1
|
Mahanty S, Majumder S, Paul R, Boroujerdi R, Valsami-Jones E, Laforsch C. A review on nanomaterial-based SERS substrates for sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:174252. [PMID: 38942304 DOI: 10.1016/j.scitotenv.2024.174252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
The agricultural sector plays a pivotal role in driving the economy of many developing countries. Any dent in this economical structure may have a severe impact on a country's population. With rising climate change and increasing pollution, the agricultural sector is experiencing significant damage. Over time this cumulative damage will affect the integrity of food crops and create food security issues around the world. Therefore, an early warning system is needed to detect possible stress on food crops. Here we present a review of the recent developments in nanomaterial-based Surface Enhanced Raman Spectroscopy (SERS) substrates which could be utilized to monitor agricultural crop responses to natural and anthropogenic stress. Initially, our review delves into diverse and cost-effective strategies for fabricating SERS substrates, emphasizing their intelligent utilization across various agricultural scenarios. In the second phase of our review, we spotlight the specific application of SERS in addressing critical food security issues. By detecting nutrients, hormones, and effector molecules in plants, SERS provides valuable insights into plant health. Furthermore, our exploration extends to the detection of contaminants, chemicals, and foodborne pathogens within plants, showcasing the versatility of SERS in ensuring food safety. The cumulative knowledge derived from these discussions illustrates the transformative potential of SERS in bolstering the agricultural economy. By enhancing precision in nutrient management, monitoring plant health, and enabling rapid detection of harmful substances, SERS emerges as a pivotal tool in promoting sustainable and secure agricultural practices. Its integration into agricultural processes not only augments productivity but also establishes a robust defence against potential threats to crop yield and food quality. As SERS continues to evolve, its role in shaping the future of agriculture becomes increasingly pronounced, promising a paradigm shift in how we approach and address challenges in food production and safety.
Collapse
Affiliation(s)
- Shouvik Mahanty
- Department of Atomic Energy, Saha Institute of Nuclear Physics, Sector 1, AF Block, Bidhannagar, Kolkata 700064, West Bengal, India
| | - Santanu Majumder
- Department of Life and Environmental Sciences, Bournemouth University (Talbot Campus), Fern Barrow, Poole BH12 5BB, UK.
| | - Richard Paul
- Department of Life and Environmental Sciences, Bournemouth University (Talbot Campus), Fern Barrow, Poole BH12 5BB, UK
| | - Ramin Boroujerdi
- Department of Life and Environmental Sciences, Bournemouth University (Talbot Campus), Fern Barrow, Poole BH12 5BB, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christian Laforsch
- Department of Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
2
|
Zhang X, Shang Y, Xie Q, Hu X, Wu K, Qu LL, Gu Y. Recyclable Au@R-Fe 3O 4/g-C 3N 4 substrates for rapid SERS detection and degradation of multiple pollutants. Talanta 2024; 276:126291. [PMID: 38776774 DOI: 10.1016/j.talanta.2024.126291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Developing a Surface-enhanced Raman spectroscopy (SERS) method with excellent detecting ability, good recyclability and analyzing multiple pollutants rapidly are critical for evaluation of water quality in emergency pollution affairs. While constructing a multifunctional substrate with these characteristics to realize the application of SERS in water quality monitoring remains a challenge. In this work, a reusable Au@R-Fe3O4/g-C3N4 SERS substrate is prepared by loading Au nanoparticles (Au NPs) on Fe3O4 nanorings (R-Fe3O4) and the formed Au@R-Fe3O4 is further combined with g-C3N4 nanosheets through a simple electrostatic assembly method. The Au@R-Fe3O4/g-C3N4 nanocomposite presents multifunction of magnetic enrichment, SERS signal enhancement, multiple pollutants analyzing, and photocatalytic activity, which achieves quantitative detection of rhodamine B (RhB), tetracycline hydrochloride (TC), and 4-chlorophenol (4-CP), with detection limits of 5.30 × 10-9, 7.50 × 10-8, 7.69 × 10-8 mol/L, respectively. Furthermore, the recyclable detection capability of Au@R-Fe3O4/g-C3N4 for multi components is demonstrated by the strong SERS signal after 9 cycles of "detection-degradation" processes. Combined with good uniformity and stability, this SERS method based on Au@R-Fe3O4/g-C3N4 substrate provides a new strategy for the multi-pollutants detection and degradation in water environment.
Collapse
Affiliation(s)
- Xue Zhang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yunsheng Shang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Qi Xie
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xingzhe Hu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ke Wu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Lu-Lu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Yingqiu Gu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
3
|
Qian S, Zhao W, Guo R, Wang X, Dai H, Lang J, Kadasala NR, Jiang Y, Liu Y. Apt-Conjugated PDMS-ZnO/Ag-Based Multifunctional Integrated Superhydrophobic Biosensor with High SERS Activity and Photocatalytic Sterilization Performance. Int J Mol Sci 2024; 25:7675. [PMID: 39062920 PMCID: PMC11276906 DOI: 10.3390/ijms25147675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Sensitive detection and efficient inactivation of pathogenic bacteria are crucial for halting the spread and reproduction of foodborne pathogenic bacteria. Herein, a novel Apt-modified PDMS-ZnO/Ag multifunctional biosensor has been developed for high-sensitivity surface-enhanced Raman scattering (SERS) detection along with photocatalytic sterilization towards Salmonella typhimurium (S. typhimurium). The distribution of the electric field in PDMS-ZnO/Ag with different Ag sputtering times was analyzed using a finite-difference time-domain (FDTD) algorithm. Due to the combined effect of electromagnetic enhancement and chemical enhancement, PDMS-ZnO/Ag exhibited outstanding SERS sensitivity. The limit of detection (LOD) for 4-MBA on the optimal SERS substrate (PZA-40) could be as little as 10-9 M. After PZA-40 was modified with the aptamer, the LOD of the PZA-40-Apt biosensor for detecting S. typhimurium was only 10 cfu/mL. Additionally, the PZA-40-Apt biosensor could effectively inactivate S. typhimurium under visible light irradiation within 10 min, with a bacterial lethality rate (Lb) of up to 97%. In particular, the PZA-40-Apt biosensor could identify S. typhimurium in food samples in addition to having minimal cytotoxicity and powerful biocompatibility. This work provides a multifunctional nanoplatform with broad prospects for selective SERS detection and photocatalytic sterilization of pathogenic bacteria.
