuated MC-LR-induced IL-1β production, indicating an essential role for NLRP3 in MC-LR-induced liver inflammatory injury. In addition, we found that inhibition of FOXO1 by AKT-mediated hyperphosphorylation, due to protein phosphatase 2A (PP2A) inhibition, is required for MC-LR-induced expression of NLRP3. Taken together, our in vivo and in vitro findings suggest a model in which the NLRP3 inflammasome activation, a result of AKT-mediated hyperphosphorylation of FOXO1 through inhibition of PP2A, plays a key role in MC-LR-induced liver inflammatory injury via IL-1β secretion and pyroptotic cell death.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Xiaofeng Wu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Tianli Yuan
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Zhangyao Su
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Shiyin Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Yajun Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Weiguo Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
37
|
Lee J, Lee S, Mayta A, Mrdjen I, Weghorst C, Knobloch T. Microcystis toxin-mediated tumor promotion and toxicity lead to shifts in mouse gut microbiome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111204. [PMID: 32871519 DOI: 10.1016/j.ecoenv.2020.111204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/07/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Microcystins (MCs) are the most prevalent cyanotoxins reported in freshwater. While numerous studies have examined the toxicological impacts of MCs on mammalian systems, very few have examined the chronic impacts of MCs on the gut microbiome of exposed organisms. Our understanding of the relationship of MCs, especially lysed toxic cyanobacteria, and the gut microbiota is very limited. The objective of this study was to determine the impacts of MC-LR and Microcystis lysate ingestion on the gut microbiome in a hepatocellular carcinoma mouse model, simulating a high-risk population and exposure at an environmentally relevant MC level. Mice were assigned to 4 groups (MC-LR; Microcystis lysate; Negative control; Positive (liver carcinogen) control). Fecal samples were collected every 8 weeks. Bacterial community and colony counts were analyzed. The abundance of Firmicutes in the positive control and lysate group was higher than the negative control and MC group. Exposure to MC-LR or lysate was associated with significantly decreased bacterial diversity. A distinct separation of the three groups (MC-LR/lysate/carcinogen) from the negative was much more apparent in their gut microbiome as the exposure time increased. The MC-LR and lysate groups showed gut microbiome structure responding to lipid metabolism disturbance and high stress. Bacterial colony count was significantly lower in all the treated groups than the negative control. Our study highlights that chronic exposure to MC-LR and Microcystis lysate negatively impacts gut microbiome succession and altered the bacterial community structure into the one similar to the carcinogen group, which may indicate that the change favors progression of hepatocellular carcinoma. In a future study, more in-depth investigation is warranted to better understand the liver-gut nexus in promoting liver cancer among those exposed to MC and toxic cyanobacteria.
Collapse
Affiliation(s)
- Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Avenue, Columbus, OH, United States; Department of Food Science & Technology, The Ohio State University, 2015 Fyffe Road, Columbus, OH, United States.
| | - Seungjun Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Avenue, Columbus, OH, United States
| | - Alba Mayta
- Department of Food Science & Technology, The Ohio State University, 2015 Fyffe Road, Columbus, OH, United States
| | - Igor Mrdjen
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Avenue, Columbus, OH, United States
| | - Christopher Weghorst
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Avenue, Columbus, OH, United States
| | - Thomas Knobloch
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Avenue, Columbus, OH, United States
| |
Collapse
|
38
|
Almeida de Oliveira R, Zanato N, Cruz Vieira I. Label‐free Immunosensor for the Determination of Microcystin‐LR in Water. ELECTROANAL 2020. [DOI: 10.1002/elan.202060041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rávila Almeida de Oliveira
- Laboratory of Biosensors, Department of Chemistry Federal University of Santa Catarina 88040-900 Florianópolis, SC Brazil
| | - Nicole Zanato
- Laboratory of Biosensors, Department of Chemistry Federal University of Santa Catarina 88040-900 Florianópolis, SC Brazil
| | - Iolanda Cruz Vieira
- Laboratory of Biosensors, Department of Chemistry Federal University of Santa Catarina 88040-900 Florianópolis, SC Brazil
