1
|
Wu L, Yang X, Zhang F, Zhang Z. Effects of biochar-supported nano-hydroxyapatite on cadmium availability and pepper growth in contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177303. [PMID: 39488288 DOI: 10.1016/j.scitotenv.2024.177303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
The remediation of cadmium (Cd)-contaminated soil using biochar (BC) derived from agricultural and forestry waste has gained significant attention due to its ability to convert active soil Cd components to stable forms, reduce bioavailability, decrease Cd absorption by pepper plants, and enhance the nutritional benefits of soil. However, there is limited research on the effects of different passivating agents on soil Cd during various growth stages (seedling, flowering, and maturity) of peppers. In this study, we investigated the cyclic changes in soil physicochemical properties, Cd chemical forms, and their effects on pepper growth by applying different biochar-supported nano-hydroxyapatite. Our results revealed a decreasing trend in the physical and chemical indicators of soil during the flowering stage, following an initial peak. Notably, in the mature stage, the application of nBC3 at an 11 % mass ratio significantly reduced soil Cd content by 57.6 % and fixed it by 77 %. This treatment also increased soil Cd by 48.1 % compared with the control (CK, without any treatment) and reduced its accumulation in the pepper plant by 36.6 %. pH, organic matter, and phosphorus were identified as the main factors influencing Cd fixation in the soil. These findings showed that the in situ application of nBC3 composite material throughout the entire cultivation cycle effectively remediated Cd-contaminated soil and enhanced the quality of agricultural products. This study provides valuable insights into the effects of passivating agents on soil Cd dynamics and offers a theoretical basis for practical remediation strategies.
Collapse
Affiliation(s)
- Lichun Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xiuyuan Yang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Fudong Zhang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Zhenming Zhang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| |
Collapse
|
2
|
Deng X, Chen G, Zhang C, Gao X, Sun B, Shan B. Manganese-modified biochar for sediment remediation: Effect, microbial community response, and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125175. [PMID: 39442607 DOI: 10.1016/j.envpol.2024.125175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Heavy metal sediment pollution has become an increasingly serious problem associated with industrial development, so extensive studies have been conducted concerning their removal. Biochar has recently shown good potential for in-situ remediation of heavy metal-contaminated sediments. The heavy metal adsorption capacity of inexpensive biochar can be improved by loading it with metal oxides. In this study, manganese-modified biochar (MBC) was prepared by KMnO4-modified waste-activated sludge biochar and applied to immobilize Pb and Cd in sediments. Its effects on the sediment microbial community were also investigated. The Results showed that manganese modification of the biochar made it more conducive to the adsorption of heavy metals, owing to its higher specific surface area and graphitization structure, more active sites and oxygen-containing groups, and the presence of Mn2O3 crystal structure on the surface. The maximum adsorption capacities of this material for Pb2+ and Cd2+ in solution were 176.9 mg/g and 44.0 mg/g, respectively. The application of MBC to the remediation of heavy metal-contaminated sediments transformed Pb and Cd in the sediments from exchangeable to residual state. The F4 content of Pb in the sediments increased from 40.52%-42.36% to 49.11%-51.14% after application of 1% MBC, and to 63.94%-64.49% after application of 5% MBC. Correspondingly, the F1 content of Pb in the sediments decreased from 29.09%-30.68% to 17.43%-17.69% after the application of 5% MBC. Furthermore, MBC efficiently enriched the microbial biodiversity and affected the microbial population structure within 60 days. The relative abundance of uncultured f Symbiobacteraceae and Fonticella communities significantly increased after incubation. The results may provide empirical support for the combination of metal oxides and biochar for the remediation of heavy metal-contaminated sediments.
Collapse
Affiliation(s)
- Xudong Deng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guomin Chen
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin, 300072, China; Ecological Environment Bureau of Xiong'an New Area Management Committee of Hebei Province, Baoding, 071799, China
| | - Chao Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Xueping Gao
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin, 300072, China
| | - Bowen Sun
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin, 300072, China
| | - Baoqing Shan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
3
|
Sun Q, Yang H, Zhao T. Multistage stabilization of Cd, Pb, Zn, Cu and As in contaminated soil by phosphorus-coated nZVI layered composite materials: characteristics, process and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134991. [PMID: 38909473 DOI: 10.1016/j.jhazmat.2024.134991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
This study developed a shell-like slow-release material, PF@ST/Fe-0.5, by encapsulating nanoscale zero-valent iron composites (NZC) with phosphate fertilizer (PF) and a starch binder (ST). The material dissolved in soil in stages, first releasing P and Ca to increase the soil pH from 4.95 to 7.14. This was followed by the formation of phosphates and hydroxides precipitates with Pb, Cu, Zn, and Cd in soil, reducing their bioavailable forms by 81.73 %, 79.58 %, 91.05 %, and 86.47 %, respectively. The process also involved the competitive adsorption between PO43-/HPO42- and arsenate/arsenite led to the release of specifically adsorbed arsenic, increasing the probability of reaction with the material. Afterwards, the exposure of the NZC core reacted with arsenate/arsenite to form ferric arsenates, thus reducing the content of bioavailable arsenic in the soil by 73.57 %. Excess PO43- and alkali metal cations were captured and mineralized by the iron (hydro) oxides and reactive silicates in NZC, enhancing the remediation effect. Furthermore, the wet-dry alternation test had demonstrated the adaptability of PF@ST/Fe-0.5 to the rainy dry-wet soil environment in Yunnan, which enabled the bioavailable content of As, Pb, Cu, Zn, and Cd decreased by 71.2 %, 94.8 %, 84.1 %, 79.8 %, and 83.9 %, respectively. The layered structure minimized internal reactive substance consumption and protected the internal nZVI from oxidation. The phased release of phosphate and Fe0 stabilized Pb, Cu, Zn, and Cd, enhancing As stabilization and providing a new perspective for the synchronous stabilization of soil contaminated.
Collapse
Affiliation(s)
- Qiwei Sun
- School of Civil and Resource Engineering, University of Science & Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of the Ministry of Education of China for High-efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China
| | - Huifen Yang
- School of Civil and Resource Engineering, University of Science & Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Tong Zhao
- School of Civil and Resource Engineering, University of Science & Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of the Ministry of Education of China for High-efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
Chowardhara B, Saha B, Awasthi JP, Deori BB, Nath R, Roy S, Sarkar S, Santra SC, Hossain A, Moulick D. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues. CHEMOSPHERE 2024; 359:142178. [PMID: 38704049 DOI: 10.1016/j.chemosphere.2024.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield. Among these HMs, three were considered, i.e., arsenic, cadmium, and chromium, in this review, from agro-ecosystem perspective. Compared with conventional plant growth regulators, the use of nanoparticles (NPs) is a relatively recent, successful, and promising method among the many methods employed to address or alleviate the toxicity of HMs. The ability of NPs to reduce HM mobility in soil, reduce HM availability, enhance the ability of the apoplastic barrier to prevent HM translocation inside the plant, strengthen the plant's antioxidant system by significantly enhancing the activities of many enzymatic and nonenzymatic antioxidants, and increase the generation of specialized metabolites together support the effectiveness of NPs as stress relievers. In this review article, to assess the efficacy of various NP types in ameliorating HM toxicity in plants, we adopted a 'fusion approach', in which a machine learning-based analysis was used to systematically highlight current research trends based on which an extensive literature survey is planned. A holistic assessment of HMs and NMs was subsequently carried out to highlight the future course of action(s).
Collapse
Affiliation(s)
- Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh-792103, India.
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization, Ramat Yishay-3009500, Israel.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Biswajit Bikom Deori
- Department of Environmental Science, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India.
| | - Ratul Nath
- Department of Life-Science, Dibrugarh University, Dibrugarh, Assam-786004, India.
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, P.O.- NBU, Dist- Darjeeling, West Bengal, 734013, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
5
|
Deng R, Yue Z, Wang X, Xu Q, Wang J. Innovative recovery of matrix layered double hydroxide from simulated acid mine wastewater for the removal of copper and cadmium from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30196-30211. [PMID: 38600374 DOI: 10.1007/s11356-024-33262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
This study innovatively added biochar to optimize regulation in the neutralization process of simulated acid mine drainage (AMD) and recovered a new type of matrix layered double hydroxides (MLDH), which can be used to remove copper (Cu(II)) and cadmium (Cd(II)) from wastewater. A series of batch experiments show that MLDH with strong selective removal ability of Cu(II) and Cd(II) can be successfully obtained by adding biochar (BC) at pH = 5 end in the neutralization process. Kinetic and isotherm modeling studies indicated that the removal of Cu(II) and Cd(II) by the MLDH was a chemical multilayer adsorption process. The removal mechanism of Cu(II) and Cd(II) was further analyzed through related characterization analysis with contribution rate calculation: the removal rates of Cu(II) and Cd(II) by ion exchange were 42.7% and 26%, while that by precipitation were 34.5% and 49.9%, respectively. This study can provide a theoretical reference and experimental basis for the recovery and utilization of valuable by-products in AMD and the treatment of heavy metal wastewater.
Collapse
Affiliation(s)
- Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Xinquan Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Qingsheng Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China.
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, Anhui, China.
| |
Collapse
|
6
|
Viana RDSR, Figueiredo CCD, Chagas JKM, Paz-Ferreiro J. Combined use of biochar and phosphate rocks on phosphorus and heavy metal availability: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120204. [PMID: 38278116 DOI: 10.1016/j.jenvman.2024.120204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/06/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Biochar (BC) and phosphate rocks (PR) are alternative nutrient sources with multiple benefits for sustainable agriculture. The combination of these soil amendments serves two main purposes: to increase soil phosphorus (P) availability and to remediate heavy metal (HM) contamination. However, a further demonstration of the benefits and risks associated with the combined use of BC and PR (BC + PR) is needed, considering the specific characteristics of raw materials, soil types, experimental conditions, and climatic contexts. This meta-analysis is based on data from 28 selected studies, including 581 paired combinations evaluating effects on extraction and fractionation of cadmium (Cd) and lead (Pb), and 290 paired combinations for soil labile and non-labile P. The results reveal that BC, PR, and BC + PR significantly increase soil labile and non-labile P, with BC + PR showing a 150% greater increase compared to BC alone. In tropical regions, substantial increases in P levels were observed with BC, PR, and BC + PR exhibiting increments of 317, 798, and 288%, respectively. In contrast, temperate climate conditions showed lower increases, with BC, PR, and BC + PR indicating 54, 123, and 88% rises in soil P levels. Moreover, BC, PR, and BC + PR effectively reduce the bioavailability of Cd and Pb in soil, with BC + PR demonstrating the highest efficacy in immobilizing Cd. The synergistic effect of BC + PR highlights their potential for Cd remediation. BC + PR effectively reduces the exchangeable fraction of Cd and Pb in soil, leading to their immobilization in more stable forms, such as the residual fraction. This study provides valuable insights into the remediation potential and P management benefits of BC and PR, highlighting their importance for sustainable agriculture and soil remediation practices.