Collapse
Affiliation(s)
- Sihan Qian
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Xiaohan Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Huasong Dai
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Jihui Lang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | | | - Yuhong Jiang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| |
Collapse
|
4
|
Wang C, Zhao J, Gu C, Jiang T, Li X. Synergistic photoinduced charge transfer resonance from porous ZIF-67 decorated violet phosphorus array for SERS immunoassay of SARS-CoV-2 spike protein. Colloids Surf B Biointerfaces 2024; 237:113833. [PMID: 38484444 DOI: 10.1016/j.colsurfb.2024.113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/12/2024] [Accepted: 03/03/2024] [Indexed: 04/08/2024]
Abstract
As a rapid, highly sensitive, and user-friendly technique, surface-enhanced Raman scattering (SERS) has an extraordinary appeal to home self-test of COVID-19 during the post pandemic era. However, most of the existing SERS substrates have been still criticized in stability, repeatability, and sample enrichment. To address these obstacles, a novel non-metallic SERS substrate with porous surfaces and array geometry was developed by in-situ growing ZIF-67 particles on two-dimensional violet phosphorus (VP) matrix. Chemical enhancement was prominently promoted by the synergistic photoinduced charge transfer resonance in the hybrid band structure of the ZIF-67@VP substrate, facilitating a noble metal-similar enhancement factor of 6.11 × 107. The biocompatible ZIF-67@VP porous array with attractive enhancement capability and high anchoring efficiency was further utilized to monitoring SARS-CoV-2 spike protein in practical saliva samples based on a sandwich immunostructure, achieving a limit of detection of 1.7 ng/mL assisted by black phosphorus nanosheets. This nonmetallic immunoassay strategy with exceptional sensitivity and specificity is predicted to extend the utilization of SERS obstacle in daily infectious disease screening.
Collapse
Affiliation(s)
- Chucheng Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Jialong Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Chenjie Gu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Tao Jiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China.
| | - Xing Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China.
| |
Collapse
|
5
|
Ye Y, Wang J, Fang Z, Yan Y, Geng Y. Periodic Folded Gold Nanostructures with a Sub-10 nm Nanogap for Surface-Enhanced Raman Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10450-10458. [PMID: 38357762 DOI: 10.1021/acsami.3c14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Surface-enhanced Raman spectroscopy has emerged as a powerful spectroscopy technique for detection with its capacity for label-free, nondestructive analysis, and ultrasensitive characterization. High-performance surface-enhanced Raman scattering (SERS) substrates with homogeneity and low cost are the key factors in chemical and biomedical analysis. In this study, we propose the technique of atomic force microscopy (AFM) scratching and nanoskiving to prepare periodic folded gold (Au) nanostructures as SERS substrates. Initially, folded Au nanostructures with tunable nanogaps and periodic structures are created through the scratching of Au films by AFM, the deposition of Ag/Au films, and the cutting of epoxy resin, reducing fabrication cost and operational complexity. Periodic folded Au nanostructures show the three-dimensional nanofocusing effect, hotspot effect, and standing wave effect to generate an extremely high electromagnetic field. As a typical molecule to be tested, p-aminothiophenol has the lowest detection limit of up to 10-9 M, owing to the balance between the electromagnetic field energy concentration and the transmission loss in periodic folded Au nanostructures. Finally, by precisely controlling the periods and nanogap widths of the folded Au nanostructures, the synergistic effect of surface plasmon resonance is optimized and shows good SERS properties, providing a new strategy for the preparation of plasmonic nanostructures.
Collapse
Affiliation(s)
- Yuting Ye
- The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang 150080, P. R. China
- Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Jiqiang Wang
- The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang 150080, P. R. China
- Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Zhuo Fang
- The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang 150080, P. R. China
- Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Yongda Yan
- The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang 150080, P. R. China
- Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Yanquan Geng
- The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang 150080, P. R. China
- Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| |
Collapse
|
6
|
Zhao Y, Kumar A, Yang Y. Unveiling practical considerations for reliable and standardized SERS measurements: lessons from a comprehensive review of oblique angle deposition-fabricated silver nanorod array substrates. Chem Soc Rev 2024; 53:1004-1057. [PMID: 38116610 DOI: 10.1039/d3cs00540b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Recently, there has been an exponential growth in the number of publications focusing on surface-enhanced Raman scattering (SERS), primarily driven by advancements in nanotechnology and the increasing demand for chemical and biological detection. While many of these publications have focused on the development of new substrates and detection-based applications, there is a noticeable lack of attention given to various practical issues related to SERS measurements and detection. This review aims to fill this gap by utilizing silver nanorod (AgNR) SERS substrates fabricated through the oblique angle deposition method as an illustrative example. The review highlights and addresses a range of practical issues associated with SERS measurements and detection. These include the optimization of SERS substrates in terms of morphology and structural design, considerations for measurement configurations such as polarization and the incident angle of the excitation laser, and exploration of enhancement mechanisms encompassing both intrinsic properties induced by the structure and materials, as well as extrinsic factors arising from wetting/dewetting phenomena and analyte size. The manufacturing and storage aspects of SERS substrates, including scalable fabrication techniques, contamination control, cleaning procedures, and appropriate storage methods, are also discussed. Furthermore, the review delves into device design considerations, such as well arrays, flow cells, and fiber probes, and explores various sample preparation methods such as drop-cast and immersion. Measurement issues, including the effect of excitation laser wavelength and power, as well as the influence of buffer, are thoroughly examined. Additionally, the review discusses spectral analysis techniques, encompassing baseline removal, chemometric analysis, and machine learning approaches. The wide range of AgNR-based applications of SERS, across various fields, is also explored. Throughout the comprehensive review, key lessons learned from collective findings are outlined and analyzed, particularly in the context of detailed SERS measurements and standardization. The review also provides insights into future challenges and perspectives in the field of SERS. It is our hope that this comprehensive review will serve as a valuable reference for researchers seeking to embark on in-depth studies and applications involving their own SERS substrates.