| |
Collapse
|
39
|
Zhao Y, Yan Y, Xie L, Wang L, He Y, Wan X, Xue Q. Long-term environmental exposure to microcystins increases the risk of nonalcoholic fatty liver disease in humans: A combined fisher-based investigation and murine model study. ENVIRONMENT INTERNATIONAL 2020; 138:105648. [PMID: 32187572 DOI: 10.1016/j.envint.2020.105648] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/21/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Microcystins (MCs) produced by cyanobacteria pose serious threats to human health. However, the contribution of long-term exposure to MCs to the development of nonalcoholic fatty liver disease (NAFLD) remains poorly documented. In this study, we estimated the environmental uptake of MCs by a small population of fishers who have lived for many years on Meiliang Bay of Lake Taihu, where cyanobacterial blooms occur frequently. Serum biochemical indices of liver function and their relationships with MC contamination in these people were also investigated. Moreover, to mimic the long-term effects of MC on the livers of fishers, an animal model was established in which mice were exposed to MC-LR at an environmentally relevant level, a reference level (the no-observed adverse effect level, NOAEL), and three times the NOAEL through drinking water for 12 months. We estimated the total daily intake of MCs by fishers through contaminated lake water and food to be 5.95 μg MC-LReq, far exceeding the tolerable daily intake (2.40 μg MC-LReq) proposed by the World Health Organization (WHO). More than 80% of participants had at least one abnormal serum marker. The indices of aspartate aminotransferase (AST)/alanine aminotransferase (ALT), triglyceride (TG), globulin (GLB), and lactate dehydrogenase (LDH) had close positive associations with MC contamination, indicating that both liver damage and lipid metabolism dysfunction were induced by chronic MC exposure. Furthermore, the animal experimental results showed that long-term exposure to MC-LR at the environmentally relevant level led to hepatic steatosis with molecular alterations in circadian rhythm regulation, lipid metabolic processes, and the cell cycle pathway. Exposure to MC-LR at or above the NOAEL worsened the pathological phenotype towards nonalcoholic steatohepatitis disease (NASH) or fibrosis. These results suggest that prolonged exposure to the reference level (NOAEL) of MC-LR could cause severe liver injury to mammals. People with long-term environmental exposure to MCs might be at high risk for developing NAFLD.
Collapse
Affiliation(s)
- Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China.
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Lixiao Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Yaojia He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Xiang Wan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| |
Collapse
|
40
|
Xing H, Chen J, Peng M, Wang Z, Liu F, Li S, Teng X. Identification of signal pathways for immunotoxicity in the spleen of common carp exposed to chlorpyrifos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109464. [PMID: 31398777 DOI: 10.1016/j.ecoenv.2019.109464] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Chlorpyrifos (CPF) is an environmental pollutant due to its high toxicity to aquatic animals. Because CPF was detected in aquatic environments in many countries, it has been widely concerned by researchers. Although the immunotoxicity of CPF to fish had been reported, the immunotoxicity mechanism is still not clear. Recently, transcriptome analysis has become a major method to study the toxic mechanism of pollutants in environmental toxicology. However, the immunotoxicity identification of CPF on fish had not been reported by transcriptome analysis. In the present study, we examined the effects of CPF on organismal system in the spleen of common carp by transcriptome analysis. We have successfully constructed a database of transcriptome analysis of carp spleens under exposure to CPF and found 773 differentially expressed genes (DEGs) (including 498 up-regulated DEGs and 275 down-regulated DEGs) and 4 branches (containing 33 known KEGG pathways). Some genes associated with the 4 pathways (Complement and coagulation cascades, PPAR signaling pathway, Fat digestion and absorption, and Collecting duct acid secretion) contained in organismal system were validated by quantitative real-time PCR and showed significant improvement compared with the control group. Our results indicated that exposure to CPF caused a change in the signal pathways of organismal system in carp spleens. The present study provides new insights into the immunotoxicity mechanism and risk assessment of CPF, as well as references for comparative medicine.