Collapse
Affiliation(s)
| | | | - Jhon Kenedy Moura Chagas
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, 70910-970, Brasília, DF, Brazil
| | - Jorge Paz-Ferreiro
- School of Engineering, RMIT University, GPO Box 2476, 3001, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Ghouri F, Shahid MJ, Zhong M, Zia MA, Alomrani SO, Liu J, Sun L, Ali S, Liu X, Shahid MQ. Alleviated lead toxicity in rice plant by co-augmented action of genome doubling and TiO 2 nanoparticles on gene expression, cytological and physiological changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168709. [PMID: 37992838 DOI: 10.1016/j.scitotenv.2023.168709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Lead is a very toxic and futile heavy metal for rice plants because of its injurious effects on plant growth and metabolic processes. Polyploidy or whole genome doubling increases the ability of plants to withstand biotic and abiotic stress. Considering the beneficial effects of nanoparticles and tetraploid rice, this research was conducted to examine the effectiveness of tetraploid and titanium dioxide nanoparticles (TiO2 NPs) in mitigating the toxic effects of lead. A diploid (E22-2x) and it's tetraploid (T-42) rice line were treated with Pb (200 μM) and TiO2 NPs (15 mg L-1). Lead toxicity dramatically reduced shoot length (16 % and 4 %) and root length (17 % and 9 %), biological yield (55 % and 36 %), and photosynthetic activity, as evidenced by lower levels of chlorophyll a and b (30 % and 9 %) in E-22 and T-42 rice cultivars compared to the control rice plants, respectively. Furthermore, lead toxicity amplified the levels of reactive oxygen species (ROS), such as malondialdehyde and H2O2, while decreasing activities of all antioxidant enzymes, such as superoxidase, peroxidase, and glutathione predominately in the diploid cultivar. Transmission electron microscopy and semi-thin section observations revealed that Pb-treated cells in E22-2x had more cell abnormalities than T-42, such as irregularly shaped mitochondria, cell wall, and reduced root cell size. Polyploidy and TiO2 reduced Pb uptake in rice cultivars and expression levels of metal transporter genes such as OsHMA9 and OsNRAMP5. According to the findings, genome doubling alleviates Pb toxicity by reducing Pb accumulation, ROS, and cell damage. Tetraploid rice can withstand the toxic effect of Pb better than diploid rice, and TiO2 NPs can alleviate the toxic impact of Pb. Our study findings act as a roadmap for future research endeavours, directing the focus toward risk management and assessing long-term impacts to balance environmental sustainability and agricultural growth.
Collapse
Affiliation(s)
- Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Munazzam Jawad Shahid
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Minghui Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Azam Zia
- Department of Computer Science, University of Agriculture, Faisalabad 38800, Pakistan
| | - Sarah Owdah Alomrani
- Department of Biology, College of Science and Arts, Najran University, Najran 66252, Saudi Arabia
| | - Jingwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Liu Q, Sheng Y, Wang Z, Liu X. New insights into the sustainable use of co-pyrolyzed dredged sediment for the in situ remediation of Cd polluted sediments in coastal rivers. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133664. [PMID: 38309161 DOI: 10.1016/j.jhazmat.2024.133664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/02/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The remediation of Cd-polluted sediment in coastal rivers is essential because of its potential hazards to river and marine ecosystems. Herein, a co-pyrolysis product of contaminated dredged sediment (S@BC) was innovatively applied to cap and immobilize Cd-contaminated sediment in coastal rivers in situ, and their remediation efficiencies, mechanisms, and microbial responses were explored based on a 360 d incubation experiment. The results showed that although S@BC immobilization and capping restrained sediment Cd release to the overlying water, S@BC capping presented a high inhibitory efficiency (66.0% vs. 95.3% at 360 d). Fraction analysis indicated that labile Cd was partially transformed to stable fraction after remediation, with decreases of 0.5%- 32.7% in the acid-soluble fraction and increases of 5.0%- 182.8% in the residual fraction. S@BC immobilization and capping had minor influences on the sediment bacterial community structure compared to the control. S@BC could directly adsorb sediment mobile Cd (precipitation and complexation) to inhibit Cd release and change sediment properties (e.g., pH and cation exchange capacity) to indirectly reduce Cd release. Particularly, S@BC capping also promoted Cd stabilization by enhancing the sediment sulfate reduction process. Comparatively, S@BC capping was a priority approach for Cd-polluted sediment remediation. This study provides new insights into the remediation of Cd-contaminated sediments in coastal rivers.
Collapse
Affiliation(s)
- Qunqun Liu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Yanqing Sheng
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China.
| | - Zheng Wang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaozhu Liu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Hu Y, Cao Y, Ma C, Yan W. Nano-biochar as a potential amendment for metal(loid) remediation: Implications for soil quality improvement and stress alleviation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119658. [PMID: 38056332 DOI: 10.1016/j.jenvman.2023.119658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/18/2023] [Indexed: 12/08/2023]
Abstract
Metal(loid) contamination of agricultural soils has become an alarming issue due to its detrimental impacts on soil health and global agricultural production. Therefore, environmentally sustainable and cost-effective solutions are urgently required for soil remediation. Biochar, particularly nano-biochar, exhibits superior and high-performance capabilities in the remediation of metal(loid)-contaminated soil, owing to its unique structure and large surface area. Current researches on nano-biochar mainly focus on safety design and property improvement, with limited information available regarding the impact of nano-biochar on soil ecosystems and crop defense mechanisms in metal(loid)-contaminated soils. In this review, we systematically summarized recent progress in the application of nano-biochar for remediation of metal(loid)-contaminated soil, with a focus on possible factors influencing metal(loid) uptake and translocation in soil-crop systems. Additionally, we conducted the potential/related mechanisms by which nano-biochar can mitigate the toxic impacts of metal(loid) on crop production and security. Furthermore, the application of nano-biochar in field trials and existing challenges were also outlined. Future studies should integrate agricultural sustainability and ecosystem health targets into biochar design/selection. This review highlighted the potential of nano-biochar as a promising soil amendment for enhancing the remediation of metal(loid)-contaminated agricultural soils, thereby promoting the synthesis and development of highly efficient nano-biochar towards achieving environmental sustainability.
Collapse
Affiliation(s)
- Yi Hu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China
| | - Yini Cao
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China.
| | - Chuanxin Ma
- Key Laboratory for City Cluste Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China.
| |
Collapse
|
10
|
He N, Hu L, Jiang C, Liu Y, Zhao H. Effect of Phanerochaete chrysosporium induced phosphate precipitation on bacterial diversity during the soil remediation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13523-13534. [PMID: 38253835 DOI: 10.1007/s11356-024-31993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Biomineralization by phosphate minerals and phosphate solubilizing fungi (PSF) has attracted great interest as a novel remediation method for heavy metal(loid) co-contaminated soil. It was very essential to investigate the microenvironment response with the application of amendments. In this study, three grain sizes of hydroxyapatites (HAP) and Phanerochaete chrysosporium (P. chrysosporium) were used to investigate the change in heavy metal(loid) fractions, soil physicochemical properties, and bacterial community during the remediation of Mangchang and Dabaoshan acidic mine soils. The results showed that the residual fractions in the two soils increased significantly after 35 days of remediation, especially that of As and Zn in Dabaoshan soils were presented at over 87%. In addition, soil pH, organic matter (OM), and available phosphorous (AP) were almost improved. 16S rRNA sequencing analysis indicated that the introduction of culture medium and P. chrysosporium alone changed bacterial abundance, but the addition of HAP changed the bacterial diversity and community composition by altering environmental conditions. The amendments in the research showed good performance on immobilizing heavy metal(loid)s and reducing their bioavailability. Moreover, the research suggested that environmental factors and soil inherent properties could influence the microbial community structure and composition.
Collapse
Affiliation(s)
- Ni He
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Liang Hu
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| | - Chunyangzi Jiang
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Yayuan Liu
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Hongbo Zhao
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| |
Collapse
|
11
|
Chen Q, Zhang Y, Xia H, Liu R, Wang H. Fabrication of two novel amino-functionalized and starch-coated CuFe 2O 4-modified magnetic biochar composites and their application in removing Pb 2+ and Cd 2+ from wastewater. Int J Biol Macromol 2024; 258:128973. [PMID: 38163509 DOI: 10.1016/j.ijbiomac.2023.128973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/02/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Novel magnetic biochar composites (SFeCu@SBCO and FeCu@SBCO-NH2) were fabricated by modifying oxidized sawdust biochar (SBCO) with Fe/Cu loading, starch-coating/amination, characterized (FTIR, XRD, BET, SEM-EDS and XPS) and applied in capturing Pb2+ and Cd2+ from wastewater. Adsorption experiments revealed that SFeCu@SBCO and FeCu@SBCO-NH2 exhibited extraordinary adsorption performance toward Pb2+/Cd2+ with the maximum adsorption capacity reaching 184.26/173.35 mg g-1 and 201.43/190.81 mg g-1, respectively, which were >5 times higher than those of SBC. The great increase in adsorption capacity of the two adsorbents was ascribed to the introduction of CuFe2O4 and starch/amino groups. Pb2+ and Cd2+ adsorption was an endothermic reaction controlled by monolayer chemisorption. Complexation and electrostatic attraction were the two predominant mechanisms. Besides, ion exchange together with physical adsorption also occurred during the adsorption. Additionally, the both adsorbents displayed favorable stability and reusability as well as desirable anti-interfering ability to other metal cations. Taken together, the both adsorbents could be utilized as reusable magnetic adsorbents with promising prospect in the effective remediation of Pb2+/Cd2+ contaminated water. The study not only contributed to the better understanding of biochar modification strategy and the application of modified biochar in heavy metals pollutants removal, but also realized resource utilization of biomass waste.
Collapse
Affiliation(s)
- Qian Chen
- School of Life and Environmental Sciences, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China
| | - Yaohong Zhang
- School of Life and Environmental Sciences, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China.
| | - Haixin Xia
- School of Life and Environmental Sciences, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China
| | - Renrong Liu
- School of Life and Environmental Sciences, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China
| | - Hai Wang
- School of Life and Environmental Sciences, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China.
| |
Collapse
|
12
|
Li Z, Qiu Y, Zhao D, Li J, Li G, Jia H, Du D, Dang Z, Lu G, Li X, Yang C, Kong L. Application of apatite particles for remediation of contaminated soil and groundwater: A review and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166918. [PMID: 37689195 DOI: 10.1016/j.scitotenv.2023.166918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/14/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
With rapid industrial development and population growth, the pollution of soil and groundwater has become a critical concern all over the world. Yet, remediation of contaminated soil and water remains a major challenge. In recent years, apatite has gained a surging interest in environmental remediation because of its high treatment efficiency, low cost, and environmental benignity. This review summarizes recent advances in: (1) natural apatite of phosphate ores and biological source; (2) synthesis of engineered apatite particles (including stabilized or surface-modified apatite nanoparticles); (3) treatment effectiveness of apatite towards various environmental pollutants in soil and groundwater, including heavy metals (e.g., Pb, Zn, Cu, Cd, and Ni), inorganic anions (e.g., As oxyanions and F-), radionuclides (e.g., thorium (Th), strontium (Sr), and uranium (U)), and organic pollutants (e.g., antibiotics, dyes, and pesticides); and (4) the removal and/or interaction mechanisms of apatite towards the different contaminants. Lastly, the knowledge or technology gaps are identified and future research needs are proposed.