Collapse
Affiliation(s)
- Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Amit Kumar
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Yanjun Yang
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
Jones RR, Miksch C, Kwon H, Pothoven C, Rusimova KR, Kamp M, Gong K, Zhang L, Batten T, Smith B, Silhanek AV, Fischer P, Wolverson D, Valev VK. Dense Arrays of Nanohelices: Raman Scattering from Achiral Molecules Reveals the Near-Field Enhancements at Chiral Metasurfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209282. [PMID: 36631958 DOI: 10.1002/adma.202209282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Against the background of the current healthcare and climate emergencies, surface enhanced Raman scattering (SERS) is becoming a highly topical technique for identifying and fingerprinting molecules, e.g., within viruses, bacteria, drugs, and atmospheric aerosols. Crucial for SERS is the need for substrates with strong and reproducible enhancements of the Raman signal over large areas and with a low fabrication cost. Here, dense arrays of plasmonic nanohelices (≈100 nm in length), which are of interest for many advanced nanophotonics applications, are investigated, and they are shown to present excellent SERS properties. As an illustration, two new ways to probe near-field enhancement generated with circular polarization at chiral metasurfaces are presented, first using the Raman spectra of achiral molecules (crystal violet) and second using a single, element-specific, achiral molecular vibrational mode (i.e., a single Raman peak). The nanohelices can be fabricated over large areas at a low cost and they provide strong, robust and uniform Raman enhancement. It is anticipated that these advanced materials will find broad applications in surface enhanced Raman spectroscopies and material science.
Collapse
Affiliation(s)
- Robin R Jones
- Centre for Photonics and Photonic Materials and Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Claverton Down, BA2 7AY, UK
| | - Cornelia Miksch
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
| | - Hyunah Kwon
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
| | - Coosje Pothoven
- VSPARTICLE, Molengraaffsingel 10, JD Delft, 2629, The Netherlands
| | - Kristina R Rusimova
- Centre for Photonics and Photonic Materials and Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Claverton Down, BA2 7AY, UK
| | - Maarten Kamp
- VSPARTICLE, Molengraaffsingel 10, JD Delft, 2629, The Netherlands
| | - Kedong Gong
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Liwu Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Tim Batten
- Renishaw plc, New Mills, Kingswood, Wotton-under-Edge, GL12 8JR, UK
| | - Brian Smith
- Renishaw plc, New Mills, Kingswood, Wotton-under-Edge, GL12 8JR, UK
| | - Alejandro V Silhanek
- Experimental Physics of Nanostructured Materials, Q-MAT, CESAM, University of Liége, Sart Tilman, B-4000, Belgium
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Daniel Wolverson
- Centre for Photonics and Photonic Materials and Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Claverton Down, BA2 7AY, UK
| | - Ventsislav K Valev
- Centre for Photonics and Photonic Materials and Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Claverton Down, BA2 7AY, UK
- Centre for Therapeutic Innovation, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
8
|
Sohn S, Huong VT, Nguyen PD, Ly NH, Jang S, Lee H, Lee C, Lee JI, Vasseghian Y, Joo SW, Zoh KD. Equilibria of semi-volatile isothiazolinones between air and glass surfaces measured by gas chromatography and Raman spectroscopy. ENVIRONMENTAL RESEARCH 2023; 218:114908. [PMID: 36442521 DOI: 10.1016/j.envres.2022.114908] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/16/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Trace amounts of semi-volatile organic compounds (SVOCs) of the two isothiazolinones of 2-methylisothiazol-3(2H)-one (MIT) and 2-octyl-4-isothiazolin-3-one (OIT) were detected both in the air and on glass surfaces. Equilibria of SVOCs between air and glass were examined by solid phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS). Surface to air distribution ratios of Ksa for MIT and OIT were determined to be 5.10 m and 281.74 m, respectively, suggesting more abundant MIT in the gas phase by a factor of ∼55. In addition, a facile method of silver nanocube (AgNC)-assisted surface-enhanced Raman scattering (SERS) has been developed for the rapid and sensitive detection of MIT and OIT on glass surfaces. According to MIT and OIT concentration-correlated SERS intensities of Raman peaks at ∼1585 cm-1 and ∼1125 cm-1, respectively. Their calibration curves have been obtained in the concentration ranges between 10-3 to 10-10 M and 10-3 to 10-11 M with their linearity of 0.9986 and 0.9989 for MIT and OIT, respectively. The limits of detection (LODs) of the two isothiazolinones were estimated at 10-10 M, and 10-11 M for MIT and OIT, respectively. Our results indicate that AgNC-assisted SERS spectra are a rapid and high-ultrasensitive method for the quantification of MIT and OIT in practical applications. The development of analytical methods and determination of the Ksa value obtained in this study can be applied to the prediction of the exposure to MIT and OIT from various chemical products and dynamic behaviors to assess human health risks in indoor environments.
Collapse
Affiliation(s)
- Seungwoon Sohn
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Vu Thi Huong
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea
| | - Phuong-Dong Nguyen
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea
| | - Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul, 143-747, Republic of Korea
| | - Hyewon Lee
- Department of Chemical & Biological Engineering, Seokyeong University, Seoul, 02713, Republic of Korea
| | - Cheolmin Lee
- Department of Chemical & Biological Engineering, Seokyeong University, Seoul, 02713, Republic of Korea
| | - Jung Il Lee
- Korea Testing & Research Institute, Gwacheon, 13810, Republic of Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
9
|
Zhai W, Cao M, Xiao Z, Li D, Wang M. Rapid Detection of Malathion, Phoxim and Thiram on Orange Surfaces Using Ag Nanoparticle Modified PDMS as Surface-Enhanced Raman Spectroscopy Substrate. Foods 2022; 11:3597. [PMID: 36429190 PMCID: PMC9689543 DOI: 10.3390/foods11223597] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Malathion, phoxim, and thiram are organophosphates and organosulfur pesticides widely used in agricultural products. The residues of these pesticides present a direct threat to human health. Rapid and on-site detection is critical for minimizing such risks. In this work, a simple approach was introduced using a flexible surface-enhanced Raman spectroscopy (SERS) substrate. The prepared Ag nanoparticles-polydimethylsiloxane (AgNPs-PDMS) substrate showed high SERS activity, good precision (relative standard deviation = 5.33%), and stability (30 days) after optimization. For target pesticides, the linear relationship between characteristic SERS bands and concentrations were achieved in the range of 10~1000, 100~5000, and 50~5000 μg L-1 with LODs down to 3.62, 41.46, and 15.69 μg L-1 for thiram, malathion, and phoxim, respectively. Moreover, SERS spectra of mixed samples indicated that three pesticides can be identified simultaneously, with recovery rates between 96.5 ± 3.3% and 118.9 ± 2.4%, thus providing an ideal platform for detecting more than one target. Pesticide residues on orange surfaces can be simply determined through swabbing with the flexible substrate before acquiring the SERS signal. This study demonstrated that the prepared substrate can be used for the rapid detection of pesticides on real samples. Overall, this method greatly simplified the pre-treatment procedure, thus serving as a promising analytical tool for rapid and nondestructive screening of malathion, phoxim, and thiram on various agricultural products.
