1
|
Zhang X, Zhang X, Li H, Ao X, Sun W, Li Z. Reactive Oxygen Species Generated in Situ During Carbamazepine Photodegradation at 222 nm Far-UVC: Unexpected Role of H 2O Molecules. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19070-19079. [PMID: 39382092 DOI: 10.1021/acs.est.4c07256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
When 222 nm far-UVC is used to drive AOPs, photolysis emerges as a critical pathway for the degradation of numerous organic micropollutants (OMPs). However, the photodegradation mechanisms of the asymmetrically polarized OMPs at 222 nm remain unclear, potentially posing a knowledge barrier to the applications of far-UVC. This study selected carbamazepine (CBZ), a prevalent aquatic antiepileptic drug that degrades negligibly at 254 nm, to investigate its photodegradation mechanisms at 222 nm. Accelerated CBZ treatment by 222 nm far-UVC was mainly attributed to in situ ROS generation via self-sensitized photodegradation of CBZ. By quenching experiments and EPR tests, •OH radicals were identified as the major contributor to the CBZ photodegradation, whereas O2•- played a minor role. By deoxygenation and solvent exchange experiments, the H2O molecules were demonstrated to play a crucial role in deactivating the excited singlet state of CBZ (1CBZ*) at 222 nm: generating •OH radicals via electron transfer interactions with 1CBZ*. In addition, 1CBZ* could also undergo a photoionization process. The transformation products and pathways of CBZ at 222 nm were proposed, and the toxicities of CBZ's products were predicted. These findings provide valuable insights into OMPs' photolysis with 222 nm far-UVC, revealing more mechanistic details for far-UVC-driven systems.
Collapse
Affiliation(s)
- Xi Zhang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xintong Zhang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Haoxin Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xiuwei Ao
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
2
|
Niu L, Luo Z, Chen W, Zhong X, Zeng H, Yu X, Feng M. Deciphering the Novel Picolinate-Mn(II)/peroxymonosulfate System for Sustainable Fenton-like Oxidation: Dominance of the Picolinate-Mn(IV)-peroxymonosulfate Complex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39276076 DOI: 10.1021/acs.est.4c05482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
A highly efficient and sustainable water treatment system was developed herein by combining Mn(II), peroxymonosulfate (PMS), and biodegradable picolinic acid (PICA). The micropollutant elimination process underwent two phases: an initial slow degradation phase (0-10 min) followed by a rapid phase (10-20 min). Multiple evidence demonstrated that a PICA-Mn(IV) complex (PICA-Mn(IV)*) was generated, acting as a conductive bridge facilitating the electron transfer between PMS and micropollutants. Quantum chemical calculations revealed that PMS readily oxidized the PICA-Mn(II)* to PICA-Mn(IV)*. This intermediate then complexed with PMS to produce PICA-Mn(IV)-PMS*, elongating the O-O bond of PMS and increasing its oxidation capacity. The primary transformation mechanisms of typical micropollutants mediated by PICA-Mn(IV)-PMS* include oxidation, ring-opening, bond cleavage, and epoxidation reactions. The toxicity assessment results showed that most products were less toxic than the parent compounds. Moreover, the Mn(II)/PICA/PMS system showed resilience to water matrices and high efficiency in real water environments. Notably, PICA-Mn(IV)* exhibited greater stability and a longer lifespan than traditional reactive oxygen species, enabling repeated utilization. Overall, this study developed an innovative, sustainable, and selective oxidation system, i.e., Mn(II)/PICA/PMS, for rapid water decontamination, highlighting the critical role of in situ generated Mn(IV).
Collapse
Affiliation(s)
- Lijun Niu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Zhipeng Luo
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Wenzheng Chen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Xinyang Zhong
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Huabin Zeng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| |
Collapse
|
3
|
Shang Z, Zhu Z, Wang G, Lu W, Wu B, Li Q. Pyridine-bridged cobalt tetra-aminophthalocyanine to active peroxymonosulphate for efficient degrading carbamazepine. ENVIRONMENTAL TECHNOLOGY 2024; 45:4230-4242. [PMID: 37559566 DOI: 10.1080/09593330.2023.2245541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/11/2023] [Indexed: 08/11/2023]
Abstract
In this study, each cobalt tetra-aminophthalocyanine (CoTAPc) molecule was immobilised with four isonicotinic acid (INA) molecules by amide bonding, a novel and highly efficient catalyst pyridine-bridged cobalt tetra-aminophthalocyanine (CoTAPc-TINA) was synthesised. The introduction of INA molecules promoted CoTAPc to expose more active sites, and increased the electron cloud density of cobalt ions promoting O-O bond homolysis of PMS to generate more active species, which significantly enhanced catalytic activity. With the pharmaceutical of carbamazepine (CBZ) as model pollutant, 0.1 g/L CoTAPc-TINA in dark in the presence of 0.4 mM PMS, 98.8% CBZ was removed within 10 min. However, under the same conditions the removed of CBZ was only 58.9% by CoTAPc/PMS system. Radical capture experiments combined electron paramagnetic resonance technology demonstrate that hydroxyl radicals, sulphate radicals, superoxide radicals and singlet oxygen are the main active species in the CoTAPc-TINA/PMS system. As the reaction proceeded, all aromatic intermediates were transformed to small molecular acids by these active species. This investigation provided a new insight for application of metal phthalocyanine in wastewater treatment.
Collapse
Affiliation(s)
- Zhiguo Shang
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Zhexin Zhu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Gangqiang Wang
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Bingyao Wu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Qijian Li
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Sun S, Hu Y, Li Z. Fe-MOFs nanosheets for photo-Fenton degradation of carbamazepine. CHEMOSPHERE 2024; 364:143240. [PMID: 39222696 DOI: 10.1016/j.chemosphere.2024.143240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Iron(II)-based metal organic framework (Fe(II)-MOF) nanosheets have emerged as promising candidates for photo-Fenton catalysis. However, efficiently synthesizing Fe(II)-MOF nanosheets remains a significant challenge. Here, a bottom-up synthesis strategy is proposed to prepare two-dimensional Fe-MOF nanosheets (TFMN) with micrometer lateral dimensions and nanometer thickness, featuring Fe(II) as the metal nodes. The application of TFMN in the photo-Fenton degradation of carbamazepine (CBZ) demonstrates remarkable CBZ degradation performance and excellent efficiency across a wide range of pH values. The electron density and density of states are further calculated by density functional theory. Mechanism analysis identifies h+, •OH and •O2- as the predominant active species contributing to the catalytic oxidation process in the Vis/TFMN/H2O2 system.
Collapse
Affiliation(s)
- Siyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Youyou Hu
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai, 200433, China
| | - Zhengkui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
5
|
Liška V, Willimetz R, Kubát P, Křtěnová P, Gyepes R, Mosinger J. Synergistic photogeneration of nitric oxide and singlet oxygen by nanofiber membranes via blue and/or red-light irradiation: Strong antibacterial action. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112906. [PMID: 38688040 DOI: 10.1016/j.jphotobiol.2024.112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
New functionalities were added to biocompatible polycaprolactone nanofiber materials through the co-encapsulation of chlorin e6 trimethyl ester (Ce6) photogenerating singlet oxygen and absorbing light both in the blue and red regions, and using 4-(N-(aminopropyl)-3-(trifluoromethyl)-4-nitrobenzenamine)-7-nitrobenzofurazan, NO-photodonor (NOP), absorbing light in the blue region of visible light. Time-resolved and steady-state luminescence, as well as absorption spectroscopy, were used to monitor both photoactive compounds. The nanofiber material exhibited photogeneration of antibacterial species, specifically nitric oxide and singlet oxygen, upon visible light excitation. This process resulted in the efficient photodynamic inactivation of E. coli not only close to nanofiber material surfaces due to short-lived singlet oxygen, but even at longer distances due to diffusion of longer-lived nitric oxide. Interestingly, nitric oxide was also formed by processes involving photosensitization of Ce6 during irradiation by red light. This is promising for numerous applications, especially in the biomedical field, where strictly local photogeneration of NO and its therapeutic benefits can be applied using excitation in the "human body phototherapeutic window" (600-850 nm). Generally, due to the high permeability of red light, the photogeneration of NO can be achieved in any aqueous environment where direct excitation of NOP to its absorbance in the blue region is limited.