Collapse
Affiliation(s)
- Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianqing Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Muqiao Peng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhilei Wang
- Centre for Animal Disease Prevention and Control of Heilongjiang Province, 243 Haping Road, Xiangfang District, Harbin, 150069, PR China
| | - Feng Liu
- Centre for Animal Disease Prevention and Control of Heilongjiang Province, 243 Haping Road, Xiangfang District, Harbin, 150069, PR China
| | - Shu Li
- Department of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, PR China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
41
|
Wang S, Zhao D, Zeng J, Xu H, Huang R, Jiao C, Guo L. Variations of bacterial community during the decomposition of Microcystis under different temperatures and biomass. BMC Microbiol 2019; 19:207. [PMID: 31484494 PMCID: PMC6727399 DOI: 10.1186/s12866-019-1585-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/28/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The decomposition of Microcystis can dramatically change the physicochemical properties of freshwater ecosystems. Bacteria play an important role in decomposing organic matters and accelerating the cycling of materials within freshwater lakes. However, actions of the bacterial community are greatly influenced by temperature and the amount of organic matter available to decompose during a bloom. Therefore, it is vital to understand how different temperatures and biomass levels affect the bacterial community during the decomposition of Microcystis. RESULTS Microcystis addition reduced the diversity of bacterial community. The composition of bacterial community differed markedly between samples with different biomass of Microcystis (no addition, low biomass addition: 0.17 g/L, and high biomass addition: 0.33 g/L). In contrast, temperature factor did not contribute much to the different bacterial community composition. Total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), ammonia nitrogen (NH4+-N) and oxidation-reduction potential (ORP) were the key measured environmental variables shaping the composition of bacterial community. CONCLUSIONS Decomposition of Microcystis changed the physicochemical characteristics of the water and controlled the diversity and composition of the bacterial community. Microcystis biomass rather than temperature was the dominant factor affecting the diversity and composition of the bacterial community.
Collapse
Affiliation(s)
- Shuren Wang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Xikang Road 1, Nanjing, 210098, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Dayong Zhao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Xikang Road 1, Nanjing, 210098, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| | - Huimin Xu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Xikang Road 1, Nanjing, 210098, China
| | - Rui Huang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Xikang Road 1, Nanjing, 210098, China
| | - Congcong Jiao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Xikang Road 1, Nanjing, 210098, China
| | - Lin Guo
- Department of Biological and Environmental Sciences, Texas A&M University, Commerce, TX, 76129, USA
| |
Collapse
|
42
|
Chronic Low Dose Oral Exposure to Microcystin-LR Exacerbates Hepatic Injury in a Murine Model of Non-Alcoholic Fatty Liver Disease. Toxins (Basel) 2019; 11:toxins11090486. [PMID: 31450746 PMCID: PMC6783870 DOI: 10.3390/toxins11090486] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Microcystins are potent hepatotoxins that have become a global health concern in recent years. Their actions in at-risk populations with pre-existing liver disease is unknown. We tested the hypothesis that the No Observed Adverse Effect Level (NOAEL) of Microcystin-LR (MC-LR) established in healthy mice would cause exacerbation of hepatic injury in a murine model (Leprdb/J) of Non-alcoholic Fatty Liver Disease (NAFLD). Ten-week-old male Leprdb/J mice were gavaged with 50 μg/kg, 100 μg/kg MC-LR or vehicle every 48 h for 4 weeks (n = 15–17 mice/group). Early mortality was observed in both the 50 μg/kg (1/17, 6%), and 100 μg/kg (3/17, 18%) MC-LR exposed mice. MC-LR exposure resulted in significant increases in circulating alkaline phosphatase levels, and histopathological markers of hepatic injury as well as significant upregulation of genes associated with hepatotoxicity, necrosis, nongenotoxic hepatocarcinogenicity and oxidative stress response. In addition, we observed exposure dependent changes in protein phosphorylation sites in pathways involved in inflammation, immune function, and response to oxidative stress. These results demonstrate that exposure to MC-LR at levels that are below the NOAEL established in healthy animals results in significant exacerbation of hepatic injury that is accompanied by genetic and phosphoproteomic dysregulation in key signaling pathways in the livers of NAFLD mice.
Collapse
|
43
|
León C, Boix C, Beltrán E, Peñuela G, López F, Sancho JV, Hernández F. Study of cyanotoxin degradation and evaluation of their transformation products in surface waters by LC-QTOF MS. CHEMOSPHERE 2019; 229:538-548. [PMID: 31100625 DOI: 10.1016/j.chemosphere.2019.04.219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
In the present work, the degradation of three cyanotoxins from the hepatotoxins group was investigated under laboratory-controlled experiments in water samples. Surface waters spiked with microcystin-LR (MC-LR), nodularin (NOD) and cylindrospermopsin (CYN) were subjected to hydrolysis, chlorination and photo-degradation, under both sunlight (SL) and ultraviolet (UV) radiation. A total of 12 transformation products (TPs) were detected and tentatively identified by liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF MS). These comprised: 6 chlorination TPs (3 from CYN and 3 from MC-LR, 2 isomers); 4 UV TPs (all from CYN); and 2 sunlight TPs (one isomer from MC-LR and another from NOD). No TPs were observed under hydrolysis conditions. The chemical structures for all TPs were tentatively proposed based on the accurate-mass QTOF MS full-spectra. Analysis of real-world samples collected from the Peñol reservoir (Antioquia, Colombia) revealed the presence of MC-LR and CYN as well as a sunlight TP identified in the laboratory experiments. Data presented in this article will assist further research on TPs potentially formed in future tertiary degradation processes applied for the removal of organic micro-pollutants in water; as well as improving available knowledge on the toxic implications of cyanobacterial toxins TPs in surface waters.