Collapse
Affiliation(s)
- Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Mingshuo Cao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhiyong Xiao
- Beijing Center of AGRI-Products Quality and Safety, Beijing 100029, China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
10
|
Liu C, Xu D, Dong X, Huang Q. A review: Research progress of SERS-based sensors for agricultural applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Butmee P, Samphao A, Tumcharern G. Reduced graphene oxide on silver nanoparticle layers-decorated titanium dioxide nanotube arrays as SERS-based sensor for glyphosate direct detection in environmental water and soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129344. [PMID: 35753303 DOI: 10.1016/j.jhazmat.2022.129344] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
When glyphosate, a widely used organophosphate herbicide in agricultural applications, contaminates the environment, it could lead to chronic harm to human health. Herein, an efficient, air-stable and reusable surface-enhanced Raman scattering (SERS) substrate was designed to be an analytical tool for direct determination of glyphosate. A vertical heterostructure of reduced graphene oxide (rGO)-wrapped dual-layers silver nanoparticles (AgNPs) on titania nanotube (TiO2 NTs) arrays was constructed as a SERS substrate. The TiO2 NTs/AgNPs-rGO exhibited high SERS performance for methylene blue detection, offering an analytical enhancement factor (AEF) as large as 7.1 × 108 and the limit of detection (LOD) as low as 10-14 M with repeatability of 4.4 % relative standard deviation (RSD) and reproducibility of 2.0 % RSD. The sensor was stable in ambient and was reusable after photo-degradation. The designed sensor was successfully applied for glyphosate detection with a LOD of 3 µg/L, which is below the maximum contaminant level of glyphosate in environmental water, as recommended by the U.S. EPA and the European Union. A uniqueness of this study is that there is no significant difference between the real-world applications of the SERS sensor on direct glyphosate analysis in environmental samples compared to an analysis using ultra-high performance liquid chromatography.
Collapse
Affiliation(s)
- Preeyanut Butmee
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Anchalee Samphao
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.
| | - Gamolwan Tumcharern
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand.
| |
Collapse
|
12
|
Tu W, Liu Y, Chen M, Ma L, Li L, Yang B. Photocatalytic self-cleaning graphene oxide membrane coupled with carbon nitride and Ti3C2-Mxene for enhanced wastewater purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Au NPs decorated holey g-C3N4 as a dual-mode sensing platform of SERS and SALDI-MS for selective discrimination of L-cysteine. J Colloid Interface Sci 2022; 626:608-618. [DOI: 10.1016/j.jcis.2022.06.176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 12/29/2022]
|
14
|
Gu H, Tang M, Qin L, Kang SZ, Li X. Aluminum sheet induced flower-like carbon nitride anchored with silver nanowires for highly efficient SERS detection of trace malachite green. ENVIRONMENTAL RESEARCH 2022; 204:112289. [PMID: 34743809 DOI: 10.1016/j.envres.2021.112289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/18/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
The sensitive detection of malachite green (MG) in aquaculture wastewater is necessary for its residual poses a great threat to the living systems. Herein, the flower-like C3N4 (f-C3N4) nanostructure induced by Al sheet in the hydrothermal process is constructed. Subsequently, Ag nanowires (AgNWs) supported on Al/f-C3N4 and the strong interaction between AgNWs and Al/f-C3N4 are confirmed by XPS, Raman spectroscopy, UV-vis diffuse reflectance and fluorescence spectroscopy. Importantly, the portable Al/f-C3N4/AgNWs substrate shows the outstanding SERS response for MG, which is attributed to enhanced electromagnetic effect of AgNWs on large amount of corrugated and creviced regions in the flower-like Al/f-C3N4 and the charge transfer among the components. Also, the prepared Al/f-C3N4 nanostructure provides large specific surface area and abundant "N" active sites for AgNWs, and the high enrichment ability of Al/f-C3N4 towards MG molecules by the strong π-π stacking interaction. The detection limit of Al/f-C3N4/AgNWs for MG is as low as 8.38 × 10-12 mol L-1. The substrate can be reproduced and reused for at least 7 cycles, and the activity can still be kept after laid up for 49 days. Importantly, it unfolds a good sensitivity and selectivity for MG in actual water sample. Results indicate that the Al/f-C3N4/AgNWs substrate has a promising potential in practical application for trace detection of MG.
Collapse
Affiliation(s)
- Hui Gu
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Min Tang
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Lixia Qin
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
| | - Shi-Zhao Kang
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Xiangqing Li
- School of Chemical and Environmental Engineering, Center of Graphene Research, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
| |
Collapse
|
15
|
Garg R, Bhardwaj S, Lata S. Phyto-mediated green synthesis of silver nanoparticles using Acmella oleracea leaf extract: Antioxidant and catalytic activity. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_586_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Ly NH, Son SJ, Jang S, Lee C, Lee JI, Joo SW. Surface-Enhanced Raman Sensing of Semi-Volatile Organic Compounds by Plasmonic Nanostructures. NANOMATERIALS 2021; 11:nano11102619. [PMID: 34685057 PMCID: PMC8541515 DOI: 10.3390/nano11102619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022]
Abstract
Facile detection of indoor semi-volatile organic compounds (SVOCs) is a critical issue to raise an increasing concern to current researchers, since their emissions have impacted the health of humans, who spend much of their time indoors after the recent incessant COVID-19 pandemic outbreaks. Plasmonic nanomaterial platforms can utilize an electromagnetic field to induce significant Raman signal enhancements of vibrational spectra of pollutant molecules from localized hotspots. Surface-enhanced Raman scattering (SERS) sensing based on functional plasmonic nanostructures has currently emerged as a powerful analytical technique, which is widely adopted for the ultra-sensitive detection of SVOC molecules, including phthalates and polycyclic aromatic hydrocarbons (PAHs) from household chemicals in indoor environments. This concise topical review gives updated recent developments and trends in optical sensors of surface plasmon resonance (SPR) and SERS for effective sensing of SVOCs by functionalization of noble metal nanostructures. Specific features of plasmonic nanomaterials utilized in sensors are evaluated comparatively, including their various sizes and shapes. Novel aptasensors-assisted SERS technology and its potential application are also introduced for selective sensing. The current challenges and perspectives on SERS-based optical sensors using plasmonic nanomaterial platforms and aptasensors are discussed for applying indoor SVOC detection.