Collapse
Affiliation(s)
- Vojtěch Liška
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Robert Willimetz
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Petra Křtěnová
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Robert Gyepes
- Department of Chemistry, Faculty of Education of J. Selye University, Bratislavská 3322, 945 01 Komárno, Slovak Republic
| | - Jiří Mosinger
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic.
| |
Collapse
|
6
|
Zhu Z, Qian W, Shang Z, Ma X, Wang Z, Lu W, Chen W. Efficient elimination of carbamazepine using polyacrylonitrile-supported pyridine bridged iron phthalocyanine nanofibers by activating peroxymonosulfate in dark condition. J Environ Sci (China) 2024; 137:224-236. [PMID: 37980010 DOI: 10.1016/j.jes.2022.10.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/20/2023]
Abstract
The monoaminotrinitro iron phthalocyanine (FeMATNPc) is used to connect with isonicotinic acid (INA) for amide bonding and axial coordination to synthetic a unique catalyst FeMATNPc-INA, which is loaded in polyacrylonitrile (PAN) nanofibers by electrospinning. The introduction of INA destroys the π-π conjugated stack structure in phthalocyanine molecules and exposes more active sites. The FeMATNPc-INA structure is characterized by X-ray photoelectron spectroscopy and UV-visible absorption spectrum, and the FeMATNPc-INA/PAN structure is characterized by Fourier transform infrared spectroscopy and X-ray diffraction. The FeMATNPc-INA/PAN can effectively activate peroxymonosulfate (PMS) to eliminate carbamazepine (CBZ) within 40 minutes (PMS 1.5 mmol/L) in the dark. The effects of catalyst dosage, PMS concentration, pH and inorganic anion on the degradation of CBZ are investigated. It has been confirmed by electron paramagnetic resonance, gas chromatography-mass spectroscopy and free radical capture experiments that the catalytic system is degraded by •OH, SO4•- and Fe (IV) = O are the major active species, the singlet oxygen (1O2) is the secondary active species. The degradation process of CBZ is analyzed by ultra-high performance liquid chromatography-mass spectrometry and the aromatic compounds have been degraded to small molecular acids.
Collapse
Affiliation(s)
- Zhexin Zhu
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Wenjie Qian
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhiguo Shang
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoji Ma
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhendong Wang
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Wenxing Chen
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
7
|
Gamelas SRD, Tomé JPC, Tomé AC, Lourenço LMO. Advances in photocatalytic degradation of organic pollutants in wastewaters: harnessing the power of phthalocyanines and phthalocyanine-containing materials. RSC Adv 2023; 13:33957-33993. [PMID: 38019980 PMCID: PMC10658578 DOI: 10.1039/d3ra06598g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Access to clean water is increasingly challenging worldwide due to human activities and climate change. Wastewater treatment and utilization offer a promising solution by reducing the reliance on pure underground water. However, it is crucial to develop efficient and sustainable methods for wastewater purification. Among the emerging wastewater treatment strategies, photocatalysis has gained significant attention for decomposing organic pollutants in water, especially when combined with sunlight and a recoverable photocatalyst. Heterogeneous photocatalysts have distinct advantages, as they can be recovered and reused without significant loss of activity over multiple cycles. Phthalocyanine dyes, with their exceptional photophysical properties, are particularly valuable for homogeneous and heterogeneous photocatalysis. By immobilizing these photosensitizers in various supports, hybrid materials extend their light absorption into the visible spectrum, complementing most supports' limited UV light absorption. The novelty and research importance of this review stems from its discussion of the multifaceted approach to treating contaminated wastewater with phthalocyanines and materials containing phthalocyanines. It highlights key aspects of each study, including photocatalytic efficiency, recyclability characteristics, investigation of the generation of oxygen species responsible for degradation, identification of the major degradation byproducts for each pollutant, and others. Moreover, the review includes tables that illustrate and compare the various phthalocyanines and supporting materials employed in each study for pollutant degradation. Additionally, almost all photocatalysts mentioned in this review could degrade at least 5% of the pollutant, and more than 50 photocatalysts showed photocatalytic rates above 50%. When immobilized in some support, the synergistic effect of the phthalocyanine was visible in the photocatalytic rate of the studied pollutant. However, when performing these types of works, it is necessary to understand the degradation products of each pollutant and their relative toxicities. Along with this, recyclability and stability studies are also necessary. Despite the good results presented in this review, some of the works lack those studies. Moreover, none of the works mentions any study in wastewater.
Collapse
Affiliation(s)
- Sara R D Gamelas
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
| | - João P C Tomé
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa 1049-001 Lisboa Portugal
| | - Augusto C Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
| | - Leandro M O Lourenço
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
| |
Collapse
|
8
|
Bang Truong H, Cuong Nguyen X, Hur J. Recent advances in g-C 3N 4-based photocatalysis for water treatment: Magnetic and floating photocatalysts, and applications of machine-learning techniques. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118895. [PMID: 37659370 DOI: 10.1016/j.jenvman.2023.118895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/08/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Over the past decade, there has been a substantial increase in research investigating the potential of graphitic carbon nitride (g-C3N4) for various environmental remediations. Renowned for its photocatalytic activity under visible light, g-C3N4 offers a promising solution for treating water pollutants. However, traditional g-C3N4-based photocatalysts have inherent drawbacks, creating a disparity between laboratory efficacy and real-world applications. A primary practical challenge is their fine-powdered form, which hinders separation and recycling processes. A promising approach to address these challenges involves integrating magnetic or floating materials into conventional photocatalysts, a strategy gaining traction within the g-C3N4-based photocatalyst arena. Another emerging solution to enhance practical applications entails merging experimental results with contemporary computational methods. This synergy seeks to optimize the synthesis of more efficient photocatalysts and pinpoint optimal conditions for pollutant removal. While numerous review articles discuss the laboratory-based photocatalytic applications of g-C3N4-based materials, there is a conspicuous absence of comprehensive coverage regarding state-of-the-art research on improved g-C3N4-based photocatalysts for practical applications. This review fills this void, spotlighting three pivotal domains: magnetic g-C3N4 photocatalysts, floating g-C3N4 photocatalysts, and the application of machine learning to g-C3N4 photocatalysis. Accompanied by a thorough analysis, this review also provides perspectives on future directions to enhance the efficacy of g-C3N4-based photocatalysts in water purification.