Collapse
Affiliation(s)
- Cristina León
- Grupo Diagnóstico y Control de La Contaminación (GDCON), Facultad de Ingeniería Universidad de Antioquia, Medellín, Colombia.
| | - Clara Boix
- Research Institute for Pesticides and Water (IUPA), University Jaume I. Avda, Sos Baynat, E-12071 Castellon, Spain
| | - Eduardo Beltrán
- Research Institute for Pesticides and Water (IUPA), University Jaume I. Avda, Sos Baynat, E-12071 Castellon, Spain
| | - Gustavo Peñuela
- Grupo Diagnóstico y Control de La Contaminación (GDCON), Facultad de Ingeniería Universidad de Antioquia, Medellín, Colombia
| | - Francisco López
- Research Institute for Pesticides and Water (IUPA), University Jaume I. Avda, Sos Baynat, E-12071 Castellon, Spain
| | - Juan V Sancho
- Research Institute for Pesticides and Water (IUPA), University Jaume I. Avda, Sos Baynat, E-12071 Castellon, Spain
| | - Félix Hernández
- Research Institute for Pesticides and Water (IUPA), University Jaume I. Avda, Sos Baynat, E-12071 Castellon, Spain.
| |
Collapse
|
44
|
Wang J, Chen Y, Zhang C, Xiang Z, Ding J, Han X. Learning and memory deficits and alzheimer's disease-like changes in mice after chronic exposure to microcystin-LR. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:504-518. [PMID: 30947040 DOI: 10.1016/j.jhazmat.2019.03.106] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/18/2019] [Accepted: 03/23/2019] [Indexed: 06/09/2023]
Abstract
Previous studies have demonstrated that toxins produced by toxic cyanobacterial blooms are hazardous materials. Although microcystin-LR (MC-LR) has been revealed to inflict damage to the brain, the mechanisms underlying its neurotoxicity as a result of chronic exposure to MC-LR are not fully described. In this study, the mice were exposed to MC-LR dissolved in drinking water at doses of 1, 7.5, 15, or 30 μg/L for 180 days. MC-LR accumulated mostly in the mouse hippocampus (55 ng/g dry weight) followed by cortex (28 ng/g dry weight) after exposure to MC-LR at 30 μg/L. MC-LR exposure at this concentration induced dysfunction of learning and memory, accompanied with apoptosis of neuronal cells (with 10% reduction of the neurons in the CA1 region and 15% in the CA2 region), reduction of spine density, accumulation of β-amyloid plaques 1-42 (Aβ1-42), and enhanced phosphorylation of tau (p-tau) in the brain, which is characteristic of Alzheimer's disease (AD). These data indicate that MC-LR may induce AD-like pathology. Following prolonged exposure, MC-LR significantly upregulated the ratio of proBDNF to BDNF by downregulating the tPA levels, thereby activating downstream signaling pathways to improve the expression of p-JNK, and c-Jun while to inhibit the expression of p-Creb and p-PKC. This study uncovered new molecular mechanisms that account for neurotoxicity after chronic exposure to MC-LR, which has wide-ranging implications for public health.
