1
|
Yang J, Zhang Y, Bu Y, Chen B, Li J. Fate of typical organic halogen compounds during electrodialysis process and improvement of their recoveries. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
2
|
Wang YK, Ma XY, Zhang S, Tang L, Zhang H, Wang XC. Sunlight-induced changes in naturally stored reclaimed water: Dissolved organic matter, micropollutant, and ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141768. [PMID: 32896733 DOI: 10.1016/j.scitotenv.2020.141768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Natural sunlight is a vital environmental element and plays a significant role in the ecological storage of reclaimed water (RW), but its impacts on RW quality are poorly understood. In this study, sunlight-induced changes in RW with a focus on dissolved organic matter (rDOM) and 52 residual micropollutants were investigated in the field during the summer and winter seasons. The results indicated that sunlight exposure led to the dissipation of chromophoric DOM (CDOM) in the summer (55% loss) and winter (19% loss) after 14 consecutive sunny days. During open storage of RW, CDOM absorption in UVC regions was preferentially removed in the summer, while during the winter there was preferential removal of CDOM in UVA regions. The results also showed higher fluorescent DOM (FDOM) removal in summer than in winter (49% and 28%, respectively). Results in both seasons indicated that humic acid-like compounds were the most photolabile fractions and were preferentially removed under sunlight exposure. Sunlight also induced attenuation of micropollutants in the summer and winter at reductions of 66% and 24% from the initial values, respectively. Significant attenuation (>75%) was only observed for endocrine-disrupting chemicals, pharmaceuticals, and sunscreens in the summer, but they accounted for 76% of the total concentrations. Vibrio fischeri toxicity tests demonstrated that sunlight constantly decreased the luminescent bacteria acute toxicity of RW, which was estimated to be caused mainly by the sunlight-induced changes of FDOM and CDOM, while the detected micropollutants could only explain 0.02%-2% of acute toxicity. These findings have important implications regarding our understanding of the ecological storage of reclaimed water and the contribution of management strategies.
Collapse
Affiliation(s)
- Yongkun K Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, People's Republic of China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, People's Republic of China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Xiaoyan Y Ma
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, People's Republic of China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, People's Republic of China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Shiying Zhang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, People's Republic of China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, People's Republic of China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Lei Tang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, People's Republic of China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, People's Republic of China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Hengfeng Zhang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, People's Republic of China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, People's Republic of China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Xiaochang C Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, People's Republic of China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, People's Republic of China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China.
| |
Collapse
|
3
|
Wu QY, Yang LL, Zhang XY, Wang WL, Lu Y, Du Y, Lu Y, Hu HY. Ammonia-Mediated Bromate Inhibition during Ozonation Promotes the Toxicity Due to Organic Byproduct Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8926-8937. [PMID: 32598842 DOI: 10.1021/acs.est.0c02984] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ammonia (NH4+) and hydrogen peroxide (H2O2) have been widely used to inhibit bromate formation during ozonation. However, organic byproducts can also pose a risk under these conditions. During bromate inhibition, the influence of NH4+ and H2O2 on organic byproducts and their toxicity should be elucidated. Our study found that NH4+ suppressed organic bromine, but might result in increased toxicity. Adding 0.5 mg/L of NH4+-N substantially increased both the formation of cytotoxicity and genotoxicity (DNA double-strand breaks) of organic byproducts from 0.6 to 1.6 mg-phenol/L, and from 0.3 to 0.8 μg-4-NQO/L (0.5 mg/L Br-, 5 mg/L O3). NH4+ decreased bromate, but increased the overall toxicity of the integrated byproducts (organic byproducts and bromate). Organic nitrogen measurements and 15N isotope analysis showed enhanced incorporation of nitrogen into organic matter when NH4+ and Br- coexisted during ozonation. NH4+ decreased the formation of brominated acetonitriles, but enhanced the formation of brominated nitromethanes and brominated acetamides. These brominated nitrogenous byproducts were partially responsible for this increase in toxicity. Different from ammonia, H2O2 could reduce both bromate and the toxicity of organic byproducts. In the presence of 0.5 mg/L Br- and 10 mg/L O3, adding H2O2 (0.5 mM) substantially suppressed bromate, cytotoxicity formation and genotoxicity formation by 88%, 63% and 67%. This study highlights that focusing on bromate control with NH4+ addition might result in higher toxicity. Efforts are needed to effectively control the toxicities of bromate and organic byproducts simultaneously.
