1
|
Zhou Y, Zhu Y, Wu F, Pan X, Li W, Han J. Transcriptomics revealed the key molecular mechanisms of ofloxacin-induced hormesis in Chlorella pyrenoidosa at environmentally relevant concentration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124887. [PMID: 39236839 DOI: 10.1016/j.envpol.2024.124887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Emerging pollutants such as antibiotics have aroused great concern in recent years. However, the knowledge of low concentration-induced hormesis was not well understood. This study evaluated and quantified hormetic effects of ofloxacin on Chlorella pyrenoidosa. LogNormal model predicted the maximal non-effect concentration was 0.13 mg/L and 2.96 mg/L at 3 and 21 d, respectively. The sensitive alterations in chlorophyll fluorescence suggested PSII was the main target. Transcriptomics revealed ofloxacin inhibited genes related to photosynthetic system while the cyclic electron around PSI decreased the pH value in stroma side and stimulated photoprotection via up-regulating psbS. The stimulation in citrate cycle pathway met the urgent requirements of energy for DNA replication and repair. In addition, the negative feedback of G3P in glycolysis pathway inhibited Calvin cycle. The degradation products illustrated the occurrence of multiple detoxification mechanisms such as demethylation and ring-opening. The mobilization of cytochrome P450 generated the constant detoxication of ofloxacin while glutathione was consumptively involved in biological binding. This study provided new insights into the molecular mechanisms of antibiotic-induced hormesis in microalgae.
Collapse
Affiliation(s)
- Yuhao Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu, 213032, China
| | - Yan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Feifan Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Xiangjie Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China.
| | - Jiangang Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu, 213032, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China
| |
Collapse
|
2
|
Shen L, Zhang L, Jin J, Jin Z, Li Z, Wu L, Cheng K, Xu D, Liu H. The phototoxicity of sulfamethoxazole stress on pakchoi cabbage (Brassica rapa var. chinensis) seedlings: From the perspective of photoreaction and omics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175391. [PMID: 39122040 DOI: 10.1016/j.scitotenv.2024.175391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The increasing use of antibiotics has attracted widespread attention to their environmental risks. However, the phototoxicity of sulfonamide antibiotics to plants remain unclear. In this study, the mechanism of the effect of sulfamethoxazole on photosynthesis of pakchoi cabbage (Brassica rapa var. chinensis) was investigated. The results showed that sulfamethoxazole inhibited the growth of pakchoi cabbage and produced photosynthetic toxicity. The growth inhibition rates increased with concentration, the root and shoot weight were 76.02 % and 47.04 % of the control, respectively, with stay-greens phenomenon in 4 mg·L-1 sulfamethoxazole treatment. Chlorophyll precursors (protoporphyrin IX (Proto IX), Mg-proto IX, and protochlorophyllide (Pchlide), 5-aminolevulinic acid (ALA), and porphobilinogen (PBG)) were 1.38-, 1.26-, 1.12-, 1.71-, and 0.96-fold of the control, respectively; photosynthetic pigments (chlorophyll a, chlorophyll b, and carotenoids) were 1.26-, 1.39-, and 1.03-fold of the control, respectively. Respiration rate was 271.42 % of the control, whereas the net photosynthetic rate was 50.50 % of the control. The maximum photochemical quantum yield of PSII (Fv/Fm), the actual photosynthetic efficiency (Y(II)), the quantum yield of non-regulated energy dissipation (Y(NO)), the apparent electron transfer efficiency of PSII (ETR) under actual light intensity were affected, and chloroplast swelling was observed. Proteomic analysis showed that photosynthesis-related pathways were significantly up-regulated, biological processes such as light response, carbohydrates, and reactive oxygen species were activated. Metabolomic analysis revealed that the tricarboxylic acid cycle (TCA cycle) and carbohydrate catabolism were stimulated significantly (p < 0.05), sugars and amino acids were increased to regulate and enhance the resilience of photosynthesis. While folate biosynthesis and ribosomal pathways were significantly down-regulated, the synthesis and translation processes of amino acids and nucleotides were inhibited.
Collapse
Affiliation(s)
- Luoqin Shen
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Liangyu Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Jiaojun Jin
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Ziting Jin
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Lidan Wu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Kaiming Cheng
- School of Statistics and Mathematics, Collaborative Innovation Center of Statistical Data Engineering, Technology & Application, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
3
|
Zhao K, Si T, Liu S, Liu G, Li D, Li F. Co-metabolism of microorganisms: A study revealing the mechanism of antibiotic removal, progress of biodegradation transformation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176561. [PMID: 39362550 DOI: 10.1016/j.scitotenv.2024.176561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
The widespread use of antibiotics has resulted in large quantities of antibiotic residues entering aquatic environments, which can lead to the development of antibiotic-resistant bacteria and antibiotic-resistant genes, posing a potential environmental risk and jeopardizing human health. Constructing a microbial co-metabolism system has become an effective measure to improve the removal efficiency of antibiotics by microorganisms. This paper reviews the four main mechanisms involved in microbial removal of antibiotics: bioaccumulation, biosorption, biodegradation and co-metabolism. The promotion of extracellular polymeric substances for biosorption and extracellular degradation and the regulation mechanism of enzymes in biodegradation by microorganisms processes are detailed therein. Transformation pathways for microbial removal of antibiotics are discussed. Bacteria, microalgae, and microbial consortia's roles in antibiotic removal are outlined. The factors influencing the removal of antibiotics by microbial co-metabolism are also discussed. Overall, this review summarizes the current understanding of microbial co-metabolism for antibiotic removal and outlines future research directions.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| | - Tingting Si
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China; Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shenghe Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| | - Gaolei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Donghao Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
4
|
Eheneden I, Wang R, Chen G, Adesina OB, Haijing R, Bavumiragira JP, Zhao J. Sulfamethoxazole removal and ammonium conversion in microalgae consortium: Physiological responses and microbial community changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176539. [PMID: 39349193 DOI: 10.1016/j.scitotenv.2024.176539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Microalgae (Mychonastes sp.) consortium was investigated for nutrient and antibiotics removal and its responses to varying sulfamethoxazole (SMX) concentrations (0-1000 μg/L) in ammonia-rich wastewater. The results showed that the introduction of SMX (100-1000 μg/L) slightly improved ammonium nitrogen removal efficiency instead of inhibition. Swift SMX degradation was observed across all SMX-treated systems, with the highest SMX removal efficiency (96 %) at an SMX concentration of 100 μg/L. Biodegradation remained the dominant SMX removal mechanism, contributing 78 % of SMX removal at an SMX concentration of 800 μg/L, while adsorption and photolysis played minor roles. Addition of SMX augmented biomass and lipid productivity, but decreased chlorophyll contents in the microalgae consortium. Furthermore, extracellular polymeric substance (EPS) production correlated positively with SMX input concentration, with the microalgae consortium exposed to 800 μg/L SMX displaying the most pronounced stimulation of protein production (51.5 ± 2.0 mg/g DCW) and polysaccharides production (74.8 ± 3.9 mg/g DCW). In response to an increase in SMX concentrations, enzyme activities associated with antioxidant defense, such as superoxide dismutase (SOD), peroxidase (POD) and malondialdehyde (MDA) increased, the catalase (CAT) decreased, indicating an initial defense mechanism. Concurrently, the relative abundance of Mychonastes sp. within the consortium rose from 87 % at 300 μg/L SMX to 99.9 % at 800 μg/L SMX. while Shannon indices of the bacterial community increased from 1.415 to 2.867. This shift inhibited the initially dominant Saprospiraceae bacteria, facilitating the profound increase of adapted Aquimonas. These findings demonstrate the feasibility of the simultaneous removal of antibiotics and nutrients from wastewater with a microalgae consortium system.
Collapse
Affiliation(s)
- Iyobosa Eheneden
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rongchang Wang
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Gaoxiang Chen
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Odunayo Blessing Adesina
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ren Haijing
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jean Pierre Bavumiragira
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianfu Zhao
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Zhang XY, Yin LJ, Lang XP, He Z, Yang GP. Enhanced release of volatile halocarbons of microalgae in response to antibiotic-induced stress: Based on laboratory and ship-field experiments. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106754. [PMID: 39317087 DOI: 10.1016/j.marenvres.2024.106754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/14/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
This study investigated the impacts of sulfamethazine (SMZ) and oxytetracycline (OTC) antibiotics on the marine microalgae Nitzschia closterium and its release of volatile halocarbons (VHCs), which contribute to ozone depletion and climate change. High concentrations of SMZ and OTC suppressed cell density, reduced chlorophyll a content, and hindered Fv/Fm elevation in N. closterium, indicating its growth was inhibited. The exposure of N. closterium to antibiotics led to increased reactive oxygen species (ROS), reduced soluble protein content, and heightened catalase (CAT) activity, indicative of increased oxidative stress. This stress increased the release of three VHCs (CHBrCl2, CHBr2Cl, and CHBr3). Ship-borne experiments showed that high phytoplankton biomass was linked to high VHC release. Notably, the production and release of VHCs were significantly higher in the high-concentration antibiotic group (100 μg/L) than the low-concentration group (0.1 μg/L). These findings suggested that antibiotics induce excess ROS in algal cells, stimulating VHC production and release.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Li-Jing Yin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiao-Ping Lang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhen He
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China.
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
6
|
Cheng Y, Wang H, Wu Y, Ding Y, Peng C, Qi C, Xu A, Liu Y. Light-powered biodegradation of Imidacloprid by Scenedesmus sp. TXH202001: Assessing complete removal, metabolic pathways, and toxicity verification. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135345. [PMID: 39084013 DOI: 10.1016/j.jhazmat.2024.135345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Imidacloprid (IMI) is used extensively as an insecticide and poses a significant risk to both the ecological environment and human health. Biological methods are currently gaining recognition among the different strategies tested for wastewater treatment. This study focused on evaluating a recently discovered green alga, Scenedesmus sp. TXH202001, isolated from a municipal wastewater treatment plant (WWTP), exhibited notable capacity for IMI removal. After an 18-day evaluation, medium IMI concentrations (50 and 100 mg/L) facilitated the growth of microalgae whereas low (5 and 20 mg/L) and high (150 mg/L) concentrations had no discernible impact. No statistically significant disparities were detected in Fv/Fm, Malonaldehyde or Superoxide dismutase across all concentrations, suggesting Scenedesmus sp. TXH202001 exhibited notable resilience and adaptability to IMI conditions. Most notably, Scenedesmus sp. TXH202001 successfully eliminated > 99 % of IMI within 18 days subjected to IMI concentrations as high as 150 mg/L, which was contingent on the environmental factor of illumination. Molecular docking was used to identify the chemical reaction sites between IMI and typical degrading enzyme CYP450. Furthermore, the study revealed that the primary path for IMI removal was biodegradation and verified that the toxicity of the degraded product was lower than parent IMI in Caenorhabditis elegans. The efficacy of Scenedesmus sp. TXH202001 in wastewater was exceptional, thereby validating its practical utility.
Collapse
Affiliation(s)
- Yongtao Cheng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Hongyu Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430072, China
| | - Yuanyuan Wu
- University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yuting Ding
- University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Chuanyue Peng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Cuicui Qi
- Anhui Provincial Academy of Eco-Environmental Science Research, Hefei 230061, China
| | - An Xu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| | - Ying Liu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China.
| |
Collapse
|
7
|
Cheng Y, Wu Y, Peng C, Yang Y, Xuan L, Wang L, Wang Y, Xu A, Liu Y. Insights on aggregation-algae consortium based removal of sulfamethoxazole: Unraveling removal effect, enhanced method and toxicological evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122512. [PMID: 39278014 DOI: 10.1016/j.jenvman.2024.122512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
The escalating occurrence of the antibiotic Sulfamethoxazole (SMX) in the environment presents a significant global threat to ecological systems and human health. Despite the growing interest in using microalgae for antibiotic biodegradation, strategies to enhance SMX elimination remain underexplored. In this study, we isolated a novel aggregation-algae consortium (AAC) from a municipal wastewater treatment plant (WWTP) and examined its potential for SMX removal, optimized culture conditions, SMX metabolite fate and the physicochemical impact on microalgal cells. The findings revealed that the AAC demonstrated remarkable resistance to SMX, even at concentrations as high as 10 mg/L, and could degrade SMX via free radical reactions. Although ion repulsion limited the biodegradation of AAC, the addition of peptone and yeast extract resulted in a significant enhancement, increased by 16.71%, 39.12% and 46.77% of three SMX groups. Moreover, AAC exhibited exceptional adaptability in real wastewater, achieving removal of 87.05%, 97.39% and 20.80% for total dissolved nitrogen, total dissolved phosphorus and SMX, respectively. The decreased degradation toxicity of SMX following AAC treatment was further validated by ECOSAR software and in vitro tests using Caenorhabditis elegans. This study advanced our understanding of SMX biodegradation and provided a novel approach for treating wastewater contaminated with SMX.