Collapse
Affiliation(s)
- Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam 13120, Korea;
| | - Sang Jun Son
- Department of Chemistry, Gachon University, Seongnam 13120, Korea;
- Correspondence: (S.J.S.); (J.I.L.); (S.-W.J.)
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul 05006, Korea;
| | - Cheolmin Lee
- Department of Chemical & Biological Engineering, Seokyeong University, Seoul 02713, Korea;
| | - Jung Il Lee
- Korea Testing & Research Institute, Gwacheon 13810, Korea
- Correspondence: (S.J.S.); (J.I.L.); (S.-W.J.)
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul 06978, Korea
- Correspondence: (S.J.S.); (J.I.L.); (S.-W.J.)
| |
Collapse
|
17
|
Jiang Y, Sun H, Gu C, Zhang Y, Jiang T. A hydrophilic-hydrophobic graphitic carbon nitride@silver hybrid substrate for recyclable surface-enhanced Raman scattering-based detection without the coffee-ring effect. Analyst 2021; 146:5923-5933. [PMID: 34570851 DOI: 10.1039/d1an01121a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is growing interest in developing a multifunctional surface-enhanced Raman scattering (SERS) substrate to deal with the challenge in the pretreatment-free detection and degradation of hazardous organic pollutants in water. Herein, a hydrophilic-hydrophobic graphitic carbon nitride@silver (g-C3N4@Ag) hybrid substrate was exploited as a potential candidate for the recyclable detection of dye molecules. Such a sophisticated substrate not only showed a significant SERS activity with a high enhancement factor of 3.21 × 106 triggered by the significantly aggregated Ag nanoparticles, but also possessed an outstanding self-cleaning property via visible-light irradiation. Furthermore, the effective weakening of the coffee-ring effect was also facilitated by the hydrophilic-hydrophobic structure, resulting in excellent uniformity and reproducibility. Ultimately, the applicability of the developed recyclable SERS substrate in the monitoring of trace malachite green was demonstrated. It is expected that the innovative SERS substrate has great potential for application in highly sensitive, stable, and recyclable on-site analysis, especially for organic pollutant treatment and environmental protection.
Collapse
Affiliation(s)
- Yanjia Jiang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. China.
| | - Huimin Sun
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. China.
| | - Chenjie Gu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. China.
| | - Yongling Zhang
- College of Information &Technology, Jilin Normal University, Siping 136000, Jilin, P. R. China
| | - Tao Jiang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. China.
| |
Collapse
|
18
|
Lin Y, Zheng M, Zhao X, Liu D, Gao J, Gong W, Xie S, Gao S, Yu Y, Lin J. Quantitative detection of crystal violet using a surface-enhanced Raman scattering based on a flower-like HAp/Ag nanocomposite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4143-4149. [PMID: 34554165 DOI: 10.1039/d1ay01107c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we proposed a simple one-pot sol-thermal strategy to prepare a highly sensitive and reproducible SERS substrate. The silver-doped hydroxyapatite nanocomposite (HAp/Ag) could suppress the oxidation of silver nanoparticles, which endow the SERS substrate with good stability and reproducibility. Due to the strong interaction between the HAp/Ag substrate and the analytes, a stronger Raman signal generated during the process of SERS detection. In particular, the HAp/Ag substrate enabled the determination of rhodamine 6G (R6G) and crystal violet (CV), and the limits of detection (LOD) were low at 10-6 M and 10-5 M, respectively. In addition, the HAp/Ag substrate could be used for the quantitative analysis of CV in wastewater with a good linear relationship between 10-2 and 10-5 M. In this context, the HAp/Ag substrate combines the superior properties of both Ag NPs and HAp particles, providing a potential method for monitoring the environment and building a convenient SERS platform to detect pollutants in wastewater.
Collapse
Affiliation(s)
- Yamin Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China.
| | - Mengmeng Zheng
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China.
| | - Xin Zhao
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China.
| | - Dan Liu
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China.
| | - Jiamin Gao
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China.
| | - Wei Gong
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China.
| | - Shusen Xie
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China.
| | - Siqi Gao
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China.
| | - Yun Yu
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| | - Juqiang Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China.
- School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian, China
| |
Collapse
|
19
|
Kamal S, Yang TCK. Silver enriched silver phosphate microcubes as an efficient recyclable SERS substrate for the detection of heavy metal ions. J Colloid Interface Sci 2021; 605:173-181. [PMID: 34325339 DOI: 10.1016/j.jcis.2021.07.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022]
Abstract
A rapid, cost-effective and accurate detection of heavy metal ions is crucial for human health monitoring and environmental protection. Surface-enhanced Raman spectroscopy (SERS) has become a reliable method due to its outstanding performance for the identification of contaminants. In this paper, silver phosphate microcubes (Ag3PO4) were fabricated using two different precipitation methods for ultrasensitive SERS detection of heavy metal ions. The use of an organic linker (BPy) with Ag3PO4 enabled the immobilization of Hg2+ and Pb2+ ions. The formation of Ag3PO4 was confirmed by XRD, UV-DRS, FESEM coupled with EDX and HRTEM. The analytical enhancement factor (AEF) obtained was 1010 with a detection limit of 10-15 M indicating high sensitivity. Based on these results, the possible SERS mechanism has been proposed and discussed. Moreover, an excellent reusability of Ag3PO4 substrate for at least four cycles was achieved upon the light exposure on heavy metal loaded substrate due to its superior catalytic ability for the degradation of heavy metal ions. The as-prepared substrate demonstrated remarkable stability, selectivity and SERS sensitivity towards real samples. The results conclude that Ag3PO4 microcubes offer a great prospect in recyclable SERS applications.