Collapse
Affiliation(s)
- Zhiliang Li
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yi Qiu
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Dongye Zhao
- Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, CA 92182-1324, USA.
| | - Jian Li
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Guanlin Li
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hui Jia
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Daolin Du
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhi Dang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Guining Lu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Chengfang Yang
- College of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Linjun Kong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
13
|
Jiang Z, Nie K, Arinzechi C, Li J, Liao Q, Si M, Yang Z, Li Q, Yang W. Cooperative effect of slow-release ferrous and phosphate for simultaneous stabilization of As, Cd and Pb in soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131232. [PMID: 36940528 DOI: 10.1016/j.jhazmat.2023.131232] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
The different chemical behavior of anionic As and cationic Cd and Pb makes the simultaneous stabilization of soils contaminated with arsenic (As), cadmium (Cd), and lead (Pb) challenging. The use of soluble, insoluble phosphate materials and iron compounds cannot simultaneously stabilize As, Cd, and Pb in soil effectively due to the easy re-activation of heavy metals and poor migration. Herein, we propose a new strategy of "cooperatively stabilizing Cd, Pb, and As with slow-release ferrous and phosphate". To very this theory, we developed ferrous and phosphate slow-release materials to simultaneously stabilize As, Cd, and Pb in soil. The stabilization efficiency of water-soluble As, Cd and Pb reached 99% within 7d, and the stabilization efficiencies of NaHCO3-extractable As, DTPA-extractable Cd and Pb reached 92.60%, 57.79% and 62.81%, respectively. The chemical speciation analysis revealed that soil As, Cd and Pb were transformed into more stable states with the reaction time. The proportion of residual fraction of As, Cd, and Pb increased from 58.01% to 93.82%, 25.69 to 47.86%, 5.58 to 48.54% after 56 d, respectively. Using ferrihydrite as a representative soil component, the beneficial interactions of phosphate and slow-release ferrous material in stabilizing Pb, Cd, and As were demonstrated. The slow-release ferrous and phosphate material reacted with As and Cd/Pb to form stable ferrous arsenic and Cd/Pb phosphate. Furthermore, the slow-release phosphate converted the adsorbed As into dissolved As, then the dissolved As reacted with released ferrous to form a more stable form. Concurrently, As, Cd and Pb were structurally incorporated into the crystalline iron oxides during the ferrous ions-catalyzed transformation of amorphous iron (hydrogen) oxides. The results demonstrates that the use of slow-release ferrous and phosphate materials can aid in the simultaneous stabilization of As, Cd, and Pb in soil.
Collapse
Affiliation(s)
- Zhi Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Kai Nie
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chukwuma Arinzechi
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jiaxin Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China.
| |
Collapse
|
14
|
Liu S, Cao X, Yang W, Liu R, Fang L, Ma R, Peng J, Zheng S, Ji F. Preparation of magnesium potassium phosphate cement from municipal solid waste incineration fly ash and lead slag co-blended: Ca-induced crystal reconstruction process and Pb-Cl synergistic solidification mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131690. [PMID: 37257382 DOI: 10.1016/j.jhazmat.2023.131690] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Higher chlorine (Cl) content than lead (Pb) content in municipal solid waste incineration fly ash (MSWIFA) impeded the practical application of Pb5(PO4)3Cl-derived magnesium potassium phosphate cement (MKPC) preparation strategy. Herein, Pb/Ca-rich lead slag (LS) was co-blended with MSWIFA to prepare MKPC for the synergistic treatment of both two solid wastes and the Pb-Cl solidification. The results showed that the resulting 15-15 (15 wt% MSWIFA and 15 wt% LS incorporation) sample achieved 25.44 MPa compressive strength, and Pb and Cl leaching toxicity was reduced by 99.18 % and 92.80 %, respectively. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses showed that Pb2+, Ca2+, phosphate and Cl- formed PbxCa5-x(PO4)3Cl in samples. The formation of PbxCa5-x(PO4)3Cl was also demonstrated by the high-angle annular dark field scanning transmission electron microscope (HAADF-STEM), while differences in the lattice characteristics of PbxCa5-x(PO4)3Cl and Pb5(PO4)3Cl were found. In-situ XRD indicated that Ca2+ accelerated the transformation of Pb2+ to Pb5(PO4)3Cl. After co-precipitating with Ca2+ to form PbxCa5-x(PO4)3Cl, Pb2+ continuously substituted Ca2+ to eventually transform to Pb5(PO4)3Cl. This work informs the synergistic treatment of MSWIFA and LS and offers new insights into the reaction mechanism between Pb2+, phosphate and Cl- under Ca2+ induction.
Collapse
Affiliation(s)
- Shiwei Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xing Cao
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Weichen Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Runjie Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lin Fang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Juan Peng
- Shenzhen Environmental Technology Group Co. LTD, Shenzhen 518010, PR China
| | - Shuaifei Zheng
- Shenzhen Environmental Technology Group Co. LTD, Shenzhen 518010, PR China
| | - Fei Ji
- Shenzhen Environmental Technology Group Co. LTD, Shenzhen 518010, PR China
| |
Collapse
|
15
|
Xuan L, Song L, Wang Z, Gao W, Shi M, Wu Y, Gu C. Remediation of copper and lead contaminated sediments using iron-based granule biochar: mechanisms and enzyme activity. ENVIRONMENTAL TECHNOLOGY 2023; 44:1890-1902. [PMID: 34882064 DOI: 10.1080/09593330.2021.2016990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/30/2021] [Indexed: 05/25/2023]
Abstract
In recent years, there has been a growing concern about heavy metal contamination in sediments. In this study, iron-based granular biochar (MGB) is prepared to remediate Cu and Pb contaminated sediments. Characterizations via scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) show that the rough surface of MGB with abundant pore structures and a large number of oxygen-containing functional groups that facilitate stabilization of Cu and Pb in sediments. Potential mobility and bioavailability of Cu and Pb are investigated using BCR sequential extraction in the 35 day remediation experiment. The XPS results indicate that FeOOH and C-OH play a crucial part in stabilizing heavy metals. Large affinity of FeOOH for Pb allows it to occupy a proportion in F2 while C-OH is attractive to Cu. Changes of pH, organic matter (OM), and available phosphorus (AP) in sediments after adding MGB as well as the relationship between changes and the stable solidification of Cu and Pb are explored. The stable solidification of heavy metals effectively reduces the available phosphorus in sediments. Magnetic and particle properties of the material are used to reduce the impact of MGB aging on sediment environment and separate it from the remediated sediment. Finally, 3% of MGB significantly enhanced the sediment catalase activity in the biological enzyme activity experiment. All findings indicate that MGB is a green and environmentally friendly sediment remediation material with satisfactory potential in synergistically stabilizing heavy metals and phosphorus.Highlights The complexation of FeOOH with Pb on the surface of MGB fixes it to the reduced stateThe C-OH on the surface of MGB is more attractive to Cu than PbMGB effectively mitigates the release of bioavailable phosphorus from sediments to overlying water.
Collapse
Affiliation(s)
- Lili Xuan
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, People's Republic of China
| | - Lei Song
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, People's Republic of China
| | - Zehao Wang
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, People's Republic of China
| | - Wenjian Gao
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, People's Republic of China
| | - Maofeng Shi
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, People's Republic of China
| | - Yihong Wu
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, People's Republic of China
| | - Chuhan Gu
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, People's Republic of China
| |
Collapse
|
16
|
Jiang Z, Nie K, Yu L, Arinzechi C, Zhao F, Liao Q, Yang Z, Si M, Yang W. Synchronous stabilization of As, Cd, and Pb in soil by sustained-release of iron-phosphate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161369. [PMID: 36626993 DOI: 10.1016/j.scitotenv.2022.161369] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Anionic arsenic (As) exhibits geochemical behavior opposite to those of cationic cadmium (Cd), and lead (Pb), which makes the synchronous remediation of As, Cd, and Pb challenging. The synchronous stabilization of As, Cd, and Pb to form Cd/Pb-phosphate and iron‑arsenic precipitates is a promising strategy. However, the effectiveness of soluble phosphate or iron-based materials is limited by the activation of Cd, Pb, or As, while low mobility hinders insoluble particles. In this study, we developed an amorphous structure that releases iron and phosphate at a sustained rate. Thus, the stabilization efficiencies of NaHCO3-extractable As, DTPA-extractable Cd and Pb reached 44.6 %, 40.8 %, and 48.1 %, respectively. The proportion of residual fraction of As, Cd, and Pb increased by 12.1 %, 14.5 %, and 36.4 %, respectively, after 28 d. Ferrihydrite was chosen as the soil component to monitor the chemical behavior and speciation transformation of As, Cd, and Pb in the reaction. During the process, the released iron directly reacted with dissolved As to form iron‑arsenic precipitation and phosphate directly reacted with Cd/Pb to form Cd/Pb-phosphate precipitation. Simultaneously, phosphate replaced the adsorbed As and transformed into a dissolved state, which could be re-precipitated with the released iron ions. Thus, this study provides a reliable strategy for the remediation of As, Cd, and Pb combined pollution in soil.
Collapse
Affiliation(s)
- Zhi Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Kai Nie
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Lin Yu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chukwuma Arinzechi
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China.
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China.
| |
Collapse
|
17
|
Yuan Q, Wang P, Wang X, Hu B, Wang C, Xing X. Nano-chlorapatite modification enhancing cadmium(II) adsorption capacity of crop residue biochars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161097. [PMID: 36587697 DOI: 10.1016/j.scitotenv.2022.161097] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) contamination in rivers or lakes has attracted worldwide concerns. Biochar pyrolyzed form crop residues (CR) could adsorb Cd(II) from aquatic environments, while the removal capacity of single CR biochar is relatively low. Nano-chlorapatite (nClAP) modification can enhance metal scavenging ability, but little is known about the behaviors and mechanisms of Cd(II) adsorption by nClAP-modified CR biochars. In this study, the influences of feedstock type, pyrolysis temperature, nClAP modification and aquatic environments on Cd(II) adsorption of biochars derived from rice (RB) and wheat (WB) husks were investigated comprehensively. Results showed that the pristine RB and WB showed low and similar Cd(II) adsorption capacities, while the rise of pyrolysis temperatures from 300 to 600 °C significantly improved the adsorption capacities. The Cd(II) adsorption of both RB and WB was regarded as monolayer chemical processes controlled by chemical precipitation, surface complexation and cation exchange mechanisms. Moreover, the nClAP modification notably enhanced Cd(II) adsorption capacities from 13.2 to 39.9 mg·g-1 of pristine biochars to 25.2-60.7 mg·g-1 of modified biochars attributed to the improved contribution of Cd(II)-phosphate precipitation. Among all biochars, the nClAP-modified RB and WB pyrolyzed at 500 °C had the highest Cd(II) adsorption capacities with 60.7 and 48.3 mg·g-1, respectively. These biochars could maintain good adsorption performances under the neutral-alkaline (pH 6-8), low ionic strength, high dissolved organic matter and all oxidation-reduction potential conditions. In conclusion, this study reveals the importance of nClAP modification to optimize Cd(II) adsorption of CR biochars, which provides a promising future for its practical application in aquatic Cd(II) scavenging.
Collapse
Affiliation(s)
- Qiusheng Yuan
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China.
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Xiaolei Xing
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| |
Collapse
|
18
|
Deng R, Zhan X. High performance self-assembled nano-chlorapatite in the presence of lactonic sophorolipid for the immobilization of cadmium in polluted sediment. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130484. [PMID: 36455326 DOI: 10.1016/j.jhazmat.2022.130484] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
A novel lactonic sophorolipid (LS) self-assembled nano-chlorapatite (LS-nClAP) was prepared for the immobilization of severe cadmium (Cd) in sediment. The experimental results indicated that the introduction of LS not only improved the dispersed performance of chlorapatite, but also brought massive hydroxyl and carboxyl groups, which significantly improved the immobilization efficiency of Cd and reduced its eco-toxicity in sediment. LS can significantly increase the effective utilization rate of phosphorus in chlorapatite, and reduce the content of available phosphorus (AP) by half after remediation compared with ClAP. Additionally, the participation of LS possessed a significant impact on the enzyme activities in the sediment, especially for urease, which was closely related to the effective stability of Cd and the introduction of LS. All experimental results of this study provided new insights into the possible effects of Cd immobilization by chlorapatite in contaminated sediments, demonstrating great application potential for sediment remediation in the future.