Collapse
Affiliation(s)
- Yongtao Cheng
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yuanyuan Wu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Chuanyue Peng
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yang Yang
- Anhui Shunyu Water Co., Ltd, Hefei, Anhui, 231100, PR China
| | - Liang Xuan
- East China Engineering Science and Technology Co,. Ltd, Hefei, Anhui, 230088, PR China
| | - Lin Wang
- East China Engineering Science and Technology Co,. Ltd, Hefei, Anhui, 230088, PR China
| | - Yan Wang
- East China Engineering Science and Technology Co,. Ltd, Hefei, Anhui, 230088, PR China
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Ying Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.
| |
Collapse
|
8
|
Zhuang LL, Qian W, Wang X, Wang T, Zhang J. General performance, kinetic modification, and key regulating factor recognition of microalgae-based sulfonamide removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134891. [PMID: 38878437 DOI: 10.1016/j.jhazmat.2024.134891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Sulfonamides have been widely detected in water treatment plants. Advanced wastewater treatment for sulfonamide removal based on microalgal cultivation can reduce the ecological risk after discharge, achieve carbon fixation, and simultaneously recover bioresource. However, the general removal performance, key factors and their impacts, degradation kinetics, and potential coupling technologies have not been systematically summarized. To guide the construction and enhance the efficient performance of the purification system, this study summarizes the quantified characteristics of sulfonamide removal based on more than 100 groups of data from the literature. The biodegradation potential of sulfonamides from different subclasses and their toxicity to microalgae were statistically analyzed; therefore, a preferred option for further application was proposed. The mechanisms by which the properties of both sulfonamides and microalgae affect sulfonamide removal were comprehensively summarized. Thereafter, multiple principles for choosing optimal microalgae were proposed from the perspective of engineering applications. Considering the microalgal density and growth status, a modified antibiotic removal kinetic model was proposed with significant physical meaning, thereby resulting in an optimal fit. Based on the mechanism and regulating effect of key factors on sulfonamide removal, sensitive and feasible factors (e.g., water quality regulation, other than initial algal density) and system coupling were screened to guide engineering applications. Finally, we suggested studying the long-term removal performance of antibiotics at environmentally relevant concentrations and toxicity interactions for further research.
Collapse
Affiliation(s)
- Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China.
| | - Weiyi Qian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaoxiong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Tong Wang
- School of Ecological & Environmental Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China.
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 88 Wenhua East Road, Jinan, Shandong 250014, China
| |
Collapse
|
9
|
Chen Z, Xiong JQ. Recovery mechanism of a microalgal species, Chlorella sp. from toxicity of doxylamine: Physiological and biochemical changes, and transcriptomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134752. [PMID: 38815390 DOI: 10.1016/j.jhazmat.2024.134752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Ubiquitous distribution of pharmaceutical contaminants in environment has caused unexpected adverse effects on ecological organisms; however, how microorganisms recover from their toxicities remains largely unknown. In this study, we comprehensively investigated the effect of a representative pollutant, doxylamine (DOX) on a freshwater microalgal species, Chlorella sp. by analyzing the growth patterns, biochemical changes (total chlorophyll, carotenoid, carbohydrate, protein, and antioxidant enzymes), and transcriptomics. We found toxicity of DOX on Chlorella sp. was mainly caused by disrupting synthesis of ribosomes in nucleolus, and r/t RNA binding and processing. Intriguingly, additional bicarbonate enhanced the toxicity of DOX with decreasing the half-maximum effective concentrations from 15.34 mg L-1 to 4.63 mg L-1, which can be caused by inhibiting fatty acid oxidation and amino acid metabolism. Microalgal cells can recover from this stress via upregulating antioxidant enzymatic activities to neutralize oxidative stresses, and photosynthetic pathways and nitrogen metabolism to supply more energies and cellular signaling molecules. This study extended our understanding on how microalgae can recover from chemical toxicity, and also emphasized the effect of environmental factors on the toxicity of these contaminants on aquatic microorganisms.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Haide, Ocean University of China, Laoshan Campus, Qingdao, Shandong 266003, China
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Yushan Road 5, Qingdao, Shandong 266003, China.
| |
Collapse
|
10
|
Liu Z, Shi C, Wang B, Zhang X, Ding J, Gao P, Yuan X, Liu Z, Zhang H. Cytochrome P450 enzymes in the black-spotted frog ( Pelophylax nigromaculatus): molecular characterization and upregulation of expression by sulfamethoxazole. Front Physiol 2024; 15:1412943. [PMID: 38784115 PMCID: PMC11112259 DOI: 10.3389/fphys.2024.1412943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Cytochrome P450 (CYP) enzymes are crucial for the detoxification of xenobiotics, cellular metabolism, and homeostasis. This study investigated the molecular characterization of CYP enzymes in the black-spotted frog, Pelophylax nigromaculatus, and examined the regulation of CYP expression in response to chronic exposure to the antibiotic sulfamethoxazole (SMX) at various environmental concentrations (0, 1, 10, and 100 μg/L). The full-length cDNA of Pn-CYP26B1 was identified. The sequence included open reading frames of 1,536 bp, encoding proteins comprising 511 amino acids. The signature motif, FxxGxxxCxG, was highly conserved when compared with a number of selected animal species. SMX significantly upregulated the expression of the protein CYP26B1 in frog livers at concentrations of 1 and 10 μg/L. SMX showed an affinity for CYP26B1 of -7.6 kcal/mol, indicating a potential mechanism for SMX detoxification or adaptation of the frog. These findings contributed to our understanding of the environmental impact of antibiotics on amphibian species and underscored the importance of CYP enzymes in maintaining biochemical homeostasis under exposure to xenobiotic stress.
Collapse
Affiliation(s)
- Zhiqun Liu
- Hangzhou Normal University, Hangzhou, China
| | - Chaoli Shi
- Hangzhou Normal University, Hangzhou, China
| | | | | | - Jiafeng Ding
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| | - Panpan Gao
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| | - Xia Yuan
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai, China
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| |
Collapse
|
11
|
He Y, Jiang L, Wu X, Zhang W, Zong Y, Wang J, Chen J, Shan J, Kong D, Ji R. Fate of sulfamethoxazole in wetland sediment under controlled redox conditions. WATER RESEARCH 2024; 254:121350. [PMID: 38402752 DOI: 10.1016/j.watres.2024.121350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Redox condition is an important controlling factor for contaminant removal in constructed wetlands; however, the redox-sensitivity of antibiotic removal in wetland sediments under controlled conditions with specific electron acceptors remains unclear. Here, using a 14C radioactive tracer, we explored fate of sulfamethoxazole (SMX) in a wetland sediment slurry under oxic, nitrate-reducing, iron-reducing, and methanogenic conditions. In the sterile treatment, unlike the comparable SMX dissipation from the water phase under four redox conditions, non-extractable residues (NERs) of SMX was highest formed in the sediment under oxic condition, mainly in sequestered and ester/amide-linked forms. Microorganisms markedly promoted SMX transformation in the slurry. The dissipation rate of SMX and its transformation products (TPs) followed the order: oxic ≈ iron-reducing > methanogenic >> nitrate-reducing conditions, being consistent with the dynamics of microbial community in the sediment, where microbial diversity was greater and networks connectivity linking dominant bacteria to SMX transformation were more complex under oxic and iron-reducing conditions. Kinetic modeling indicated that the transformation trend of SMX and its TPs into the endpoint pool NERs depended on the redox conditions. Addition of wetland plant exudates and sediment dissolved organic matter at environmental concentrations affected neither the abiotic nor the biotic transformation of SMX. Overall, the iron-reducing condition was proven the most favorable and eco-friendly for SMX transformation, as it resulted in a high rate of SMX dissipation from water without an increase in toxicity and subsequent formation of significant stable NERs in sediment. Our study comprehensively revealed the abiotic and biotic transformation processes of SMX under controlled redox conditions and demonstrated iron-reducing condition allowing optimal removal of SMX in constructed wetlands.
Collapse
Affiliation(s)
- Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| | - Longxue Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xuan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenhui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yao Zong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jiacheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | | | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Deyang Kong
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing 210042, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China.
| |
Collapse
|
12
|
Wu X, Nawaz S, Li Y, Zhang H. Environmental health hazards of untreated livestock wastewater: potential risks and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24745-24767. [PMID: 38499926 DOI: 10.1007/s11356-024-32853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Due to technological and economic limitations, waste products such as sewage and manure generated in livestock farming lack comprehensive scientific and centralized treatment. This leads to the exposure of various contaminants in livestock wastewater, posing potential risks to both the ecological environment and human health. This review evaluates the environmental and physical health risks posed by common pollutants in livestock wastewater and outlines future treatment methods to mitigate these risks. Residual wastes in livestock wastewater, including pathogenic bacteria and parasites surviving after epidemics or diseases on various farms, along with antibiotics, organic wastes, and heavy metals from farming activities, contribute to environmental damage and pose risks to human health. As the livestock industry's development increasingly impacts society's future negatively, addressing the issue of residual wastes in livestock wastewater discharge becomes imperative. Ongoing advancements in wastewater treatment systems are consistently updating and refining practices to effectively minimize waste exposure at the discharge source, mitigating risks to environmental ecology and human health. This review not only summarizes the "potential risks of livestock wastewater" but also explores "the prospects for the development of wastewater treatment technologies" based on current reports. It offers valuable insights to support the long-term and healthy development of the livestock industry and contribute to the sustainable development of the ecological environment.
Collapse
Affiliation(s)
- Xiaomei Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shah Nawaz
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Zhou Y, Yue Y, Chen X, Wu F, Li W, Li P, Han J. Physiological-biochemical responses and transcriptomic analysis reveal the effects and mechanisms of sulfamethoxazole on the carbon fixation function of Chlorella pyrenoidosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170460. [PMID: 38286284 DOI: 10.1016/j.scitotenv.2024.170460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
The occurrence of sulfamethoxazole (SMX) is characterized by low concentration and pseudo-persistence. However, the toxic effects and mechanisms of SMX, especially for low concentration and long-term exposure, are still not clear. This study investigated the effects and mechanisms of SMX on carbon fixation-related biological processes of Chlorella pyrenoidosa at population, physiological-biochemical, and transcriptional levels. Results showed that 1-1000 μg/L SMX significantly inhibited the dry weight and carbon fixation rate of C. pyrenoidosa during 21 d. The upregulation of superoxide dismutase (SOD) and catalase (CAT) activities, as well as the accumulation of malondialdehyde (MDA) demonstrated that SMX posed oxidative damage to C. pyrenoidosa. SMX inhibited the activity of carbonic anhydrase (CA), and consequently stimulated the activity of Rubisco. Principal component analysis (PCA) revealed that SMX concentration was positively correlated with Rubisco and CAT while exposure time was negatively correlated with CA. Transcriptional analysis showed that the synthesis of chlorophyll-a was stabilized by regulating the diversion of protoporphyrin IX and the chlorophyll cycle. Meanwhile, multiple CO2 compensation mechanisms, including photorespiratory, C4-like CO2 compensation and purine metabolism pathways were triggered in response to the CO2 requirements of Rubisco. This study provides a scientific basis for the comprehensive assessment of the ecological risk of SMX.