Collapse
Affiliation(s)
- Surabhi Kamal
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Da'an District, 106 Taipei City, Taiwan.
| | - Thomas Chung-Kuang Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Da'an District, 106 Taipei City, Taiwan; Precision Analysis and Materials Research Centre, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Da'an District, 106 Taipei City, Taiwan.
| |
Collapse
|
20
|
Lai HL, Ghosh S, Chattopadhyay S. The detection of fipronil residue in egg on layered gold nanorod-graphene oxide-based 3D SERS substrate. Analyst 2021; 146:3557-3567. [PMID: 33904550 DOI: 10.1039/d1an00433f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fipronil and its metabolite fipronil sulfone, when found in some food products, such as eggs, have caused major public health concerns. In this study, we used gold nanorods (AuNRs) and graphene oxide (GO) nanocomposites to fabricate a layer-by-layer assembled three dimensional (3D) substrate for toxin detection by surface enhanced Raman scattering (SERS). The 4-layers of GO-AuNR 3D SERS substrate were optimized using rhodamine 6G. The optimized SERS substrate was used to detect fipronil and fipronil sulfone in spiked eggs. The obtained limit of detection was 10-8 M (∼4.4 ppb), which is below the maximum residue limit in Taiwan of 10 ppb. Egg samples spiked with fipronil (10-7 and 10-3 M) and fipronil sulfone (10-8 and 10-4 M) were measured and the maximum departure of the measured SERS intensity from the calibrated SERS intensity was ∼14%. Thus, a facile screening method for the detection of fipronil/fipronil sulfone in food-grade eggs by SERS is demonstrated.
Collapse
Affiliation(s)
- Hung Lin Lai
- Institute of Biophotonics, National Yang Ming Chiao Tung University, 155, sec-2 Li Nong Street, Taipei 112, Taiwan and Institute of Biophotonics, National Yang-Ming University, 155, sec-2 Li Nong Street, Taipei 112, Taiwan.
| | - Sandip Ghosh
- Institute of Biophotonics, National Yang Ming Chiao Tung University, 155, sec-2 Li Nong Street, Taipei 112, Taiwan and Institute of Biophotonics, National Yang-Ming University, 155, sec-2 Li Nong Street, Taipei 112, Taiwan.
| | - Surojit Chattopadhyay
- Institute of Biophotonics, National Yang Ming Chiao Tung University, 155, sec-2 Li Nong Street, Taipei 112, Taiwan and Institute of Biophotonics, National Yang-Ming University, 155, sec-2 Li Nong Street, Taipei 112, Taiwan.
| |
Collapse
|
21
|
Jiang G, Wang Z, Zong S, Yang K, Zhu K, Cui Y. Peroxidase-like recyclable SERS probe for the detection and elimination of cationic dyes in pond water. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124426. [PMID: 33158654 DOI: 10.1016/j.jhazmat.2020.124426] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
A peroxidase-like MOF coated magnetic surface-enhanced Raman scattering (SERS) probe as Ni@Mil-100(Fe)@Ag nanowires (NMAs) was developed, which can detect multiple cationic dyes with a good recyclability and a high sensitivity. Specifically, Mil-100(Fe) with peroxidase-like activity was fabricated on the magnetic prickly Ni nanowires through layer-by-layer (LBL) method. With the presence of 10 mM H2O2, hydroxyl radical (•OH) produced by peroxidase-like catalytic reaction of Mil-100(Fe) layer can easily eliminate the pollution molecules within 1 min without any requirement for expensive equipment or complicated process. The magnetic NMAs can provide a rapid refreshment for at least 10 times. In addition, carboxyl-functionalized Mil-100(Fe) can not only increase the decoration efficiency of Tollens but also promote the selective enrichment of the cationic dyes, which endows the probe with a greatly improved sensitivity with a limit of detection (LOD) as low as 10-10 M for crystal violet (CV). Following the erasure by H2O2, multiple cationic fishery drugs in pond water can be sequentially detected. Such a recyclable SERS probe holds a great potential in various applications as aquaculture, biomedicine and chemical analysis.
Collapse
Affiliation(s)
- Guohua Jiang
- Advanced Photonics Center, Southeast University, Nanjing 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, China.
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, China
| | - Kuo Yang
- Advanced Photonics Center, Southeast University, Nanjing 210096, China
| | - Kai Zhu
- Advanced Photonics Center, Southeast University, Nanjing 210096, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, China.
| |
Collapse
|
22
|
Kamal S, Yang TCK. A silver trimesate organic framework as an ultrasensitive surface-enhanced Raman scattering substrate for detection of various organic pollutants. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Jin X, Zhu Q, Feng L, Li X, Zhu H, Miao H, Zeng Z, Wang Y, Li Y, Wang L, Liu X, Shi G. Light-Trapping SERS Substrate with Regular Bioinspired Arrays for Detecting Trace Dyes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11535-11542. [PMID: 33625204 DOI: 10.1021/acsami.1c00702] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, few studies have focused on the light-trapping surface-enhanced Raman scattering (SERS) substrate combined with Si micropyramids and Ag (or Au). However, the Si micropyramids possess no ordered period, which not only affects the repeatability of the SERS signal but also affects the theoretical exploration. Here, the ordered micropyramids with strong light-trapping capability were fabricated by utilizing unconventional nanosphere lithography and anisotropy wet etching technique. Then, the Ag nanobowls were assembled on the ordered micropyramids to form the SERS substrate with bioinspired compound-eyes structure by utilizing the liquid-solid interface self-assembly and transfer technique. Especially, the evidence for the contribution of antireflective Si micropyramids to Raman enhancement was first presented. For this bioinspired SERS substrate, the lowest concentration of R6G that can be detected is 10-13 M with the level of a single molecule, and the relative standard deviation (RSD) is 3.68%. Meanwhile, the quantitative analysis and qualitative analysis can be realized. Especially, simultaneous trace detection of four common dyes (R6G, CV, MG, and MB) in food can be realized, suggesting that this SERS substrate will have a good application prospect in the field of optical sensors.