Collapse
Affiliation(s)
- Jing Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Changliang Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
45
|
Clarke JD, Dzierlenga A, Arman T, Toth E, Li H, Lynch KD, Tian DD, Goedken M, Paine MF, Cherrington N. Nonalcoholic fatty liver disease alters microcystin-LR toxicokinetics and acute toxicity. Toxicon 2019; 162:1-8. [PMID: 30849452 PMCID: PMC6447445 DOI: 10.1016/j.toxicon.2019.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 02/08/2023]
Abstract
Microcystin-LR (MCLR) is a cyanotoxin produced by blue-green algae that causes liver and kidney toxicities. MCLR toxicity is dependent on cellular uptake through the organic anion transporting polypeptide (OATP) transporters. Nonalcoholic fatty liver disease (NAFLD) progresses through multiple stages, alters expression of hepatic OATPs, and is associated with chronic kidney disease. The purpose of this study was to determine whether NAFLD increases systemic exposure to MCLR and influences acute liver and kidney toxicities. Rats were fed a control diet or two dietary models of NAFLD; methionine and choline deficient (MCD) or high fat/high cholesterol (HFHC). Two studies were performed in these groups: 1) a single dose intravenous toxicokinetic study (20 μg/kg), and 2) a single dose intraperitoneal toxicity study (60 μg/kg). Compared to control rats, plasma MCLR area under the concentration-time curve (AUC) in MCD rats doubled, whereas biliary clearance (Clbil) was unchanged; in contrast, plasma AUC in HFHC rats was unchanged, whereas Clbil approximately doubled. Less MCLR bound to PP2A was observed in the liver of MCD rats. This shift in exposure decreased the severity of liver pathology only in the MCD rats after a single toxic dose of MCLR (60 μg/kg). In contrast, the single toxic dose of MCLR increased hepatic inflammation, plasma cholesterol, proteinuria, and urinary KIM1 in HFHC rats more than MCLR exposed control rats. In conclusion, rodent models of NAFLD alter MCLR toxicokinetics and acute toxicity and may have implications for liver and kidney pathologies in NAFLD patients.
Collapse
Affiliation(s)
- John D Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA.
| | - Anika Dzierlenga
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721, USA
| | - Tarana Arman
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Erica Toth
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721, USA
| | - Hui Li
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721, USA
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Dan-Dan Tian
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Michael Goedken
- Rutgers Translational Sciences, Rutgers University, Piscataway, NJ, 08901, USA
| | - Mary F Paine
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Nathan Cherrington
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
46
|
Wu J, Yang L, Zhang X, Li Y, Wang J, Zhang S, Liu H, Huang H, Wang Y, Yuan L, Cheng X, Zhuang D, Zhang H, Chen X. MC-LR induces dysregulation of iron homeostasis by inhibiting hepcidin expression: A preliminary study. CHEMOSPHERE 2018; 212:572-584. [PMID: 30172039 DOI: 10.1016/j.chemosphere.2018.08.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/11/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
The liver is an important iron storage site and a primary MC-LR target. C57BL/6 and Hfe-/- mice were used to investigate effects and mechanisms of MC-LR on systematic iron homeostasis. Body weight, tissue iron content, hematological and serological indexes, and histopathological were evaluated. Ultrastructure and iron metabolism-related genes and proteins were analyzed. MC-LR induced dose-dependent increases in red blood cells, hemoglobin, and hematocrit. In contrast MC-LR-induced dose-dependent decreases in mean corpuscular volume, hemoglobin, and hemoglobin concentration were observed both C57BL/6 and Hfe-/- mice. In both mouse species, serological indexes increased. Aggravated liver and spleen iron were observed in C57BL/6 mice, consistent with Perls' Prussian blue staining. However, an opposite trend was observed in Hfe-/- mice. C57BL/6 mice had lower Hamp1 (Hepcidn), Bmp6, Il-6, and Tmprss6. Significant increased Hjv, Hif-1α and Hif-2α were observed in both C57BL/6 and Hfe-/- mice. MC-LR-induced pathological lesions were dose-dependent increase in C57BL/6 mice. More severe pathological injuries in MC-LR groups (25 μg/kg) were observed in Hfe-/- mice than in C57BL/6 mice. In Hfe-/- mice, upon exposure to 25 μg/kg MC-LR, mitochondrial membranes were damaged and mitochondrial counts increased with significant swelling. These results indicated that MC-LR can induce the accumulation of iron in C57BL/6 mice with the occurrence of anemia, similar to thalassemia. Moreover, dysregulation of iron homeostasis may be due to MC-LR-induced Hamp1 downregulation, possibly mediated by hypoxia or the IL6-STAT3 and BMP-SMAD signaling pathways.