Collapse
Affiliation(s)
- Yuhao Zhou
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu 213032, China
| | - Yujiao Yue
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Xinyang Chen
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Feifan Wu
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Pingping Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Jiangang Han
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu 213032, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| |
Collapse
|
14
|
Mao Y, Ye K, Yang S, Salam M, Yu W, He Q, He R, Li H. Repeated Exposure Enhanced Toxicity of Clarithromycin on Microcystis aeruginosa Versus Single Exposure through Photosynthesis, Oxidative Stress, and Energy Metabolism Shift. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4070-4082. [PMID: 38390827 DOI: 10.1021/acs.est.3c07008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Antibiotics are being increasingly detected in aquatic environments, and their potential ecological risk is of great concern. However, most antibiotic toxicity studies involve single-exposure experiments. Herein, we studied the effects and mechanisms of repeated versus single clarithromycin (CLA) exposure on Microcystis aeruginosa. The 96 h effective concentration of CLA was 13.37 μg/L upon single exposure but it reduced to 6.90 μg/L upon repeated exposure. Single-exposure CLA inhibited algal photosynthesis by disrupting energy absorption, dissipation and trapping, reaction center activation, and electron transport, thereby inducing oxidative stress and ultrastructural damage. In addition, CLA upregulated glycolysis, pyruvate metabolism, and the tricarboxylic acid cycle. Repeated exposure caused stronger inhibition of algal growth via altering photosynthetic pigments, reaction center subunits biosynthesis, and electron transport, thereby inducing more substantial oxidative damage. Furthermore, repeated exposure reduced carbohydrate utilization by blocking the pentose phosphate pathway, consequently altering the characteristics of extracellular polymeric substances and eventually impairing the defense mechanisms of M. aeruginosa. Risk quotients calculated from repeated exposure were higher than 1, indicating significant ecological risks. This study elucidated the strong influence of repeated antibiotic exposure on algae, providing new insight into antibiotic risk assessment.
Collapse
Affiliation(s)
- Yufeng Mao
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Kailai Ye
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Shengfa Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Muhammad Salam
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Ruixu He
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
15
|
Peng X, Zhang X, Zhang S, Li Z, Zhang H, Zhang L, Wu Z, Liu B. Revealing the response characteristics of periphyton biomass and community structure to sulfamethoxazole exposure in aquaculture water: The perspective of microbial network relationships. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123301. [PMID: 38190873 DOI: 10.1016/j.envpol.2024.123301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
The widespread application of sulfonamide antibiotics in aquaculture has raised concerns about their adverse environmental impacts. Periphyton plays a crucial role in the aquatic ecosystem. In this study, we examined sulfamethoxazole (SMX) effects on the community structure and interactions of periphyton in simulated aquaculture water. Our findings indicated that the total biomass of periphyton decreased, while the biomass of periphytic algae and the secretion of extracellular polymeric substances (EPS) increased at 0.7 × 10-3 mg/L. Under higher SMX concentrations (5 mg/L and 10 mg/L), periphyton growth was severely inhibited, the microbial community structure of periphyton were sharply altered, characterized by the cyanobacteria growth suppression and decrease in the diversity index of community. Furthermore, elevated SMX concentrations (5 mg/L and 10 mg/L) increased the ratio of negative relationships from 45.4% to 49.4%, which suggested that high SMX concentrations promoted potential competition among microbes and disrupted the microbial food webs in periphyton. The absolute abundance of sul1 and sul2 genes in T2 and T3 groups were 2-3 orders of magnitude higher than those in control group after 30 days of SMX exposure, which elevated the risk of resistance gene enrichment and dissemination in the natural environment. The study contributes to our understanding of the detrimental effects of antibiotic pollution, which can induce changes in the structure and interaction relationship of microbial communities in aquaculture water.
Collapse
Affiliation(s)
- Xue Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xinyi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuxian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuxi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Haokun Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
16
|
Liu S, Zhu L, Xu Z, Wang L, Wang S, Seif M, Xu X. Toxic effect of chromium on nonspecific immune, bioaccumulation, and tissue structure of Urechis unicinctus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23077-23090. [PMID: 38416356 DOI: 10.1007/s11356-024-32441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
The contamination of toxic heavy metals in aquatic environments has garnered significant global attention due to its detrimental effects on marine organisms and human health. Hexavalent chromium is a typical environmental and occupational heavy metal pollutant, identified as carcinogenic heavy metal. This study aimed to assess the impact of different Cr (VI) concentrations (0.05-2.5 mg/L) on Urechis unicinctus (U. unicinctus) by investigating bioaccumulation, antioxidant defense system, expression of resistance-related genes, and histological issues. A clear concentration-effect relationship was observed in the bioaccumulation of Cr (VI) in muscle tissues of U. unicinctus. Moreover, exposure to Cr (VI) can alter the activities of lysozyme (LSZ), catalase (CAT), and superoxide dismutase (SOD) to enhance cellular defense mechanisms in U. unicinctus. Likewise, maintained the normal protein structure and functional stability by regulating protein folding. The heat shock cognitive protein (HSC70) gene showed an upward and then downward trend after Cr (VI) exposure. At 12 h, the HSC70 gene expression reached the maximum values of 4.75 and 4.61-fold in the 0.1 and 1.5 mg/L groups, respectively. The organism produced a large number of free radicals, and elevated level of metallothionein (MT) was used to scavenge free radicals and alleviate oxidative stress. Additionally, histopathological examination revealed disorganization in the midgut, atrophic changes in intestinal connective tissue, uneven distribution in respiratory tissues, and irregular shape with a significant reduction in epithelial cells within the gastric cavity. These findings can serve as a valuable reference for elucidating the toxicity mechanisms of heavy metals towards marine benthic organisms and enhancing water environment monitoring strategies.
Collapse
Affiliation(s)
- Shun Liu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Long Zhu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - ZhiWei Xu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - LeJiang Wang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Sijie Wang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Mohamed Seif
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China.
- Toxicology and Food Contaminants Department, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, P.O. Box 12622, Giza, Egypt.
| | - Xinghong Xu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| |
Collapse
|
17
|
Schuijt LM, van Drimmelen CKE, Buijse LL, van Smeden J, Wu D, Boerwinkel MC, Belgers DJM, Matser AM, Roessink I, Beentjes KK, Trimbos KB, Smidt H, Van den Brink PJ. Assessing ecological responses to exposure to the antibiotic sulfamethoxazole in freshwater mesocosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123199. [PMID: 38128712 DOI: 10.1016/j.envpol.2023.123199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Antibiotics are a contaminant class of worldwide concern as they are frequently detected in aquatic ecosystems. To better understand the impacts of antibiotics on aquatic ecosystems, we conducted an outdoor mesocosm experiment in which aquatic communities were exposed to different concentrations of the antibiotic sulfamethoxazole (0, 0.15, 1.5, 15 and 150 μg/L). These concentrations include mean (0.15 μg/L) and maximum detected concentrations (15 and 150 μg/L) in aquatic ecosystems worldwide. Sulfamethoxazole was applied once a week for eight consecutive weeks to 1530 L outdoor mesocosms in the Netherlands, followed by an eight-week recovery period. We evaluated phytoplankton-, bacterial- and invertebrate responses during and after sulfamethoxazole exposure and assessed impacts on organic matter decomposition. Contrary to our expectations, consistent treatment-related effects on algal and bacterial communities could not be demonstrated. In addition, sulfamethoxazole did not significantly affect zooplankton and macroinvertebrate communities. However, some effects on specific taxa were observed, with an increase in Mesostoma flatworm abundance (NOEC of <0.15 μg/L). In addition, eDNA analyses indicated negative impacts on the insects Odonata at a sulfamethoxazole concentration of 15 μg/L. Overall, environmentally relevant sulfamethoxazole concentration did not result in direct or indirect impairment of entire aquatic communities and ecological processes in our mesocosms. However, several specific macroinvertebrate taxa demonstrated significant (in)direct effects from sulfamethoxazole. Comparison of the results with the literature showed inconsistent results between studies using comparable, environmentally relevant, concentrations. Therefore, our study highlights the importance of testing the ecological impacts of pharmaceuticals (such as sulfamethoxazole) across multiple trophic levels spanning multiple aquatic communities, to fully understand its potential ecological threats.
Collapse
Affiliation(s)
- Lara M Schuijt
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Chantal K E van Drimmelen
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, the Netherlands; Hamburg University of Applied Science, Ulmenliet 20, D-21033, Hamburg, Germany
| | - Laura L Buijse
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Jasper van Smeden
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Dailing Wu
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Marie-Claire Boerwinkel
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Dick J M Belgers
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Arrienne M Matser
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Ivo Roessink
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Krijn B Trimbos
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and & Research, Wageningen, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
18
|
Frascaroli G, Roberts J, Hunter C, Escudero A. Removal efficiencies of seven frequently detected antibiotics and related physiological responses in three microalgae species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14178-14190. [PMID: 38277110 PMCID: PMC10881744 DOI: 10.1007/s11356-024-32026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
The main objective of this study is to investigate the effect of mixtures of seven widely used human antibiotics (ciprofloxacin, clarithromycin, erythromycin, metronidazole, ofloxacin, sulfamethoxazole, and trimethoprim) on the growth, pH, pigment production, and antibiotics removal of three microalgal species (Auxenochlorella protothecoides, Tetradesmus obliquus, and Chlamydomonas acidophila). Batch assays were conducted with media with antibiotic mixtures at 10, 50, and 100 μg L-1 for each antibiotic. The three microalgae species effectively removed the antibiotics without any growth inhibition, even when exposed to the highest antibiotic concentrations. Biosorption was reported as the primary mechanism for ciprofloxacin, clarithromycin, metronidazole, and ofloxacin, with up to 70% removal, especially in A. protothecoides and C. acidophila. A. protothecoides, a species never investigated for antibiotic removal, was the only microalgae exhibiting bioaccumulation and biodegradation of specific antibiotics, including sulfamethoxazole. Furthermore, in media with the highest antibiotic concentration, all three species exhibited increased chlorophyll (up to 37%) and carotenoid (up to 32%) production, accompanied by a pH decrease of 3 units. Generally, in the present study, it has been observed that physiological responses and the removal of antibiotics by microalgae are interlinked and contingent on the antibiotic levels and types.
Collapse
Affiliation(s)
- Gabriele Frascaroli
- Department of Civil Engineering and Environmental Management, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, UK.
| | - Joanne Roberts
- Department of Applied Science, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, UK
| | - Colin Hunter
- Department of Civil Engineering and Environmental Management, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, UK
| | - Ania Escudero
- Department of Civil Engineering and Environmental Management, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, UK
| |
Collapse
|
19
|
Feng P, Cui H, Wang C, Li X, Duan W. Oxidative stress responses in two marine diatoms during sulfamethoxazole exposure and the toxicological evaluation using the IBR v2 index. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109788. [PMID: 37951287 DOI: 10.1016/j.cbpc.2023.109788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Sulfamethoxazole (SMX) is widely present in water systems, and its stable properties and poor biodegradability can result in high residues of SMX in the water environment. This, in turn, can have detrimental effects on the entire aquatic habitat and human life and health. This study aimed to investigate the toxic effects of SMX on the growth, photosynthetic pigment content, and oxidative stress of two marine microalgae species: Skeletonema costatum and Phaeodactylum tricornutum. SMX demonstrated a significant inhibitory effect on microalgae proliferation, with 96-h median effective concentration (EC50) values of 0.93 mg/L and 4.65 mg/L for S. costatum and P. tricornutum, respectively. At low concentrations, SMX significantly increased the production of Chl a in both microalgae species. However, in the higher concentration SMX treatment group, Chl a content in P. tricornutum experienced a significant decrease, whereas Chl c showed no sensitivity to SMX. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), along with the glutathione (GSH) content, exhibited a significant increasing trend in response to higher SMX concentrations. However, these changes effectively inhibited the accumulation of malondialdehyde (MDA) content. In the treatment group with the highest SMX concentration, MDA content in both microalgae species was significantly higher compared to the control group. The Integrated Biomarker Response Version 2 (IBRv2) index showed a significant positive correlation with SMX concentration, suggesting its potential for assessing the ecotoxicological effects of lower SMX concentrations on marine microalgae.