Collapse
Affiliation(s)
- Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Lu-Lin Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Xin-Yang Zhang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Wen-Long Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Yao Lu
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, P. R. China
| | - Ye Du
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, P. R. China
| | - Yun Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, P. R. China
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, P. R. China
| |
Collapse
|
4
|
Xu J, Kralles ZT, Hart CH, Dai N. Effects of Sunlight on the Formation Potential of Dichloroacetonitrile and Bromochloroacetonitrile from Wastewater Effluents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3245-3255. [PMID: 32068383 DOI: 10.1021/acs.est.9b06526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Sunlight plays an important role in transforming effluent organic matter as wastewater effluents travel downstream, but the corresponding effects on the formation of haloacetonitriles (HANs), a group of toxic disinfection byproducts, in wastewater-impacted surface water have not been thoroughly investigated. In this study, we observed that sunlight preferentially attenuated the formation potential of bromochloroacetonitrile (BCAN-FP) over that of dichloroacetonitrile (DCAN-FP) in chlorine- and UV-disinfected secondary effluents. For four effluent samples from different plants, 36 h of irradiation by simulated sunlight removed 28-33% of DCAN-FP and 41-48% of BCAN-FP. Across a larger set of effluent samples (n = 18), 8 h of irradiation (equivalent to 2-3 d of natural sunlight) decreased the calculated cytotoxicity contributed by dihaloacetonitrile-FP in most samples. Similar behavior was observed for a mixture of wastewater and surface water (volume ratio 1:1). For UV-disinfected effluents, the higher the UV dose, the more likely was there a reduction in DCAN-FP and BCAN-FP in the subsequent sunlight irradiation. Experiments with model compounds showed that fulvic acid and UV photoproducts of tryptophan yield excited triplet-state organic matters during sunlight irradiation and play an important role in promoting the attenuation of HAN precursors.
Collapse
Affiliation(s)
- Jiale Xu
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Zachary T Kralles
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Christine H Hart
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Ning Dai
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
5
|
Du Y, Wang WL, He T, Sun YX, Lv XT, Wu QY, Hu HY. Chlorinated effluent organic matter causes higher toxicity than chlorinated natural organic matter by inducing more intracellular reactive oxygen species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134881. [PMID: 31710900 DOI: 10.1016/j.scitotenv.2019.134881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 05/04/2023]
Abstract
During unplanned indirect potable reuse, treated wastewater that contains effluent organic matter (EOM) enters the drinking water source, resulting in different toxicity from natural organic matter (NOM) in surface water during chlorination. This study found that, during chlorination, EOM formed more total organic halogen (TOX) and highly toxic nitrogenous disinfection byproducts (DBPs) like dichloroacetonitrile and trichloronitromethane than NOM did. Oxidative stress including both reactive oxygen species (ROS) and reactive nitrogen species (RNS) in Chinese hamster ovary (CHO) cells substantially increased when exposed to chlorinated EOM and chlorinated NOM. The excessive ROS damaged biological macromolecules including DNA, RNA to form 8-hydroxy-(deoxy)guanosine and proteins to form protein carbonyls. Impaired macromolecule further triggered cell cycle arrest at the S and G2 phases, led to cell apoptosis and eventual necrosis. Cytotoxicity and genotoxicity of chlorinated EOM were both higher than those of chlorinated NOM. Adding the blocker L-buthionine-sulfoximine of intracellular antioxidant glutathione demonstrating that oxidative stress might be responsible for toxicity. ROS was further identified to be the main cause of toxicity induction. These findings highlight the risk from chlorinated EOM in the case of unplanned indirect potable reuse, because it showed higher level of cytotoxicity and genotoxicity than chlorinated NOM via inducing more ROS in mammalian cells.