Collapse
Affiliation(s)
- Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Xuan Cuong Nguyen
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
9
|
Wang A, Zhu BZ, Huang CH, Zhang WX, Wang M, Li X, Ling L, Ma J, Fang J. Generation mechanism of singlet oxygen from the interaction of peroxymonosulfate and chloride in aqueous systems. WATER RESEARCH 2023; 235:119904. [PMID: 36989807 DOI: 10.1016/j.watres.2023.119904] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/27/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Peroxymonosulfate (PMS, HSO5-) is a widely-used disinfectant and oxidant in environmental remediation. It was deemed that PMS reacted with chloride (Cl-) to form free chlorine during water purification. Here, we demonstrated that singlet oxygen (1O2) was efficiently generated from PMS and Cl- interaction. Mechanism of 1O2 formation was uniquely verified by the reaction of HSO5- and chlorine molecule (Cl2) and the oxygen atoms in 1O2 deriving from the peroxide group of HSO5- were revealed. Density functional theory calculations determined that the reaction of HSO5- and Cl2 was thermodynamically favorable and exergonic at 37.8 kcal/mol. Quite intriguingly, 1O2 was generated at a higher yield (1.5 × 105 M - 1 s - 1) than in the well-known reaction of H2O2 with Cl2 (35 M - 1 s - 1). Besides chlorine, 1O2 formed in PMS-Cl- interaction dominated the degradation of micropollutants, also it substantially enhanced the damage of deoxynucleoside in DNA, which were beneficial to micropollutant oxidation and pathogen disinfection. The contribution of 1O2 for carbamazepine degradation was enhanced at higher Cl- level and lower pH, and reached 96.3% at pH 4.1 and 5 min. Natural organic matter (NOM) was a sink for chlorine, thereby impeding 1O2 formation to retard carbamazepine degradation. 1O2 also played important roles (48.3 - 63.5%) on the abatement of deoxyguanosine and deoxythymidine at pH 4.1 and 10 min in PMS/Cl-. On the other hand, this discovery also alerted the harm of 1O2 for human health as it can be formed during the interaction of residual PMS in drinking water/swimming pools and the high-level Cl- in human bodies.
Collapse
Affiliation(s)
- Anna Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China; Guangdong Environmental Protection Research Institute Co., Ltd., 510080 Guangzhou, China
| | - Ben-Zhan Zhu
- Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Chun-Hua Huang
- Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Wei-Xian Zhang
- School of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | - Mengye Wang
- School of Materials, Sun Yat-Sen University, 518107 Shenzhen, China
| | - Xuchun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, 310018 Hangzhou, China
| | - Li Ling
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, 519087 Zhuhai, China
| | - Jun Ma
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, 150090 Harbin, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China.
| |
Collapse
|
10
|
Feng C, Gu Q, Rong J, Liang Q, Zhou M, Li X, Xu S, Li Z. Porous dual Z-scheme InOOH/RCN/CoWO4 heterojunction with enhanced photothermal-photocatalytic properties towards norfloxacin degradation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Liška V, Kubát P, Křtěnová P, Mosinger J. Magnetically Separable Photoactive Nanofiber Membranes for Photocatalytic and Antibacterial Applications. ACS OMEGA 2022; 7:47986-47995. [PMID: 36591212 PMCID: PMC9798731 DOI: 10.1021/acsomega.2c05935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
We have prepared photoactive multifunctional nanofiber membranes via the simple electrospinning method. The antibacterial and photocatalytic properties of these materials are based on the generation of singlet oxygen formed by processes photosensitized by the tetraphenylporphyrin encapsulated in the nanofibers. The addition of magnetic features in the form of magnetic maghemite (γ-Fe2O3) nanoparticles stabilized by polyethylenimine enables additional functionalities, namely, the postirradiation formation of hydrogen peroxide and improved photothermal properties. This hybrid material allows for remote manipulation by a magnetic field, even in hazardous and/or highly microbial contaminant environments.
Collapse
Affiliation(s)
- Vojtěch Liška
- Faculty
of Science, Charles University, 2030 Hlavova, 128 43 Prague 2, Czech Republic
| | - Pavel Kubát
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Petra Křtěnová
- Faculty
of Science, Charles University, 2030 Hlavova, 128 43 Prague 2, Czech Republic
| | - Jiří Mosinger
- Faculty
of Science, Charles University, 2030 Hlavova, 128 43 Prague 2, Czech Republic
| |
Collapse
|
12
|
Jin JC, Wang J, Guo J, Yan MH, Wang J, Srivastava D, Kumar A, Sakiyama H, Muddassir M, Pan Y. A 3D rare cubane-like tetramer Cu(II)-based MOF with 4-fold dia topology as an efficient photocatalyst for dye degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Mgidlana S, Sen P, Nyokong T. Photodegradation of tetracycline by asymmetrical zinc(II)phthalocyanines conjugated to cobalt tungstate nanoparticles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Zhu Z, Miao Y, Wang G, Chen W, Lu W. Solar-driven zinc-doped graphitic carbon nitride photocatalytic fibre for simultaneous removal of hexavalent chromium and pharmaceuticals. ENVIRONMENTAL TECHNOLOGY 2022; 43:2569-2580. [PMID: 33576725 DOI: 10.1080/09593330.2021.1889040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The current environmental problems urgently require researchers to seek an environmentally friendly, effective and easy to operate sewage treatment method. Graphite carbon nitride (g-C3N4), which has the advantages of simple preparation, safety, non-toxicity and chemical resistance, was expected to become a photocatalyst for solving environmental pollution. However, the performances of g-C3N4 still have some limitations that the electron hole recombination is fast and the powder is not easy to recover. In this study, zinc-doped graphite carbon nitride photocatalyst (Zn-g-C3N4) was mixed with polyacrylonitrile (PAN) to produce photocatalyst fibres by electrospinning. It not only solves the problem that the powder catalyst is difficult to recycle, but also effectively inhibits the recombination of photoelectron-hole pairs. Zn-g-C3N4/PAN has good photocatalytic activity for the simultaneous reduction of hexavalent chromium and degradation of pharmaceuticals. When organic pollutants are present, the reduction efficiency of hexavalent chromium was improved without affecting its own removal efficiency. The potential application value of Zn-g-C3N4/PAN catalytic fibre was further explored by simulating the complex actual water environment. The composite fibre can be easily reused and keep its superior photocatalytic performance. The mechanism of pharmaceuticals degradation was proposed, in which ∙O2- is the most important active species, which leads to the oxidation of pharmaceuticals. Besides, the photoelectrons generated by the catalyst can reduce the toxic hexavalent chromium. The efficiency of Zn-g-C3N4 to remove pollutants is improved by PAN fibre as a carrier, which not only solves the problem of difficult recovery of powder catalysts, but also provides more active sites.
Collapse
Affiliation(s)
- Zhexin Zhu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Yongquan Miao
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Gangqiang Wang
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Wenxing Chen
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| |
Collapse
|
15
|
Rana A, Sudhaik A, Raizada P, Nguyen VH, Xia C, Parwaz Khan AA, Thakur S, Nguyen-Tri P, Nguyen CC, Kim SY, Le QV, Singh P. Graphitic carbon nitride based immobilized and non-immobilized floating photocatalysts for environmental remediation. CHEMOSPHERE 2022; 297:134229. [PMID: 35259362 DOI: 10.1016/j.chemosphere.2022.134229] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
In solar photocatalysis, light utilization and recycling of powder from reaction solution are the main obstructions that hinder the photocatalytic efficacy of any photocatalyst. In this respect, a floatable system is effective for efficient solar photocatalysis by light utilization. Due to the maximum solar light absorption property, floating nanocomposite photocatalyst is an appealing substitute for effective wastewater treatment. Floating photocatalysts are a non-oxygenated and non-stirred solution that is a good light harvester, stable, non-toxic, biodegradable, naturally abundant in nature. They also have low density, a simple preparation process, no need to stir, and high porosity. Due to these characteristics, floating photocatalysts are widely favored and ideal candidates for practical environmental remediation. Several researchers have come up with new and innovative ways for immobilizing capable photocatalyst on a floatable substrate to produce floating nanocomposite photocatalytic material. In recent decades, g-C3N4-based floating photocatalysts have gained a lot of attention as g-C3N4 is a visible light active photocatalyst with unique and exceptional properties. It also has good photocatalytic activity in waste water treatment and environmental remediation. Many previous reports have studied the logical design and manufacturing method for heterojunction floating photocatalysts and immobilized floating photocatalysts. Based on those studies, we have focused on the g-C3N4 based immobilized and non-immobilized floating photocatalysts for pollutant degradation. We have also categorized immobilized floating photocatalyst based on several lightweight substrates such as expanded perlite and glass microbead. In addition, future challenges have been discussed to maximize solar light absorption and to improve the efficiency of broadband response floating photocatalysts. Floating photocatalysis is an advanced technique in energy conversion and environmental remediation thus requires special consideration.