Collapse
Affiliation(s)
- Pengfei Feng
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei Province, PR China
| | - Hongwu Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong Province, PR China
| | - Chenyu Wang
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei Province, PR China
| | - Xingyu Li
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei Province, PR China
| | - Weiyan Duan
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei Province, PR China.
| |
Collapse
|
20
|
Fayaz T, Renuka N, Ratha SK. Antibiotic occurrence, environmental risks, and their removal from aquatic environments using microalgae: Advances and future perspectives. CHEMOSPHERE 2024; 349:140822. [PMID: 38042426 DOI: 10.1016/j.chemosphere.2023.140822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/14/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Antibiotic pollution has caused a continuous increase in the development of antibiotic-resistant bacteria and antibiotic-resistant genes (ARGs) in aquatic environments worldwide. Algae-based bioremediation technology is a promising eco-friendly means to remove antibiotics and highly resistant ARGs, and the generated biomass can be utilized to produce value-added products of industrial significance. This review discussed the prevalence of antibiotics and ARGs in aquatic environments and their environmental risks to non-target organisms. The potential of various microalgal species for antibiotic and ARG removal, their mechanisms, strategies for enhanced removal, and future directions were reviewed. Antibiotics can be degraded into non-toxic compounds in microalgal cells through the action of extracellular polymeric substances, glutathione-S-transferase, and cytochrome P450; however, antibiotic stress can alter microalgal gene expression and growth. This review also deciphered the effect of antibiotic stress on microalgal physiology, biomass production, and biochemical composition that can impact their commercial applications.
Collapse
Affiliation(s)
- Tufail Fayaz
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Nirmal Renuka
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India.
| | - Sachitra Kumar Ratha
- Algology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| |
Collapse
|
21
|
Xie Z, Li P, Lei X, Tang Q, Zhao X, Tang J, He X. Unraveling the combined toxicity and removal mechanisms of fluoxetine and sertraline co-contaminants by the freshwater microalga Chlorella pyrenoidosa. CHEMOSPHERE 2023; 343:140217. [PMID: 37739131 DOI: 10.1016/j.chemosphere.2023.140217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine (FLX) and sertraline (SER), are among the most widely detected pharmaceuticals in aquatic environments, and they usually occur as mixtures. However, little is known about the combined toxicity of SSRI mixtures to microalgae and the associated removal mechanisms. This study investigated the combined toxicity of FLX and SER to the growth, photosynthetic activity, and antioxidant system of Chlorella pyrenoidosa and their removal mechanisms. The results showed that FLX and SER strongly inhibited microalgal growth with 96 h EC50 values of 493 and 61.1 μg/L, respectively. Additionally, the combined toxicity of FLX and SER towards microalgal growth exhibited an additive effect. After 4 days of short-term exposure, FLX, SER, and their mixtures caused photosynthetic damage and oxidative stress in microalgae, and the mixture's toxicity was stronger than those of individuals. However, the adverse effects on microalgal growth, photosynthetic activity, and antioxidant system were alleviated with increasing exposure time. Meanwhile, C. pyrenoidosa efficiently removed FLX (67.59%-99.08%) and SER (94.92%-99.11%) individually after 11 days of cultivation. Biodegradation (59.25%-86.21%) was the prominent removal mechanism of FLX, while both biodegradation (48.08%-88.17%) and bioaccumulation (4.74%-43.38%) contributed significantly to SER removal. The co-existence of FLX and SER lowered the removal rate and biodegradation amount of both compounds. Besides, SER inhibited C. pyrenoidosa's N-demethylation and O-dealkylation of FLX, while co-existing with FLX inhibited the excretion of the N-deamination product of SER from microalgal cells. Furthermore, the principal component analysis indicated that the removal performance of FLX, SER, and their mixtures correlated strongly to the microalgae's physiological and biochemical states. These results highlighted the significance of co-contamination during ecological risk assessments and microalgae-based bioremediation of SSRIs.
Collapse
Affiliation(s)
- Zhengxin Xie
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Pengxiang Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Xianyan Lei
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Qiyue Tang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jun Tang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| | - Xiaolei He
- Anhui Huameng Environmental Engineering Technology Co., Ltd, Maanshan, 243000, China
| |
Collapse
|
22
|
Cao Y, Huang R, Li T, Pan D, Shao S, Wu X. Effect of antibiotics on the performance of moving bed biofilm reactor for simultaneous removal of nitrogen, phosphorus and copper(II) from aquaculture wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115590. [PMID: 37839187 DOI: 10.1016/j.ecoenv.2023.115590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Co-existence of NO3--N, antibiotics, phosphorus (P), and Cu2+ in aquaculture wastewater has been frequently detected, but simultaneous removal and relationship between enzyme and pollutants removal are far from satisfactory. In this study, simultaneous removal of NO3--N, P, antibiotics, and Cu2+ by moving bed biofilm reactor (MBBR) was established. About 95.51 ± 3.40% of NO3--N, 61.24 ± 3.51% of COD, 18.74 ± 1.05% of TP, 88% of Cu2+ were removed synchronously in stage I, and antibiotics removal in stages I-IV was 73.00 ± 1.32%, 79.53 ± 0.88%, 51.07 ± 3.99%, and 33.59 ± 2.73% for tetracycline (TEC), oxytetracycline (OTC), chlortetracycline hydrochloride (CTC), sulfamethoxazole (SMX), respectively. The removal kinetics and toxicity of MBBR effluent were examined, indicating that the first order kinetic model could better reflect the removal of NO3--N, TN, and antibiotics. Co-existence of multiple antibiotics and Cu2+ was the most toxicity to E. coli growth. Key enzyme activity, reactive oxygen species (ROS) level, and its relationship with TN removal were investigated. The results showed that enzymes activities were significantly different under the co-existence of antibiotics and Cu2+. Meanwhile, different components of biofilm were extracted and separated, and enzymatic and non-enzymatic effects of biofilm were evaluated. The results showed that 70.00%- 94.73% of Cu2+ was removed by extracellular enzyme in stages I-V, and Cu2+ removal was mainly due to the action of extracellular enzyme. Additionally, microbial community of biofilm was assessed, showing that Proteobacteria, Bacteroidetes, and Gemmatimonadetes played an important role in the removal of NO3--N, Cu2+, and antibiotics at the phylum level. Finally, chemical bonds of attached and detached biofilm were characterized by X-ray photoelectron spectroscopy (XPS), and effect of nitrogen (N) and P was proposed under the co-existence of antibiotics and Cu2+. This study provides a theoretical basis for further exploring the bioremediation of NO3--N, Cu2+, and antibiotics in aquaculture wastewater.
Collapse
Affiliation(s)
- Ying Cao
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Ruiheng Huang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Tenghao Li
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Dandan Pan
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Sicheng Shao
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China.
| |
Collapse
|
23
|
Mou Y, Liu N, Lu T, Jia C, Xu C, Song M. The effects of carbon nitrogen ratio and salinity on the treatment of swine digestion effluent simultaneously producing bioenergy by microalgae biofilm. CHEMOSPHERE 2023; 339:139694. [PMID: 37536538 DOI: 10.1016/j.chemosphere.2023.139694] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
In order to remove high concentrations of ammonia nitrogen (NH4+-N) and refractory sulfamethazine (SM2) from swine digestion effluent, different carbon/nitrogen (C/N) ratios and salinity were used to determine the effects of pollutants removal in the microalgae biofilm system. Microalgae biofilm treatment under optimal environmental conditions in synthetic swine digestion effluent were C/N ratio of 20 and salinity of 140 mM. In order to make the actual swine digestion effluent discharge up to the standard, three different two-cycle treatments (suspended microalgae, microalgae biofilm, microalgae biofilm under the optimal conditions) were studied. The results showed that after two-cycle treatment with microalgae biofilm under the optimal conditions, the actual swine digestion effluent levels of total nitrogen (TN), NH4+-N, total phosphorus (TP), chemical oxygen demand (COD), SM2 were 22.65, 9.32, 4.11, 367.28, and 0.99 mg L-1, respectively, which could satisfy the discharge standards for livestock and poultry wastewater in China. At the same time, first-order kinetic simulation equations suggested a degradation half-life of 4.85 d for SM2 under optimal conditions in microalgae biofilm, and microbial community analysis indicated that the dominant genus was Halomonas. Furthermore, 35.66% of lipid, 32.56% of protein and 18.44% of polysaccharides were harvested after two-cycle in microalgae biofilm treatment under optimal environmental conditions. These results indicated that the regulation of C/N and salinity in microalgae biofilm for the treatment of swine digestion effluent was a high-efficiency strategy to simultaneously achieve wastewater treatment and bioenergy production.
Collapse
Affiliation(s)
- Yiwen Mou
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Na Liu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Tianxiang Lu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Cong Jia
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Chongqing Xu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China; Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250013, PR China
| | - Mingming Song
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China.
| |
Collapse
|
24
|
Zhang W, Guan A, Peng Q, Qi W, Qu J. Microbe-mediated simultaneous nitrogen reduction and sulfamethoxazole/N-acetylsulfamethoxazole removal in lab-scale constructed wetlands. WATER RESEARCH 2023; 242:120233. [PMID: 37352676 DOI: 10.1016/j.watres.2023.120233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Constructed wetlands (CWs) are increasingly used to treat complex pollution such as nitrogen and emerging organic micropollutants from anthropogenic sources. In this study, the denitrification, anaerobic ammonium oxidation, dissimilatory nitrate reduction to ammonium, and nitrous oxide release rates following exposure to the frequently detected sulfonamides sulfamethoxazole (SMX) and its human metabolite, N-acetylsulfamethoxazole (N-SMX), were investigated in lab-scale CWs. Over a period of 190 d, the denitrification rates were noticeably inhibited in the SMX and N-SMX groups at week 5. Subsequently, the denitrification rates recovered, accompanied by an increase in the relevant nitrogen reduction and antibiotic resistance genes (ARGs). The composition of the microbial community also changed during this process. After the denitrification rates recovered, Burkholderia_Paraburkholderia and Gordonia exhibited a significant positive correlation with SMX exposure, which simultaneously reduced nitrate concentrations and degraded antibiotics. Burkholderia_Paraburkholderia is a key carrier of ARGs. Finally, nitrogen reduction (> 90%) and antibiotic removal (> 80%) also recovered in both SMX- and N-SMX-exposed lab-scale CWs during the operation, which revealed the interaction of SMX or N-SMX removal and nitrogen reduction.
Collapse
Affiliation(s)
- Weihang Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aomei Guan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Peng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Yadav N, Ahn HJ, Kurade MB, Ahn Y, Park YK, Khan MA, Salama ES, Li X, Jeon BH. Fate of five bisphenol derivatives in Chlamydomonas mexicana: Toxicity, removal, biotransformation and microalgal metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131504. [PMID: 37121039 DOI: 10.1016/j.jhazmat.2023.131504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
Bisphenols (BPs) are recognized as emerging contaminants because of their estrogenic properties and frequent occurrence in environmental matrices. Here, we evaluated the toxic effects of five common BPs on freshwater microalga Chlamydomonas mexicana and removal of the BPs by the alga. Bisphenols -AF (BPAF), -B (BPB), and -Z (BPZ) (96 h, EC50 1.78-12.09 mg·L-1) exhibited higher toxicity to C. mexicana compared to bisphenol -S (BPS) and -F (BPF) (96 h, EC50 30.53-85.48 mg·L-1). In contrast, the mixture of BPs exhibited acute toxicity (96 h, EC50 8.07 mg·L-1). After 14 days, C. mexicana had effectively removed 61%, 99%, 55%, 87%, and 89% of BPS, BPF, BPAF, BPB, and BPZ, respectively, at 1 mg L-1. The biotransformed products of all five BPs were analyzed using UHPLC QTOF, and their toxicity was predicted. All biotransformed products were observed to be less toxic than the parent compounds. The fatty acid composition of C. mexicana after exposure to the BP mixture was predominantly palmitic acid (34.14%), followed by oleic acid (18.9%), and γ-linolenic acid (10.79%). The results provide crucial information on the ecotoxicity of these five BPs and their removal by C. mexicana; the resulting biomass is a potential feedstock for producing biodiesel.