Collapse
Affiliation(s)
- Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xinyuan Zhan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
19
|
Tang H, Chen M, Wu P, Faheem M, Feng Q, Lee X, Wang S, Wang B. Engineered biochar effects on soil physicochemical properties and biota communities: A critical review. CHEMOSPHERE 2023; 311:137025. [PMID: 36374784 DOI: 10.1016/j.chemosphere.2022.137025] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/16/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Biochar can be effectively used in soil amendment, environmental remediation as well as carbon sequestration. However, some inherent characteristics of pristine biochars (PBCs) may limit their environmental applications. To improve the physicochemical properties of PBCs and their effects on soil amendment and pollution remediation, appropriate modification methods are needed. Engineered biochars (EBCs) inevitably have a series of effects on soil physicochemical properties and soil biota after being applied to the soil. Currently, most studies focus on the effects of PBCs on soil physicochemical properties and their amendment and remediation effects, while relatively limited studies are available on the impacts of EBCs on soil properties and biota communities. Due to the differences of biochars modified by various methods on soil physicochemical properties and biota communities, the impact mechanisms are different. For a better understanding of the recent advances in the effects of EBCs on soil physicochemical properties and biota communities, a systematic review is highly needed. In this review, the development of EBCs is firstly introduced, and the effects of EBCs on soil physicochemical properties and biota communities are then systematically explored. Finally, the suggestions and perspectives for future research on EBCs are put forward.
Collapse
Affiliation(s)
- Hui Tang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Muhammad Faheem
- Department of Civil Infrastructure and Environment Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
20
|
Chris DI, Anyanwu BO. Pollution and Potential Ecological Risk Evaluation Associated with Toxic Metals in an Impacted Mangrove Swamp in Niger Delta, Nigeria. TOXICS 2022; 11:6. [PMID: 36668732 PMCID: PMC9866853 DOI: 10.3390/toxics11010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Anthropogenic activities along coastal areas have contributed to the unwarranted discharge of toxic metals into mangrove swamps, posing risks to marine deposits and ecological environments. In this research, we studied the Isaka−Bundu tidal swamp area in the Niger Delta, which is an impacted mangrove creek located along the Bonny river, exposed to pollution pressures. The ecological risks (Er) of toxic metals in the sediments and water of the Isaka−Bundu tidal mangrove swamp followed a decreasing order (Cu > Zn > Cd > Cu > Pb > As), according to our results, while the potential ecological risk index (PERI) of the toxic metals in the sediments and water of the Isaka−Bundu tidal mangrove swamp can be said to have a very high ecological risk (PERI ≥ 600). The sediment pollution load index (PLI) was higher than 1 in all three analyzed stations, suggesting extremely toxic pollution. The enrichment evaluation shows that the studied stations have a moderate potential ecological risk of Cd, with the enrichment value for Pb showing low potential ecological risk. Our study shows that the Isaka−Bundu tidal mangrove swamp has a significant level of toxic metal pollution, which is evidence of the illegal activities performed in the Niger Delta.
Collapse
Affiliation(s)
- Davies Ibienebo Chris
- Department of Fisheries, Faculty of Agriculture, University of Port Harcourt, Port Harcourt P.M.B. 5323, Rivers State, Nigeria
| | - Brilliance Onyinyechi Anyanwu
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
21
|
He N, Hu L, Jiang C, Li M. Remediation of chromium, zinc, arsenic, lead and antimony contaminated acidic mine soil based on Phanerochaete chrysosporium induced phosphate precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157995. [PMID: 35964759 DOI: 10.1016/j.scitotenv.2022.157995] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Microbial induced phosphate precipitation (MIPP) is an advanced bioremediation technology to reduce the mobility and bioavailability of heavy metals (HMs), but the high level of HMs would inhibit the growth of phosphate solubilizing microbes. This study proposed a new combination system for the remediation of multiple HMs contaminated acidic mine soil, which included hydroxyapatite (HAP) and Phanerochaete chrysosporium (P. chrysosporium, PC) that had high phosphate solubilizing ability and HMs tolerance. Experimental data suggested that in HAP/PC treatment after 35 d of remediation, labile Cr, Zn and As could be transformed into the stable fraction with the maximum immobilization efficiencies increased by 53.01 %, 22.43 %, and 35.65 %, respectively. The secretion of organic acids by P. chrysosporium was proved to promote the dissolution of HAP. Besides, the pH value, available phosphorus (AP) and organic matter (OM) increased in treated soil than in original soil, which also indicated the related dissolution-precipitation mechanism of HMs immobilization. Additionally, characterization results revealed that adsorption and ion exchange also played an important role in the remediation process. The overall results suggested that applying P. chrysosporium coupled with HAP could be considered as an efficient strategy for the remediation of multiple HMs contaminated mine soil and laid a foundation for the future exploration of soil microenvironment response during the remediation process.
Collapse
Affiliation(s)
- Ni He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Chunyangzi Jiang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Mengke Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
22
|
Wang H, Chen Q, Liu R, Zhang Y, Zhang Y. Synthesis and application of starch-stablized Fe-Mn/biochar composites for the removal of lead from water and soil. CHEMOSPHERE 2022; 305:135494. [PMID: 35764108 DOI: 10.1016/j.chemosphere.2022.135494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Starch-stablized and Fe/Mn bimetals modified biochar derived from corn straw (SFM@CBC and SFM@CBC-350) were firstly prepared, characterized (FTIR, XRD, SEM, EDS, BET and XPS), and applied in Pb removal from water and soil. SFM@CBC and SFM@CBC-350 displayed highly effective adsorption performance of Pb2+ from wastewater with the maximum adsorption capacity of 170.91 mg g-1 and 190.17 mg g-1, respectively, which were much greater than that of FM@CBC (149.25 mg g-1) and CBC (101.10 mg g-1). Studies of adsorption kinetics, isotherms and thermodynamics indicated that the absorption of Pb2+ by SFM@CBC and SFM@CBC-350 was spontaneous and endothermic reaction, and it was controlled by monolayer chemisorption. The mechanism studies indicated that Pb2+ removal involved with multiple mechanism, including complexation (dominant process confirmed by XPS analysis), physical adsorption, electrostatic attraction, and cation exchange. The reusability test demonstrated that SFM@CBC and SFM@CBC-350 had very good stability and reusability. In addition, in order to further explore Pb removal performance of the modified biochar, SFM@CBC-350 was used in soil-ryegrass pot systems. Compared with the controls, the addition of SFM@CBC-350 reduced Pb content in soil and ryegrass, increased the biomass and total chlorophyll content, reduced the activity of antioxidant enzymes (CAT, SOD, MDA and POD) and ROS fluorescence intensity of ryegrass, thus alleviating Pb stress of ryegrass. Besides, the addition of SFM@CBC-350 could increase the richness and diversity of soil microorganisms, which was beneficial to the growth of ryegrass. Hence, SFM@CBC-350 has the potential of being used as a green, efficient and promising adsorbent in Pb removal from wastewater and soil.
Collapse
Affiliation(s)
- Hai Wang
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China; Jianhu Provincial Wetland Park Management Committee, Shaoxing, 312000, Zhejiang, PR China.
| | - Qian Chen
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China
| | - Renrong Liu
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China
| | - Yichan Zhang
- Department of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, PR China
| | - Yaohong Zhang
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China.
| |
Collapse
|
23
|
Liu C, Lin J, Zhang Z, Zhan Y, Hu D. Effect of application mode (capping and amendment) on the control of cadmium release from sediment by apatite/calcite mixture and its phosphorus release risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59846-59861. [PMID: 35396681 DOI: 10.1007/s11356-022-20113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/02/2022] [Indexed: 05/09/2023]
Abstract
In this research, the influence of application mode (capping and amendment) on the control of cadmium (Cd) liberation from sediment by apatite/calcite mixture and its phosphorus release risk were investigated. The results showed that calcite addition had a limited effect on the speciation of Cd in sediment, but apatite addition had a significant impact on the fractionation of Cd in sediment. Apatite amendment could effectively immobilize the most readily mobilized Cd by transferring the acid-soluble fraction to the reducible and residual fractions. Apatite addition also could effectively reduce the concentration of toxicity characteristic leaching procedure (TCLP)-leachable Cd in sediment, and apatite had a much higher reduction efficiency of TCLP-leachable Cd than calcite. Apatite/calcite mixture capping could reduce the risk of Cd liberation from sediment into the overlying water, and the controlling efficiency of apatite/calcite mixture capping was higher than that of apatite/calcite mixture amendment. The effect of apatite/calcite mixture addition on the concentration of reactive soluble phosphorus (SRP) in the overlying water was limited. The introduction of calcite into the apatite capping layer could lower the risk of phosphorus release from apatite to the overlying water as compared to single apatite capping. However, the apatite/calcite mixture capping layer still had a relatively high risk of phosphorus liberation into the overlying water. Results of this work suggest that apatite/calcite mixture has a high potential to be used as a capping material to control Cd release from sediment from the perspective of controlling efficiency and application convenience.
Collapse
Affiliation(s)
- Chi Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, People's Republic of China
| | - Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, People's Republic of China.
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, People's Republic of China
| | - Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, People's Republic of China
| | - Dazhu Hu
- Department of Civil Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| |
Collapse
|
24
|
Li R, Huang D, Chen S, Lei L, Chen Y, Tao J, Zhou W, Wang G. From residue to resource: new insights into the synthesis of functionalized lignin micro/nanospheres by self-assembly technology for waste resource utilization. NANOSCALE 2022; 14:10299-10320. [PMID: 35834293 DOI: 10.1039/d2nr01350a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Among the most abundant biopolymers in the biosphere, lignin is a renewable aromatic compound that represents an untapped opportunity to create new biological products. However, the complex interlacing structures of cellulose, hemicellulose and lignin, as well as the unique properties of lignin, limit the utilization of value-added lignin. Lignin-based nanomaterials open the door for lignin applications in environmental pollutant remediation, biofuel production, biomedicine, and other fields. Herein, we present various factors influencing the formation of micro-nanospheres by self-assembly techniques through a review of previous literature, and emphasize the simple and green synthesis of lignin micro/nanospheres (LMNPs) under non-modified conditions. More importantly, we discuss the mechanism of the formation of nanospheres. Considering the heterogeneity of lignin and the polarity of different solvents, we propose that self-assembly techniques should focus more on the influence brought by lignin itself or the solvent, so that the external conditions can be controlled to prepare LMNPs, which can be used in specific fields. A brief overview of the contribution of lignin-based nanomaterials in various fields is also presented. This review could provide insight for the development of lignin-based nanomaterials.