Collapse
Affiliation(s)
- Anchal Rana
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Anita Sudhaik
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Van-Huy Nguyen
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Phuong Nguyen-Tri
- Laboratory of Advanced Materials for Energy and Environment, Université Du Québec à Trois-Rivières (UQTR), 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, G9A 5H7, Canada
| | - Chinh Chien Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India.
| |
Collapse
|
16
|
Zhu Q, Pan D, Sun Y, Qi D. Controllable Microemulsion Synthesis of Hybrid TiO 2-SiO 2 Hollow Spheres and Au-Doped Hollow Spheres with Enhanced Photocatalytic Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4001-4013. [PMID: 35290732 DOI: 10.1021/acs.langmuir.1c03484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hollow structures in TiO2 materials can enhance the photocatalytic properties by reducing the diffusion length and improving the accessibility of active sites for the reactants. However, existing approaches for preparing hollow TiO2 materials have two drawbacks that restrict their engineering applicability: first, a heavy reliance on templates to form a hollow structure, which makes the preparation laborious, complicated, and costly; second, difficult-to-achieve high crystallization while maintaining the small grain size in calcinated TiO2, which is crucial for enhancing photocatalytic activity. Herein, a simple, effective method is proposed that not only enables the preparation of hybrid TiO2-SiO2 hollow spheres without the template fabrication and removal process via microemulsion technology but also achieves both high crystallization and a small grain size in calcinated TiO2 at once through the calcination of amorphous TiO2 with organosilane at a high temperature of 850 °C. The prepared TiO2-SiO2 hollow spheres with tunable sizes demonstrate high photocatalytic activity with a maximum k value of 133.74 × 10-3 min-1, which is superior to commercial photocatalyst P25 (k = 114.97 × 10-3 min-1). In addition, Au can be doped in the hybrid TiO2-SiO2 shell to gain Au-doped hollow spheres that show a high k value of up to 694.14 × 10-3 min-1, which is 6 times larger than that of P25 and much better than that reported in the literature. This study not only provides an effective approach to stabilize and tune the grain growth of the TiO2 photocatalyst during calcination but also enables the simple preparation of hollow TiO2-based materials with controllable hollow nanostructures.
Collapse
Affiliation(s)
- Qiangtao Zhu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongyu Pan
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yangyi Sun
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongming Qi
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
17
|
Liu S, Liang P, Liu J, Xin J, Li X, Shao C, Li X, Liu Y. Anchoring bismuth oxybromo-iodide solid solutions on flexible electrospun polyacrylonitrile nanofiber mats for floating photocatalysis. J Colloid Interface Sci 2022; 608:3178-3191. [PMID: 34802760 DOI: 10.1016/j.jcis.2021.11.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/22/2023]
Abstract
Constructing floating photocatalysts with highly efficient visible-light utilization is a promising approach for practical photocatalytic wastewater treatment. In this study, we anchored bismuth oxybromo-iodide (BiOBrxI1-x (0 ≤ x ≤ 1)) on flexible electrospun polyacrylonitrile (PAN) nanofiber mats to create BiOBrxI1-x@PAN nanofibers with tunable light absorption properties as floating photocatalysts at room temperature. As x increased, the photocatalytic activity of the BiOBrxI1-x@PAN nanofibers with similar loading content initially increased, and then decreased, for the degradation of bisphenol A (BPA) and methyl orange (MO) under visible-light irradiation (λ > 420 nm) conditions. The BiOBrxI1-x@PAN (0 < x < 1) nanofibers exhibited better photocatalytic performance compared to the BiOBr@PAN and BiOI@PAN nanofibers. Under visible-light irradiation, the BPA degradation rate of the BiOBr0.5I0.5@PAN nanofibers was 1.9 times higher than that of the BiOI@PAN nanofibers, while the BiOBr@PAN nanofibers had no noticeable degradation performance. The MO degradation rate of the BiOBr0.5I0.5@PAN nanofibers was 2.5 and 3.2 times higher than that of the BiOBr@PAN and BiOI@PAN nanofibers, respectively. The enhanced performance possibly originated from a balance between the light absorption and redox capabilities, along with efficient separation of electron-hole pairs in the BiOBr0.5I0.5@PAN nanofibers, as determined by ultraviolet-visible diffuse reflectance spectroscopy, X-ray photoelectron spectra analysis of the valence bands, and photocurrent response characterization. Compared to the powder structures, the BiOBrxI1-x@PAN nanofibers showed enhanced performance due to the excellent dispersion and immobilization of the BiOBrxI1-x solid solution, which provided more active sites during photocatalytic degradation. In addition, their flexible self-supporting structures allowed for floating photocatalysis near the water surface. They could be reused directly without separation and maximized the absorption of visible light during the photocatalytic reaction. Therefore, these solid-solution-based floatable nanofiber photocatalysts are good potential candidates for wastewater treatment applications.
Collapse
Affiliation(s)
- Shuai Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China; College of Science, Northeast Electric Power University, 169 Changchun Street, Jilin 132012, People's Republic of China
| | - Pingping Liang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Jie Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Jiayu Xin
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Xinghua Li
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China.
| | - Changlu Shao
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China.
| | - Xiaowei Li
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| |
Collapse
|
18
|
Sun S, Hu Y, Xu M, Cheng F, Zhang H, Li Z. Photo-Fenton degradation of carbamazepine and ibuprofen by iron-based metal-organic framework under alkaline condition. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127698. [PMID: 34775313 DOI: 10.1016/j.jhazmat.2021.127698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks have been widely used as photocatalytic materials. In this paper, a novel photocatalyst HSO3-MIL-53(Fe) with acidity regulating groups was successfully synthesized by the solvothermal method and applied to remove carbamazepine (CBZ) and ibuprofen (IBP). The photodegradation efficiency of vis/H2O2/HSO3-MIL-53(Fe) can reach 100% when the pH value is 8 or 9. The free radical capture experiment and electron paramagnetic resonance analysis proved that hole (h+), hydroxide radical (·OH), singlet oxygen (1O2), and superoxide Radical (·O2-) are the main active species for pollutants degradation. In the vis/H2O2/HSO3-MIL-53(Fe) system, the high pollutant degradation efficiency under alkaline conditions was attributed to two factors: (1) the acidity adjusting group -HSO3 adjusts the pH value of the whole system, which is beneficial to the photo-Fenton process. (2) The photogenerated electrons of HSO3-MIL-53(Fe) can be captured by Fe (III), H2O2 and O2 to accelerate the reduction of Fe (III) and generate ·OH, 1O2, and ·O2-. Besides, H2O2 can also be activated by Fe (II) and Fe (III). The above processes synergistically improved the photocatalytic efficiency. Based on liquid chromatography-mass spectrometry (LC-MS) analysis, the possible degradation pathways of the two pollutants were proposed.
Collapse
Affiliation(s)
- Siyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Youyou Hu
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mengshan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fan Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhengkui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
19
|
Effects of MN 4-Type Coordination Structure in Metallophthalocyanine for Bio-Inspired Oxidative Desulfurization Performance. Molecules 2022; 27:molecules27030904. [PMID: 35164168 PMCID: PMC8838056 DOI: 10.3390/molecules27030904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Oxidative desulfurization (ODS) is the promising new method for super deep desulfurization of fuel oil. The oxidative desulfurization performance of the metal-N4-chelates metallophthalocyanines (MPcs) is related to the chemical properties of conjugate structures and the central metal ions. Herein, a biomimetic catalytic system composed of metallophthalocyanines (MPcR4, M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II); R = -H, -COOH, -NO2, -NH2) and molecular O2 was performed to study the influence of MN4-type coordination structure in metallophthalocyanines for the degradation of dibenzothiophene (DBT) in model oil containing n-octane. The results reveal that the conjugate structures and the center metal ions of metallophthalocyanines played key roles in oxidative desulfurization performance. The inductive effect of different R substituents strongly affected the electron cloud distribution of the conjugate structures and the catalytic performance. Moreover, the catalytic activity of MPcs, which is related to the d electronic configuration and ligand-field effects, does not sequentially increase with the increase in the d electron number of central metal ions.