Collapse
Affiliation(s)
- Nikita Yadav
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun-Jo Ahn
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yongtae Ahn
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
26
|
Nkoh JN, Oderinde O, Etafo NO, Kifle GA, Okeke ES, Ejeromedoghene O, Mgbechidinma CL, Oke EA, Raheem SA, Bakare OC, Ogunlaja OO, Sindiku O, Oladeji OS. Recent perspective of antibiotics remediation: A review of the principles, mechanisms, and chemistry controlling remediation from aqueous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163469. [PMID: 37061067 DOI: 10.1016/j.scitotenv.2023.163469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
Antibiotic pollution is an ever-growing concern that affects the growth of plants and the well-being of animals and humans. Research on antibiotics remediation from aqueous media has grown over the years and previous reviews have highlighted recent advances in antibiotics remediation technologies, perspectives on antibiotics ecotoxicity, and the development of antibiotic-resistant genes. Nevertheless, the relationship between antibiotics solution chemistry, remediation technology, and the interactions between antibiotics and adsorbents at the molecular level is still elusive. Thus, this review summarizes recent literature on antibiotics remediation from aqueous media and the adsorption perspective. The review discusses the principles, mechanisms, and solution chemistry of antibiotics and how they affect remediation and the type of adsorbents used for antibiotic adsorption processes. The literature analysis revealed that: (i) Although antibiotics extraction and detection techniques have evolved from single-substrate-oriented to multi-substrates-oriented detection technologies, antibiotics pollution remains a great danger to the environment due to its trace level; (ii) Some of the most effective antibiotic remediation technologies are still at the laboratory scale. Thus, upscaling these technologies to field level will require funding, which brings in more constraints and doubts patterning to whether the technology will achieve the same performance as in the laboratory; and (iii) Adsorption technologies remain the most affordable for antibiotic remediation. However, the recent trends show more focus on developing high-end adsorbents which are expensive and sometimes less efficient compared to existing adsorbents. Thus, more research needs to focus on developing cheaper and less complex adsorbents from readily available raw materials. This review will be beneficial to stakeholders, researchers, and public health professionals for the efficient management of antibiotics for a refined decision.
Collapse
Affiliation(s)
- Jackson Nkoh Nkoh
- Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305000100, Nairobi, Kenya
| | - Olayinka Oderinde
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria.
| | - Nelson Oshogwue Etafo
- Programa de Posgrado en Ciencia y Tecnología de Materiales, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N Republica, 25280 Saltillo, Coahuila, Mexico
| | - Ghebretensae Aron Kifle
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305000100, Nairobi, Kenya; Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Department of Chemistry, Mai Nefhi College of Science, National Higher Education and Research Institute, Asmara 12676, Eritrea
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305000100, Nairobi, Kenya; Department of Biochemistry, Faculty of Biological Science & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Chiamaka Linda Mgbechidinma
- School of Life Sciences, Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State 200243, Nigeria
| | - Emmanuel A Oke
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, India
| | - Saheed Abiola Raheem
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Omonike Christianah Bakare
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Olumuyiwa O Ogunlaja
- Department of Chemical Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Omotayo Sindiku
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Olatunde Sunday Oladeji
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| |
Collapse
|
27
|
Yang J, Ahmed W, Mehmood S, Ou W, Li J, Xu W, Wang L, Mahmood M, Li W. Evaluating the Combined Effects of Erythromycin and Levofloxacin on the Growth of Navicula sp. and Understanding the Underlying Mechanisms. PLANTS (BASEL, SWITZERLAND) 2023; 12:2547. [PMID: 37447108 DOI: 10.3390/plants12132547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023]
Abstract
Navicula sp., a type of benthic diatom, plays a crucial role in the carbon cycle as a widely distributed algae in water bodies, making it an essential primary producer in the context of global carbon neutrality. However, using erythromycin (ERY) and levofloxacin (LEV) in medicine, livestock, and aquaculture has introduced a new class of pollutants known as antibiotic pollutants, which pose potential threats to human and animal health. This study aimed to investigate the toxic effects of ERY and LEV, individually or in combination, on the growth, antioxidant system, chlorophyll synthesis, and various cell osmotic pressure indexes (such as soluble protein, proline, and betaine) of Navicula sp. The results indicated that ERY (1 mg/L), LEV (320 mg/L), and their combined effects could inhibit the growth of Navicula sp. Interestingly, the combination of these two drugs exhibited a time-dependent effect on the chlorophyll synthesis of Navicula sp., with ERY inhibiting the process while LEV promoted it. Furthermore, after 96 h of exposure to the drugs, the activities of GSH-Px, POD, CAT, and the contents of MDA, proline, and betaine increased. Conversely, the actions of GST and the contents of GSH and soluble protein decreased in the ERY group. In the LEV group, the activities of POD and CAT and the contents of GSH, MDA, proline, and betaine increased, while the contents of soluble protein decreased. Conversely, the mixed group exhibited increased POD activity and contents of GSH, MDA, proline, betaine, and soluble protein. These findings suggest that antibiotics found in pharmaceutical and personal care products (PPCPs) can harm primary marine benthic eukaryotes. The findings from the research on the possible hazards linked to antibiotic medications in aquatic ecosystems offer valuable knowledge for ensuring the safe application of these drugs in environmental contexts.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Wenjie Ou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Jiannan Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Wenxin Xu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Lu Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| |
Collapse
|
28
|
Yan H, Xu L, Su J, Wei H, Li X, Cao S. Biotransformation of sulfamethoxazole by newly isolated surfactant-producing strain Proteus mirabilis sp. ZXY4: Removal efficiency, pathways, and mechanisms. BIORESOURCE TECHNOLOGY 2023; 385:129422. [PMID: 37406832 DOI: 10.1016/j.biortech.2023.129422] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
In this study, the SMX degrading strain Proteus mirabilis sp. ZXY4 with surfactant manufacturing potential was isolated from sludge utilizing blood agar and CTAB agar plate. FTIR analysis indicated that the biosurfactant generated by strain ZXY4 was glycolipid. 3D-EEM demonstrated that SMX biodegradation was strongly connected to biosurfactants, the synergistic effect of biodegradation and biosurfactant made strain ZXY4 have excellent SMX degradation performance. Under the optimal conditions of inoculation dosage of 15%, temperature of 30 ℃, pH of 7 and initial SMX concentration of 5 mg L-1, strain ZXY4 could completely degrade SMX within 24 h. SMX biodegrades at low concentrations (less than5 mg L-1) followed by the zero-order kinetic model, high concentration (>5 mg L-1) is more consistent with the first-order kinetic model. LC-MS analysis revealed 14 SMX degradation intermediates, and five potential biodegradation mechanisms were postulated. The findings provide new insights into the biodegradation of SMX.
Collapse
Affiliation(s)
- Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ling Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Hao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Shumiao Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
29
|
Amaro HM, Salgado EM, Nunes OC, Pires JCM, Esteves AF. Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117678. [PMID: 36948147 DOI: 10.1016/j.jenvman.2023.117678] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Water is the most valuable resource on the planet. However, massive anthropogenic activities generate threatening levels of biological, organic, and inorganic pollutants that are not efficiently removed in conventional wastewater treatment systems. High levels of conventional pollutants (carbon, nitrogen, and phosphorus), emerging chemical contaminants such as antibiotics, and pathogens (namely antibiotic-resistant ones and related genes) jeopardize ecosystems and human health. Conventional wastewater treatment systems entail several environmental issues: (i) high energy consumption; (ii) high CO2 emissions; and (iii) the use of chemicals or the generation of harmful by-products. Hence, the use of microalgal systems (entailing one or several microalgae species, and in consortium with bacteria) as environmental agents towards wastewater treatment has been seen as an environmentally friendly solution to remove conventional pollutants, antibiotics, coliforms and antibiotic resistance genes. In recent years, several authors have evaluated the use of microalgal systems for the treatment of different types of wastewater, such as agricultural, municipal, and industrial. Generally, microalgal systems can provide high removal efficiencies of: (i) conventional pollutants, up to 99%, 99%, and 90% of total nitrogen, total phosphorus, and/or organic carbon, respectively, through uptake mechanisms, and (ii) antibiotics frequently found in wastewaters, such as sulfamethoxazole, ciprofloxacin, trimethoprim and azithromycin at 86%, 65%, 42% and 93%, respectively, through the most desirable microalgal mechanism, biodegradation. Although pathogens removal by microalgal species is complex and very strain-specific, it is also possible to attain total coliform and Escherichia coli removal of 99.4% and 98.6%, respectively. However, microalgal systems' effectiveness strongly relies on biotic and abiotic conditions, thus the selection of operational conditions is critical. While the combination of selected species (microalgae and bacteria), ratios and inoculum concentration allow the efficient removal of conventional pollutants and generation of high amounts of biomass (that can be further converted into valuable products such as biofuels and biofertilisers), abiotic factors such as pH, hydraulic retention time, light intensity and CO2/O2 supply also have a crucial role in conventional pollutants and antibiotics removal, and wastewater disinfection. However, some rationale must be considered according to the purpose. While alkaline pH induces the hydrolysis of some antibiotics and the removal of faecal coliforms, it also decreases phosphates solubility and induces the formation of ammonium from ammonia. Also, while CO2 supply increases the removal of E. coli and Pseudomonas aeruginosa, as well as the microalgal growth (and thus the conventional pollutants uptake), it decreases Enterococcus faecalis removal. Therefore, this review aims to provide a critical review of recent studies towards the application of microalgal systems for the efficient removal of conventional pollutants, antibiotics, and pathogens; discussing the feasibility, highlighting the advantages and challenges of the implementation of such process, and presenting current case-studies of different applications of microalgal systems.
Collapse
Affiliation(s)
- Helena M Amaro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Eva M Salgado
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - José C M Pires
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Ana F Esteves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
30
|
Chu Y, Li S, Xie P, Chen X, Li X, Ho SH. New insight into the concentration-dependent removal of multiple antibiotics by Chlorella sorokiniana. BIORESOURCE TECHNOLOGY 2023; 385:129409. [PMID: 37392966 DOI: 10.1016/j.biortech.2023.129409] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Microalgae have attracted increasing attention as an environmentally friendly treatment for antibiotics. However, the effect of antibiotic concentration on the removal ability of microalgae with the underlying mechanisms remains unclear. Thus, this work investigates the removal of tetracycline (TET), sulfathiazole (STZ), and ciprofloxacin (CIP) at different concentrations using Chlorella sorokiniana. The results indicate that microalgae have a concentration-dependent effect on antibiotic removal; however, the removal trends for the three antibiotics differed significantly. Specifically, TET showed nearly 100% removal efficiency at any concentration. The high concentration of STZ inhibited microalgal photosynthesis and induced the production of ROS, leading to antioxidant damage and inhibiting removal efficiency. Conversely, CIP enhanced the ability of microalgae to remove CIP by inducing a dual peroxidase and cytochrome p450 enzyme response. Furthermore, the economic analysis demonstrated that microalgae treatment antibiotics were calculated to be 4.93€/m3, which becomes cheaper than the other microalgae water treatment process.