Collapse
Affiliation(s)
- Jinxia Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Lei Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; School of Nursing, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Xiaofeng Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yang Li
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jianyao Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Shenshen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Hui Huang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yueqin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Le Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xuemin Cheng
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Donggang Zhuang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| |
Collapse
|
47
|
He Q, Kang L, Sun X, Jia R, Zhang Y, Ma J, Li H, Ai H. Spatiotemporal distribution and potential risk assessment of microcystins in the Yulin River, a tributary of the Three Gorges Reservoir, China. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:184-195. [PMID: 29306814 DOI: 10.1016/j.jhazmat.2018.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 12/29/2017] [Accepted: 01/01/2018] [Indexed: 06/07/2023]
Abstract
Microcystins (MCs) pose potential threat for both aquatic organisms and humans, whereas their occurrence in response to hydrodynamic alterations are not clearly understood. Here, spatiotemporal variations of dissolved MC-RR and MC-LR were evaluated monthly in 2016 in the Yulin River, a tributary of the Three Gorges Reservoir (TGR). The environmental factors that linked to MCs concentration were discussed. The results revealed that MC-RR maximumly reached 3.55 μg/L, and the maximum MC-LR concentration exceeded the threshold value of 1.0 μg/L recommended by the WHO. MCs concentrations were higher during the flood season and decreased from the estuary to the upstream reach of the Yulin River. Ecological risk assessment confirmed that MC-LR had significant adverse effects on the benthonic invertebrates Potamopyrgus antipodarum. MCs content in the sediment was 1.70- to 20-fold higher than that in suspended particulate matter (SPM). The impacts of environmental factors on the MCs profile differed between flood and dry seasons and the longitudinal differences of MCs were determined by the longitudinal profile of water velocity and SPM content, which were affected by TGR operations. This study suggested that the occurrence of MCs in the Yulin River were influenced by hydrologic regime in TGR.
Collapse
Affiliation(s)
- Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Li Kang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Xingfu Sun
- Chongqing Green Environment Protection Technology Co., Ltd., Chongqing, 400044, China
| | - Ruxue Jia
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Ying Zhang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Jiangsen Ma
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| | - Hainan Ai
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
48
|
Talamini L, Zanato N, Zapp E, Brondani D, Vieira IC. Direct Electrochemical Nano-immunosensor for Microcystin-LR in Seawater. ELECTROANAL 2018. [DOI: 10.1002/elan.201700815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lucas Talamini
- Department of Chemistry; Federal University of Santa Catarina, Campus Florianópolis; 88040-900 Florianópolis, SC Brazil
| | - Nicole Zanato
- Department of Chemistry; Federal University of Santa Catarina, Campus Florianópolis; 88040-900 Florianópolis, SC Brazil
| | - Eduardo Zapp
- Department of Exact Science and Education; Federal University of Santa Catarina, Campus Blumenau; 89036-256 Blumenau, SC Brazil
| | - Daniela Brondani
- Department of Exact Science and Education; Federal University of Santa Catarina, Campus Blumenau; 89036-256 Blumenau, SC Brazil
| | - Iolanda Cruz Vieira
- Department of Chemistry; Federal University of Santa Catarina, Campus Florianópolis; 88040-900 Florianópolis, SC Brazil
| |
Collapse
|
49
|
Abu-Serie MM, Nasser N, Abd El-Wahab A, Shehawy R, Pienaar H, Baddour N, Amer R. In vivo assessment of the hepatotoxicity of a new Nostoc isolate from the Nile River: Nostoc sp. strain NRI. Toxicon 2018; 143:81-89. [PMID: 29366868 DOI: 10.1016/j.toxicon.2018.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/29/2017] [Accepted: 01/16/2018] [Indexed: 01/29/2023]
Abstract
Nostoc sp. is one of the most widely distributed cyanobacterial genera that produce potentially protein phosphatase (PP) inhibitor; microcystins (MCs). MCs have posed a worldwide concern due to predominant hepatotoxicity to human health. We have previously isolated a Nostoc strain (NR1) from the Nile River (the main water supply in Egypt) and this strain exerted production of rare and highly toxic MC; demethylated microcystin-LR. There is no data concerning risk factors of liver diseases for human and animal exposure to NR1-contaminated drinking water yet. It is thus important to evaluate acute (LD50 dose), subacute (0.01% and 10% of LD50 dose) and subchronic (0.01% and 10% of LD50 dose) hepatotoxicity's NR1 extract using experimental mice. Mice groups, who orally received 0.01% LD50, represented a permissible concentration of the World Health Organization (WHO) for MC in drinking water. Several parameters were detected, including hepatotoxicity (i.e. PP activity, liver function, oxidative stress markers and DNA fragmentation), pro-inflammatory cytokine (TNF-α) and liver histopathology. Our results demonstrated LD50 of NR1 extract was at 15,350 mg/kg body weight and caused hepatotoxicity that attributed to PP inhibition and a significant increase of hepatic damage biomarkers with lipid accumulation. Moreover, NR1 extract induced hepatic oxidative damage that may have led to DNA fragmentation and production of TNF-α. As demonstrated from the histopathological study, NR1 extract caused a severe collapse of cytoskeleton with subsequent focal degeneration of hepatocytes, necroinflammation and steatosis. The grade of hepatotoxicity in subacute (10% of LD50) group was higher than that in the subchronic (10% of LD50 and 0.01% of LD50, WHOch, respectively) groups. No significant hepatotoxicity was detectable for subacute (0.01% of LD50, WHOac) group. NR1 is therefore considered as one of the harmful and life-threatening cyanobacteria for Egyptian people being exposed to dose above WHO guideline. Thus, biological indicators and thresholds for water treatment are extremely needed.