Collapse
|
20
|
Abstract
Nowadays, society’s widespread consumption of pharmaceutical drugs and the consequent accumulation of such compounds or their metabolites in effluents requires the development of efficient strategies and systems that lead to their effective degradation. This can be done through oxidative processes, in which tetrapyrrolic macrocycles (porphyrins, phthalocyanines) deserve special attention since they are among the most promising degradation catalysts. This paper presents a review of the literature over the past ten years on the major advances made in the development of oxidation processes of pharmaceuticals in aqueous solutions using tetrapyrrole-based catalysts. The review presents a brief discussion of the mechanisms involved in these oxidative processes and is organized by the degradation of families of pharmaceutical compounds, namely antibiotics, analgesics and neurological drugs, among others. For each family, a critical analysis and discussion of the fundamental roles of tetrapyrrolic macrocycles are presented, regarding both photochemical degradative processes and direct oxidative chemical degradation.
Collapse
|
21
|
Priyadarsini A, Mallik BS. Amphiphilicity of Intricate Layered Graphene/g-C 3N 4 Nanosheets. J Phys Chem B 2021; 125:11697-11708. [PMID: 34664957 DOI: 10.1021/acs.jpcb.1c05609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hybrid heterostructure of the tri-s-triazine form of graphitic carbon nitride (g-C3N4), a stable two-dimensional material, results from intricate layer formation with graphene. In this material, g-C3N4, an amphiphilic material, stabilizes Pickering emulsions as an emulsifier and can effectively disperse graphene. Due to the various technological applications of the hybrid nanosheets in an aqueous environment, it is essential to study the interaction of water molecules with graphene and g-C3N4 (Gr/g-C3N4)-combined heterostructure. Although few studies have been performed signifying the water orientation in the interfacial layer, we find that there is a lack of detailed studies using various dynamical and structural properties of the interfacial water molecules. The interface of the Gr/g-C3N4 hybrid structure, one of the rarely found amphiphilic interfaces (on the g-C3N3 side), is appropriate for exploring the water affinity due to the availability of heterogeneous interfacial aqueous interactions. We adopted classical molecular dynamics simulations using two models for water molecules to study the structure and dynamics of an aqueous interface. We have correlated the structural properties to dynamics and spectral properties to understand the overall behavior of the amphiphilic interface. Our results branch into two significant hydrogen bond (HB) properties in HB count and HB strength among the water molecules in the different layers. The HB counts in the different layers of water are correlated using the average distance distribution (PrO4), tetrahedral order parameters, HB donor/acceptor count, and total HBs per water molecule. A conspicuous difference is found in the HB count and related dynamics of the system. The HB lifetime and diffusion coefficient hint at the equivalent strength of HBs in the different layers. All the findings conclude that the amphiphilicity of the Gr/g-C3N4 interface can help in understanding various interfacial physical and chemical processes.
Collapse
Affiliation(s)
- Adyasa Priyadarsini
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| |
Collapse
|
22
|
Yang L, Jia Y, Peng Y, Zhou P, Yu D, Zhao C, He J, Zhan C, Lai B. Visible-light induced activation of persulfate by self-assembled EHPDI/TiO 2 photocatalyst toward efficient degradation of carbamazepine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146996. [PMID: 33865137 DOI: 10.1016/j.scitotenv.2021.146996] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/28/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Removal of pharmaceutical and personal care products from wastewater is very important in water treatment process. Combining photocatalysis with persulfate (PS) could be a good solvent for this problem. Novel perylene diimide derivative (EHPDI) was designed and synthesized. Furthermore, self-assembled EHPDI/TiO2 composite photocatalyst (EPT) was prepared and applied in activating persulfate (PS) under visible light to enhance the photodegradation of pollutants. The presence of the alkyl side chain 2-ethylhexyl optimizes the self-assembly process, enabling the composite material to achieve high performance under low EHPDI loading. Various methods were used to detect the physical and chemical characteristics of EPT. Carbamazepine (CBZ) was chosen to be the model pollutant to study the removal efficiency of EPT/PS system under visible light. Within 30 min, 5.0 mg/L CBZ could be almost completely degraded, and the removal ratio of TOC was 75.2% within 60 min. The SO4-, OH, O2-, 1O2, and h+ were proved to be involved in the removal of CBZ by EPR and quenching experiments. Then, other typical pollutants were degraded by this EPT/PS system, demonstrating this system is suitable for degrading different pollutants. Besides, the degradation paths of CBZ were proposed by HPLC/MS. Finally, the EPT showed excellent recyclability and stability.
Collapse
Affiliation(s)
- LiWei Yang
- School of Civil Engineering, Key Laboratory of Water Supply & Sewage Engineering of Ministry of Housing and Urban-rural Development, Chang'an University, Xi'an 710061, China
| | - YanYan Jia
- School of Civil Engineering, Key Laboratory of Water Supply & Sewage Engineering of Ministry of Housing and Urban-rural Development, Chang'an University, Xi'an 710061, China
| | - YaQi Peng
- School of Civil Engineering, Key Laboratory of Water Supply & Sewage Engineering of Ministry of Housing and Urban-rural Development, Chang'an University, Xi'an 710061, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Dian Yu
- School of Civil Engineering, Key Laboratory of Water Supply & Sewage Engineering of Ministry of Housing and Urban-rural Development, Chang'an University, Xi'an 710061, China
| | - ChuanLiang Zhao
- School of Civil Engineering, Key Laboratory of Water Supply & Sewage Engineering of Ministry of Housing and Urban-rural Development, Chang'an University, Xi'an 710061, China
| | - JiaoJie He
- School of Civil Engineering, Key Laboratory of Water Supply & Sewage Engineering of Ministry of Housing and Urban-rural Development, Chang'an University, Xi'an 710061, China
| | - ChuanLang Zhan
- Key Laboratory of Excitonic Materials Chemistry and Devices (EMC&D), College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot 010022, China.
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
23
|
Li Y, Yang Y, Lei J, Liu W, Tong M, Liang J. The degradation pathways of carbamazepine in advanced oxidation process: A mini review coupled with DFT calculation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146498. [PMID: 34030238 DOI: 10.1016/j.scitotenv.2021.146498] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/22/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Degradation pathway is important for the study of carbamazepine (CBZ) removal in advanced oxidation processes (AOPs). Generally, degradation pathways are speculated based on intermediate identification and basic chemical rules. However, this semiempirical strategy is sometimes time-consuming and baseless. To improve the situation, a mini meta-analysis was first conducted for the degradation pathways of CBZ in AOPs. Then, the rationality of the pathways was analyzed by Density Functional Theory (DFT) calculation. Results show that the degradation pathways of CBZ in various AOPs has high similarity, and the reactive sites predicted by Fukui function fitted well with the data retrieved from literatures. In addition, molecule configuration of degradation intermediates was found to play a very important roles on degradation pathway. The study reveals that computational chemistry is a useful tool for degradation pathway speculation in AOPs.