Collapse
Affiliation(s)
- Yuhao Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
31
|
Saha S, Xiong JQ, Patil SM, Ha GS, Hoh JK, Park HK, Chung W, Chang SW, Khan MA, Park HB, Jeon BH. Dissemination of sulfonamide resistance genes in digester microbiome during anaerobic digestion of food waste leachate. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131200. [PMID: 36958158 DOI: 10.1016/j.jhazmat.2023.131200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
The preeminence of sulfonamide drug resistance genes in food waste (FW) and the increased utilization of high-strength organic FW in anaerobic digestion (AD) to enhance methane production have raised severe public health concerns in wastewater treatment plants worldwide. In this regard, the dissemination patterns of different sulfonamide resistance genes (sul1 and sul2) and their impact on the digester core microbiota during AD of FW leachate (FWL) were evaluated. The presence of various sulfonamide antibiotics (SAs) in FWL digesters improved the final methane yield by 37 % during AD compared with FWL digesters without SAs. Microbial population shifts towards hydrolytic, acidogenic, and acetogenic bacteria in the phyla Actinobacteriota, Bacteroidota, Chloroflexi, Firmicutes, Proteobacteria, and Synergistota occurred due to SA induced substrate digestion and absorption through active transport; butanoate, propanoate, and pyruvate metabolism; glycolysis; gluconeogenesis; the citrate cycle; and pentose phosphate pathway. The initial dominance of Methanosaeta (89-96 %) declined to 47-53 % as AD progressed and shifted towards Methanosarcina (40 %) in digesters with the highest SA concentrations at the end of AD. Dissemination of sul1 depended on class 1 integron gene (intl1)-based horizontal gene transfer to pathogenic members of Chloroflexi, Firmicutes, and Patescibacteria, whereas sul2 was transmitted to Synergistota independent of intl1. Low susceptibility and ability to utilize SAs during methanogenesis shielded methanogenic archaea against selection pressure, thus preventing them from interacting with sul or intl1 genes, thereby minimizing the risk of antibiotic resistance development. The observed emergence of cationic antimicrobial peptide, vancomycin, and β-lactam resistance in the core microbiota during AD of FWL in the presence of SAs suggests that multidrug resistance caused by bacterial transformation could lead to an increase in the environmental resistome through wastewater sludge treatment.
Collapse
Affiliation(s)
- Shouvik Saha
- Natural Resources Research Institute, University of Minnesota Duluth, Duluth, MN 55812, USA; Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong, China
| | - Swapnil M Patil
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Geon-Soo Ha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Jeong-Kyu Hoh
- Department of Obstetrics and Gynecology, College of Medicine, Hanyang University, Seoul 04763, the Republic of Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, College of Medicine, Hanyang University, Seoul 04763, the Republic of Korea
| | - Woojin Chung
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, the Republic of Korea
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, the Republic of Korea
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, the Republic of Korea.
| |
Collapse
|
32
|
Wang H, Hu C, Wang Y, Zhao Y, Jin C, Guo L. Elucidating microalgae-mediated metabolism for sulfadiazine removal mechanism and transformation pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121598. [PMID: 37031851 DOI: 10.1016/j.envpol.2023.121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Sulfadiazine (SDZ) as a typical sulfonamide antibiotic is commonly detected in wastewater, and its removal mechanism and transformation pathways in microalgae-mediated system remain unclear. In this study, the SDZ removal through hydrolysis, photodegradation, and biodegradation by Chlorella pyrenoidosa was investigated. Higher superoxide dismutase activity and biochemical components accumulation were obtained under SDZ stress. The SDZ removal efficiencies at different initial concentrations were 65.9-67.6%, and the removal rate followed pseudo first-order kinetic model. Batch tests and HPLC-MS/MS analyses suggested that biodegradation and photodegradation through the reactions of amine group oxidation, ring opening, hydroxylation, and the cleavage of S-N, C-N, C-S bond were dominant removal mechanisms and pathways. Characteristics of transformation products were evaluated to analyze their environmental impacts. High-value products of lipid, carbohydrate, and protein in microalgae biomass presented economic potential of microalgae-mediated metabolism for SDZ removal. The findings of this study broadened the knowledge for the microalgae self-protection from SDZ stress and provided a deep insight into SDZ removal mechanism and transformation pathways.
Collapse
Affiliation(s)
- Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Caiye Hu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
33
|
Wang Y, Lin R, Cao Y, Li S, Cui R, Guo W, Ho SH, Kit Leong Y, Lee DJ, Chang JS. Simultaneous Removal of Sulfamethoxazole during Fermentative Production of Short-Chain Fatty Acids. BIORESOURCE TECHNOLOGY 2023:129317. [PMID: 37315625 DOI: 10.1016/j.biortech.2023.129317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
This study explores the simultaneous sulfamethoxazole (SMX) removal and short-chain fatty acids (SCFAs) production by a Clostridium sensu stricto-dominated microbial consortium. SMX is a commonly prescribed and persistent antimicrobial agent frequently detected in aquatic environments, while the prevalence of antibiotic-resistant genes limits the biological removal of SMX. Under strictly anaerobic conditions, sequencing batch cultivation coupled with co-metabolism resulted in the production of butyric acid, valeric acid, succinic acid, and caproic acid. Continuous cultivation in a CSTR achieved a maximum butyric acid production rate and yield of 0.167 g/L/h and 9.56 mg/g COD, respectively, while achieving a maximum SMX degradation rate and removal capacity of 116.06 mg/L/h and 55.8 g SMX/g biomass. Furthermore, continuous anaerobic fermentation reduced sul genes prevalence, thus limiting the transmission of antibiotic resistance genes during antibiotic degradation. These findings suggest a promising approach for efficient antibiotic elimination while simultaneously producing valuable products (e.g., SCFAs).
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264000, China
| | - Rongrong Lin
- School of Environmental and Materials Engineering, Yantai University, Yantai 264000, China
| | - Yushuang Cao
- School of Environmental and Materials Engineering, Yantai University, Yantai 264000, China
| | - Shuangfei Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Rong Cui
- School of Environmental and Materials Engineering, Yantai University, Yantai 264000, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
34
|
Zribi I, Zili F, Ben Ali R, Masmoudi MA, Sayadi S, Ben Ouada H, Chamkha M. Trends in microalgal-based systems as a promising concept for emerging contaminants and mineral salt recovery from municipal wastewater. ENVIRONMENTAL RESEARCH 2023:116342. [PMID: 37290616 DOI: 10.1016/j.envres.2023.116342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/20/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
In the context of climate change leading to water scarcity for many people in the world, the treatment of municipal wastewater becomes a necessity. However, the reuse of this water requires secondary and tertiary treatment processes to reduce or eliminate a load of dissolved organic matter and various emerging contaminants. Microalgae have shown hitherto high potential applications of wastewater bioremediation thanks to their ecological plasticity and ability to remediate several pollutants and exhaust gases from industrial processes. However, this requires appropriate cultivation systems allowing their integration into wastewater treatment plants at appropriate insertion costs. This review aims to present different open and closed systems currently used in the treatment of municipal wastewater by microalgae. It provides an exhaustive approach to wastewater treatment systems using microalgae, integrating the most suitable used microalgae species and the main pollutants present in the treatment plants, with an emphasis on emerging contaminants. The remediation mechanisms as well as the capacity to sequester exhaust gases were also described. The review examines constraints and future perspectives of microalgae cultivation systems in this line of research.
Collapse
Affiliation(s)
- Ines Zribi
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, B.P 1177, Sfax, 3018, Tunisia.
| | - Fatma Zili
- Laboratory of Blue Biotechnology and Aquatic Bioproducts, National Institute of Marine Sciences and Technologies, 5000, Monastir, Tunisia
| | - Rihab Ben Ali
- Laboratory of Blue Biotechnology and Aquatic Bioproducts, National Institute of Marine Sciences and Technologies, 5000, Monastir, Tunisia
| | - Mohamed Ali Masmoudi
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, B.P 1177, Sfax, 3018, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| | - Hatem Ben Ouada
- Laboratory of Blue Biotechnology and Aquatic Bioproducts, National Institute of Marine Sciences and Technologies, 5000, Monastir, Tunisia.
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, B.P 1177, Sfax, 3018, Tunisia.
| |
Collapse
|
35
|
Yang L, Vadiveloo A, Chen AJ, Liu WZ, Chen DZ, Gao F. Supplementation of exogenous phytohormones for enhancing the removal of sulfamethoxazole and the simultaneous accumulation of lipid by Chlorella vulgaris. BIORESOURCE TECHNOLOGY 2023; 378:129002. [PMID: 37019415 DOI: 10.1016/j.biortech.2023.129002] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
In this study, the phytohormone gibberellins (GAs) were used to enhance sulfamethoxazole (SMX) removal and lipid accumulation in the microalgae Chlorella vulgaris. At the concentration of 50 mg/L GAs, the SMX removal achieved by C. vulgaris was 91.8 % while the lipid productivity of microalga was at 11.05 mg/L d-1, which were much higher than that without GAs (3.5 % for SMX removal and 0.52 mg/L d-1 for lipid productivity). Supplementation of GAs enhanced the expression of antioxidase-related genes in C. vulgaris as a direct response towards the toxicity of SMX. In addition, GAs increased lipid production of C. vulgaris by up-regulating the expression of genes related to carbon cycle of microalgal cells. In summary, exogenous GAs promoted the stress tolerance and lipid accumulation of microalgae at the same time, which is conducive to improving the economic benefits of microalgae-based antibiotics removal as well as biofuel production potential.
Collapse
Affiliation(s)
- Lei Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Ai-Jie Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Wen-Zhu Liu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Dong-Zhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China.
| |
Collapse
|
36
|
Rahman MN, Shozib SH, Akter MY, Islam ARMT, Islam MS, Sohel MS, Kamaraj C, Rakib MRJ, Idris AM, Sarker A, Malafaia G. Microplastic as an invisible threat to the coral reefs: Sources, toxicity mechanisms, policy intervention, and the way forward. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131522. [PMID: 37146332 DOI: 10.1016/j.jhazmat.2023.131522] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
Microplastic (MP) pollution waste is a global macro problem, and research on MP contamination has been done in marine, freshwater, and terrestrial ecosystems. Preventing MP pollution from hurting them is essential to maintaining coral reefs' ecological and economic benefits. However, the public and scientific communities must pay more attention to MP research on the coral reef regions' distribution, effects, mechanisms, and policy evaluations. Therefore, this review summarizes the global MP distribution and source within the coral reefs. Current knowledge extends the impacts of MP on coral reefs, existing policy, and further recommendations to mitigate MPs contamination on corals are critically analyzed. Furthermore, mechanisms of MP on coral and human health are also highlighted to pinpoint research gaps and potential future studies. Given the escalating plastic usage and the prevalence of coral bleaching globally, there is a pressing need to prioritize research efforts on marine MPs that concentrate on critical coral reef areas. Such investigations should encompass an extensive and crucial understanding of the distribution, destiny, and effects of the MPs on human and coral health and the potential hazards of those MPs from an ecological viewpoint.
Collapse
Affiliation(s)
- Md Naimur Rahman
- Department of Geography and Environmental Science, Begum Rokeya University, Rangpur 5400, Bangladesh
| | | | - Mst Yeasmin Akter
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md Salman Sohel
- Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Aniruddha Sarker
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
37
|
Liu K, Li J, Zhou Y, Li W, Cheng H, Han J. Combined toxicity of erythromycin and roxithromycin and their removal by Chlorella pyrenoidosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114929. [PMID: 37084660 DOI: 10.1016/j.ecoenv.2023.114929] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/12/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
The ecological effects of antibiotics in surface water have attracted increasing research attention. In this study, we investigated the combined ecotoxicity of erythromycin (ERY) and roxithromycin (ROX) on the microalgae, Chlorella pyrenoidosa, and the removal of ERY and ROX during the exposure. The calculated 96-h median effect concentration (EC50) values of ERY, ROX, and their mixture (2:1 w/w) were 7.37, 3.54, and 7.91 mg∙L-1, respectively. However, the predicted EC50 values of ERY+ROX mixture were 5.42 and 1.51 mg∙L-1, based on the concentration addition and independent action models, respectively. This demonstrated the combined toxicity of ERY+ ROX mixture showed an antagonistic effect on Chlorella pyrenoidosa. During the 14-d culture, low-concentration (EC10) treatments with ERY, ROX, and their mixture caused the growth inhibition rate to decrease during the first 12 d and increase slightly at 14 d. In contrast, high-concentration (EC50) treatments significantly inhibited microalgae growth (p < 0.05). Changes in the total chlorophyll contents, SOD and CAT activities, and MDA contents of microalgae suggested that individual treatments with ERY and ROX induced higher oxidative stress than combined treatments. After the 14-d culture time, residual Ery in low and high concentration Ery treatments were 17.75% and 74.43%, and the residual Rox were 76.54% and 87.99%, but the residuals were 8.03% and 73.53% in ERY+ ROX combined treatment. These indicated that antibiotic removal efficiency was higher in combined treatments than that in individual treatments, especially at low concentrations (EC10). Correlation analysis suggested that there was a significant negative correlation between the antibiotic removal efficiency of C. pyrenoidosa and their SOD activity and MDA content, and the enhanced antibiotic removal ability of microalgae benefited from increased cell growth and chlorophyll content. Findings in this study contribute to predicting ecological risk of coexisting antibiotics in aquatic environment, and to improving biological treatment technology of antibiotics in wastewater.