Collapse
Affiliation(s)
- Xuan Jin
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qunyan Zhu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Lei Feng
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative, Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xin Li
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Haiyan Zhu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongyan Miao
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhoufang Zeng
- Research and Development Center for Genetics Resource, Chinese Academy of Sciences, Changzhou 213000, China
| | - Yandong Wang
- Research and Development Center for Genetics Resource, Chinese Academy of Sciences, Changzhou 213000, China
| | - Ying Li
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Likui Wang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xuefeng Liu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Gang Shi
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
24
|
Perumal J, Wang Y, Attia ABE, Dinish US, Olivo M. Towards a point-of-care SERS sensor for biomedical and agri-food analysis applications: a review of recent advancements. NANOSCALE 2021; 13:553-580. [PMID: 33404579 DOI: 10.1039/d0nr06832b] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The growing demand for reliable and robust methodology in bio-chemical sensing calls for the continuous advancement of sensor technologies. Over the last two decades, surface-enhanced Raman spectroscopy (SERS) has emerged as one of the most promising analytical techniques for sensitive and trace analysis or detection in biomedical and agri-food applications. SERS overcomes the inherent sensitivity limitation associated with Raman spectroscopy, which provides vibrational "fingerprint" spectra of molecules that makes it unique and versatile among other spectroscopy techniques. This paper comprehensively reviews the recent advancements of SERS for biomedical, food and agricultural applications over the last 6 years, and we envision that, in the near future, some of these platforms have the potential to be translated as a point-of-care and rapid sensor for real-life end-user applications. The merits and limitations of various SERS sensor designs are analysed and discussed based on critical features such as sensitivity, specificity, usability, repeatability and reproducibility. We conclude by highlighting the opportunities and challenges in the field while stressing the technological gaps to be addressed in realizing commercially viable point-of-care SERS sensors for practical biomedical and agri-food technological applications.
Collapse
Affiliation(s)
- Jayakumar Perumal
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR), Singapore.
| | - Yusong Wang
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR), Singapore.
| | - Amalina Binte Ebrahim Attia
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR), Singapore.
| | - U S Dinish
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR), Singapore.
| | - Malini Olivo
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR), Singapore.
| |
Collapse
|
25
|
Lê QT, Ly NH, Kim MK, Lim SH, Son SJ, Zoh KD, Joo SW. Nanostructured Raman substrates for the sensitive detection of submicrometer-sized plastic pollutants in water. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123499. [PMID: 32739725 DOI: 10.1016/j.jhazmat.2020.123499] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 05/24/2023]
Abstract
We prepared novel Raman substrates for the sensitive detection of submicron-sized plastic spheres in water. Anisotropic nanostar dimer-embedded nanopore substrates were prepared for the efficient identification of submicron-sized plastic spheres by providing internal hot spots of electromagnetic field enhancements at the tips of nanoparticles. Silver-coated gold nanostars (AuNSs@Ag) were inserted into anodized aluminum oxide (AAO) nanopores for enhanced microplastic (MP) detection. We found that surface-enhanced Raman scattering (SERS) substrates of AuNSs@Ag@AAO yielded stronger signals at the same weight percentages for polystyrene MP particles with diameters as small as 0.4 μm, whereas such behaviors could not be observed for larger MPs (diameters of 0.8 μm, 2.3 μm, and 4.8 μm). The detection limit of the submicrometer-sized 0.4 μm in our Raman measurements were estimated to be 0.005% (∼0.05 mg/g =50 ppm) along with a fast detection time of only a few min without any sample pretreatments. Our nano-sized dimensional matching substrates may provide a useful tool for the application of SERS substrates for submicrometer MP pollutants in water.
Collapse
Affiliation(s)
- Quang Trung Lê
- Department of Information Communication Convergence Technology, Soongsil University, Seoul, 06978, Republic of Korea
| | - Nguyễn Hoàng Ly
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea
| | - Moon-Kyung Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soon Hyuk Lim
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| | - Sang Jun Son
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Woo Joo
- Department of Information Communication Convergence Technology, Soongsil University, Seoul, 06978, Republic of Korea; Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea.
| |
Collapse
|
26
|
Geng ZQ, Zheng JJ, Li YP, Chen Y, Wang P, Han CQ, Yang GH, Qu LL. A disposable paper-based hydrophobic substrate for highly sensitive surface-enhanced Raman scattering detection. Talanta 2020; 220:121340. [PMID: 32928387 DOI: 10.1016/j.talanta.2020.121340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
Detection of target analytes with high sensitivity and reproducibility remains a challenge for surface-enhanced Raman scattering (SERS) due to the lack of cost-effective and highly sensitive substrates. In this study, a hydrophobic SERS substrate capable of concentrating nanoparticles and analytes was prepared by spin-coating lubricating liquid onto commercial paper. The condensation effect of the paper-based hydrophobic substrate induced aggregation of gold nanoparticles (Au NPs) to generate ''hot spots'' for SERS and to drive analytes to the hot-spot areas for more sensitive detection. The obtained SERS signal intensity was 5-fold higher than that obtained using common paper, and a detection limit (LOD) of 4.3 × 10-10 M for rhodamine 6G (R6G) was achieved. Randomly selected points on the substrate and different batches of substrates all exhibited high reproducibility, and the relative standard deviation (RSD) at 1362 cm-1 is approximately 11%. A further application of the hydrophobic substrate was demonstrated by the detection of cytochrome C within a linear detection range of 3.90 × 10-8 M-1.25 × 10-6 M. In addition, the prepared substrate can obtain identifiable SERS spectra of cancer cells and non-cancer cells because a large number of AuNP or Au NPs clusters can adhere to cells, resulting in the construction of a 3D hotspot matrix. The disposable hydrophobic paper substrate eliminates the problem of solution diffusion, and also provides an effective platform for biomolecular screening detection.