Collapse
Affiliation(s)
- Yunyi Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Ying Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Jiamin Lei
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Jialiang Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
24
|
Mao X, Li M, Li M. Fabrication of Bi 4O 5Br 2 photocatalyst for carbamazepine degradation under visible-light irradiation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:77-88. [PMID: 34280156 DOI: 10.2166/wst.2021.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bi4O5Br2 with irregular flake shape was synthesized by a facile and energy-saving hydrolysis method. Its band gap energy (Eg) was 2.1 eV. The formation mechanism was proposed. The Bi4O5Br2 exhibited superb visible-light-induced photocatalytic activity (>90%) toward the oxidation of carbamazepine. The kinetics rate constant (k) attained 0.0196 min-1. The effect of Bi4O5Br2 dosage, initial solution pH value, and inorganic anions on carbamazepine degradation was investigated. During the oxidation process, photogenerated holes (h+) and superoxide radical anions (•O2-) were the main active species. Based on the reaction intermediates results determined through a combined system of liquid chromatography and mass spectrometry, a possible reaction mechanism was speculated. The degree of contamination of carbamazepine solution after treatment was evaluated through the teratogenic effect experiment. After 120 min of visible light exposure, the carbamazepine solution is free of pollution. Also, the as-synthesized Bi4O5Br2 maintains good chemical stability and could be reused in the photodegradation process, indicating its potential in practical applications.
Collapse
Affiliation(s)
- Xiaoming Mao
- Department of Chemistry, Changzhi University, Changzhi, 046011, China
| | - Min Li
- Department of Chemistry, Changzhi University, Changzhi, 046011, China
| | - Mengyao Li
- Department of Chemistry, Changzhi University, Changzhi, 046011, China
| |
Collapse
|
25
|
Schmidt AM, Calvete MJF. Phthalocyanines: An Old Dog Can Still Have New (Photo)Tricks! Molecules 2021; 26:2823. [PMID: 34068708 PMCID: PMC8126243 DOI: 10.3390/molecules26092823] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Phthalocyanines have enjoyed throughout the years the benefits of being exquisite compounds with many favorable properties arising from the straightforward and diverse possibilities of their structural modulation. Last decades appreciated a steady growth in applications for phthalocyanines, particularly those dependent on their great photophysical properties, now used in several cutting-edge technologies, particularly in photonic applications. Judging by the vivid reports currently provided by many researchers around the world, the spotlight remains assured. This review deals with the use of phthalocyanine molecules in innovative materials in photo-applications. Beyond a comprehensive view on the recent discoveries, a critical review of the most acclaimed/considered reports is the driving force, providing a brief and direct insight on the latest milestones in phthalocyanine photonic-based science.
Collapse
Affiliation(s)
- Andrea M. Schmidt
- LifeEstetika, Laser Solutions, Universitätstadt Tübingen, Maria-von-Linden Strasse, 72076 Tübingen, Germany;
| | - Mário J. F. Calvete
- University of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal
| |
Collapse
|
26
|
Zhao Z, Zhou M, Li N, Yao Y, Chen W, Lu W. Degradation of carbamazepine by MWCNTs-promoted generation of high-valent iron-oxo species in a mild system with O-bridged iron perfluorophthalocyanine dimers. J Environ Sci (China) 2021; 99:260-266. [PMID: 33183703 DOI: 10.1016/j.jes.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Metal phthalocyanine has been extensively studied as a catalyst for degradation of carbamazepine (CBZ). However, metal phthalocyanine tends to undergo their own dimerization or polymerization, thereby reducing their activity points and affecting their catalytic properties. In this study, a catalytic system consisting of O-bridged iron perfluorophthalocyanine dimers (FePcF16-O-FePcF16), multi-walled carbon nanotubes (MWCNTs) and H2O2 was proposed. The results showed MWCNTs loaded with FePcF16-O-FePcF16 can achieve excellent degradation of CBZ with smaller dosages of FePcF16-O-FePcF16 and H2O2, and milder reaction temperatures. In addition, the results of experiments revealed the reaction mechanism of non-hydroxyl radicals. The highly oxidized high-valent iron-oxo (Fe(IV)=O) species was the main reactive species in the FePcF16-O-FePcF16/MWCNTs/H2O2 system. It is noteworthy that MWCNTs can improve the dispersion of FePcF16-O-FePcF16, contributing to the production of highly oxidized Fe(IV)=O. Then, the pathway of CBZ oxidative degradation was speculated, and the study results also provide new ideas for metal phthalocyanine-loaded carbon materials to degrade emerging pollutants.
Collapse
Affiliation(s)
- Zhiguo Zhao
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Moyan Zhou
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Nan Li
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuyuan Yao
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenxing Chen
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
27
|
Anusuyadevi PR, Riazanova AV, Hedenqvist MS, Svagan AJ. Floating Photocatalysts for Effluent Refinement Based on Stable Pickering Cellulose Foams and Graphitic Carbon Nitride (g-C 3N 4). ACS OMEGA 2020; 5:22411-22419. [PMID: 32923799 PMCID: PMC7482250 DOI: 10.1021/acsomega.0c02872] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/10/2020] [Indexed: 05/25/2023]
Abstract
The transfer of heterogeneous photocatalysis applications from the laboratory to real-life aqueous systems is challenging due to the higher density of photocatalysts compared to water, light attenuation effects in water, complicated recovery protocols, and metal pollution from metal-based photocatalysts. In this work, we overcome these obstacles by developing a buoyant Pickering photocatalyst carrier based on green cellulose nanofibers (CNFs) derived from wood. The air bubbles in the carrier were stable because the particle surfactants provided thermodynamic stability and the derived photocatalytic foams floated on water throughout the test period (4 weeks). A metal-free semiconductor photocatalyst, g-C3N4, was facilely embedded inside the foam by mixing the photocatalyst with the air-bubble suspension followed by casting and drying to produce solid foams. When tested under mild irradiation conditions (visible light, low energy LEDs) and no agitation, almost three times more dye was removed after 6 h for the floating g-C3N4-CNF nanocomposite foam, compared to the pure g-C3N4 powder residing on the bottom of a ca. 2 cm-high water pillar. The buoyancy and physicochemical properties of the carrier material were imperative to render escalated oxygenation, high photon utilization, and faster dye degradation. The reported assembly protocol is facile, general, and provides a new strategy for assembling green floating foams that can potentially carry a number of different photocatalysts.
Collapse
Affiliation(s)
- Prasaanth Ravi Anusuyadevi
- Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Anastasia V. Riazanova
- Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Mikael S. Hedenqvist
- Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Anna J. Svagan
- Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| |
Collapse
|
28
|
He Y, Lv H, Daili Y, Yang Q, Junior LB, Liu D, Liu H, Ma Z. Construction of a new cascade photogenerated charge transfer system for the efficient removal of bio-toxic levofloxacin and rhodamine B from aqueous solution: Mechanism, degradation pathways and intermediates study. ENVIRONMENTAL RESEARCH 2020; 187:109647. [PMID: 32438099 DOI: 10.1016/j.envres.2020.109647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 05/16/2023]
Abstract
In this work, a novel cascade system (i.e., SnTCPP/g-C3N4/Bi2WO6) is successfully constructed using stannum (II) meso-tetra (4-carboxyphenyl) porphyrin (SnTCPP) as the key photovoltaic agent for the first time. Visible light driven photocatalytic experiments indicated that wt. 12% SnTCPP and 30% Bi2WO6 codecorated g-C3N4 demonstrates the highest photodecomposition capabilities for levofloxacin and rhodamine B, achieving 85.64% and 93.64% degradation rates, respectively. The dramatically enhanced photocatalytic performance mainly raised from the synergetic co-effects among SnTCPP, g-C3N4 and Bi2WO6, including: i) the incorporation of SnTCPP extends the visible light response of the binary Bi2WO6/g-C3N4 heterojunctions, resulting in the highly efficient visible light harvesting; ii) we find that the g-C3N4 not only serves as a promising supporter to trap electrons from Bi2WO6, but also as an interfacial electron-hole pairs transfer moderator, like "volleyball setter" to facilitate the charges transfer between Bi2WO6 and SnTCPP. The presence of the "setter" endows a cascade system for boosting the photodegradation efficiency of levofloxacin and rhodamine B. This study provides a promising design strategy to construct efficient g-C3N4 based heterojunctions suitable for removing pharmaceutical antibiotics and hazardous dyes from various real wastewaters.