Collapse
Affiliation(s)
- Kai Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Jiping Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Yuhao Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Hu Cheng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Jiangang Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| |
Collapse
|
38
|
Ghaffar I, Hussain A, Hasan A, Deepanraj B. Microalgal-induced remediation of wastewaters loaded with organic and inorganic pollutants: An overview. CHEMOSPHERE 2023; 320:137921. [PMID: 36682632 DOI: 10.1016/j.chemosphere.2023.137921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/26/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The recent surge in industrialization has intensified the accumulation of various types of organic and inorganic pollutants due to the illegal dumping of partially and/or untreated wastewater effluents in the environment. The pollutants emitted by several industries pose serious risk to the environment, animals and human beings. Management and diminution of these hazardous organic pollutants have become an incipient research interest. Traditional physiochemical methods are energy intensive and produce secondary pollutants. So, bioremediation via microalgae has appeared to be an eco-friendly and sustainable technique to curb the adverse effects of organic and inorganic contaminants because microalgae can degrade complex organic compounds and convert them into simpler and non-toxic substances without the release of secondary pollutants. Even some of the organic pollutants can be exploited by microalgae as a source of carbon in mixotrophic cultivation. Literature survey has revealed that use of the latest modification techniques for microalgae such as immobilization (on alginate, carrageena and agar), pigment-extraction, and pretreatment (with acids) have enhaced their bioremedial potential. Moreover, microalgal components i.e., biopolymers and extracellular polymeric substances (EPS) can potentially be exploited in the biosorption of pollutants. Though bioremediation of wastewaters by microalgae is quite well-studied realm but some aspects like structural and functional responses of microalgae toward pollutant derivatives/by-products (formed during biodegradation), use of genetic engineering to improve the tolerance of microalgae against higher concentrations of polluatans, and harvesting cost reduction, and monitoring of parameters at large-scale still need more focus. This review discusses the accumulation of different types of pollutants into the environment through various sources and the mechanisms used by microalgae to degrade commonly occurring organic and inorganic pollutants.
Collapse
Affiliation(s)
- Imania Ghaffar
- Applied and Environmental Microbiology Laboratory, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Hussain
- Applied and Environmental Microbiology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Ali Hasan
- Applied and Environmental Microbiology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Balakrishnan Deepanraj
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia.
| |
Collapse
|
39
|
Seoane M, Conde-Pérez K, Esperanza M, Cid Á, Rioboo C. Unravelling joint cytotoxicity of ibuprofen and oxytetracycline on Chlamydomonas reinhardtii using a programmed cell death-related biomarkers panel. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106455. [PMID: 36841069 DOI: 10.1016/j.aquatox.2023.106455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Pharmaceutical active compounds (PhACs) are emerging contaminants that pose a growing concern due to their ubiquitous presence and harmful impact on aquatic ecosystems. Among PhACs, the anti-inflammatory ibuprofen (IBU) and the antibiotic oxytetracycline (OTC) are two of the most used compounds whose presence has been reported in different aquatic environments worldwide. However, there is still scarce information about the cellular and molecular alterations provoked by IBU and OTC on aquatic photosynthetic microorganisms as microalgae, even more if we refer to their potential combined toxicity. To test the cyto- and genotoxicity provoked by IBU, OTC and their binary combination on Chlamydomonas reinhardtii, a flow cytometric panel was performed after 24 h of single and co-exposure to both contaminants. Assayed parameters were cell vitality, metabolic activity, intracellular ROS levels, and other programmed cell death (PCD)-related biomarkers as cytoplasmic and mitochondrial membrane potentials and caspase-like and endonuclease activities. In addition, a nuclear DNA fragmentation analysis by comet assay was carried out. For most of the parameters analysed (vitality, metabolic activity, cytoplasmic and mitochondrial membrane potentials, and DNA fragmentation) the most severe damages were observed in the cultures exposed to the binary mixture (IBU+OTC), showing a joint cyto- and genotoxicity effect. Both PhACs and their mixture caused a remarkable decrease in cell proliferation and metabolic activity and markedly increased intracellular ROS levels, parallel to a noticeable depolarization of cytoplasmic and mitochondrial membranes. Moreover, a strong increase in both caspase and endonuclease activities as well as a PCD-related loss of nuclear DNA integrity was observed in all treatments. Results analysis showed that the PhACs caused cell death on this non-target organism, involving mitochondrial membrane depolarization, enhanced ROS production and activation of PCD process. Thus, PCD should be an applicable toxicological target for unraveling the harmful effects of co-exposure to PhACs in aquatic organisms as microalgae.
Collapse
Affiliation(s)
- Marta Seoane
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Kelly Conde-Pérez
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain.
| |
Collapse
|
40
|
Duarte JAP, Ribeiro AKN, de Carvalho P, Bortolini JC, Ostroski IC. Emerging contaminants in the aquatic environment: phytoplankton structure in the presence of sulfamethoxazole and diclofenac. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46604-46617. [PMID: 36719587 PMCID: PMC9888349 DOI: 10.1007/s11356-023-25589-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Chemicals from anthropogenic activities such as domestic sewage, pesticide leaching, and improper chemical disposal have caused groundwater contamination. The presence of these emerging contaminants in the aquatic environment can change water quality and biota composition. Thus, this study investigates the effect of two emerging contaminants, anti-inflammatory drug diclofenac (DCF) and antibiotic sulfamethoxazole (SMX), on the aquatic environment, evaluating the phytoplankton community structure. A microcosm experiment was conducted with 16 sampling units, each one with 500 mL of water sample containing phytoplankton exposed to these drugs at different concentrations (0.1, 0.5, and 1.0 mg L-1). The experiment lasted 15 days, and samples were collected on days 0, 3, 5, 7, and 14 to evaluate the phytoplankton community, the concentrations of the drugs, and the nutrients in the samples. Six phytoplankton groups were identified, and diatoms and green algae were the most diverse and abundant groups. For the entire community, we identified differences between the days of the experiment, varying in the diversity and density of organisms, but not between the concentrations of the two drugs. Evaluating the groups separately, we identified differences in the abundance of cyanobacteria for the treatment with diclofenac and desmids for the treatment with sulfamethoxazole. We demonstrated that the presence of pharmaceuticals in freshwater ecosystems can somehow affect the phytoplankton community, especially the diversity and abundance of cyanobacteria and desmids. Therefore, our study indicates the importance of evaluating the presence of pharmaceuticals in freshwater ecosystems and their influence on aquatic organisms, as well as pharmaceuticals may be changing the structure of the aquatic environment.
Collapse
Affiliation(s)
| | | | - Priscilla de Carvalho
- Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | | | | |
Collapse
|
41
|
Yu C, Li C, Zhang Y, Du X, Wang JH, Chi ZY, Zhang Q. Effects of environment-relevant concentrations of antibiotics on seawater Chlorella sp. biofilm in artificial mariculture effluent. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
42
|
Le VV, Tran QG, Ko SR, Lee SA, Oh HM, Kim HS, Ahn CY. How do freshwater microalgae and cyanobacteria respond to antibiotics? Crit Rev Biotechnol 2023; 43:191-211. [PMID: 35189751 DOI: 10.1080/07388551.2022.2026870] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Antibiotic pollution is an emerging environmental challenge. Residual antibiotics from various sources, including municipal and industrial wastewater, sewage discharges, and agricultural runoff, are continuously released into freshwater environments, turning them into reservoirs that contribute to the development and spread of antibiotic resistance. Thus, it is essential to understand the impacts of antibiotic residues on aquatic organisms, especially microalgae and cyanobacteria, due to their crucial roles as primary producers in the ecosystem. This review summarizes the effects of antibiotics on major biological processes in freshwater microalgae and cyanobacteria, including photosynthesis, oxidative stress, and the metabolism of macromolecules. Their adaptive mechanisms to antibiotics exposure, such as biodegradation, bioadsorption, and bioaccumulation, are also discussed. Moreover, this review highlights the important factors affecting the antibiotic removal pathways by these organisms, which will promote the use of microalgae-based technology for the removal of antibiotics. Finally, we offer some perspectives on the opportunities for further studies and applications.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Quynh-Giao Tran
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Sang-Ah Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
43
|
Gao F, Zhou JL, Zhang YR, Vadiveloo A, Chen QG, Liu JZ, Yang Q, Ge YM. Efficient coupling of sulfadiazine removal with microalgae lipid production in a membrane photobioreactor. CHEMOSPHERE 2023; 316:137880. [PMID: 36649892 DOI: 10.1016/j.chemosphere.2023.137880] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
This study explored the feasibility of a coupled system for antibiotic removal and biofuel production through microalgae cultivation. Initial, batch culture experiments demonstrated that sulfadiazine (SDZ) had an inhibitory effect on Chlorella sp. G-9, and 100.0 mg L-1 SDZ completely inhibited its growth. In order to improve SDZ removal efficiency by microalgae, three membrane photobioreactors (MPBRs) with different hydraulic retention times (HRTs) were established for continuous microalgae cultivation. The efficient coupling of SDZ removal and microalgal lipid production was achieved through the gradual increment of influent SDZ concentration from 0 to 100.0 mg L-1. The reduction in SDZ ranged between 57.8 and 89.7%, 54.7-91.7%, and 54.6-93.5% for the MPBRs with HRT of 4 d, 2 d, and 1 d, respectively. Chlorella sp. Was found to tolerate higher concentrations of SDZ in the MPBR system, and the resulting stress from high concentrations of SDZ effectively increased the lipid content of microalgae for potential biodiesel production. With the increase of influent SDZ concentration from 0 to 100.0 mg L-1, the lipid content of microalgae increased by 43.5%. Chlorophyll content, superoxide dismutase activity, and malondialdehyde content of microalgae were also evaluated to explore the mechanism of microalgae tolerance to SDZ stress in MPBR.
Collapse
Affiliation(s)
- Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Yu-Ru Zhang
- Zhejiang Zhouhuan Environmental Engineering Design Co. LTD, Zhoushan, 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Qing-Guo Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jun-Zhi Liu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Qiao Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Ya-Ming Ge
- National Engineering Research Center for Marine Aquaculture, Zhoushan, 316000, China.
| |
Collapse
|
44
|
Yan S, Ding N, Yao X, Song J, He W, Rehman F, Guo J. Effects of erythromycin and roxithromycin on river periphyton: Structure, functions and metabolic pathways. CHEMOSPHERE 2023; 316:137793. [PMID: 36640977 DOI: 10.1016/j.chemosphere.2023.137793] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Macrolides have been frequently detected in the surface waters worldwide, posing a threat to the aquatic microbes. Several studies have evaluated the ecotoxicological effects of macrolides on single algal and bacterial strains. However, without considering the species interaction in the aquatic microbial community, these results cannot be extrapolated to the field. Thus, the present study aimed to evaluate the effects of two macrolides (erythromycin and roxithromycin) on the structure, photosynthetic process, carbon utilization capacity, and the antibiotic metabolic pathways in river periphyton. The colonized periphyton was exposed to the graded concentration (0 μg/L (control), 0.5 μg/L (low), 5 μg/L (medium), 50 μg/L (high)) of ERY and ROX, respectively, for 7 days. Herein, high levels of ERY and ROX altered the community composition by reducing the relative abundance of Chlorophyta in the eukaryotic community. Also, the Shannon and Simpson diversity indexes of prokaryotes were reduced, although similar effects were seldomly detected in the low and medium groups. In contrast to the unchanged carbon utilization capacity, the PSII reaction center involved in the periphytic photosynthesis was significantly inhibited by macrolides at high levels. In addition, both antibiotics had been degraded by periphyton, with the removal rate of 51.63-66.87% and 41.85-48.27% for ERY and ROX, respectively, wherein the side chain and ring cleavage were the main degradation pathways. Overall, this study provides an insight into the structural and functional toxicity and degradation processes of macrolides in river periphyton.