Collapse
Affiliation(s)
- Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lei Lei
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yashi Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiaxi Tao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
25
|
Luo Y, Li Z, Xu H, Xu X, Qiu H, Cao X, Zhao L. Development of phosphorus composite biochar for simultaneous enhanced carbon sink and heavy metal immobilization in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154845. [PMID: 35358526 DOI: 10.1016/j.scitotenv.2022.154845] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
As a porous and carbon material, biochar is focused on respectively in sequestrating carbon and stabilizing metals in soil, while few studies attempted to design biochar for simultaneously achieving these two targets. This study proposed to produce phosphorus-composite biochar for synchronously enhancing carbon sequestration and heavy metals immobilization. Two phosphorus materials from tailings, Ca(H2PO4)2 and Ca5(PO4)3(OH), were selected as modifier to load into biomass prior to pyrolysis. Results showed that incorporating P not only increased pyrolytic C retention in biochar by 36.1-50.1%, but also obtained biochar with higher stability by chemically formation of COP, C-PO3 and C2-PO2. After 90-day incubation with soil, more C was sequestrated in the P-biochar amended soil (59.6-67.0%) than those pristine biochar (43.2-46.6%). Highly soluble Ca(H2PO4)2 was more efficient than Ca5(PO4)3(OH) in this regard. Meanwhile, these P-composite biochar exhibited more Pb/Cd immobilization (31.3-92.3%) compared with the pristine biochar (9.5-47.2%), which was mainly due to the formation of stable precipitates Pb5(PO4)3Cl and Cd3(PO4)2, especially for Ca5(PO4)3(OH) modification. Additionally, P-composite biochar "intelligently" altered soil microbial community, i.e., they suppressed Actinobacteria proliferation, which is correlated to carbon degradation, while promoted Proteobacteria growth, facilitating phosphate dissolution for ready reaction with heavy metals to form precipitate, benefiting the Pb and Cd immobilization. A dual functions biochar was engineered via simply loading phosphorous prior to pyrolysis and simultaneously enhanced carbon sequestration and heavy metal immobilization.
Collapse
Affiliation(s)
- Ying Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhaopeng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China.
| |
Collapse
|
26
|
Sharma P, Dutta D, Udayan A, Nadda AK, Lam SS, Kumar S. Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119248. [PMID: 35395353 DOI: 10.1016/j.envpol.2022.119248] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The presence of heavy metals in municipal solid waste (MSW) is considered as prevalent global pollutants that cause serious risks to the environment and living organisms. Due to industrial and anthropogenic activities, the accumulation of heavy metals in the environmental matrices is increasing alarmingly. MSW causes several adverse environmental impacts, including greenhouse gas (GHG) emissions, river plastic accumulation, and other environmental pollution. Indigenous microorganisms (Pseudomonas, Flavobacterium, Bacillus, Nitrosomonas, etc.) with the help of new pathways and metabolic channels can offer the potential approaches for the treatment of pollutants. Microorganisms, that exhibit the ability of bioaccumulation and sequestration of metal ions in their intracellular spaces, can be utilized further for the cellular processes like enzyme signaling, catalysis, stabilizing charges on biomolecules, etc. Microbiological techniques for the treatment and remediation of heavy metals provide a new prospects for MSW management. This review provides the key insights on profiling of heavy metals in MSW, tolerance of microorganisms, and application of indigenous microorganisms in bioremediation. The literatures revealed that indigenous microbes can be exploited as potential agents for bioremediation.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Deblina Dutta
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Aswathy Udayan
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
| |
Collapse
|
27
|
Gu S, Lian F, Han Y, Wang Z, Xing B. Effect of root exudates on the release, surface property, colloidal stability, and phytotoxicity of dissolved black carbon. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113687. [PMID: 35643031 DOI: 10.1016/j.ecoenv.2022.113687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/26/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
In this study, the release of dissolved black carbon (DBC) from bulk-BC, its surface properties, colloidal stability, and oxidative stress to rice seedlings in the presence and absence of rice root exudates were compared. The bulk-BCs were prepared at 550 °C and derived from wood chips and pig manure, respectively. The release of DBC from bulk-BC was significantly enhanced (20.19-23.63%) by the introduction of root exudates, where low molecular weight organic acids played a dominating role in the dissociation of DBC from carbon skeleton. The surface properties of DBC were greatly modified by root exudates including decreases in the surface area (18.13%) and mineral contents (43.90-69.57%). The O-containing groups and graphitization were also enhanced by 11.46% and 18.65%, respectively. Meanwhile, the presence of root exudates not only reduced the colloidal stability of DBC but also lowered the intensity of free radicals (19.44-22.22%) in DBC. Consequently, the oxidative stress of DBC to rice seedlings was significantly (p < 0.05) alleviated, evidenced by reduced antioxidative enzyme activities (5.67-29.25%) and soluble protein content (15.75-46.79%) in rice plants. These results indicate that the interaction between DBC and root exudates could remarkably modify the surface properties and reactivity of DBC, which has profound implications for understanding the behavior and functions of DBC in the environment.
Collapse
Affiliation(s)
- Shiguo Gu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Fei Lian
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yaru Han
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
28
|
Li K, Zhang D, Niu X, Guo H, Yu Y, Tang Z, Lin Z, Fu M. Insights into CO 2 adsorption on KOH-activated biochars derived from the mixed sewage sludge and pine sawdust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154133. [PMID: 35219664 DOI: 10.1016/j.scitotenv.2022.154133] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/06/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The environment issues associated with global warming and climate change caused by continuous increase in greenhouse gas emissions have attracted worldwide concerns. As renewable resources with good adsorption property, biochar is an efficient and environmental friendly adsorbsent for CO2 capture. In this study, the CO2 adsorption behavior of biochars derived from feedstock mixtures of 70% pine sawdust and 30% sewage sludge by KOH modification was investigated. The textual properties and functional groups of the pristine biochars have been significantly enhanced after KOH activation. With highly developed microporosity, the specific surface area (SSA) of the KOH-modified biochars increased by 3.9-14.5 times. Furthermore, higher CO2 adsorption capacities of 136.7-182.0 mg/g were observed for the modified biochars, compared to pristine ones (35.5-42.9 mg/g). The development of micropores by KOH activation significantly increased the CO2 adsorption capacity. Meanwhile, the presence of hetero atoms (O and K) also positively influenced CO2 adsorption capacity of biochar. Noticeably, both physical and chemical adsorption played a crucial role in CO2 capture, which was verified by different characterization methods including high resolution scanning electron microscope, X-ray photoelectron spectroscopy and in situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The Findings of this study demonstrate the -significance of chemical sorption by identifying the transformation of CO2 by biochar composites and in situ characterization of weakly adsorbed and newly formed mineral species during the CO2 sorption process. Moreover, BC700K showed 97% recyclability during 10 consecutive adsorption-desorption cycles at 25 °C, 1 bar. The results obtained in the present study may inspire new research interest and provide a comprehensive insight into the research subject to biochars derived from feedstock mixtures for CO2 capture.
Collapse
Affiliation(s)
- Kai Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Huafang Guo
- The Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| | - Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Zhihua Tang
- The Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
29
|
Jiang S, Chen T, Zhang J, Duan LX, Yan B. Roasted modified lead-zinc tailings using alkali as activator and its mitigation of Cd contaminated: Characteristics and mechanisms. CHEMOSPHERE 2022; 297:134029. [PMID: 35231475 DOI: 10.1016/j.chemosphere.2022.134029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
To comprehensively reuse lead-zinc tailings, leaching residue (LR) of solid by-products was produced after the recovery of valuable metals. This study provided a "waste-ecology" strategy by a simple, inexpensive method of roasting prepared highly active silicon modified tailing (HAST) to eliminate the environment risk of LR, and investigates performance and mechanism of HAST as sorbents and passivators. The results indicated that HAST possesses high pH, abundant mineral content, microporous structure and high stability. The adsorption kinetic experiment revealed that chemisorption is the main reaction and the Qm of Cd via Langmuir model is 72.75 mg/g. As further demonstrated by X-ray diffraction (XRD), energy dispersive X-ray (EDX), Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis, the Cd was adsorbed onto the HAST surface successfully, with the main interaction mechanisms involving ion exchange, complexation, precipitation and electrostatic interaction. Besides, the soil incubation experiment results showed that HAST had positive effects on exchange fractions (Cd) converting to stable fractions in soil, which modifies Cd migration and transformation, HAST added into soil decreased the DTPA-Cd by 4.7%-8.1%, 5.9-9.8% and 9.1%-13.4%, respectively, in different stages, as compared with the control. Therefore, this study provides a novel strategy to address LR recycling, and the relevant, wastewater and soil treatment, which has high practicability for industrial applications.
Collapse
Affiliation(s)
- Shaojun Jiang
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Tao Chen
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Junhao Zhang
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Lian Xin Duan
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Bo Yan
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
30
|
Zhu X, Li X, Shen B, Zhang Z, Wang J, Shang X. Bioremediation of lead-contaminated soil by inorganic phosphate-solubilizing bacteria immobilized on biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113524. [PMID: 35483141 DOI: 10.1016/j.ecoenv.2022.113524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
In this study, a bio-composite (IBWS700) was prepared using inorganic phosphate-solubilizing bacteria (iPSB), which were immobilized on biochar produced from wheat straw (WS700). Further, the bio-remediation effects of the composite for lead (Pb) in soil were also investigated. The presence of different Pb species, physicochemical properties, enzyme activities, and immobilization mechanisms of Pb in soil were also evaluated. Compared to free iPSB and biochar, IBWS700 significantly decreased the lead bio-availability whereas increased the residual fraction, also affected available phosphorus (AP), cation exchange capacity (CEC), organic matter (OM) and activity of urease, alkaline phosphatase, sucrase and catalase. Interestingly, the changes in the enzyme activity, AP and OM performed twice increases with increasing Pb concentration, which was rarely reported. The reason might be attributed to the reconstruction of bacteria communities with high Pb load. Further, the immobilization mechanisms mainly included bio-adsorption and bio-precipitation. SEM revealed that the surface of IBWS700 covered with a large number of heterogeneous colonization of iPSB and white stack after Pb2+ adsorption. FTIR spectra showed that O-H, C-O-P, CO, and C =C could play important roles in bio-adsorption. Moreover, XRD analysis indicated that bio-precipitates were mainly Pb5(PO4)3Cl. In general, the use of IBWS700 could effectively immobilize Pb2+ and improve soil quality.
Collapse
Affiliation(s)
- Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Xi'an 710127, China.
| | - Xue Li
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Baoshou Shen
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Ziye Zhang
- Xi'an Jinborui Ecological Tech. Co., Ltd, China
| | - Junqiang Wang
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Xi'an Jinborui Ecological Tech. Co., Ltd, China
| | - Xiaoqing Shang
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Xi'an Jinborui Ecological Tech. Co., Ltd, China
| |
Collapse
|
31
|
Wang Z, Song S, Wang H, Yang W, Han J, Chen H. Feasibility of Remediation of Heavy-Metal-Contaminated Marine Dredged Sediments by Active Capping with Enteromorpha Biochar. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19094944. [PMID: 35564340 PMCID: PMC9103734 DOI: 10.3390/ijerph19094944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 11/25/2022]
Abstract
Enteromorpha biochar (BC) has been proposed as a potential absorbent in the marine environments. This study attempts to understand the process of active capping using Enteromorpha BC to prevent the release of heavy metals (Pb and Cd) from contaminated marine dredged sediments. The capping efficiency was assessed with a series of lab-scale column experiments. Results showed that the Enteromorpha BC exhibits rough pore structure and higher specific surface area, as well as more surface organic functional groups, which is favorable for its adsorption capacity and selectivity towards heavy metals. The capping thickness of 2 cm for Enteromorpha BC was sufficient to prevent the release of heavy metals from sediments, with the capping efficiency of 47% for Pb and 62% for Cd. Kinetic studies showed that heavy metals released into the overlying water can be described by a three-parameter sigmoidal kinetic model. Importantly, the fractions of heavy metals in the dredged sediments below the capping layer were analyzed to reveal the capping remediation mechanism. The outcomes of the present study indicate that capping with Enteromorpha BC is a promising method to regulate the water environment by preventing the release of heavy metals from the contaminated dredged sediments.