Collapse
Affiliation(s)
- Yangqing He
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China.
| | - Hongxia Lv
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Yuchen Daili
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Qian Yang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Lucas Binnah Junior
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Dongjie Liu
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Haiyang Liu
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, United States
| | - Zhanying Ma
- Department of Chemistry, Xianyang Normal University, Xianyang, 712000, China.
| |
Collapse
|
29
|
Ruan Y, Gao B. Synthesis of zinc-porphyrin based multi-arm star Poly(N-isopropylacrylamide) and the effect of topology on photocatalytic performance. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Fang H, Wang M, Yi H, Zhang Y, Li X, Yan F, Zhang L. Electrostatic Assembly of Porphyrin-Functionalized Porous Membrane toward Biomimetic Photocatalytic Degradation Dyes. ACS OMEGA 2020; 5:8707-8720. [PMID: 32337433 PMCID: PMC7178780 DOI: 10.1021/acsomega.0c00135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Porphyrin-based catalytic oxidation is one of the most representative biomimetic catalysis. To mimic the biomimetic catalytic oxidation of nature, a positive charged porous membrane, quaternized polysulfone (QPSf) membrane with spongelike structure, was prepared for supporting meso-tetraphenylsulfonato porphyrin (TPPS). The influence of polymer concentration, coagulation bath, and additives on the structure of the substrate membrane was explored, and the optimized membrane with porosity of 87.1% and water flux of 371 L·m-2·h-1 at 0.1 MPa was obtained. Monolayer TPPS was adsorbed on the QPSf membrane surface by the electrostatic self-assembly approach, and the adsorption process followed the pseudo second-order kinetic model and Langmuir adsorption isotherm equation. The resulting TPPS@QPSf membrane showed excellent visible light response, and the photocatalytic performance for dyes was then enhanced dramatically after TPPS was immobilized on the membrane. The removal efficiencies for rhodamine B (RhB), methylene blue (MB), and methyl orange (MO) were 92.1, 94.1, and 92.1% under visible light irradiation, respectively. The primary photocatalytic degradation of the dye was a zero-order reaction, and the secondary reaction of degradation followed pseudo first-order kinetics. Finally, the TPPS@QPSf membrane can be reused for photocatalytic degradation of RhB for 10 cycles with no obvious change on removal efficiency, which indicated that this membrane is a promising material for dyeing water treatment coupled with visible light irradiation.
Collapse
Affiliation(s)
- Hongbo Fang
- Sinopec
Petroleum Engineering Co., Ltd., Dongying 257026, P. R.
China
| | - Mingxia Wang
- School
of Materials Science and Engineering, Tiangong
University, Tianjin 300387, P. R. China
| | - Hong Yi
- PetroChina
Changqing Oilfield Company, Oil Production Plant No. 2, Qingyang 745100, P. R. China
| | - Yanyan Zhang
- School
of Materials Science and Engineering, Tiangong
University, Tianjin 300387, P. R. China
| | - Xiaodan Li
- School
of Chemistry and Chemical Engineering, Tiangong
University, Tianjin 300387, P. R. China
| | - Feng Yan
- School
of Chemistry and Chemical Engineering, Tiangong
University, Tianjin 300387, P. R. China
| | - Lu Zhang
- Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
31
|
Wang M, Zhang Y, Yu G, Zhao J, Chen X, Yan F, Li J, Yin Z, He B. Monolayer porphyrin assembled SPSf/PES membrane reactor for degradation of dyes under visible light irradiation coupling with continuous filtration✰. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Bai T, Zhao K, Gao Q, Qi M, Zhang Y, Lu Z, Zhao H, Gao H, Wei J. Kaolin/CaAlg Hydrogel Thin Membrane with Controlled Thickness, High Mechanical Strength, and Good Repetitive Adsorption Performance for Dyes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tian Bai
- State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Kongyin Zhao
- State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Quansheng Gao
- Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Meng Qi
- State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Yue Zhang
- State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Zijie Lu
- State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Hui Zhao
- State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Huihui Gao
- State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Junfu Wei
- State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, China
- TianJin Engineering Center for Safety Evaluation of Water Quality & Safeguards Technology, Tianjin 300387, China
| |
Collapse
|
33
|
Ruan Y, Gao B, LV S, Duan Q. The synthesis of star-shaped poly( N-isopropylacrylamide) with two zinc porphyrins as the core and end groups via ATRP and “CLICK” chemistry and a photocatalytic performance study. NEW J CHEM 2020. [DOI: 10.1039/c9nj05802h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The synthesis of star-shaped poly(N-isopropylacrylamide) with two zinc porphyrins as the core and end groups via ATRP & “CLICK” chemistry and a photocatalytic performance study.
Collapse
Affiliation(s)
- Yifu Ruan
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- 7989 Weixing Road
- Changchun 130022
- China
| | - Bo Gao
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- 7989 Weixing Road
- Changchun 130022
- China
| | - Shuhui LV
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- 7989 Weixing Road
- Changchun 130022
- China
| | - Qian Duan
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- 7989 Weixing Road
- Changchun 130022
- China
| |
Collapse
|
34
|
Ma Z, Deng L, Fan G, He Y. Hydrothermal synthesis of p-C 3N 4/f-BiOBr composites with highly efficient degradation of methylene blue and tetracycline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:103-110. [PMID: 30771590 DOI: 10.1016/j.saa.2019.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/08/2019] [Accepted: 02/04/2019] [Indexed: 05/10/2023]
Abstract
Construction of heterojunctions with band-suitable different semiconductors has been demonstrated to be an efficient approach to enhance the separation of photoinduced electrons and holes. In this paper, highly efficient heterojuction photocatalysts consisted of porous-C3N4 (p-C3N4) and flowerlike-BiOBr (f-BiOBr) were successfully synthesized via a deposition-hydrothermal method. The SEM and HRTEM images indicated that BiOBr were successfully deposited on the surface of p-C3N4 and the layered p-C3N4/f-BiOBr heterojunctions were formed between p-C3N4 and f-BiOBr. The optimum photocatalytic activity of the p-C3N4/f-BiOBr nanocomposites with weight ratio of 3%p-C3N4 exhibited dramatically improved visible-light photocatalytic activities with 98.42% and 94.25% degradation rates for methylene blue (MB) and tetracycline, respectively. The enhanced activity was mainly attributed to the unique heteojunction architecture, which creates large interfacial surface between the constituent materials for facilitating charge transfer and effectively inhibits the fast recombination of photogenerated electrons and holes. The active species trapping experiment indicated that the O2- was the dominating reactive oxidizing species of p-C3N4/f-BiOBr for MB degradation under visible light irradiation. Moreover, the as-prepared photocatalysts displayed excellent stability in the recycling experiments with no obvious decrease of the degradation efficiencies for MB and tetracycline. Furthermore, the possible photocatalytic degradation mechanism of MB over p-C3N4/f-BiOBr was proposed to better understand the reaction process. The work provides a facile route for rational design of heterojunction photocatalysts with promising prospect for the treatment of antibiotic residues in various wastewaters.