Collapse
Affiliation(s)
- Marwa M Abu-Serie
- Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg El Arab, Egypt.
| | - Nermine Nasser
- Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg El Arab, Egypt.
| | - Abeer Abd El-Wahab
- Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg El Arab, Egypt.
| | - Rehab Shehawy
- Institute IMDEA-Agua, C/Punto Net4, Alcalá de Henares, Madrid, Spain.
| | - Harrison Pienaar
- CSIR, Natural Resources and Environment, Pretoria, South Africa.
| | | | - Ranya Amer
- Environment and Natural Materials Research Institute (ENMRI), SRTA-City, New Borg El Arab, Egypt.
| |
Collapse
|
50
|
Gaget V, Humpage AR, Huang Q, Monis P, Brookes JD. Benthic cyanobacteria: A source of cylindrospermopsin and microcystin in Australian drinking water reservoirs. WATER RESEARCH 2017; 124:454-464. [PMID: 28787682 DOI: 10.1016/j.watres.2017.07.073] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/21/2017] [Accepted: 07/29/2017] [Indexed: 05/21/2023]
Abstract
Cyanobacteria represent a health hazard worldwide due to their production of a range of highly potent toxins in diverse aquatic environments. While planktonic species have been the subject of many investigations in terms of risk assessment, little is known about benthic forms and their impact on water quality or human and animal health. This study aimed to purify isolates from environmental benthic biofilms sampled from three different drinking water reservoirs and to assess their toxin production by using the following methods: Enzyme-Linked Immunosorbent Assay (ELISA), High-Performance Liquid Chromatography (HPLC), Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) and quantitative PCR (qPCR). Microscopic observation of the isolates allowed the identification of various filamentous cyanobacterial genera: Anabaena (benthic form), Calothrix and Nostoc from the Nostocales and Geitlerinema, Leptolyngbya, Limnothrix, Lyngbya, Oxynema, Phormidium and Pseudanabaena representing non-heterocystous filamentous cyanobacteria. The Phormidium ambiguum strain AWQC-PHO021 was found to produce 739 ng/mg of dry weight (d/w) of cylindrospermopsin and 107 ng/mg (d/w) of deoxy-cylindrospermopsin. The Nostoc linckia strain AWQC-NOS001 produced 400 ng/mg (d/w) of a microcystin analogue. This is the first report of hepatotoxin production by benthic cyanobacteria in temperate Australian drinking water reservoirs. These findings indicate that water quality monitoring programs need to consider benthic cyanobacteria as a potential source of toxins.
Collapse
Affiliation(s)
- Virginie Gaget
- Water Research Centre, Ecology and Environmental Sciences, School of Biological Sciences, University of Adelaide, South Australia, 5005, Australia.
| | - Andrew R Humpage
- Australian Water Quality Centre, South Australia Water Corporation, Adelaide, South Australia, 5000, Australia
| | - Qiong Huang
- Australian Water Quality Centre, South Australia Water Corporation, Adelaide, South Australia, 5000, Australia
| | - Paul Monis
- Water Research Centre, Ecology and Environmental Sciences, School of Biological Sciences, University of Adelaide, South Australia, 5005, Australia; Australian Water Quality Centre, South Australia Water Corporation, Adelaide, South Australia, 5000, Australia
| | - Justin D Brookes
- Water Research Centre, Ecology and Environmental Sciences, School of Biological Sciences, University of Adelaide, South Australia, 5005, Australia
| |
Collapse
|