Collapse
Affiliation(s)
- Zhaowei Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (Z.W.); (H.W.)
- Marine Engineering Environmental Supervision Technology Room, National Marine Environmental Monitoring Center, Dalian 116023, China; (S.S.); (J.H.); (H.C.)
| | - Shuang Song
- Marine Engineering Environmental Supervision Technology Room, National Marine Environmental Monitoring Center, Dalian 116023, China; (S.S.); (J.H.); (H.C.)
| | - Huan Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (Z.W.); (H.W.)
| | - Wenchao Yang
- Marine Engineering Environmental Supervision Technology Room, National Marine Environmental Monitoring Center, Dalian 116023, China; (S.S.); (J.H.); (H.C.)
- Correspondence: ; Tel.: +86-0411-84783171
| | - Jianbo Han
- Marine Engineering Environmental Supervision Technology Room, National Marine Environmental Monitoring Center, Dalian 116023, China; (S.S.); (J.H.); (H.C.)
| | - Hong Chen
- Marine Engineering Environmental Supervision Technology Room, National Marine Environmental Monitoring Center, Dalian 116023, China; (S.S.); (J.H.); (H.C.)
| |
Collapse
|
32
|
He N, Hu L, He Z, Li M, Huang Y. Mineralization of lead by Phanerochaete chrysosporium microcapsules loaded with hydroxyapatite. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126902. [PMID: 34418828 DOI: 10.1016/j.jhazmat.2021.126902] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
In this study, microcapsules assembled with Phanerochaete chrysosporium (P. chrysosporium, PC) and hydroxyapatite (HAP) were successfully prepared and applied for Pb(II) immobilization in aqueous solution. The effect of different conditions on Pb(II) removal was investigated, such as pH, temperature, dosages of microcapsules and HAP, and initial concentrations of Pb(II). The removal efficiency of Pb(II) was in order of HAP+PC > HAP > PC > CK (control check) at the Pb(II) initial concentration of 100 mg L-1, which were 87.7%, 82.82%, 63.67% and 2.06%, respectively. Under HAP+PC treatment, P. chrysosporium secreted plentiful organic acids like formic, oxalic and citric acids, when the addition dose of HAP increased from 5 g L-1 to 15 g L-1, the production of formic acid increased remarkably from 32.37 g L-1 to 66.02 g L-1. After reaction, P. chrysosporium kept a good biological activity evidenced by the live/dead stain test. The characterization results indicated that the insoluble apatite could transform to soluble phosphate due to the secreted organic acids, then reacted with Pb(II) to form pyromorphite [Pb10(PO4)6Cl2] and lead phosphate hydroxide [Pb10(PO4)6(OH)2]. The overall results clearly demonstrated that combining P. chrysosporium with HAP could be used as a promising technology to accelerate lead immobilization.
Collapse
Affiliation(s)
- Ni He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Mengke Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yongji Huang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
33
|
Sustainable Amelioration of Heavy Metals in Soil Ecosystem: Existing Developments to Emerging Trends. MINERALS 2022. [DOI: 10.3390/min12010085] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The consequences of heavy metal contamination are progressively degrading soil quality in this modern period of industry. Due to this reason, improvement of the soil quality is necessary. Remediation is a method of removing pollutants from the root zone of plants in order to minimize stress and increase yield of plants grown in it. The use of plants to remove toxins from the soil, such as heavy metals, trace elements, organic chemicals, and radioactive substances, is referred to as bioremediation. Biochar and fly ash techniques are also studied for effectiveness in improving the quality of contaminated soil. This review compiles amelioration technologies and how they are used in the field. It also explains how nanoparticles are becoming a popular method of desalination, as well as how they can be employed in heavy metal phytoremediation.
Collapse
|
34
|
Jiang S, Liu Y, Shu Y. Biochar and exogenous calcium assisted alleviation of Pb phytotoxicity in water spinach (Ipomoea aquatica Forsk) cultivated in Pb-spiked soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:207-219. [PMID: 34286390 DOI: 10.1007/s10653-021-00977-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
The consumption of vegetables grown in Pb-polluted soils causes serious threats to human health around the globe. In this study, we evaluated the Pb toxicity alleviation in water spinach grown of pot experiments in Pb-spiked soil treated with biochar and exogenous calcium. The results showed that both biochar and exogenous calcium alleviated Pb stress in water spinach, which was mainly manifested on its improved soil health and increased growth and decreased Pb uptake. Incorporation of 3% biochar significantly reduced CaCl2 extracted Pb by 53.6% and decreased Pb accumulation in roots (67.1%) and shoots (80.8%). Our also findings indicated that Pb detoxification mechanism of biochar and exogenous calcium was totally different, while they can induce a synergistic impact on water spinach Pb stress alleviation. The combination of biochar and exogenous calcium in Pb-contaminated soil remediation may complement each other and reduce Pb entry into the human body through vegetables.
Collapse
Affiliation(s)
- Shaojun Jiang
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yuehong Liu
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yuehong Shu
- School of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
35
|
Gamage A, Basnayake B, De Costa J, Merah O. Effects of Rice Husk Biochar Coated Urea and Anaerobically Digested Rice Straw Compost on the Soil Fertility, and Cyclic Effect of Phosphorus. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010075. [PMID: 35009079 PMCID: PMC8747290 DOI: 10.3390/plants11010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 05/19/2023]
Abstract
Fertilizer application in rice farming is an essential requirement. Most of the high-yielding varieties which are extensively grown throughout the country require recommended levels of fertilizers to obtain their potential yields. However, effective, and efficient ways of fertilizer application are of utmost importance. Coated fertilizers are used to reduce leaching nutrients and improve the efficiency of fertilizer. However, conventional coated fertilizers such as Sulphur coated urea and urea super granules are not popular among rice farmers in Sri Lanka owing to the high cost. Mixing urea-coated rice husk biochar causes a slow release of nitrogen fertilizer. This coated fertilizer and rice straw compost reduction the cost of importations of nitrogen-based fertilizers per unit area of cultivation. The study aimed to evaluate the effects of rice husk biochar coated urea and anaerobically digested rice straw compost on the soil fertility, and the cyclic effect of phosphorus. Concerning the pot experiment, rice grain yield was significantly higher in Rice husk biochar coated urea, triple super phosphate (TSP), and muriate of potash (MOP) with anaerobically digested rice straw compost. The lowest yield was observed in the control. The release of phosphate shows a cycle effect which is an important finding. Rice husk biochar coated urea can potentially be used as a slow-releasing nitrogen fertilizer. In addition, the urea coated with biochar is less costly and contributes to mitigating pollution of water bodies by inorganic fertilizers (NPK).
Collapse
Affiliation(s)
- Ashoka Gamage
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Correspondence: (A.G.); (O.M.); Tel.: +94-714-430-7141 (A.G.); +33-(0)5-34-32-35-23 (O.M.)
| | - Ben Basnayake
- Department of Agricultural Engineering, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Janendra De Costa
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, 31030 Toulouse, France
- Département Génie Biologique, Université Paul Sabatier, IUTA, 32000 Auch, France
- Correspondence: (A.G.); (O.M.); Tel.: +94-714-430-7141 (A.G.); +33-(0)5-34-32-35-23 (O.M.)
| |
Collapse
|
36
|
Debnath A, Singh PK, Chandra Sharma Y. Metallic contamination of global river sediments and latest developments for their remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113378. [PMID: 34435569 DOI: 10.1016/j.jenvman.2021.113378] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
This review article represents the comparative study of heavy metal concentration in water and sediments of 43 important global rivers. The review is a solitary effort in the area of heavy metal contamination of river-sediments during last ten years. The interpretation of heavy metal contamination in sediments has been verified with different indices, factors, codes and reference guidelines, which is based on geochemical data linked to background value of metals. It is observed that health hazards arise due to dynamics of movement of metals between water and sediments, which is primarily influenced by several factors such as physical, chemical, biological, hydrological and environmental. Also, the reason behind accumulation and assimilation of heavy metals on river water system is explained with appropriate mechanisms. Several factors e.g. pH, ORP, organic matter etc. are mainly involved in the distribution, accumulation and assimilation of metals in the sediment phase to water phase. Remediation technologies such as in-situ and ex-situ have been discussed for the removal of heavy metals from contaminated sediments. We have also compared the performance efficiencies of the technologies adopted by different researchers during the period 2003 to 2019 for the removal of metal bound sediments. Many researchers have preferred in-situ over ex-situ remediation due to low cost and time saving remediation effects. In this work we have also incorporated the safety measures and strategies which can prevent the metal accumulation in sediments of river system.
Collapse
Affiliation(s)
- Abhijit Debnath
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Prabhat Kumar Singh
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | | |
Collapse
|
37
|
Ouyang X, Ma J, Li P, Chen Y, Weng L, Li Y. Comparison of the effects of large-grained and nano-sized biochar, ferrihydrite, and complexes thereof on Cd and As in a contaminated soil-plant system. CHEMOSPHERE 2021; 280:130731. [PMID: 33971411 DOI: 10.1016/j.chemosphere.2021.130731] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Cd and As are difficult to co-remediate in co-contaminated soils. In this study, remediation materials comprising large-grained and nano-sized biochar (BC), ferrihydrite (FH), and complexes thereof were added to Cd- and As-contaminated soil. The uptake of Cd and As by pak choi (Brassica chinensis L.) was then evaluated using a pot experiment and the Cd and As concentrations of the soil pore water and leaching water were measured. The Cd and As concentrations of the pore and leaching water were slightly increased with the addition of BC, and decreased with addition of FH and the biochar-ferrihydrite complex (BC-FH). However, nano-sized BC (BCN), FH (FHN), and BC-FH (BC-FHN) had little influence on the decreases in Cd and As of the two monitored water types. Large-grained remediation materials, rather than nanomaterials, decreased the Cd and As concentrations of the two monitored water types. Nonetheless, nanomaterial treatments more effectively decreased the Cd and As concentrations in plants by an average of >10% relative to the large-grained treatments. The DLVO theory analysis suggested that BCN, FHN, and BC-FHN, immobilized in the topsoil, adsorbed heavy metals in the rhizosphere soil. The remainder of the nano-sized materials was dispersed in the rhizosphere soil pores, shielding the uptake of Cd and As by the roots. Although the doses of nanomaterials used in this study were less than one-fortieth of those of the large-grained materials, changes in the plant rhizosphere microenvironment caused by the nanomaterials decreased the risk of toxicity transfer from the soil to the plants.
Collapse
Affiliation(s)
- Xiaoxue Ouyang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jie Ma
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Pan Li
- School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yali Chen
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Department of Soil Quality, Wageningen University, Wageningen, the Netherlands.