Collapse
Affiliation(s)
- Zhanying Ma
- Department of Chemistry, Xianyang Normal University, Xianyang 712000, China
| | - Lingjuan Deng
- Department of Chemistry, Xianyang Normal University, Xianyang 712000, China
| | - Guang Fan
- Department of Chemistry, Xianyang Normal University, Xianyang 712000, China
| | - Yangqing He
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an 710048, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China.
| |
Collapse
|
35
|
Zheng J, Li X, Qin Y, Zhang S, Sun M, Duan X, Sun H, Li P, Wang S. Zn phthalocyanine/carbon nitride heterojunction for visible light photoelectrocatalytic conversion of CO2 to methanol. J Catal 2019. [DOI: 10.1016/j.jcat.2019.01.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Kumar A, Prajapati PK, Aathira MS, Bansiwal A, Boukherroub R, Jain SL. Highly improved photoreduction of carbon dioxide to methanol using cobalt phthalocyanine grafted to graphitic carbon nitride as photocatalyst under visible light irradiation. J Colloid Interface Sci 2019; 543:201-213. [PMID: 30802767 DOI: 10.1016/j.jcis.2019.02.061] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 11/20/2022]
Abstract
A substantially improved methanol yield was achieved from the photoreduction of carbon dioxide under visible light by using a hybrid photocatalyst consisting of molecular cobalt phthalocyanine tetracarboxylic acid (CoPc-COOH) complex immobilized to the organic semiconductor graphitic carbon nitride (g-C3N4) and triethylamine as sacrificial electron donor. The structural and morphological features of the hybrid photocatalyst determined by various techniques like FTIR, UV-Vis, Raman, XPS, TGA, BET etc. After 24 h of light irradiation, the methanol yield by using g-C3N4/CoPc-COOH photocatalyst (50 mg) was found to be 646.5 µmol g-1cat or 12.9 mmol g-1cat with conversion rate 538.75 µmol h-1 g-1cat. However, the use of homogeneous CoPc-COOH (6.5 µmol Co, equivalent to g-C3N4/CoPc-COOH) and g-C3N4 (50 mg) provided 88.5 μmol (1770 μmol g-1cat) and 59.2 μmol (1184 μmol g-1cat) yield of methanol, respectively under identical conditions. The improved photocatalytic efficiency of the hybrid was attributed to the binding ability of CoPc-COOH to CO2 that provided the higher CO2 concentration on the support. Further, the semiconductor support provided better electron mobility and charge separation with the integrated benefit of facile recovery and recycling of the material at the end of the reduction process.
Collapse
Affiliation(s)
- Anurag Kumar
- Chemical Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Pankaj Kumar Prajapati
- Chemical Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - M S Aathira
- Chemical Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
| | - Amit Bansiwal
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France
| | - Suman L Jain
- Chemical Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India.
| |
Collapse
|
37
|
Oxidative desulfurization of dibenzothiophene by central metal ions of chlorophthalocyanines-tetracarboxyl complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Qin Q, Shi Q, Meng J, Wan J, Hu Z. Visible-Light Response and High-Efficiency Photocatalytic Elimination of Polycyclic Organic Pollutants of Layer-By-Layer Assembled Ternary Nanotubular Catalysts. ChemistrySelect 2018. [DOI: 10.1002/slct.201801806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qingyuan Qin
- National Engineering Lab of Textile Fiber Materials & Processing Technology; Zhejiang Sci-Tech University; Hangzhou 310018 PRChina
| | - Qingdan Shi
- National Engineering Lab of Textile Fiber Materials & Processing Technology; Zhejiang Sci-Tech University; Hangzhou 310018 PRChina
| | - Junjing Meng
- National Engineering Lab of Textile Fiber Materials & Processing Technology; Zhejiang Sci-Tech University; Hangzhou 310018 PRChina
| | - Junmin Wan
- National Engineering Lab of Textile Fiber Materials & Processing Technology; Zhejiang Sci-Tech University; Hangzhou 310018 PRChina
- State Key Laboratory of advanced Textiles Materials and Manufacture Technology; MOE; Zhejiang Sci-Tech University; Hangzhou 310018 PR China
| | - Zhiwen Hu
- National Engineering Lab of Textile Fiber Materials & Processing Technology; Zhejiang Sci-Tech University; Hangzhou 310018 PRChina
| |
Collapse
|
39
|
Zhang C, Li Y, Shuai D, Zhang W, Niu L, Wang L, Zhang H. Visible-light-driven, water-surface-floating antimicrobials developed from graphitic carbon nitride and expanded perlite for water disinfection. CHEMOSPHERE 2018; 208:84-92. [PMID: 29860148 DOI: 10.1016/j.chemosphere.2018.05.163] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/17/2018] [Accepted: 05/27/2018] [Indexed: 05/13/2023]
Abstract
Waterborne pathogens, especially bacteria and viruses, pose significant health risks to the public, calling for the development of a sustainable, efficient, and robust disinfection strategy with reduced energy footprint and minimized byproduct formation. Here, we developed a sustainable photocatalytic composite for antimicrobial applications by integrating visible-light-responsive graphitic carbon nitride (g-C3N4) with low-density porous expanded perlite (EP) mineral, and g-C3N4/EP-520 showed a high specific surface area of 45.3 m2/g and optimum performance for disinfection. g-C3N4/EP-520 achieved 8-log inactivation of E. coli and MS2 under 180 and 240 min visible-light irradiation without stirring, respectively. Water quality parameters were found to influence the disinfection performance of g-C3N4/EP-520: MS2 inactivation was promoted with the increase of dissolved oxygen (DO), proton concentration, salinity (NaCl), and hardness (Ca2+). Importantly, g-C3N4/EP-520 could fully inactivate MS2 in a real source water sample with prolonged light irradiation, and negligible activity loss was observed in recycle use, demonstrating its viability and robustness for waterborne pathogen removal. Antimicrobial mechanisms of g-C3N4/EP-520 were systemically evaluated by radical scavenger addition, and revealed that the inactivation behavior was dependent on the type of microorganisms. Microscopic analyses confirmed that the destruction of bacterial cells and viral particles, leading to the inactivation of microorganisms.
Collapse
Affiliation(s)
- Chi Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China.
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, 800 22nd St NW Suite 3530, Science and Engineering Hall, Washington, DC 20052, USA
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| |
Collapse
|
40
|
Zhang G, Ren J, Zhao W, Tian M, Chen W. Photocatalytic desulfurization of thiophene base on molecular oxygen and zinc phthalocyanine/g-C3N4. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3439-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
41
|
Zhao W, Zhang J, Pan J, Qiu J, Niu J, Li C. One-step electrospinning route of SrTiO 3-modified Rutile TiO 2nanofibers and its photocatalytic properties. NANOSCALE RESEARCH LETTERS 2017; 12:371. [PMID: 28549376 PMCID: PMC5445038 DOI: 10.1186/s11671-017-2130-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
The SrTiO3 modified rutile TiO2 composite nanofibers were synthesized by a simple electrospinning technique. The result of XRD, SEM and TEM indicate that the SrTiO3/TiO2 heterojuction has been prepared successfully. Compared with the TiO2 and SrTiO3, the photocatalytic activity of the SrTiO3/TiO2 (rutile) for the degradation of methyl orange exhibits an obvious enhancement under UV illumination. which is almost 2 times than that of bare TiO2 (rutile) nanofiber. Further, the high crystallinity and photon-generated carrier separation of the SrTiO3/TiO2 heterojuction are considered as the main reason for this enhancement.
Collapse
Affiliation(s)
- Weijie Zhao
- Department of Physics and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- School of Medical and Pharmaceutical Engineering, Taizhou Vocational & Technical College, Taizhou, 318000, People's Republic of China
| | - Jing Zhang
- School of Medical and Pharmaceutical Engineering, Taizhou Vocational & Technical College, Taizhou, 318000, People's Republic of China
| | - Jiaqi Pan
- Department of Physics and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Jianfeng Qiu
- Department of Physics and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Jiantao Niu
- Department of Physics and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Chaorong Li
- Department of Physics and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
42
|
Qin D, Lu W, Zhu Z, Li N, Xu T, Wang G, Chen W. Free Channel Formation around Graphitic Carbon Nitride Embedded in Porous Polyethylene Terephthalate Nanofibers with Excellent Reusability for Eliminating Antibiotics under Solar Irradiation. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02800] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dandan Qin
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhexin Zhu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Nan Li
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tiefeng Xu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Gangqiang Wang
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenxing Chen
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|