Collapse
Affiliation(s)
- Shiwei Yan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Ning Ding
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Xiunan Yao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Wei He
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Fozia Rehman
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
45
|
Zhou T, Zhang Z, Liu H, Dong S, Nghiem LD, Gao L, Chaves AV, Zamyadi A, Li X, Wang Q. A review on microalgae-mediated biotechnology for removing pharmaceutical contaminants in aqueous environments: Occurrence, fate, and removal mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130213. [PMID: 36283219 DOI: 10.1016/j.jhazmat.2022.130213] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceutical compounds in aquatic environments have been considered as emerging contaminants due to their potential risks to living organisms. Microalgae-based technology showed the feasibility of removing pharmaceutical contaminants. This review summarizes the occurrence, classification, possible emission sources, and environmental risk of frequently detected pharmaceutical compounds in aqueous environments. The efficiency, mechanisms, and influencing factors for the removal of pharmaceutical compounds through microalgae-based technology are further discussed. Pharmaceutical compounds frequently detected in aqueous environments include antibiotics, hormones, analgesic and non-steroidal anti-inflammatory drugs (NSAIDs), cardiovascular agents, central nervous system drugs (CNS), antipsychotics, and antidepressants, with a concentration ranging from ng/L to μg/L. Microalgae-based technology majorly remove the pharmaceutical compounds through bioadsorption, bioaccumulation, biodegradation, photodegradation, and co-metabolism. This review identifies the opportunities and challenges for microalgae-based technology and proposed suggestions for future studies to tackle challenges. The findings of this review advance our understanding of the occurrence and fate of pharmaceutical contaminants in aqueous environments, highlighting the potential of microalgae-based technology for pharmaceutical contaminants removal.
Collapse
Affiliation(s)
- Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Zehao Zhang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shiman Dong
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Li Gao
- South East Water, 101 Wells Street, Frankston, VIC 3199, Australia
| | - Alex V Chaves
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Arash Zamyadi
- Water Research Australia Limited, Adelaide, SA 5001, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
46
|
Li Z, Gao X, Bao J, Li S, Wang X, Li Z, Zhu L. Evaluation of growth and antioxidant responses of freshwater microalgae Chlorella sorokiniana and Scenedesmus dimorphus under exposure of moxifloxacin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159788. [PMID: 36309277 DOI: 10.1016/j.scitotenv.2022.159788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
As one of the fourth-generation fluoroquinolone antibiotics, moxifloxacin (MOX) has been frequently released to the aquatic environment, threatening local organisms. However, researches on its ecotoxicity to aquatic organisms are still limited. This study analyzed effects of MOX on the growth, photosynthesis and oxidative stress of two common types of freshwater microalgae, Chlorella sorokiniana and Scenedesmus dimorphus. The 96 h-EC50 values of MOX for C. sorokiniana and S. dimorphus were 28.42 and 26.37 mg/L, respectively. Although variations of specific indicators for photosynthetic fluorescence intensity were different, photosystems of two types of microalgae were irreversibly damaged. The malondialdehyde content and superoxide dismutase of C. sorokiniana and S. dimorphus evidently increased, indicating that the exposure of MOX caused serious oxidative stress. Chlorophyll a, b and carotenoids contents of C. sorokiniana increased, probably resulting from the resistance to oxidative stress, whereas they were inhibited due to oxidation damage as for S. dimorphus. Risk quotients (RQs) of MOX for C. sorokiniana and S. dimorphus in wastewater were 7.882 and 8.495, respectively, which demonstrated that MOX had a considerable risk to aquatic environment, especially in the context of its increasing use in practice.
Collapse
Affiliation(s)
- Zhuo Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Xinxin Gao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Jianfeng Bao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Xu Wang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| | - Zhaohua Li
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
47
|
Dubey S, Chen CW, Haldar D, Tambat VS, Kumar P, Tiwari A, Singhania RR, Dong CD, Patel AK. Advancement in algal bioremediation for organic, inorganic, and emerging pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120840. [PMID: 36496067 DOI: 10.1016/j.envpol.2022.120840] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Rapidly changing bioremediation prospects are key drive to develop sustainable options that can offer extra benefits rather than only environmental remediation. Algal remediating is gaining utmost attention due to its mesmerising sustainable features, removing odour and toxicity, co-remediating numerous common and emerging inorganic and organic pollutants from gaseous and aqueous environments, and yielding biomass for a range of valuable products refining. Moreover, it also improves carbon footprint via carbon-capturing offers a better option than any other non-algal process for several high CO2-emitting industries. Bio-uptake, bioadsorption, photodegradation, and biodegradation are the main mechanisms to remediate a range of common and emerging pollutants by various algae species. Bioadsorption was a dominant remediation mechanism among others implicating surface properties of pollutants and algal cell walls. Photodegradable pollutants were photodegraded by microalgae by adsorbing photons on the surface and intracellularly via stepwise photodissociation and breakdown. Biodegradation involves the transportation of selective pollutants intracellularly, and enzymes help to convert them into simpler non-toxic forms. Robust models are from the green microalgae group and are dominated by Chlorella species. This article compiles the advancements in microalgae-assisted pollutants remediation and value-addition under sustainable biorefinery prospects. Moreover, filling the knowledge gaps, and recommendations for developing an effective platform for emerging pollutants remediation and realization of commercial-scale algal bioremediation.
Collapse
Affiliation(s)
- Siddhant Dubey
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Vaibhav Sunil Tambat
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Prashant Kumar
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Ashutosh Tiwari
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Reeta Rani Singhania
- Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
48
|
Reddy K, Renuka N, Kumari S, Ratha SK, Moodley B, Pillay K, Bux F. Assessing the potential for nevirapine removal and its ecotoxicological effects on Coelastrella tenuitheca and Tetradesmus obliquus in aqueous environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120736. [PMID: 36460185 DOI: 10.1016/j.envpol.2022.120736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Remediation of the antiretroviral (ARV) drug, nevirapine (NVP) has attracted considerable scientific attention in recent years due to its frequent detection and persistence in aquatic environments and potential hazards to living organisms. Algae-based technologies have been emerging as an environmentally friendly option for the removal of pharmaceutical compounds, but their ARV drug removal potential has not been fully explored yet. This study aimed to explore the ecotoxicity and removal potential of NVP by two microalgal species, Coelastrella tenuitheca and Tetradesmus obliquus. Lower environmental concentrations (up to 200 ng L-1) of NVP enhanced the microalgal growth, and the highest dry cell weight of 941.27 mg L-1 was obtained in T. obliquus at 50 ng L-1 NVP concentration. Both microalgae showed varying removal efficiencies (19.53-74.56%) when exposed to NVP concentration levels of up to 4000 ng L-1. At the late log phase (day 8), T. obliquus removed the highest percentage of NVP (74.56%), while C. tenuitheca removed 48% at an initial NVP concentration of 50 ng L-1. Photosynthetic efficiency (Fv/Fm and rETR) of the two microalgal species, however, was not affected by environmental concentrations of NVP (up to 4000 ng L-1) at the mid log phase of growth. SEM analysis demonstrated that both algal species produced distinct ridges on their cell surfaces after NVP uptake. In the ecotoxicity study, the calculated IC50 values of NVP (0-100 mg L-1) after 96 h of exposure were 23.45 mg L-1 (C. tenuitheca) and 18.20 mg L-1 (T. obliquus). The findings of the present study may contribute to a better understanding of the environmental hazards associated with NVP and the efficacy of microalgae in removing this pharmaceutical from aquatic environments.
Collapse
Affiliation(s)
- Karen Reddy
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Nirmal Renuka
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Sachitra Kumar Ratha
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa; Phycology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Brenda Moodley
- School of Chemistry and Physics, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville, Durban, 4000, South Africa
| | - Kriveshin Pillay
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
49
|
Zhang Y, Li M, Chang F, Yi M, Ge H, Fu J, Dang C. The distinct resistance mechanisms of cyanobacteria and green algae to sulfamethoxazole and its implications for environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158723. [PMID: 36108830 DOI: 10.1016/j.scitotenv.2022.158723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/27/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria and green algae are the OECD recommended test organisms for environmental toxicity assessments of chemicals. Whether the differences in these two species' responses to the identical chemical affect the assessment outcomes is a question worth investigating. Firstly, we investigated the distinct resistance mechanisms of Synechococcus sp. (cyanobacteria) and R. subcapitata (green algae) to sulfamethoxazole (SMX). The antioxidant system analysis demonstrated that R. subcapitata mainly relies on enhancing the activity of first line defense antioxidants, including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), which is the most powerful and efficient response to get rid of ROS, whereas Synechococcus sp. depends upon increasing the activity of glutathione-S-transferase (GST) and GPx to resist oxidative stress. Besides, a total 7 transformation products (TPs) of SMX were identified in R. subcapitata culture medium. The analysis of conjectural transformation pathways and the predicted toxicity indicates that R. subcapitata could relieve SMX toxicity by degrading it to low eco-toxic TPs. Additionally, we summarized numerous exposure data and assessed the environmental risk of various antibiotics, revealing an inconsistent result for the same type of antibiotic by using cyanobacteria and green algae, which is most likely due to the different resistance mechanisms. In the future, modified indicators or comprehensive assessment methods should be considered to improve the rationality of environmental toxicity assessments.
Collapse
Affiliation(s)
- Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ming Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Fang Chang
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, PR China
| | - Malan Yi
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, PR China
| | - Hongmei Ge
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
50
|
Abdelfattah A, Ali SS, Ramadan H, El-Aswar EI, Eltawab R, Ho SH, Elsamahy T, Li S, El-Sheekh MM, Schagerl M, Kornaros M, Sun J. Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100205. [PMID: 36247722 PMCID: PMC9557874 DOI: 10.1016/j.ese.2022.100205] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 05/05/2023]
Abstract
The rapid expansion of both the global economy and the human population has led to a shortage of water resources suitable for direct human consumption. As a result, water remediation will inexorably become the primary focus on a global scale. Microalgae can be grown in various types of wastewaters (WW). They have a high potential to remove contaminants from the effluents of industries and urban areas. This review focuses on recent advances on WW remediation through microalgae cultivation. Attention has already been paid to microalgae-based wastewater treatment (WWT) due to its low energy requirements, the strong ability of microalgae to thrive under diverse environmental conditions, and the potential to transform WW nutrients into high-value compounds. It turned out that microalgae-based WWT is an economical and sustainable solution. Moreover, different types of toxins are removed by microalgae through biosorption, bioaccumulation, and biodegradation processes. Examples are toxins from agricultural runoffs and textile and pharmaceutical industrial effluents. Microalgae have the potential to mitigate carbon dioxide and make use of the micronutrients that are present in the effluents. This review paper highlights the application of microalgae in WW remediation and the remediation of diverse types of pollutants commonly present in WW through different mechanisms, simultaneous resource recovery, and efficient microalgae-based co-culturing systems along with bottlenecks and prospects.
Collapse
Affiliation(s)
- Abdallah Abdelfattah
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
| | - Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Corresponding author. Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Hassan Ramadan
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
| | - Eslam Ibrahim El-Aswar
- Central Laboratories for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), El-Kanater, 13621, Qalyubiyah, Egypt
| | - Reham Eltawab
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
- Corresponding author.
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | | | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Corresponding author.
| |
Collapse
|