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; College of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
38
|
Rizwan M, Ali S, Rehman MZU, Riaz M, Adrees M, Hussain A, Zahir ZA, Rinklebe J. Effects of nanoparticles on trace element uptake and toxicity in plants: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112437. [PMID: 34153540 DOI: 10.1016/j.ecoenv.2021.112437] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 05/04/2023]
Abstract
Agricultural soils are receiving higher inputs of trace elements (TEs) from anthropogenic activities. Application of nanoparticles (NPs) in agriculture as nano-pesticides and nano-fertilizers has gained rapid momentum worldwide. The NPs-based fertilizers can facilitate controlled-release of nutrients which may be absorbed by plants more efficiently than conventional fertilizers. Due to their large surface area with high sorption capacity, NPs can be used to reduce excess TEs uptake by plants. The present review summarizes the effects of NPs on plant growth, photosynthesis, mineral nutrients uptake and TEs concentrations. It also highlights the possible mechanisms underlying NPs-mediated reduction of TEs toxicity at the soil and plant interphase. Nanoparticles are effective in immobilization of TEs in soil through alteration of their speciation and improving soil physical, chemical, and biological properties. At the plant level, NPs reduce TEs translocation from roots to shoots by promoting structural alterations, modifying gene expression, and improving antioxidant defense systems. However, the mechanisms underlying NPs-mediated TEs uptake and toxicity reduction vary with NPs type, mode of application, time of NPs exposure, and plant conditions (e.g., species, cultivars, and growth rate). The review emphasizes that NPs may provide new perspectives to resolve the problem of TEs toxicity in crop plants which may also reduce the food security risks. However, the potential of NPs in metal-contaminated soils is only just starting to be realized, and additional studies are required to explore the mechanisms of NPs-mediated TEs immobilization in soil and uptake by plants. Such future knowledge gap has been highlighted and discussed.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Afzal Hussain
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| |
Collapse
|
39
|
Xiang J, Mi Y, Luo B, Gong S, Zhou Y, Ma T. Evaluating the potential of KOH-modified composite biochar amendment to alleviate the ecotoxicity of perfluorooctanoic acid-contaminated sediment on Bellamya aeruginosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112346. [PMID: 34022627 DOI: 10.1016/j.ecoenv.2021.112346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Modified composite biochar offers a cost-effective solution for the remediation of contaminated sediments; however, few studies have evaluated the effects of modified composite biochar amendment on the ecotoxicity of contaminated sediment based on benthic macroinvertebrates. A 21-day sediment toxicity test was conducted using the freshwater snail Bellamya aeruginosa to examine the intrinsic ecotoxicity of a novel KOH-modified composite biochar (KOH-CBC) and its efficacy for reducing the bioavailability, uptake, and ecotoxicity of perfluorooctanoic acid (PFOA). It was found that KOH-CBC is toxic to B. aeruginosa, which may be attributed to its high polycyclic aromatic hydrocarbons (PAHs) content and alkalinity. The addition of KOH-CBC to PFOA-contaminated sediments can markedly reduce the bioavailability and uptake of PFOA by more than 90% and 50%, respectively, and subsequently alleviate the toxicity of PFOA to B. aeruginosa by at least 30%. Increasing the KOH-CBC dosage is not beneficial for further mitigating the toxicity of PFOA-contaminated sediments. Our findings imply that KOH-CBC is a promising sorbent for the in-situ remediation of PFOA-contaminated sediments. Application of acidified KOH-CBC at a dosage of approximately 1-3% will be sufficient to control the ecotoxicity of PFOA; however, its long-term environmental effects should be further validated.
Collapse
Affiliation(s)
- Jing Xiang
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, People's Republic of China
| | - Ying Mi
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, People's Republic of China
| | - Benxiang Luo
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, People's Republic of China
| | - Shuangjiao Gong
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, People's Republic of China
| | - Yingru Zhou
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, People's Republic of China
| | - Taowu Ma
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, People's Republic of China.
| |
Collapse
|
40
|
Yu H, Zheng X, Weng W, Yan X, Chen P, Liu X, Peng T, Zhong Q, Xu K, Wang C, Shu L, Yang T, Xiao F, He Z, Yan Q. Synergistic effects of antimony and arsenic contaminations on bacterial, archaeal and fungal communities in the rhizosphere of Miscanthus sinensis: Insights for nitrification and carbon mineralization. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125094. [PMID: 33486227 DOI: 10.1016/j.jhazmat.2021.125094] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The impacts of metal(loids) on soil microbial communities are research focuses to understand nutrient cycling in heavy metal-contaminated environments. However, how antimony (Sb) and arsenic (As) contaminations synergistically affect microbially-driven ecological processes in the rhizosphere of plants is poorly understood. Here we examined the synergistic effects of Sb and As contaminations on bacterial, archaeal and fungal communities in the rhizosphere of a pioneer plant (Miscanthus sinensis) by focusing on soil carbon and nitrogen cycle. High contamination (HC) soils showed significantly lower levels of soil enzymatic activities, carbon mineralization and nitrification potential than low contamination (LC) environments. Multivariate analysis indicated that Sb and As fractions, pH and available phosphorus (AP) were the main factors affecting the structure and assembly of microbial communities, while Sb and As contaminations reduced the microbial alpha-diversity and interspecific interactions. Random forest analysis showed that microbial keystone taxa provided better predictions for soil carbon mineralization and nitrification under Sb and As contaminations. Partial least squares path modeling indicated that Sb and As contaminations could reduce the carbon mineralization and nitrification by influencing the microbial biomass, alpha-diversity and soil enzyme activities. This study enhances our understanding of microbial carbon and nitrogen cycling affected by Sb and As contaminations.
Collapse
Affiliation(s)
- Huang Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Xiafei Zheng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Wanlin Weng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Xizhe Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Pubo Chen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Xingyu Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Peng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Qiuping Zhong
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Kui Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Tony Yang
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | - Fanshu Xiao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
41
|
Tian J, Ge F, Zhang D, Deng S, Liu X. Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle. BIOLOGY 2021; 10:158. [PMID: 33671192 PMCID: PMC7922199 DOI: 10.3390/biology10020158] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022]
Abstract
Phosphorus (P) is a vital element in biological molecules, and one of the main limiting elements for biomass production as plant-available P represents only a small fraction of total soil P. Increasing global food demand and modern agricultural consumption of P fertilizers could lead to excessive inputs of inorganic P in intensively managed croplands, consequently rising P losses and ongoing eutrophication of surface waters. Despite phosphate solubilizing microorganisms (PSMs) are widely accepted as eco-friendly P fertilizers for increasing agricultural productivity, a comprehensive and deeper understanding of the role of PSMs in P geochemical processes for managing P deficiency has received inadequate attention. In this review, we summarize the basic P forms and their geochemical and biological cycles in soil systems, how PSMs mediate soil P biogeochemical cycles, and the metabolic and enzymatic mechanisms behind these processes. We also highlight the important roles of PSMs in the biogeochemical P cycle and provide perspectives on several environmental issues to prioritize in future PSM applications.
Collapse
Affiliation(s)
- Jiang Tian
- Department of Chemical Engineering, Xiangtan University, Xiangtan 411105, China;
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China;
| | - Fei Ge
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China;
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China;
| | - Songqiang Deng
- Research Institute for Environmental Innovation (Tsinghua–Suzhou), Suzhou 215163, China;
| | - Xingwang Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China;
| |
Collapse
|
42
|
Yang Y, Ye S, Zhang C, Zeng G, Tan X, Song B, Zhang P, Yang H, Li M, Chen Q. Application of biochar for the remediation of polluted sediments. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124052. [PMID: 33039828 DOI: 10.1016/j.jhazmat.2020.124052] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/12/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Polluted sediments pose potential threats to environmental and human health and challenges to water management. Biochar is a carbon-rich material produced through pyrolysis of biomass waste, which performs well in soil amendment, climate improvement, and water treatment. Unlike soil and aqueous solutions, sediments are both the sink and source of water pollutants. Regarding in-situ sediment remediation, biochar also shows unique advantages in removing or immobilizing inorganic and organic pollutants (OPs). This paper provides a comprehensive review of the current methods of in-situ biochar amendments specific to polluted sediments. Physicochemical properties (pore structure, surface functional groups, pH and surface charge, mineral components) were influenced by the pyrolysis conditions, feedstock types, and modification of biochar. Furthermore, the remediation mechanisms and efficiency of pollutants (heavy metals [HMs] and OPs) vary with the biochar properties. Biochar influences microbial compositions and benthic organisms in sediments. Depending on the location or flow rate of polluted sediments, potential utilization methods of biochar alone or coupled with other materials are discussed. Finally, future practical challenges of biochar as a sediment amendment are addressed. This review provides an overview and outlook for sediment remediation using biochar, which will be valuable for further scientific research and engineering applications.
Collapse
Affiliation(s)
- Yuanyuan Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shujing Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Peng Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hailan Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Meiling Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiang Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
43
|
Yan C, Wen J, Wang Q, Xing L, Hu X. Mobilization or immobilization? The effect of HDTMA-modified biochar on As mobility and bioavailability in soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111565. [PMID: 33254418 DOI: 10.1016/j.ecoenv.2020.111565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
Biochar plays an essential role in soil remediation, but its effect on the arsenic remediation has been controversial. In this study, hexadecyl trimethyl ammonium bromide (HDTMA-Br) modified or unmodified biochar on As mobility and bioavailability in soil were studied. The sequential extraction experiment showed that As in the original soil mainly existed in the occluded form (78.24%), followed by Fe‒As (20.72%) and Al‒As (0.88%) forms. With the addition of the modified and unmodified biochars, the contents of Ca‒As and Fe‒As increased by 0.36 - 0.95% and 2.06 - 3.36%, respectively, suggesting the increased potential toxicity of As. The NaH2PO4 extraction result showed that the unmodified biochar increased the As availability by 3.23 - 22.76%, whereas the HDTMA-modified biochar reduced the As availability by 4.80 - 13.41%. Pot experiment showed that the unmodified and modified biochar increased the biomass of Brassica pekinensis, and the modified biochar (HB5) decreased the uptake of As by plants by 80.77% compared to the unmodified biochar. In particular, the plant achieved better growth in the modified biochar treatment (average height 8.31 cm) than in the unmodified biochar treatment (average height 6.97 cm). Therefore, both biochars facilitated phase transformation of As from the stable to the mobile states in the soil. Nevertheless, the HDTMA-modified biochar had an effect on alleviating As bioavailability and toxicity.
Collapse
Affiliation(s)
- Caiya Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jia Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qian Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lang Xing
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaohong Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
44
|
Yin Z, Song L, Lin Z, Hui K, Wang Q, Song H, Xuan L, Wang Z, Gao W. Granular activated carbon-supported titanium dioxide nanoparticles as an amendment for amending copper-contaminated sediments: Effect on the pH in sediments and enzymatic activities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111325. [PMID: 32979721 DOI: 10.1016/j.ecoenv.2020.111325] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The problem of heavy metal pollution in sediments attracts increasing attention with the process of industrialization. In this study, a novel sediments amendment granular activated carbon (GAC)-supported titanium dioxide nanoparticles (GATN) was synthesized to amend copper (Cu)-contaminated sediments. The effect of the amendments on the potential mobility and bioavailability of Cu was evaluated by the concentration of Cu in the overlying water and the chemical speciations of Cu in sediments. After 35 days of incubation, GATN and GAC were separated from the GATN-amended sediments and the GAC-amended sediments. The European Community Bureau of Reference (BCR) sequence extraction procedure was performed on the separated sediments. Compared with the control group, the addition of 20% GATN amended sediments for 35 days, the Cu concentration in the overlying water decreased by 90.75%. Compared with original sediments, the exchangeable fraction and reducible fraction of Cu decreased from 42.30% to 17.36%-3.63% and 6.57%, respectively, and the oxidizable fraction and residual fraction of Cu increased from 13.57% to 26.77%-33.21% and 56.58%, respectively. The potential mobility and bioavailability of Cu were significantly reduced. According to the BCR sequence extraction results of the remaining sediments after the separation of the GATN, the Cu adsorbed on the GATN surface is mainly an oxidizable fraction, which is generated by the complexation reaction of hydroxyl (-OH) and Cu2+. Meanwhile, the present of GATN also can enhance the remediation capacity of sediments, which plays an important role during the amendment process. The pH was measured after GATN-amended sediments adding. Results showed that GATN improved their remediation capacity of sediments by optimizing the pH in sediments. The enzyme activity-experiment indicated that GATN effectively reduces the biological toxicity of Cu in Cu-contaminated sediments. Results verified that GATN, as a sediments amendment, has good application potential.