Collapse
Affiliation(s)
- Ye Du
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Wen-Long Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Tao He
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Ying-Xue Sun
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiao-Tong Lv
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Cao Z, Liu C, Chen D, Liu J. Preparation of an Au-TiO 2 photocatalyst and its performance in removing phycocyanin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:572-581. [PMID: 31539964 DOI: 10.1016/j.scitotenv.2019.07.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/05/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
A novel TiO2 photocatalyst (Au-TiO2 composite film) with enhanced photocatalytic activity has been synthesized, characterized and its performance in the removal of phycocyanin (PC) was investigated. The results show that the Au-TiO2 composite film has a lower electron-hole recombination rate, wider optical response range and high electron transfer rate. The photocatalytic activity of the as-prepared Au-TiO2 composite photocatalyst was observed to be enhanced with the removal efficiency of PC and dissolved organic nitrogen found to be 96.7% and 59%, respectively using the UV/Au-TiO2 process. In addition, the combination of photocatalytic pretreatment and coagulation can achieve an enhanced removal efficiency. The Au-TiO2 photocatalyst was found to decrease the dichloroacetonitrile formation potential (105.9 to 79.3 μg/L), however, it exacerbated the production of trichloromethane and dichloroacetamide beyond their initial levels (116.7 to 224.9 μg/L and 2.27 to 2.31 μg/L, respectively). The divergent trends of these disinfection by-products are due to the fundamental differences in the precursor material.
Collapse
Affiliation(s)
- Zhen Cao
- College of Environment, Hohai University, Nanjing 210098, China
| | - Cheng Liu
- College of Environment, Hohai University, Nanjing 210098, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China.
| | - Danwen Chen
- College of Environment, Hohai University, Nanjing 210098, China
| | - Jiaqi Liu
- College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
7
|
Xu J, Kralles ZT, Dai N. Effects of Sunlight on the Trichloronitromethane Formation Potential of Wastewater Effluents: Dependence on Nitrite Concentration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4285-4294. [PMID: 30913390 DOI: 10.1021/acs.est.9b00447] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study examined the effects of sunlight irradiation on the trichloronitromethane formation potential (TCNM-FP) of wastewater effluents and the roles of nitrite and nitrate in this process. Using disinfected secondary effluents from four treatment plants, we observed that sunlight irradiation (320 W/m2) for 8 h attenuated the TCNM-FP by 17-47% for 9 of 14 samples but increased the TCNM-FP for two of the other samples. A longer irradiation time (≤36 h) further reduced the TCNM-FP in a non-nitrified effluent with low nitrite and nitrate concentrations but increased the TCNM-FP in two nitrified effluents by 2-3-fold. When nitrite (0.1-2 mg N/L) was spiked into effluent samples, an increase in the TCNM-FP after irradiation was observed. The higher the nitrite concentration, the greater the increase in the TCNM-FP. In the presence of ∼1 mg N/L of nitrite, sunlight irradiation for 8 h increased the TCNM-FP of four wastewater samples by 0.3-3.6 μg/mg C. In contrast, the spike of nitrate up to 20 mg N/L had no effect. The nitrite-sunlight effect was also observed for four model precursors (humic acid, tryptophan, tyrosine, and phenol). Humic acid and tryptophan featured larger increases in the TCNM-FP compared to those of tyrosine and phenol after sunlight irradiation.