Collapse
Affiliation(s)
- Zhi-Qin Geng
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jia-Jia Zheng
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yun-Peng Li
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yang Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Po Wang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Cai-Qin Han
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Guo-Hai Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Lu-Lu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
27
|
Fiorati A, Bellingeri A, Punta C, Corsi I, Venditti I. Silver Nanoparticles for Water Pollution Monitoring and Treatments: Ecosafety Challenge and Cellulose-Based Hybrids Solution. Polymers (Basel) 2020; 12:E1635. [PMID: 32717864 PMCID: PMC7465245 DOI: 10.3390/polym12081635] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022] Open
Abstract
Silver nanoparticles (AgNPs) are widely used as engineered nanomaterials (ENMs) in many advanced nanotechnologies, due to their versatile, easy and cheap preparations combined with peculiar chemical-physical properties. Their increased production and integration in environmental applications including water treatment raise concerns for their impact on humans and the environment. An eco-design strategy that makes it possible to combine the best material performances with no risk for the natural ecosystems and living beings has been recently proposed. This review envisages potential hybrid solutions of AgNPs for water pollution monitoring and remediation to satisfy their successful, environmentally safe (ecosafe) application. Being extremely efficient in pollutants sensing and degradation, their ecosafe application can be achieved in combination with polymeric-based materials, especially with cellulose, by following an eco-design approach. In fact, (AgNPs)-cellulose hybrids have the double advantage of being easily produced using recycled material, with low costs and possible reuse, and of being ecosafe, if properly designed. An updated view of the use and prospects of these advanced hybrids AgNP-based materials is provided, which will surely speed their environmental application with consequent significant economic and environmental impact.
Collapse
Affiliation(s)
- Andrea Fiorati
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta” and INSTM Local Unit, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy; (A.F.); (C.P.)
| | - Arianna Bellingeri
- Department of Physical, Earth and Environmental Sciences and INSTM Local Unit, University of Siena, 53100 Siena, Italy; (A.B.); (I.C.)
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta” and INSTM Local Unit, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy; (A.F.); (C.P.)
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences and INSTM Local Unit, University of Siena, 53100 Siena, Italy; (A.B.); (I.C.)
| | - Iole Venditti
- Department of Sciences, Roma Tre University of Rome, via della Vasca Navale 79, 00146 Rome, Italy
| |
Collapse
|
28
|
Bodelón G, Pastoriza-Santos I. Recent Progress in Surface-Enhanced Raman Scattering for the Detection of Chemical Contaminants in Water. Front Chem 2020; 8:478. [PMID: 32582643 PMCID: PMC7296159 DOI: 10.3389/fchem.2020.00478] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/08/2020] [Indexed: 12/23/2022] Open
Abstract
Water is a matter of vital importance for all developed countries due to the strong impact on human health and aquatic, wetlands and terrestrial environments. Therefore, the monitoring of water quality is of tremendous importance. The enormous advantages that Surface-enhanced Raman scattering (SERS) spectroscopy offers, such as fingerprint recognition, multiplex capabilities, high sensitivity, and selectivity or non-destructive testing, make this analytical tool very attractive for this purpose. This minireview aims to provide a summary of current approaches for the implementation of SERS sensors in monitoring organic and inorganic pollutants in water. In addition, we briefly highlight current challenges and provide an outlook for the application of SERS in environmental monitoring.
Collapse
Affiliation(s)
- Gustavo Bodelón
- CINBIO, University of Vigo, Vigo, Spain.,Galicia Sur Health Research Institute (IIS Galicia Sur) SERGAS-UVIGO, Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, University of Vigo, Vigo, Spain.,Galicia Sur Health Research Institute (IIS Galicia Sur) SERGAS-UVIGO, Vigo, Spain
| |
Collapse
|
29
|
Electric Field-Modulated Surface Enhanced Raman Spectroscopy by PVDF/Ag Hybrid. Sci Rep 2020; 10:5269. [PMID: 32210311 PMCID: PMC7093541 DOI: 10.1038/s41598-020-62251-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/11/2020] [Indexed: 11/23/2022] Open
Abstract
Electrically modulated surface enhanced Raman scattering (E-SERS) can be able to regulate the plasmon resonance peak of metal nanostructures, further improve the detection sensitivity of the SERS substrate. However, the E-SERS substrates require auxiliary equipment to provide the electrical potential, and most of them are non-flexible structure, which limits the application of E-SERS in the portable, in-situ and fast detection area. Here, we developed an electric field-modulated SERS substrate based on the piezoelectric effect by combining the PVDF (piezoelectric-modulated layer) and Ag nanowires (AgNWs) (SERS active layer) and investigated the SERS activity in experiment and theory. The enhanced electric field and the tunable plasmon resonance induced by the piezoelectric effect provide the additional enhancement for the SERS signal. Furthermore, we fabricated a SERS active ring with a piezoelectric field-modulated substrate and achieved the in-situ detection of glucose with a non-invasive method. This work provided innovation for the E-SERS and could greatly promote the development of the in-situ, wearable and intelligent sensors.
Collapse
|
30
|
Photocatalytic Treatment of Pharmaceuticals in Real Hospital Wastewaters for Effluent Quality Amelioration. WATER 2019. [DOI: 10.3390/w11102165] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The presence of pharmaceutically active compounds (PhACs) in the wastewater effluents has confirmed that conventional wastewater treatment technologies are not sufficiently effective in the pharmaceuticals’ removal. The objective of the present study was to evaluate and compare the photocatalytic degradation of PhACs using TiO2-P25, graphitic carbon nitride (g-C3N4, CN) and a heterojunction of perovskite strodium titanate and graphitic carbon nitride SrTiO3/g-C3N4 (20% g-C3N4, 20CNSTO) photocatalytic materials, in hospital wastewater effluents, by simulated solar irradiation. The experiments were performed by using real wastewater samples collected from the university hospital wastewater treatment plant (WWTP) effluent of Ioannina city (Northwestern Greece) and inherent pharmaceutical concentration levels. The analysis of the samples was accomplished by solid phase extraction followed by liquid chromatography-Orbitrap high-resolution mass spectrometry. In the cases of TiO2 and CN, more than 70% of the initial concentration (e.g., venlafaxine) was degraded after 90 min, while 20CNSTO presented lower photocatalytic performance. Furthermore, some compounds were sporadically detected (e.g., fluoxetine) or their concentrations remained stable during the photocatalytic treatment time period (e.g., trimethoprim). In total 11 transformation products (TPs) were formed along the degradation processes and were identified by using liquid chromatography high resolution mass spectrometry.
Collapse
|