Collapse
Affiliation(s)
- Zhenzhou Yin
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, 010051, China
| | - Lei Song
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, 010051, China.
| | - Zhipeng Lin
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, 010051, China
| | - Kai Hui
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, 010051, China
| | - Qian Wang
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, 010051, China
| | - Hongwei Song
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, 010051, China
| | - Lili Xuan
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, 010051, China
| | - Zehao Wang
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, 010051, China
| | - Wenjian Gao
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, 010051, China
| |
Collapse
|
45
|
Deng R, Huang D, Xue W, Lei L, Zhou C, Chen S, Wen X, Liu X. How does the microenvironment change during the stabilization of cadmium in exogenous remediation sediment? JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122836. [PMID: 32512439 DOI: 10.1016/j.jhazmat.2020.122836] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/15/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
The pollution degree of heavy metals is closely related to the sediment microenvironment. This study aims to give a comprehensive account of the changes of microenvironment in sediment during the stabilization of cadmium (Cd) by the sodium lignosulphonate (SLS) modified chlorapatites (SLS@nClAP). Chemical speciation change demonstrated that SLS@nClAP possessed better stabilizing capacity (65.84 %-76.66 %) for Cd than unmodified chlorapatites (ClAP) (45.88 %). It might be since that the surface of SLS@nClAP presented a more dispersive thin sheet structure with sulfonate groups compared with the aggregate block structure of ClAP. High-throughput sequencing results displayed that succession of microbial community occurred after remediation in sediment. Most importantly, the dominant genus changed from massilia to phosphate-solubilizing bacterium-pseudomonas which might be due to the remediation of chlorapatites and the stabilization of Cd. Moreover, enzyme activity changes showed that the activity of catalase and urease were highly influenced by the stability and bioavailability of Cd during the incubation. This study not only provided a novel remediation technology for Cd-polluted sediment but also confirmed that the change of microenvironment was closely related to the stability and bioavailability of Cd in sediment.
Collapse
Affiliation(s)
- Rui Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Wenjing Xue
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Lei Lei
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xiaofeng Wen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
46
|
Yin Z, Song L, Song H, Hui K, Lin Z, Wang Q, Xuan L, Wang Z, Gao W. Remediation of copper contaminated sediments by granular activated carbon-supported titanium dioxide nanoparticles: Mechanism study and effect on enzyme activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:139962. [PMID: 32563130 DOI: 10.1016/j.scitotenv.2020.139962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 05/04/2023]
Abstract
After much effort, the remediation of heavy metal contaminated sediments still remains physically hard and technically challenging issue to resolve. In this study, granular activated carbon-supported titanium dioxide nanoparticles (GAC-TiO2 NPs) are synthesized to remedy heavy metal copper (Cu) contaminated sediments. The concentration and chemical speciation of Cu in overlying water, interstitial water and contaminated sediments are fully assessed to examine the remediation effect of GAC-TiO2 NPs. The GAC-TiO2 NPs are separated from GAC-TiO2 NPs-remedied sediments and characterized by X-ray photoelectron spectra (XPS), which reveals the mechanism of GAC-TiO2 NPs remedy Cu Contaminated sediments. The results show that after 35 days adding 20% GAC-TiO2 NPs to contaminated sediments, the Cu concentration in the overlying water and interstitial water decreases 89.47% and 83.52%, respectively, and the exchangeable fraction (F-1) of Cu in sediments decreases from 43.91% to 7.49%. The percentage of residual fraction (F-4) increases sharply from 42.79% to 80.30%. XPS results show that hydroxyl (-OH) plays an important role in the remediation process. The synergistic effects of pH, phosphorus concentration and organic matter (OM) content on the remediation effect are explored. When the pH value is 8, phosphorus concentration is 0.32 mg/L and OM content is 151.2 g/kg, adding 20% GAC-TiO2 NPs achieves the best remediation effect on Cu contaminated sediment. Biological enzyme-activity experiments prove that GAC-TiO2 NPs not only reduce the bioavailability and biotoxicity of Cu, but also effectively suppress the negative effects of granular activated carbon (GAC) on enzyme activities. All these results indicate that GAC-TiO2 NPs is an environmentally friendly remediation material for Cu contaminated sediments with high-potential applications.
Collapse
Affiliation(s)
- Zhenzhou Yin
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
| | - Lei Song
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051, China.
| | - Hongwei Song
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
| | - Kai Hui
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
| | - Zhipeng Lin
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
| | - Qian Wang
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
| | - Lili Xuan
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
| | - Zehao Wang
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
| | - Wenjian Gao
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
| |
Collapse
|
47
|
Zhu Y, Ma J, Chen F, Yu R, Hu G, Zhang S. Remediation of Soil Polluted with Cd in a Postmining Area Using Thiourea-Modified Biochar. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207654. [PMID: 33092212 PMCID: PMC7589461 DOI: 10.3390/ijerph17207654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 11/23/2022]
Abstract
Cadmium presence in soil is considered a significant threat to human health. Biochar is recognized as an effective method to immobilize Cd ions in different soils. However, obtaining effective and viable biochar to remove elevated Cd from postmining soil remains a challenge. More modifiers need to be explored to improve biochar remediation capacity. In this investigation, pot experiments were conducted to study the effects of poplar-bark biochar (PBC600) and thiourea-modified poplar-bark biochar (TPBC600) on Cd speciation and availability, as well as on soil properties. Our results showed that the addition of biochar had a significant influence on soil properties. In the presence of TPBC600, the acid-soluble and reducible Cd fractions were transformed into oxidizable and residual Cd fractions. This process effectively reduced Cd bioavailability in the soil system. Compared to PBC600, TPBC600 was more effective in improving soil pH, electrical conductivity (EC), organic matter (SOM), total nitrogen (TN), ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3−-N), available potassium (AK), available phosphorus (AP), and available sulfur (AS). However, this improvement diminished as incubation time increased. Results of Pearson correlation analysis, multivariate linear regression analysis, and principal component analysis showed that soil pH and available phosphorus played key roles in reducing the available cadmium in soil. Therefore, TPBC600 was shown to be an effective modifier that could be used in the remediation of soil polluted with Cd.
Collapse
Affiliation(s)
- Yanfeng Zhu
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China; (Y.Z.); (J.M.); (S.Z.)
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
| | - Jing Ma
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China; (Y.Z.); (J.M.); (S.Z.)
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China
| | - Fu Chen
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China; (Y.Z.); (J.M.); (S.Z.)
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China
- Correspondence: (F.C.); (G.H.); Tel.: +86-516-8388-3501 (F.C.); +86-059-2616-2300 (G.H.)
| | - Ruilian Yu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
| | - Gongren Hu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
- Correspondence: (F.C.); (G.H.); Tel.: +86-516-8388-3501 (F.C.); +86-059-2616-2300 (G.H.)
| | - Shaoliang Zhang
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China; (Y.Z.); (J.M.); (S.Z.)
| |
Collapse
|
48
|
Zhang K, Teng Z, Shao W, Wang Y, Li M, Lam SS. Effective passivation of lead by phosphate solubilizing bacteria capsules containing tricalcium phosphate. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122754. [PMID: 32361140 DOI: 10.1016/j.jhazmat.2020.122754] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Phosphate solubilizing bacteria (PSBs) shows high potential to be used for lead passivation in sediments due to the abilities of releasing phosphate and the subsequent formation of insoluble Pb-phosphate compounds. In this research, microbial capsules implemented with sodium alginate and CaCl2, containing Leclercia adecarboxylata L15 (a lead resistant PSB) and Ca3(PO4)2, were developed and the performance on lead passivation under different conditions was examined. The optimal concentrations of sodium alginate and CaCl2 for formulating the capsules were determined to be 0.3% and 10%, respectively. The removal efficiency of Pb2+ by capsules containing L15 and Ca3(PO4)2 was up to 98% with a capsule dosage of 2%, initial Pb2+ concentration of 1mM and pH of 3.0, which was better than that of free L15 (18%) and capsules containing only L15 (34%). Lead was immobilized via the formation of Pb5(PO4)3Cl on the surface and Pb3(PO4)2 in the interior of the capsules. The simulated sediment remediation experiments showed that the acid soluble fraction of lead reduced from 28% to 14% and transformed into more stable fractions after 10 days. The experiment results indicated that PSBs capsules coupled with phosphate materials have a great promise for application in remediation of lead contaminated sediments.
Collapse
Affiliation(s)
- Keyao Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Lab for Source Control Technology of Water Pollution. Beijing Forestry University, Beijing 100083, China
| | - Zedong Teng
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Lab for Source Control Technology of Water Pollution. Beijing Forestry University, Beijing 100083, China
| | - Wen Shao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Lab for Source Control Technology of Water Pollution. Beijing Forestry University, Beijing 100083, China
| | - Yin Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Lab for Source Control Technology of Water Pollution. Beijing Forestry University, Beijing 100083, China
| | - Min Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Lab for Source Control Technology of Water Pollution. Beijing Forestry University, Beijing 100083, China.
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries Research (Akuatrop) & Institute of Tropical Biodiversity and Sustainable Development (Bio-D Tropika), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
49
|
Liu G, Liao B, Lu T, Wang H, Xu L, Li Z, Ye C. Insight into immobilization of Pb2+ in aqueous solution and contaminated soil using hydroxyapatite/attapulgite composite. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Deng R, Luo H, Huang D, Zhang C. Biochar-mediated Fenton-like reaction for the degradation of sulfamethazine: Role of environmentally persistent free radicals. CHEMOSPHERE 2020; 255:126975. [PMID: 32387909 DOI: 10.1016/j.chemosphere.2020.126975] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Swine manure biochar (SBC) pyrolyzed at 300 °C, 600 °C and 900 °C were utilized to degrade sulfamethazine (SMT) in heterogeneous Fenton-like systems which achieved excellent degradation efficiency (over 85% in 30 min). Experiments results demonstrated that SBC possessed the poor SMT adsorption capacity but high catalytic performance. Electron Paramagnetic Resonance (EPR) and X-ray photoelectron spectroscopy (XPS) analysis revealed that there were oxygen-centered environmentally persistent free radicals (EPFRs) and carbon-centered EPFRs with an adjacent oxygen atom in SBC. The oxygen-centered EPFRs played a major role in the catalytic process which tended to convert to carbon-centered EPFRs after the reaction. Besides, the electron transfer pathways were the most likely catalytic mechanism of SBC and the contribution of OH was dominant through Electron capture experiments and Linear sweep voltammetry (LSV) measurements. The acidic or alkaline condition can promote the catalytic ability of SBC. The presence of dissolved salts (NaCl) inhibited the catalytic process but the inhibition was slightly weakened at high concentration of NaCl, which showed the high tolerance of Cl- in Fenton/Fenton-like systems. Moreover, real wastewater application suggested that SBC600/H2O2 system possessed excellent catalytic efficiency and good adaptability. This research provides a novel swine manure reuse process with high practicability and presents a more explicit perspective about the reaction mechanisms of EPFRs in biochar.
Collapse
Affiliation(s)
- Rui Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Hao Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| |
Collapse
|