Collapse
Affiliation(s)
- Jiale Xu
- Department of Civil, Structural and Environmental Engineering , University at Buffalo, the State University of New York , Buffalo , New York 14260 , United States
| | - Zachary T Kralles
- Department of Civil, Structural and Environmental Engineering , University at Buffalo, the State University of New York , Buffalo , New York 14260 , United States
| | - Ning Dai
- Department of Civil, Structural and Environmental Engineering , University at Buffalo, the State University of New York , Buffalo , New York 14260 , United States
| |
Collapse
|
8
|
Du Y, Wu QY, Lv XT, Ye B, Zhan XM, Lu Y, Hu HY. Electron donating capacity reduction of dissolved organic matter by solar irradiation reduces the cytotoxicity formation potential during wastewater chlorination. WATER RESEARCH 2018; 145:94-102. [PMID: 30121436 DOI: 10.1016/j.watres.2018.08.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
After treated wastewater is discharged into surface water for unplanned indirect potable reuse, solar irradiation transforms the dissolved organic matter (DOM), which would alter the formation of disinfection byproducts (DBPs) and change the cytotoxicity formation potential (CtFP) during post-chlorination in drinking water treatment plants. This study investigated the effects of solar irradiation on the CtFP and total organic halogen formation potential (TOXFP) of wastewater during post-chlorination. Exposure to natural sunlight decreased the formation potential of cytotoxicity to Chinese Hamster Ovary cells. Under 24 h simulated solar irradiation, CtFP and TOXFP decreased by more than 40%. X-ray photoelectron spectra and Fourier transformation infrared spectra suggested solar irradiation destroyed the key DBP precursors containing phenolic hydroxyl moieties (Ph-OH). The destruction of Ph-OH under solar irradiation was reflected by a decrease in the electron donating capacity (EDC) of DOM and the post-chlorination decreased the EDC further. Increasing the irradiation-consumed EDC abated the chlorine-consumed EDC, while the chlorine-consumed EDC was positively correlated to the CtFP and TOXFP by means of the electrophilic substitution-aromatic ring cleavage. Solar irradiation thus reduced the CtFP and TOXFP in wastewater during post-chlorination. This study revealed that solar irradiation decreased the risks of treated wastewater for unplanned indirect potable reuse and provided a strategy of controlling CtFP and TOXFP via reducing EDC of DOM in pretreatments.
Collapse
Affiliation(s)
- Ye Du
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China.
| | - Xiao-Tong Lv
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Bei Ye
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Institute, Shenzhen, 518055, PR China
| | - Xin-Min Zhan
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Institute, Shenzhen, 518055, PR China
| | - Yun Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Institute, Shenzhen, 518055, PR China.
| |
Collapse
|
9
|
Zhang Y, Bu Y, Han J, Liu Y, Chen B, Zhang X, Yang M, Sui Y. A facile and green pretreatment method for nonionic total organic halogen (NTOX) analysis in water - Step I. Using electrodialysis to separate NTOX and halides. WATER RESEARCH 2018; 145:631-639. [PMID: 30199807 DOI: 10.1016/j.watres.2018.08.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Adsorbable organic halogen (AOX) is a bulk organic parameter conventionally used to indicate all adsorbable halogenated organic disinfection byproducts formed in disinfected water. Analytically, AOX is determined by three sequential steps: 1) concentration and separation of AOX from halides with activated carbon, 2) conversion of AOX into halides with pyrolysis, and 3) quantification of halides via microcoulometry or ion chromatography (IC). Because the approach is relatively costly and cannot effectively recover non-adsorbable compounds, we herein proposed a facile and green pretreatment tool to measure the nonionic portion of total organic halogen (NTOX) with a new three-step approach: 1) separation of NTOX and halides with electrodialysis (ED), 2) conversion of NTOX into halides with ultraviolet, and 3) analysis of halides with IC. To verify this proposal, this study presented the efficiency of ED in separating halides and NTOX under a variety of operational and environmental conditions. The results showed that ED removed ≥98.5% of fluoride, chloride, bromide, and iodide from all tested waters (up to 1000 mg-X/L) within 1.5 h. Meanwhile, ED recovered an average of 87.9% of fourteen small molecular weight model compounds with each at 100 μg/L. By using electrospray ionization-triple quadrupole mass spectrometry, the whole pictures of high molecular weight compounds in a chlorinated drinking water before and after ED pretreatment were compared, which revealed 79.7% and 83.6% recoveries of overall polar chlorinated and brominated compounds, respectively. In addition, the quantity and property of the dissolved organic matter were largely maintained by ED, and the retained organics may be used for later characterization. The study hence presents a novel use of ED as a pretreatment tool to enable subsequent NTOX measurement.
Collapse
Affiliation(s)
- Yulin Zhang
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), China
| | - Yinan Bu
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), China
| | - Jiarui Han
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yan Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Baiyang Chen
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), China.
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Yueting Sui
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), China
| |
Collapse
|